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Fine structure of beta decay endpoint spectrum

Samina S. Masood∗

Department of Earth Sciences, SUNY Oswego, Oswego, NY 13126

Salah Nasri†

Department of Physics, University of Maryland, College Park, MD 20742-4111,

Joseph Schechter‡

Department of Physics, Syracuse University, Syracuse, NY 13244-1130

(Dated: May 2005)

We note that the fine structure at the endpoint region of the beta decay spectrum is now essentially
known using neutrino oscillation data, if the mass of one neutrino is specified. This may help to
identify the effects of nonzero neutrino masses in future experiments. We also give a compact
description of the entire range of allowed neutrino masses as a function of the third neutrino mass,
m3. A three neutrino assumption is being made. An exact treatment of phase space kinematics is
used, in contrast to the conventional approximate formula. This work is independent of theoretical
models; however, additional restrictions due to the assumption of a “complementary ansatz” for the
neutrino mass matrix are also discussed. The ansatz implies that the values of the three neutrino
masses should approximately be able to form a triangle. It is noted that most of the presently
allowed neutrino mass sets have this triangular property.

PACS numbers: 14.60 Pq, 13.20 -v, 13.15 +g

I. INTRODUCTION

Measurement of the maximum electron energy in beta decay processes is the original approach [1] to finding the
absolute value of a possible neutrino mass. It is still a subject of great interest [2] and may yield the first direct
measurement of this crucial quantity. Especially interesting is the process of tritium decay [3, 4],

3H → 3He+ + e− + ν̄e. (1)

In this paper, we discuss how results obtained from present neutrino oscillation experiments [5] yield characteristic
shapes for the beta decay endpoint spectrum which could help in signal identification [6]. The main point is that the
present oscillation data already predict fairly reliably a bi-unique description of the shape of the endpoint spectrum
if the mass of any neutrino is specified. This fortunate situation arises since, as we will discuss, the only unknown
mixing angle is strongly bounded and hence cannot have much effect on the endpoint spectrum shape. So, running
over the possible values of the third neutrino mass m3, we would get a “catalog” of shapes which can be compared
with the experimental shape to find a best fit. Of course, there are a number of practical corrections to the observed
end point spectrum other than just the phase space and neutrino mixing effects to be considered here. These include
[7] (i) Different final masses of 3He+ due to different final atomic electron states, (ii) Corrections due to binding of
3H in a molecule, (iii) Resolution function of the detector, (iv) Final state effects. The corrections should be made
on each “page” of the catalog obtained.

We start in section II with an exact numerical treatment of the phase space, which contains a relevant correction
to the approximate treatment often used. In section III we show that, as m3 decreases from about the highest value
considered to be consistent with information from cosmology, there are, in general, two solutions: type I where m3

is the largest of the neutrino masses and type II where m3 is the smallest of all the neutrino masses. Below about
m3 = 0.052 eV only the type II solutions are allowed. A characteristic feature is that the neutrinos 1 and 2 are
extremely close in mass; their splittings range from about a ten thousandth of an eV to a hundredth of an eV.
The end point spectrum shapes, showing the slope discontinuities corresponding to the vanishing of each neutrino’s
contribution, are plotted to illustrate these features. With a very great accuracy that might be achieved in the future,
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the spacings of the neutrinos could conceivably survive the needed corrections mentioned above. However the most
practical procedure would probably be to integrate each corrected predicted spectrum shape (of definite m3 and type)
over an energy interval and then look to see which one is best fit by the experimental value.

In section IV we discuss some model restrictions on the ranges of m3 which lead to type I and type II solutions. These
restrictions arise by assuming a so-called “complementary ansatz” for the neutrino mass matrix. The observation of
m3 in the non-allowed ranges would constitute a falsification of the ansatz.

Finally, section V contains a brief summary and some discussion.

