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Abstract 

We develop a novel forecast combination based on the order statistics of individual predictability when 

many forecasts are available. To this end, we define the notion of forecast depth, which measures the size 

of forecast errors during the training period and provides a ranking among different forecast models. The 

forecast combination is in the form of a depth-weighted trimmed mean, where the group of models with 

the worst forecasting performance during the training period is dropped. We derive the limiting 

distribution of the depth-weighted forecast combination, based on which we can readily construct 

forecast confidence intervals. Using this novel forecast combination, we forecast the national level of 

new COVID-19 cases in the U.S. and compare it with other approaches including the ensemble forecast 

from the Centers for Disease Control and Prevention. We find that the depth-weighted forecast 

combination yields more accurate predictions compared with other forecast combinations. 
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1 Introduction  

Since the seminal work by Bates and Granger (1969), forecast combinations have been success-

fully used in many empirical studies when multiple forecasts of the same variable are available. 

The forecast combination becomes one of the core methods of forecasting practice, as the cost 

of collecting real-time forecasts has been dropped significantly. It is also known that combined 

forecasts often produce better forecasts than the ex ante best single forecasting model. See 

Clemen (1989), Stock and Watson (2001), and Timmermann (2006), for instance, for survey of 

this literature. 

When we know the individual forecasting models and their information sets (i.e., the pre-

dictors), we can readily find the optimal weights by minimizing the forecast mean squared error 

loss. We can also apply ensemble methods in machine learning such as bagging and boosting to 

combine forecasts. Such approaches, however, require a long training period but a small number 

of forecasting models, so that the weights can be estimated. In practice, it is often the case that 

the individual forecasting models are not fully known and only the individual forecast reports 

are available. Even when the individual forecasting models and the information sets are known, 

pooling of information sets is either impossible or prohibitively costly particularly in real-time 

practice (e.g., Diebold and Pauly, 1990). In such cases, it is common to use the equally weighted 

average of forecasts or the weighted average based on the inverse squared forecast error values 

(e.g., Stock and Watson, 2001). The equal weight approach is the most popular one because 

it is simple but outperforms the estimated optimal weights, which is often called the “forecast 

combination puzzle”. 

In this paper, we propose a forecast combination based on the order statistics of individual 

predictability when many forecasts are available. We assume data rich environment of the 

forecasts but we do not require the knowledge of each forecasting model nor its information set. 

The weights can be obtained using the cross-section information and hence we do not need a 

long training period to estimate the weights. 

More precisely, we modify the notion of data depth (e.g., Zuo and Serfling, 2000; Lee and 

Sul, 2019) in the context of forecast combination and develop the forecast depth, which measures 

the nearness of each vector of forecasts toward the vector of observed values over the training 

period. The forecast depth provides a ranking among the forecasting models. The weights for 

forecast combination are proportional to the forecast depth after trimming out the forecasts from 

the group of the worst performers. In this sense, this novel weighting scheme shares the idea of 

the rank-based approach (e.g., Aiolfi and Timmermann, 2006) and the idea of trimming (e.g., 

Granger and Jeon, 2004) in forecast combination. The depth-weighted forecast combination is 

in the form of the L-statistic, and thus it is more robust toward very bad forecasts than the 

equally-weighted combination. One limitation of the depth-weighted forecast combination is 

that it ignores the correlation structure among the forecast errors, though it is quite a common 
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practice in the literature. 

The main contribution of this paper can be summarized in three folds. First, we develop 

the forecast depth, based on which we can readily rank the forecasting performance over mul-

tiple periods and construct a robust forecast combination in the form of the depth-weighted 

trimmed mean. This approach only requires the forecast values and does not need to know each 

forecasting model. The number of forecasts can be large and the training period can be very 

short. Second, we derive the limiting distribution of the depth-weighted forecast combination 

with trimming, which can be used to construct a confidence interval of the prediction without 

relying on subsampling. Both the weight and the trimming threshold depend on the level of 

each forecast depth, and hence they are treated random in deriving the limiting distribution. 

Since the proposed forecast combination can cover popular ones as its special cases, such as the 

equal-weight forecast combination, the trimmed forecast combination, and the median forecast, 

this result also provides limiting distributions of those forecast combinations as well. Third, we 

apply the depth-weighted forecast combination to predict the national level of new COVID-19 

cases in the United States. Using the past forecasts, we find that the new forecast combination 

yields around 80% of the forecast mean squared error than the ensemble forecast reported by 

the Centers for Disease Control and Prevention. As of January 14, 2021, we also report the 

forecasts for the next four weeks, which shows a more volatile trend than the ensemble forecast 

and predicts up to 10% higher new cases in the next four weeks. 

It is worthy noting that the depth-weighted forecast combination uses cross-sectional dis-

tribution information in prediction, which can be time-varying. In the recent works, Joon Y. 

Park has developed novel approaches to estimate distributional dynamics and unknown trends 

in time series distribution. For example, see Chang, Kim, and Park (2016), Hu, Park, and 

Qian (2017), and Chang, Kaufmann, Kim, Miller, Park, and Park (2020). Once the unknown 

stochastic trend in the distribution of many forecasts is estimated, this information can be used 

to model the dynamics of forecast depth and reinforce forecast combination especially in long 

horizon forecasting. We do not consider this method here, but it will be a very promising and 

interesting topic for future research. 

The rest of the paper is organized as follows. Section 2 defines the forecast depth and 

develops the depth-weighted trimmed forecast combination. Section 3 examines the performance 

of the proposed forecast combination with the new COVID-19 cases in the U.S. and reports the 

forecasts for the next four weeks. Section 4 summarizes the asymptotic properties of the depth-

weighted forecast combination. Section 5 concludes with some remarks. 
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2 Forecast Depth and Depth-Weighted Forecast Combination 

As in Bates and Granger (1969), we suppose there are   forecasts +1 of 0+1 for  = 1     .

Such multiple forecasts can come from different forecasting models or from different agents. We 

consider forecast combination in the form of 

X  
b +1 = +1 (1) 

=1 

for some potentially time-varying weights . In particular, we consider the weight based on 

the data depth (e.g., Zuo and Serfling, 2000; Lee and Sul, 2019) of forecast error vector at given 

. 

More precisely, we let   = ( +1      1 )
0 be the  × 1 vector of forecasts in the − −

training period, which is the most recent  observations, and  0     
 = (

0 0 0
−+1       1 −  )

0 be the 
 × 1 vector of the observed values during this period. We denote the forecast error vector of  

as 

 =  −  0   .

We let  be a  × 1 vector with kk = 1. Given  , we d efine the normalized forecast error 

distance between  and  (or the forecast outlyingness) as ¯ ¯
|0| ¯ 0( −  0 ¯ O  ) 

 = = , 
  

where  ∈ (0∞) is some dispersion measure of 0 that is affine invariant and measurable 

to the information set at 1, I  
 = (∪  { 0=1  } ). For instance, under the assumption that ≤

{} is a random sample from a common distribution across , we can consider the square root 

of the forecast mean squared error (FMSE), 

 = (E[(0 2 12
) |I]) ,

or the forecast median absolute deviation (FMAD),2 

© ¡ ̄ ¯ ¢ ª
 = inf   : P ¯0 ̄  ≤ |I ≥ 12 .

 (2)  

 (3)  

1When 0 =  = 0, we define O = 0. 
2When the distribution of {} is heterogeneous across , we can even consider O = | 

0 | , where  
 = (1    )

0 be a  × 1 vector with kk = 1  for all . In such cases,  can be alternatively defined as    
)12(lim→∞ 

−1 
=1 E (0 

)
2 and lim→∞ med1≤≤ inf { : P (| 

0 | ≤ ) ≥ 12}, respectively. 
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The forecast depth is defined as3 

1 D = . 
1 +O 

By construction, the forecast depth D takes values between  zero a nd one;  it is one w hen  

 = 0. It also satisfies the typical properties of the data depth (e.g., Zuo and Serfling, 2000). 

In particular, for a given , D does not change from any location shift or rescaling of  
(Affine Invariance); D reaches the maximal value 1 if the model  makes perfect prediction 

(Maximality at Center); D decreases monotonically as it moves away from the maximal depth 

location, the deepest point (Monotonicity Relative to the Deepest Point); and  reaches to the D
minimal value 0 as the forecast error diverges (Vanishing at Infinity). The monotonicity yields 

a well-defined quantile function of 0 since it excludes any quantile-crossing problem, which 

is to be the key to construct a depth-based trimming in the weight . The last property is 

important for the forecast robustness against very under-performed forecasters or outliers. 

The forecast depth D is in a similar form as the “projection depth”.4 However, unlike the 

projection depth, it considers the distance from each forecast toward the observed value (i.e., the 

forecast error) instead of the distance toward a central location parameter of the distribution of 

, such as the mean or the median. More importantly, we preset the normalization vector  

in our case that can be potentially heterogeneous, whereas the typical projection depth needs 

to search for the  vector so that the outlyingness is maximized. The latter feature is unique in 

the forecasting problem, which is valid because one often has ordering of the importance among 
0the forecast errors during the training period  = (−+1 − 0 

−+1     −1 − 0 
−1  − 0) . 

Several examples of the normalization vector  can be considered. If we consider the forecast 

performance in the most recent observations are more important than the distant ones, we can P0let the th element of  = (1    ) as  = () =1 () for  = 1     , where  

(·) is some non-increasing one-side kernel function. Examples include the discount factor 
approach by Bates and Granger (1969) such that () = − for some   1, and  the Box—  

Cox transform weights by Diebold and Pauly (1987). If we treat all the forecast errors during the 

training period equally important, then  = 1. Note that such choices of  do not require 

3 It should be emphasized that the original notion of depth is mainly motivated to define a robust central 
location of multi-dimensional variables, which is not straightforward to define by simply extending the standard 
notion of median for univariate variables. In our case, on the other hand, the central location is already given as 
the vector of observed values  

0 , and hence the forecast depth provides a normalized distance from a vector of 
forecasts  toward the vector of observed values  

0 . 
4The projection depth is defined as follow. For an i.i.d. sample {}, the projection depth of  is given as 

D = 1[1 + O], where the outlyingness is defined as 

O =  sup  |0
 − (0

)|(0
) 

∈R:kk=1 

for some location and dispersion parameters (0) and (0) of the distribution of 0. 
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a balanced longitudinal data structure in , that is all forecasts are not necessarily available 

over the given training period. Therefore, we can even define heterogeneous normalization vector P = (1     )
0 by letting  = () =1 () for  = 1      with  ≤  for 

each . 

When a balanced data of  is available and if we consider that individual forecast +1 

follows a homogeneous autoregressive structure, then  can be obtained from the normal-Pized fitted () coefficients in +1 = =1  +1− + +1. We  can  also  let   bePthe normalized inverse of cross-sectional FMSE, (1) (−+1 −  
0 
−+1)

2, at  each  time  =1 

{− + 1     − 1 } during the  training period, which is of a similar normalization scheme 

as the standard Mahalanobis distance. 