II. PHASE SPACE KINEMATICS

Taking the tritium decay example and assuming one massive neutrino for the time being, let M be the mass of the
tritium atom, M ′ the mass of 3He+, me the electron mass and mν the neutrino mass. Often [8], the kinetic part of
the recoil nucleus energy is neglected so one has an easy approximate formula for the maximum electron energy:

Emax(approx) = M − M ′ − mν . (2)

The exact formula, corresponding to the physical situation where the neutrino and the recoil nucleus both emerge
with the same velocity is

Emax =
1

2M
[M2 + m2

e − (mν + M ′)2]. (3)

To get an idea of the accuracy of the approximate formula we use [9] the input masses (in MeV):

M = 2809.431935572 M ′ = 2808.902399642, (4)

to obtain Table I. Notice that in Eq. (4) we have, for the purpose of conveniently “tracking” digits in this illustration,
included more digits than warranted for the experimental accuracy of M and M ′.

mν(eV) Emax(MeV) δEmax(eV)

10 0.5295225 3.431
1 0.529531497 3.433

0.1 0.529532397 3.433
0.01 0.529532487 3.433
0.001 0.529532496 3.433

TABLE I: Comparison of exact and approximate maximum electron energy for different neutrino masses. Note that δEmax =
Emax(approx)− Emax.

In the second column of Table I, as one goes to lower neutrino masses the change in the maximum electron energy
occurs, as expected, in the decimal place corresponding to the neutrino mass. The third column shows that there is a
correction to the approximate formula Eq.(2) of 3.43 eV which is essentially independent of neutrino mass. This value
is considerably larger than (as we will review) the still allowed values of neutrino mass and hence is very relevant. Its
analytic form may be obtained by subtracting Eq.(3) from Eq.(2) and then neglecting the neutrino mass dependence:

δEmax = Emax(approx) − Emax ≈ 1

2M
[(M − M ′)2 − m2

e]. (5)

Since one gets a decent approximation to Emax by subtracting the (neutrino mass independent) expression for δEmax

just given from Emax(approx), the difference of any two maximum electron energies essentially equals minus the
difference of the corresponding neutrino masses.

Considering that there is a relevant correction to the approximate end point formula, it seems prudent to also
calculate the phase space factor exactly. This does not seem to have been used before but is straightforward to get
by standard methods [10]. We write the distribution in the electron energy, E as,

| dΓ

dE
| =

1

(2π)3
|M|2
(2M)2

Φ(E), (6)
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where |M|2 stands for a suitably spin averaged squared amplitude and Φ(E) is the desired phase space factor. After
integration over one coordinate of the Dalitz diagram, we find:

Φ(E) =
√

(E∗2
2 − M ′2)(E∗2

3 − m2
e),

E∗
2 =

m2
12 − m2

ν + M ′2

2m12
,

E∗
3 =

M2 − m2
12 − m2

e

2m12
,

m12 =
√

M2 + m2
e − 2ME. (7)

In carrying out the integration we assumed that there is a negligible energy dependence introduced from |M|2. This
is reasonable since we are only interested in the very small endpoint region. The shape of Φ in the endpoint region is
illustrated in Fig. 1 for the case of a one electron volt neutrino.
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FIG. 1: Plot of the phase space factor Φ for a 1 eV neutrino. x = E − Emax has units of MeV while Φ has units of MeV 2

III. CASE OF THREE NEUTRINOS

In the realistic three neutrino case, the ordinary beta decays actually correspond to decays with different weights
into three neutrinos of different mass. The effective phase space factor is:

Φeff (E) =

3
∑

i=1

|K1i|2Φi(E)θ(Emax,i − E), (8)

where Φi(E) is the phase space factor and Emax,i the maximum electron energy for a neutrino of mass mi. The
K1i are matrix elements of the lepton mixing matrix, displayed for convenience in the Appendix. Notice that no CP
phases contribute.