The forecast depth provides a ranking of predictability among the forecasting models or 

agents, since the better performing models have higher levels of forecast depth. We can also 

use the forecast depth as a tool to detect very under-performed forecasting models. We hence 

propose to define the weight for the forecast combination in (1) that is proportional to the 

individual forecast depth. More precisely, we set some trimming parameter  ∈ (0 1) and let 

1{Db ≥ } (Db)
 = P ,  (4)  

=1 1{Db ≥ } (Db) 
where 1{·} is the binary indicator,  (·) is some scalar weight function, and the forecast depth 

estimator Db is defined as 

¯ ¯ ¯ 0 ¯ 1 ( −  
0)b bD = with O = 

1 +Ob b 
for some consistent estimator b. For each of the aforementioned examples, we can use 

Ã !12X 
b = 1 

0( −  
0)( −  

0)0 
 

=1 

and ¯ ¯ ¯ b = med1≤≤ ¯ 0( −  
0) , 

respectively. Since we define the training period over a rolling window of the most recent  

periods, the weight in (4) is naturally time-varying. 

From (1) and (4), the proposed combined forecast is then defined as a form of the trimmed 
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depth-weighted mean given as 

P 1 b
=1 {D ≥ } ( bD)+1

b+1 = P ,
 b b
=1 1{D ≥ } (D)

where { 5+1} 
=1 are the individual forecasts of +1 at the current time . This combined 

forecast assigns the weight on +1 based on its forecast depth during the training period: if 

the th model’s forecast error 0 is near zero and hence the forecast depth estimator bD is 

near maximum, then its forecast +1 gets a high weight; if its forecast error is too large, on the 

other hand, it is trimmed and gets a zero weight. In this sense, unlike the forecast combination 

based on the equal weights or forecast mean squared errors, the depth-weighted trimmed forecast 

combination b+1 in (5) is robust toward very under-performed (or outlying) forecasts over the 

training period. Note that the trimming scheme is random as it depends on bD, so  b+1 is a 

randomly trimmed forecast combination. 

Based on the  choice  of   and  (·), b+1 in (5) can cover popular forecast combinations. For 

instance, when  (·) = 1, b+1 is the equally weighed combined forecast with trimming, which 

converges to the trimmed mean of +1 if E[+1] exists; when  = 0 in addition, it is simply 

the equally weighed combined forecast. When  = max b
1≤≤ D, b+1 is t he same as  +1 

whose forecast depth is the maximal. For the case with  = 1, this maximal depth forecast 

corresponds to the forecast of agent  whose forecasts has been the most accurate (i.e., ex ante 

the best single forecast). When +1 has a density function that is elliptically symmetric about 

its mode, this maximal depth forecast becomes the median combination forecast. 

 (5)  

3 Forecasting New COVID-19 Cases 

We apply the depth-weighted forecast combination (5) to predict weekly COVID-19 cases in 

the United States. The data is collected from the Centers for Disease Control and Prevention 

(CDC) COVID Data Tracker (https://covid.cdc.gov/covid-data-tracker/#forecasting_weekly-

deaths) as of January 11, 2021, which is update on January 14, 2021. The dataset includes 

weekly forecast history from 34 individual modeling groups.6 It also includes the ensemble fore-

cast that is reported in the weekly forecast digest by the CDC, where the confidence interval 

at each prediction point is calculated as the average of the corresponding quantiles across all 

5For  ≥ 1, the  -step ahead combined forecast can be similarly defined as  
=1 1{D ≥ } (D)+

+ = . 
=1 1{D ≥ } (D) 

6The  list  of  the  agents  and  details  of  the  forecasting  models  can  be  found  at  
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/mathematical-modeling.html. 
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individual model forecasts (Busetti 2017).7 

First, we compare different forecast combination approaches, including the ensemble fore-

cast reported by the CDC (Ensemble), equally-weighted average (Equal), inverse FMSE based 

average (iMSE), and the forecast-depth based average (FD) developed in this paper. For the 

forecast-depth based combination, we consider 4 different cases by combining the following 

choices. For a given training period size , FD is the forecast-depth using the normalization 

vector  = 1 and FD is one using (normalized)  = 1 − (( − 1)). For each forecast 

depth, the type of b is specified in the parentheses: “(mse)” uses the square root of the sample P 12FMSE, b = (−1 
=1(

0)2) , and “(mad)” uses the sample FMAD, b = med1≤≤|0|. 
Note that we do not have a balanced longitudinal data structure in this exercise since each mod-

eling group has a different length of forecast history. Instead of artificially forming a balanced 

longitudinal data, we define the  training period as the most recent  forecasts from the target 

forecasting week. For a given target forecasting week, any modeling group  is dropped in the 

average if it does not have at least  most recent forecasts to form the training period. Model-

ing groups often report several forecasts for the same week; in such cases, we use the very last 

forecast (the most recent one) for that week. 

Tables 1 to 4 report the FMSE comparisons among different forecast combinations for -

week ahead forecasting for  = 1     4, respectively. Values in the tables are the ratio of the 

FMSE of each combined forecast to that of the ensemble forecast by the CDC, that are averaged 

over the most recent 15 weeks of forecasting performance, from the week ending on 10/3/2020 

to the week ending on 1/9/2021. So, values less than 1 implies that the FMSE is smaller than 

that of the ensemble forecast; smaller values implies better performance. At the current time ¡ ¢2P −15 , the FMSE is calculated as (115) b − 0 for each combined forecast b 
= −1 +1 +1 +1. 