As the result of a number of beautiful experiments [5], there is now a great deal of information available about the
squared mass differences and mixing angles involved in neutrino physics. Essentially, assuming that the three neutrino
scenario is correct, if the absolute mass of any one neutrino is specified, everything in Eq. (8) up to a possible two-fold
ambiguity is known with useful accuracy. According to a recent analysis [11] it is possible to extract from the data
to good accuracy, two squared neutrino mass differences: m2

2 −m2
1 and |m2

3 −m2
2|, and two inter-generational mixing

angle squared sines: s2
12 and s2

23. Furthermore the inter-generational mixing parameter s2
13 is found to be very small.

Specifically, we will adopt,

A ≡ m2
2 − m2

1 = 6.9 × 10−5eV 2,

B ≡ |m2
3 − m2

2| = 2.6 × 10−3eV 2. (9)

The uncertainty in these determinations is roughly 25%. Similarly for definiteness we will adopt the best fit values
for s2

12 and s2
23 obtained in the same analysis:

s2
12 = 0.30, s2

23 = 0.50. (10)
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These mixing parameters also have about a 25% uncertainty. The experimental value of s2
13 was less accurately

determined. At present only the 3 σ bound,

s2
13 ≤ 0.047, (11)

is available and we will choose, for definiteness, s2
13 = 0.04. Then, our values for the weighting coefficients in Eq. (8)

will be taken as,

|K11|2 = (c12c13)
2 = 0.672,

|K12|2 = (s12c13)
2 = 0.288,

|K13|2 = (s13)
2 = 0.040. (12)

Future improvements in these factors are not expected to make qualitative changes in the endpoint spectrum shapes. In
particular, even though the exact value of |K13|2 is not known, the bound of Eq.(11) guarantees that the contribution
of neutrino three will be no larger than the amount to be given.

The goal would be to fit the endpoint spectrum shape observed in a future tritium decay experiment to one of the
family of shapes that we can now find by running through the possible values of the third neutrino mass, m3. For a
given value of m3 one can obtain from Eqs.(9) two different solutions for the other masses m1 and m2. We call the
solution where m3 is the largest neutrino mass, the type I case. The case where m3 is the smallest neutrino mass is
designated type II. m1 will be determined from the assumed value of m3 as,

m2
1 = m2

3 − A ∓ B, (13)

where the upper and lower sign choices respectively refer to the type I and type II cases. In either case we find m2 as,

m2
2 = A + m2

1. (14)

Which values of m3 are allowed? A recent cosmology bound [12] based on structure formation requires,

m1 + m2 + m3 < 0.7 eV. (15)

Thus values of m3 greater than about 0.3 eV are physically disfavored. However, it seems extremely important that
this bound be verified independently by laboratory experiments like tritium beta decay. At the lower end, we see
from Eq.(13) that the type I solutions must satisfy,

m3 >
√

A + B ≈ 0.0517eV. (16)

On the other hand, the type II solutions need only obey m3 > 0 at the lower end. Some typical allowed solutions are
shown in Table II.

type m1(eV) m2(eV) m3(eV)

I 0.2955 0.2956 0.3
II 0.3042 0.3043 0.3
I 0.0856 0.0860 0.1
II 0.1119 0.1123 0.1
I 0.0305 0.0316 0.06
II 0.0783 0.0787 0.06
I 0.0000 0.0083 0.0517
II 0.0643 0.0648 0.04
II 0.0541 0.0548 0.02
II 0.0506 0.0512 0.005
II 0.0503 0.0510 0.001

TABLE II: Typical solutions for (m1, m2) as m3 is lowered from about the highest value which is experimentally reasonable.
In the type I solutions m3 is the largest mass while in the type II solutions m3 is the smallest mass.

This table contains a great deal of information in a very small space. For orientation, we remark that the type I
situation is usually called the ”normal hierarchy” while the type II situation is usually called the ”inverted hierarchy”.
Actually the table shows that over a large portion of the currently favored neutrino mass range (i.e. roughly from
m3 =0.1 to 0.3 eV as opposed to m3 = 0 to 0.1 eV) and for either type I or type II, the neutrino mass spectrum is
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better described as an almost degenerate situation rather than one involving a hierarchy. If one goes above m3 =
0.3 eV the degeneracy is even enhanced. Below about m3 = 0.1 hierarchies can exist. Note that the maximum ratio
associated with a normal hierarchy corresponds to m3/m2 only about 6 and is achieved just when (while decreasing
m3) this type vanishes. On the other hand, we see that the ratio m2/m3 can become indefinitely large (as m3 goes
to zero) for the inverted hierarchy case. Another interesting feature shown in this table is the near mass degeneracy
of neutrinos one and two for all the solutions. The table precisely shows how this near degeneracy gets somewhat
relaxed as the mass m3 decreases from the top allowed value. Finally, the table illustrates the vanishing of the type I
solutions, consistently with Eq. (16), as m3 is decreased.

Now let us examine the endpoint spectrum shape computed from Eq. (8). Figure 2 shows the endpoint spectrum
in the type I case where m3 = 0.3 eV and correspondingly m1, m2 = 0.2955, 0.2956 eV. In addition to the vanishing of
Φeff at x = E −Emax,1 = 0 due to neutrino one there is also a nearby discontinuity of slope at x = Emax,2 −Emax,1

due to neutrino two. The presence of two distinguishing features may be easier to recognize than just one alone.
However, the difference between these two points is read off to be about one ten-thousandth of an eV (which, as
remarked previously, also is the difference between the two neutrino masses seen in Table II). This seems to be
a rather small number for experimental detection. The slope discontinuity due to neutrino three is still further to
the left and is shown, greatly magnified, in Fig. 3. It is only about five one thousandths of an eV away from the
others. However the signal for neutrino three is suppressed by the small value of s2

13, as discussed above. Conceivably,
requiring the presence of three distinguished points together may make the neutrino mass signal somewhat easier to
recognize in the future.
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FIG. 2: Plot of Φeff for m3 = 0.3eV and m1, m2 = 0.2955, 0.2956eV in the region showing the m1, m2 structure. x = E−Emax,1

has units of MeV while Φeff has units of MeV 2
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FIG. 3: Plot of Φeff for m3 = 0.3eV and m1, m2 = 0.2955, 0.2956eV in the region showing the m3 structure. x = E − Emax,1

has units of MeV while Φeff has units of MeV 2

The endpoint spectrum for the type II solution with m3 = 0.3 eV is similarly plotted in Figs. 4 and 5. For this
case, since m3 is the smallest mass, one recognizes that the curve in Fig. 4 does not quite vanish at the right end
(larger electron energy) but goes to a small value controlled by the small value of s13. Clearly, as discussed above,
finding a more accurate value of K13 consistent with the experimental bound will have a small effect on the endpoint
spectrum shape. The actual vanishing at the right end is shown, magnified, in Fig. 5. The spacings between the
various neutrino points are essentially the same in magnitude as in the type I case. However the type I and II cases
can, in principle, be distinguished by noting that the long interval comes first in the type II case.
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FIG. 4: Plot of Φeff for m3 = 0.3eV and m1, m2 = 0.3042, 0.3043eV in the region showing the m1, m2 structure. x = E−Emax,3

has units of MeV while Φeff has units of MeV 2
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FIG. 5: Plot of Φeff for m3 = 0.3eV and m1, m2 = 0.3042, 0.3043eV in the region showing the m3 structure. x = E − Emax,3

has units of MeV while Φeff has units of MeV 2

The figures for lower values of m3 are very similar in shape. We give one more plot here for comparison. As m3

decreases, the distinguishing points for neutrinos one and two move somewhat apart. This can be understood since
the corresponding masses are seen in Table II to move apart and, according to Eqs. (2) and (5) the splitting of the
maximum electron energies is, to a very decent approximation, the same as the neutrino mass splitting. In Fig. 6 the
type I case with m3 = 0.06 eV is shown. Here the splitting between the neutrino one and two points is one order of
magnitude larger than for the corresponding Fig. 2. The splitting between the neutrino three point and the others is
boosted to about three hundreths of an eV.