In each table,  is the training period size, “trim” is the trimming proportion from the entire 

cross-section, and  is the average sample size having  training periods. The forecast-depth 

based combination shows good performance with about 80% of the FMSE of the ensemble 

forecast. It also outperforms other methods in general. For some cases, the inverse FMSE based 

average outperforms the forecast-depth based method, but its performance is not stable. We 

can conclude that the forecast-depth based combination yields quite stable and outperforming 

prediction in general. 

Second, based on the available forecasts up to the week ending 1/9/2021, we report pre-

dictions for the next 4 weeks (ending on 1/16/2021, 1/23/2021, 1/30/2021, 2/6/2021) as of 

January 14, 2021. For each -week ahead prediction ( = 1     4), we consider 30 different 

cases of  = 1     5 and  = 00 01     05 for each of the four forecast combinations, 

FD(mse), FD(mad), FD(mse), and FD(mad). Figure 1 reports the predictions of the av-

erage among these depth-weighted forecast combinations in black square line (avgFD) and the 

7For further details about the ensemble forecast, see medRxiv 2020.08.19.20177493; doi: 
https://doi.org/10.1101/2020.08.19.20177493. 
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Table 1: 1-step ahead FMSE ratio to the Ensemble forecast 

k trim   equal iMSE FD(mse) FD(mad) FD(mse) FD(mad) 

1 0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

24.9 0.8772 0.8438 0.8463 
0.8291 
0.8163 
0.8061 
0.8193 
0.8323 

0.8425 
0.8265 
0.8131 
0.8026 
0.8167 
0.8313 

0.8463 
0.8291 
0.8163 
0.8061 
0.8193 
0.8323 

0.8425 
0.8265 
0.8131 
0.8026 
0.8167 
0.8313 

2 0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

24.2 0.8835 0.8287 0.8500 
0.8029 
0.8127 
0.7816 
0.8396 
0.8432 

0.8476 
0.8022 
0.8115 
0.7818 
0.8395 
0.8443 

0.8493 
0.8026 
0.8335 
0.8195 
0.8505 
0.8308 

0.8458 
0.8012 
0.8309 
0.8179 
0.8483 
0.8296 

3 0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

23.6 0.8867 0.7640 0.8465 
0.7951 
0.7951 
0.7658 
0.7813 
0.8268 

0.8433 
0.7934 
0.7941 
0.7654 
0.7809 
0.8259 

0.8506 
0.8023 
0.8033 
0.7848 
0.8451 
0.8496 

0.8472 
0.8005 
0.8022 
0.7846 
0.8438 
0.8479 

4 0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

22.9 0.8811 0.7745 0.8356 
0.7805 
0.7400 
0.7708 
0.8160 
0.8349 

0.8320 
0.7786 
0.7391 
0.7696 
0.8144 
0.8333 

0.8412 
0.7902 
0.7877 
0.7967 
0.8421 
0.8275 

0.8383 
0.7887 
0.7873 
0.7962 
0.8410 
0.8266 

5 0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

22.1 0.8842 0.7853 0.8372 
0.7814 
0.7628 
0.7383 
0.8170 
0.8187 

0.8329 
0.7789 
0.7611 
0.7368 
0.8146 
0.8167 

0.8400 
0.7843 
0.7814 
0.7804 
0.8455 
0.8219 

0.8364 
0.7824 
0.7806 
0.7795 
0.8440 
0.8204 

avg 23.6 0.8826 0.7993 0.8074 0.8057 0.8203 0.8185 

Note: Values in the table are the ratio of the forecast mean square error of each combined forecast to that of the 

ensemble forecast, that are averaged over the most recent 15 weeks of forecasting, 10/3/2020 - 1/9/2021. 
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Table 2: 2-step ahead FMSE ratio to the Ensemble forecast 

k trim   equal iMSE FD(mse) FD(mad) FD(mse) FD(mad) 

1 0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

24.7 0.8799 1.0812 0.8455 
0.8170 
0.7928 
0.7941 
0.8057 
0.8108 

0.8439 
0.8155 
0.7925 
0.7939 
0.8066 
0.8120 

0.8455 
0.8170 
0.7928 
0.7941 
0.8057 
0.8108 

0.8439 
0.8155 
0.7925 
0.7939 
0.8066 
0.8120 

2 0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

23.9 0.8825 0.9728 0.8544 
0.8261 
0.7939 
0.7696 
0.8127 
0.8223 

0.8541 
0.8262 
0.7950 
0.7716 
0.8140 
0.8227 

0.8491 
0.8243 
0.7897 
0.7700 
0.8236 
0.8017 

0.8482 
0.8235 
0.7902 
0.7716 
0.8245 
0.8028 

3 0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

23.3 0.8769 0.7556 0.8361 
0.7932 
0.7594 
0.7543 
0.7577 
0.7668 

0.8319 
0.7912 
0.7581 
0.7526 
0.7556 
0.7641 

0.8397 
0.8078 
0.7716 
0.7659 
0.7831 
0.7974 

0.8366 
0.8052 
0.7703 
0.7644 
0.7812 
0.7944 

4 0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

22.7 0.8804 0.7675 0.8382 
0.8002 
0.7595 
0.7493 
0.7367 
0.7757 

0.8337 
0.7976 
0.7581 
0.7479 
0.7354 
0.7737 

0.8376 
0.8055 
0.7657 
0.7673 
0.7795 
0.7818 

0.8334 
0.8024 
0.7641 
0.7651 
0.7764 
0.7789 

5 0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

21.9 0.8834 0.7669 0.8422 
0.8039 
0.7587 
0.7780 
0.7882 
0.7670 

0.8363 
0.7998 
0.7557 
0.7754 
0.7845 
0.7635 

0.8435 
0.8074 
0.7724 
0.7677 
0.7717 
0.7743 

0.8390 
0.8048 
0.7707 
0.7660 
0.7695 
0.7720 

avg 23.3 0.8806 0.8688 0.7937 0.7921 0.7988 0.7973 

Note: Values in the table are the ratio of the forecast mean square error of each combined forecast to that of the 

ensemble forecast, that are averaged over the most recent 15 weeks of forecasting, 10/3/2020 - 1/9/2021. 
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Table 3: 3-step ahead FMSE ratio to the Ensemble forecast 

k trim   equal iMSE FD(mse) FD(mad) FD(mse) FD(mad) 