Evidently, it may be sometime in the future before the accuracy of the beta decay experiments enables one to see
all the details of the fine structure displayed here. The present approach may nevertheless be useful in the near future
for numerically computing the integrated spectrum as a function of both an energy interval ∆ as well as the running
parameter m3 and searching for a best fit to experiment. This would have to be done for both the type I and type
II cases. A clear best fit would, in principle, determine all three neutrino masses in a manner consistent with the
neutrino oscillation data. Of course, the other corrections mentioned in the Introduction (which are beyond the scope
of the present paper) must be included too. In the literature [6] there has been some debate about the proper choice of
an effective neutrino mass to replace all three masses in the analysis of endpoint experiments. Clearly the procedure
suggested here would enable one to measure the effectiveness of different choices. A more detailed discussion of this
aspect will be given elsewhere.
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FIG. 6: Plot of Φeff for m3 = 0.06eV and m1, m2 = 0.0305, 0.0316eV in the region showing the m1, m2 structure. x =
E − Emax,1 has units of MeV while Φeff has units of MeV 2

IV. RESTRICTIONS FROM A “COMPLEMENTARY” ANSATZ

Up to now we have considered only experimental inputs. A key feature was allowing m3 to vary in order to
run through a family of endpoint spectrum shapes which might be compared with future experiments. A similar
procedure was recently followed in order to derive consequences from an ansatz [13]-[18] which allows one to compute
(in case the neutrinos are of Majorana type) the two Majorana CP violation phases, given m3 and the Dirac phase
δ. That“complementary ansatz” specifies that the trace of the prediagonal 3× 3 neutrino mass matrix vanishes (in a
charged lepton diagonal basis wherein non-physical phases are appropriately chosen). Since the prediagonal neutrino
mass matrix is complex, the vanishing trace gives two physical conditions. Taking A, B, s2

12, s
2
23, s

2
13 as “known”,

running through the two parameters m3 and the Dirac CP phase δ then determines the allowed values of the two
Majorana CP phases. This gives a two parameter family of solutions for the complete set of neutrino parameters.

Now in carrying out this analysis, the starting point was Eqs. (13) and (14) above. However it turns out that
the allowed ranges of m3 are more restrictive than those obtained in and after Eq. (16). In Table III, taken from
ref. [18], it can be seen that the smallest allowed value of m3 for type I solutions is in the range 0.058 − 0.059 eV
rather than 0.0517 eV as found here. Similarly, the smallest allowed value of m3 for type II solutions is in the range
0.00068−0.00246 eV rather than zero as obtained here. The range of minima exists because there is some dependence
on the input Dirac phase δ.

type (m3)min (δ = 0) in eV (m3)min (δ = 0.5) (m3)min (δ = 1.0) (m3)min (δ = 1.5) (m3)min (δ = 2.0) (m3)min (δ = 2.5)

I 0.0592716 0.0590967 0.0587178 0.0584799 0.0586203 0.0589971
II 0.0006811 0.00105461 0.0019024 0.0024636 0.0021294 0.0012723

TABLE III: Minimum allowed value of the input mass, m3 as a function of the input CP violation phase, δ for type I and II
solutions using the “complementary” ansatz. Here, the choice s2

13 = 0.04 has been made.

It may be amusing to see why the ansatz leads to more restrictions. Take the simplified case, treated in detail in
ref. [16], where δ = 0. Then the ansatz condition amounts to the lengths corresponding to the three neutrino masses
forming a triangle in the complex plane. (The two independent Majorana phases are related to the internal angles
of this triangle). The procedure outlined here obtains, for a given assumed value of m3, the three neutrino masses.
However it is not guaranteed that they form a triangle, since the mass of one neutrino may be greater than the sum
of the masses of the two others. The case where m3 = 0.0517 in Table II is an obvious example of this situation. In
the case when δ is non-zero, treated in detail in ref. [18], there is also a triangle condition but the triangle is not
made simply using the masses as sides. At the present moment, the “non-triangular” regions of m3 space constitute
a small, but interesting, part of the allowed range (considering of course the type I and type II cases separately).
The allowed regions are summarized in Figs. 7 and 8 . So, if in the future, the neutrino masses are found from
an endpoint spectrum analysis to give (assuming suitably updated numbers) m3 outside the range predicted by the
complementary ansatz, the latter can be ruled out.
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FIG. 7: Schematic view of the allowed range of neutrino mass m3 for the type I solution. The wiggly line illustrates the
restrictions on the allowed range due to assuming the complementary ansatz for the neutrino mass matrix.