1 0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

24.3 0.8789 1.3785 0.8613 
0.8390 
0.8115 
0.8047 
0.8047 
0.7712 

0.8638 
0.8423 
0.8170 
0.8111 
0.8120 
0.7809 

0.8613 
0.8390 
0.8115 
0.8047 
0.8047 
0.7712 

0.8638 
0.8423 
0.8170 
0.8111 
0.8120 
0.7809 

2 0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

23.6 0.8663 1.1753 0.8530 
0.8215 
0.8035 
0.8046 
0.8234 
0.8617 

0.8596 
0.8299 
0.8138 
0.8155 
0.8345 
0.8718 

0.8498 
0.8224 
0.8049 
0.8157 
0.8076 
0.8146 

0.8533 
0.8270 
0.8111 
0.8217 
0.8136 
0.8215 

3 0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

23.1 0.8691 0.7889 0.8431 
0.8061 
0.8004 
0.7843 
0.7894 
0.7758 

0.8409 
0.8057 
0.7999 
0.7843 
0.7893 
0.7766 

0.8476 
0.8090 
0.8102 
0.8065 
0.7943 
0.7843 

0.8487 
0.8117 
0.8128 
0.8085 
0.7973 
0.7890 

4 0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

22.5 0.8727 0.8234 0.8584 
0.8365 
0.8238 
0.8273 
0.8301 
0.8337 

0.8558 
0.8359 
0.8245 
0.8285 
0.8312 
0.8351 

0.8549 
0.8212 
0.8189 
0.8121 
0.8165 
0.8423 

0.8543 
0.8222 
0.8203 
0.8139 
0.8179 
0.8424 

5 0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

21.5 0.8798 0.8203 0.8669 
0.8475 
0.8285 
0.8477 
0.8255 
0.9286 

0.8642 
0.8469 
0.8298 
0.8488 
0.8273 
0.9294 

0.8680 
0.8410 
0.8367 
0.8362 
0.8218 
0.8914 

0.8684 
0.8436 
0.8401 
0.8399 
0.8268 
0.8937 

avg 23.0 0.8733 0.9973 0.8271 0.8302 0.8240 0.8276 

Note: Values in the table are the ratio of the forecast mean square error of each combined forecast to that of the 

ensemble forecast, that are averaged over the most recent 15 weeks of forecasting, 10/3/2020 - 1/9/2021. 
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Table 4: 4-step ahead FMSE ratio to the Ensemble forecast 

k trim   equal iMSE FD(mse) FD(mad) FD(mse) FD(mad) 

1 0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

24.0 0.8566 1.2269 0.8251 
0.8095 
0.7891 
0.7892 
0.7853 
0.7774 

0.8205 
0.8068 
0.7878 
0.7885 
0.7852 
0.7778 

0.8251 
0.8095 
0.7891 
0.7892 
0.7853 
0.7774 

0.8205 
0.8068 
0.7878 
0.7885 
0.7852 
0.7778 

2 0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

23.3 0.8584 1.0379 0.8308 
0.8099 
0.8183 
0.7961 
0.7962 
0.7872 

0.8274 
0.8085 
0.8154 
0.7943 
0.7950 
0.7869 

0.8309 
0.8147 
0.8145 
0.8262 
0.7995 
0.7854 

0.8274 
0.8131 
0.8120 
0.8235 
0.7981 
0.7850 

3 0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

22.8 0.8616 0.8530 0.8474 
0.8367 
0.8086 
0.8015 
0.8181 
0.8606 

0.8444 
0.8359 
0.8099 
0.8038 
0.8204 
0.8625 

0.8406 
0.8162 
0.8066 
0.8161 
0.8201 
0.8470 

0.8391 
0.8170 
0.8082 
0.8171 
0.8215 
0.8488 

4 0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

22.2 0.8641 0.8139 0.8483 
0.8313 
0.8146 
0.8156 
0.8316 
0.8269 

0.8438 
0.8288 
0.8139 
0.8157 
0.8310 
0.8273 

0.8497 
0.8389 
0.8155 
0.8152 
0.8241 
0.8778 

0.8478 
0.8390 
0.8178 
0.8183 
0.8274 
0.8802 

5 0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

21.2 0.8815 0.8254 0.8620 
0.8478 
0.8382 
0.8314 
0.8643 
0.8807 

0.8580 
0.8460 
0.8380 
0.8324 
0.8648 
0.8813 

0.8666 
0.8575 
0.8413 
0.8311 
0.8222 
0.8829 

0.8656 
0.8587 
0.8443 
0.8354 
0.8279 
0.8877 

avg 22.7 0.8644 0.9514 0.8227 0.8217 0.8239 0.8242 

Note: Values in the table are the ratio of the forecast mean square error of each combined forecast to that of the 

ensemble forecast, that are averaged over the most recent 15 weeks of forecasting, 10/3/2020 - 1/9/2021. 
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Figure 1: COVID-19 New Cases Forecast (US National) 

ensemble forecast reported by the CDC in blue circle line (Ensemble). It also includes the average 

of each forecast combination (FD(mse), FD(mad), FD(mse), FD(mad)) over 30 different 

choices of ( ), but they are very close to each other and hence almost indistinguishable 

from their average, avgFD. The pointwise 95% confidence interval of the avgFD forecast point is 

obtained as the average of the confidence intervals of each depth-weighted forecast combinations 

using the normal approximation based on (9) in the following section. The prediction based on 

the depth-weighted forecast combination shows a more volatile trend than the ensemble forecast 

does and predicts up to 10% higher new cases in the next four weeks. But the ensemble forecast 

values are within the 95% confidence interval of the forecast depth combination. In particular, 

the forecasts and the 95% confidence intervals are given in Table 5. 

Finally, we report some of the forecast depth values. The forecast depth naturally gives a 

ranking among the forecasting models based on their past performance. Therefore, we can use 

this information to tell the performance of each model. As an illustration, we report the forecast 

depth of FD(mse) for the length of training period  = 1     5 ending at 1/9/2021. Figures 2 

to 6 depict the scatter plots of the forecast depth values to the forecasting error of all the forecast 
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Table 5: New COVID-19 cases prediction 

forecasting week avgFD 95% CI of avgFD Ensemble 

1/16/2021 1706930 [1636061, 1777798] 1700701 
1/23/2021 1375329 [1259383, 1491274] 1409573 
1/30/2021 1878847 [1642163, 2115530] 1780502 
2/6/2021 1927617 [1629979, 2225256] 1753039 

Note: Values in the table are predictions of the new COVID-19 case in the following four weeks, as of January 

14, 2021. 

modeling groups in the sample for each . Interestingly, during this recent training periods, we 

can find that some models consistently report more accurate predictions than others.8 

Figure 2: Forecast Depth (k=1) 

4 Limiting Distribution of Combined Forecast 

We now derive limiting distribution of the depth-weighted forecast combination (5), based on 

which we can conduct further inferences. For each , we define a (normalized) forecasting error 

8The lable on each dot represents the modeling group. The list of them is availabe from the authors upon 
request. 
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Figure 3: Forecast Depth (k=2) 

Figure 4: Forecast Depth (k=3) 
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Figure 5: Forecast Depth (k=4) 

Figure 6: Forecast Depth (k=5) 
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vector given as Ã ! Ã ! 
0 0( −  0 )  +1 = = ∈ R2, 
+1 +1 − 0+1  

which is a random sample from an underlying distribution   = (1 2)
0 for all . To s implify  

the notations, we drop the subscript “” in the distribution notations in what follows. When 

we further suppose that  ( +1

0  

  +1)
0 = (−+1      +1)0 ∈ R is stationary over ,

though it is not required to derived the results below, this simplification is natural. Note 

that, however, imposing stationarity of the forecasting error does not exclude the potential 

nonstationarity of the observed series ( 00 0    
 +1 )0 and the forecast series (

0
  +1)

0. The depth 

estimator bD is only based on the forecasting errors in the training set  through the form 

of 0 = 0( −  0 ), and hence we write bD = D(0 b1) and D = (0 1), 
where b b b 0 denotes 9

D
 = (1 2)  the empirical distribution of (0   +1)

0. Similarly, we denote b  = (  b0 ) bO O  1 , O = O(0 1),  = (1), and  b = (1). 

Using these notations, we can rewrite the sample forecast error of the depth-weighted 

trimmed combined forecast b+1 in (5) as 

(b) ≡ b+1 − 0+1 P ¡ ¢ 
=1 +1 − 0+1  1{D(0 b1) ≥ } (D( b0 1)) 

= P 1 (  b )    ( (  b )) R =1 {D 0
 1 ≥ } D 0

 1

21{D(1 b1) ≥ } (D(1 b1))b () 
= R ,  (6)  

1{D(1 b1) ≥ } (D(1 b1))b1 (1) 

where  = (1 2)
0 ∈ R2 . As the number of forecasts  increases, (b) will converge to a 

depth-weighted trimmed mean forecast error given by10 

R 
21{D(1 1) ≥ } (D(1 1)) ()

( ) =  R (7)
1{D(1 1) ≥ } (D(1 1))1 (1) 

provided sup∈R |b − | = (1) and sup∈R2 |b() −  ()| = (1), which holds in general 

from the standard results. We can rewrite the numerator of ( ) in (7) as 

Z ½Z ¾ 

22|1 (2) 1 {D(1 1) ≥ }  (D(1 1))1 (1) ,  (8)  

9By the affine invariance property of the depth, we have D(0 1) =  D(  1), where   1 is the joint 
distribution of  ∈ R . 

10  Since 1{D(1 1) ≥ } (D(1 1))1 (1) =  1{D(1 1) ≥ } (D(1 1)) (), ( ) can be also 
written as  

21{D(1 1) ≥ } (D(1 1)) ()
( ) =   . 

1{D(1 1) ≥ } (D(1 1)) () 
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R 
where 22|1 (2) =  E [+1|0]. This expression implies that the mean forecast error 

( ) in (7) is a weighted average of the projection of +1 on a linear combination of the past 

forecast errors 0, where the weights are given by 1{D(· 1) ≥ } (D(· 1)) that is based 

on the linear combination of the forecast error during the training period. 