FIG. 8: Schematic view of the allowed range of neutrino mass m3 for the type II solution.
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V. SUMMARY AND DISCUSSION

We have demonstrated that, given the value of the third neutrino mass m3, the endpoint spectrum of the electron
energy in beta decay is biuniquely predicted to a reasonable approximation using the experimental results on neutrino
oscillations and their analyses. For definiteness some characteristic endpoint spectrum shapes were explicitly illus-
trated. This seems important not only as an indication of how much our understanding of neutrinos has advanced
in the last ten years but as a convenient benchmark for helping to analyze future beta decay experiments. Of course
the actual experimental results require other important corrections to this ”ideal” theoretical picture. Some novel
features of this paper which may be of interest include:

1. While the kinematics of the endpoint spectrum has been discussed many times in the literature, the exact
formula for the phase space dependence on the electron energy (obtained by performing one integration over the
Dalitz diagram while holding the invariant matrix element constant), Eq. (7), does not seem to have been previously
used. These results may not make big changes in other analyses but one can use them with confidence since there
will then be no question of kinematical (nucleon recoil) corrections needing to be separately taken into account.

2. The method of analysis of the presently allowed neutrino masses using the squared mass differences obtained
from the neutrino oscillation experiments presented in section III involves listing the results for the masses of neutrinos
one and two while choosing various values of the mass m3. The cases where m3 is heaviest (type I) and where it is
lightest (type II) are treated separately. For example, as discussed in section III, one sees that the currently allowed
neutrino mass spectrum is characterized for a large part of its range as almost degenerate rather than hierarchical.
The main point is that for any choice of m3 and type, the shape of the endpoint spectrum is already pretty well
known from the neutrino oscillation experiments. Even though the value of s2

13 is only bounded, it will not affect
the shape much. Our treatment easily shows that the slope discontinuities corresponding to the mass differences of
individual neutrinos occur very close to each other. That would make detailed verification of the shape difficult in
the near future. However, knowing the shape for any value of m3 makes it possible to integrate the final electron
distribution over an energy interval ∆ corresponding to a given experiment. Then the number of predicted electrons
could be plotted as a function of m3 and ∆ to get an ”ideal” estimate of the experimental sensitivity to distinguishing
different neutrino mass scenarios. This ideal estimate should of course be corrected for effects mentioned in section I,
but that is beyond the scope of the present paper. Further applications of this approach will be presented elsewhere.

3. The complementary ansatz for the neutrino mass matrix [13]-[18] enables one to predict, given m3 and the
”Dirac” CP phase, the two Majorana phases of the lepton mixing matrix. It is of interest because it enables the
estimation of the neutrinoless double beta decay quantity mee and, in a certain model, the baryon asymmetry by
the leptogenesis mechanism without making arbitrary assumptions about these phases. An amusing feature of the
ansatz is that (to the approximation that the effect of the Dirac CP phase δ is negligible) the magnitudes of the three
neutrino masses must make up a triangle. If they don’t, the ansatz would be falsified. In section IV, the regions of
allowed neutrino masses which falsify the ansatz were specified (including the effect of δ). It was pointed out that a
large portion of the currently allowed range of m3 actually does correspond to a triangular pattern of neutrino masses.
However, the small non-triangular region near m3 = 0.0517 eV is the only place where m3 is several times higher than
m2.
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APPENDIX A: LEPTON MIXING MATRIX

A symmetrical parameterization of the lepton mixing matrix, K can be written as:

K =





c12c13 s12c13e
iφ12 s13e

iφ13

−s12c23e
−iφ12 − c12s13s23e

i(φ23−φ13) c12c23 − s12s13s23e
i(φ12+φ23−φ13) c13s23e

iφ23

s12s23e
−i(φ12+φ23) − c12s13c23e

−iφ13 −c12s23e
−iφ23 − s12s13c23e

i(φ12−φ13) c13c23



 . (A1)

Some advantages of this choice are discussed in sections V and VI of [18]. As written, it holds for the case of Majorana
type neutrinos. There are three CP violating phases, φ12, φ23 and φ13. The “invariant” combination δ = φ12+φ23−φ13
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corresponds to the “Dirac phase”. If neutrinos are of Dirac type, only a single phase (say φ13) may be taken to be
non-zero.
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