To obtain the asymptotic representation of the depth-weighted forecast combination, we 

define the influence function of ( ) in (7). We let  be the point-mass distribution at  ∈ R2 

and  ( ) = (1  − ) +  be a version of  that is contaminated by an  amount of an 

arbitrary point-mass distribution at , where  0 ≤  ≤ 1. Then, the influence function of ( ) is 

defined as 
1 

(; ( )) = lim {( ( )) − ( )}
→0+  

and the limiting distribution of (b) can be obtained from 

√ 
 (b) − ( ) = √ 

1 
(+1; ( )) +  (1) 

³ ´ X
 

=1 

for given . To this end, we first assume the following conditions, similarly as Wu and Zuo (2009) 

and Lee and Sul (2019). We define 

√b(·) =  (b1(·) − 1(·)), 
√ 

b(·) =  (D(· b1) −D(· 1)). 
We also let  (·) =  −((1 − ))(·) and  (·) = ((1  − ))(·). 

Assumption 1 (i)  (·) is continuously differentiable with a bounded derivative ̇ (·). (ii) R R 
1{D(1 1) ≥ } (D(1 1))1 (1)  0 and |2|1{D(1 1) ≥ } (D(1 1)) ()  

∞. (iii) (b1) (1) ∈ (0∞) with satisfying sup∈R |(b1)−(1)| = (1). (iv)  sup∈R2 |b()− R 
 ()| = (1). (v) The joint density function (1 2) of +1 exists and satisfies (2 − 

( ))(1 2)2 ∞ at 1 = (1) (1). 

The following theorem summarizes the asymptotic properties of (b) in (6). Note that 

DbD ∈ I but we allow that +1 ∈ I+1. 

Theorem 1 Suppose Assumption 1 holds. Then, for given  and , (b) → ( ) as →∞. 
Furthermore, 

³ ´ √ 1 X 
 (b) − ( ) = √ (+1; ( )) +  (1) ,

 
=1 

17 



where 
1(+1; ( )) + 2(+1; ( )) +  (+1; ( )) 

(+1; ( )) = R 3

1(1 1) (D(1 1))1 (1) 

with 

1(+1; ( )) = (+1 − ( ))1(0 1) (D(0 1)), Z 
˙2(+1; ( )) = (2 − ( ))1(1 1) (D(1 1))(0; D(1 1)) () , Z 

1 
3(+1; ( )) = 

− 
 ()(0;  (1)) (2 − ( ))((1) 2)2

 Z 
1 − 
− 

 ()(0;  ( 1)) (2 − ( ))((1) 2)2,


and 

O(1 1)(·;  (1))
(·; D(1 1)) =  , 2 (1) (1  +  O(1 1))

1(1 1) = 1 { (1) ≤ 1 ≤ (1)} . 

 
(·;  (1)) is the influence function of  (1). Consequently, 

√
((b) − ( )) → N (0 2+1 ) £ ¤ 

as →∞, where  2 
+1 = E  (+1; ( ))2 .

Proof The consistency follows from Lemma A.5 and Theorem 6 of Zuo (2006) since we have 

¯ ¯¯ ¯¯ ¯
 b 1 1 

sup |D(1 1) −D(1 1) ¯
R 

| = s up ¯  
 ∈ ∈R 1

¯ 1 +  |0| (b ) − 1 +  |0| (1) ¯ ¯ 1¯¯̄
 (b ¯

1) − (1) ̄  
= s up  +   (1) = (1) 

∈R (1 + |0| 2(1))

as we assume sup∈R |(b1) − (1)| = (1). The asymptotic normality follows similarly as 

the proof of Theorem 4.1 in Wu and Zuo (2009), so we sketch the proof here. Since  (·)   (·), 
we write R 

= R √ 
 ´³ ∗ 

21{D(1 b1) ≥ } (D(1 b1))b ()√ 
(b) − ( ) 

1{D(1 b1) ≥ } (D(1 b1))b1 (1) 
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 √ R o (  n R 
1)   b b∗  

2 2 1 (2|1)  (D(1 1))b1 (1)
(1) |

= R ,
(1)  ( (1 b1))b1 (1)
(1) D

where ∗2  = 2 − ( ). We decompose the numerator into 

Z 


√ (1)

1 =  b(1) (D(1 1))b1(1), 
(1)Z (1)  n o

2 = b(1)√   (D(1 b1)) −  (D(1 1)) b1(1), 
((1) )Z √ (   

1)
Z (1)

2 =  − b(1) (D( b b
1 1))1(1), 

(1) (1) 

R 
where b(1) =  ∗2b 

2|1 (2|1). 
For 1, we immediately have 

Z √ 
1 X ∗ 1 =  21{D(1  b

1) ≥ } (D(1 1)) () =  √ 1, 
=1 

where © ª 
1 = (+1 − ( ))1 (1) ≤ 0 ≤ (1)  (D(0 1)). R 

For 2,  we note that sup 1
∈R |b( 1) − (1)| = (1) with (1) =  ∗22|1 (2|1) from the 

standard results of nonparametric conditional expectation estimators. We thus have 

Z (1) 
2 = (1)̇ (∆b (1))b (1)b1(1) +   (1) 

(1) 

for some ∆b (1) between D(1 b1) and D(1 1), where  sup1∈[(1)(1)] |∆b (1)−D(1 1)| ≤ 

sup1∈[(1)(1)] |D(1 b1) − D(1 1)| ≤  sup∈R |(b1) − (1)| =  (1) for some positive 

 ∞. By Lemma A.3 of Wu and Zuo (2009), sup1∈[(1)(1)](1 + |1|)|b(1)| = (1) and 

there exists (1; D(1 1)) such that b(1) =  
R 
(1; D(1 1))b(1) +  (1) uniformly over 

1 ∈ [(1) (1)]. Similarly as the proof of Theorem 2 in Lee and Sul (2019), therefore, we 

can verify that 

Z (1) µZ ¶ 

2 = (1)̇ (D(1 1)) (1; D(1 1))b(1) 1(1) +   (1) 
(1)ZZ  

=  ∗ 
21 {(1) ≤ 1 ≤ (1)} ̇ (D(1 1))(1; D(1 1)) ()b(1) +   (1) 
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1 X
= √ 2 +  (1) ,

 
=1 

where Z 
 ˙2 = ∗21 {(1) ≤ 1 ≤ (1)}  (D(1 1))(0; D(1 1)) () 

and (·; D(1 1)) is the influence function of D(· 1) given by 

O(1 1)(1;  (1))
(1; D(1 1)) = 

 (1) (1  +  O 2 (1 1))

with (·;  (1)) being the influence function of (1). For  3, we similarly have 

Z 
3 = 

√ ( 1)

 (1) (
( ) 

D(1 1))1(1) Z 1

 ( √ 1)

−  (1) (D(1 1))1(1) +   (1) 
(1) ZZ  ( √ 1)

= ∗  2 (D(1 1))(1 2)12 
(1) ZZ  ( √ 1)

−  ∗ 2 ( (1 1))(1 2)12 +  (1) Z (n 1) 
D

 o
= ∗  b

2 
√
 ( 1) − (1)  (D((1) 1))((1) 2)2Z n o

− ∗ 2  
√
 ( b1) − (1)  (D((1) 1))((1) 2)2 +  (1)

1 X  
= √ 

 3 +  (1) , 
=1 

where Z 
∗ 3 =  ()(0; (1)) 2((1) 2)2 Z 
∗ − ()(0; (1)) 2((1) 2)2 

since D((1) 1) =  D((1) 1) =   .  Note that the  influence functions of (1) and (1) 
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are defined as 

(1; (1)) = ((1 − ))(1;  (1)), 

(1; (1)) = −((1 − ))(1;  (1)). 

R  R 
We can similarly y

(1   verif  )
 ( b b

(1) D ( )
(1   1

1))1 ( 1) =   (D(1 1))1 (1) +   (1) in 
(1) 

the denominator, and the desired result follows by combining the expressions 1, 2, and  3 
above. ¤ 

From Theorem 1, we can conclude that the depth-weighted forecast combination b+1 satisfies 
 © ª 

b+1 → 
0
+1  +( ) and 

√
(b 0 2

+1 − +1  + ( ) ) → N (0 +1 ) as →∞. Apparently, when 

( ) = 0, b+1 becomes a consistent forecast. £ ¤ 
The specific form of the asymptotic variance 2 = E  

+1 (+1; ( ))2 depends on the the 

influence function of  =  (1). For instance, for the square root of the FMSE  in (2), we 

can derive 
2 E[(0)2 ]

( 1
1;  (1)) = 

− |I
2(E[(0 2 12 

) |I])

when 0  E[(0 2
) |I]  ∞ using influence function of the mean. For the FMAD  in (3), 

we let sgn() = 1  if   0 ; 0 if  = 0; −1 if   0 . Then, using the influence functions of the 

median, we can derive 
sgn (1 

(1;  (1)) = 
−  (0))

,
21 ( (0)) 

where  (0) = i nf {  : P (|0| ≤ |I) ≥ 12} is the conditional median of 0, provided  

that the marginal density function 1 (·) of 0 at  satisfies 0  1 ( (
0)) ∞. Therefore, 

the choice if  determines the robustness of the forecast combination. When the support of  is  1 

not bounded, the influence function of the FMSE is not necessarily bounded, whereas that of the 

FMAD is bounded. Hence the latter is more robust towards outliers or very under-performed 

forecasts. 

Though the analytical form of 2 is complicated, it can be simply estimated as+1 

h√ i2PX£√ ¤ 2 =1 1{Db ≥ } (Db) (+1 − b+1) 
b 2+1 =  (+1 − b+1) = hP 

i2 
=1 1{Db ≥ } (Db)=1 

because b+1 is in the form of a weighted average. Hence, the 100(1 −)% pointwise confidence 
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interval of the combined forecast b+1can be readily obtained as 

∙ ¸
b+1

b+1 ± 2 √ ,  (9)  
 

where 2 is the (1 − (2))th quantile of the standard normal distribution. 

5 Concluding R emarks  

In this paper, we develop the notion of forecast depth and a depth-weighted forecast combination 

with trimming. Since the weights are not obtained by minimizing some loss function, we do not 

discuss any optimality properties. However, the weights can be calculated even when we have 

many forecasts but the training period is as short as just one, and hence it has much potential 

in practice as complementing other forecast combinations. In comparison, when long training 

period is available, a recent work by Diebold and Shin (2019) uses LASSO in estimating the 

weights by minimizing a 2 loss function with a 1 penalty term, from which we can also obtain 

weights with some trimming (or selection). 

Though we focus on a specific form of the forecast depth, we can also consider other types of 

depth and extend them to this context. When we have a balanced longitudinal data structure 

(i.e., all forecasts are available over the same period), we can construct the forecast depth based 

on the Mahalanobis distance. It uses the -dimensional vector of the forecast error  as 

0 Σ−1   without any normalization, where Σ is the  ×  variance matrix of , and hence

it counts the forecast performance of a specific time during the training period more heavily if 

the cross-sectional FMSE is small. The projection depth is another option, provided the length 

of the training period is short and the number of forecasts is very large, though its computation 

becomes almost infeasible if the length of training period is larger than two. For more discussions 

of these depths, see Lee and Sul (2019). 

We can use this forecast combination idea for multivariate forecasting. Since we can construct 

depth-based contour (i.e., multivariate quantile), it can provide a ranking among different mod-

els based on their forecast performance for multiple economic variables together. In addition, 

depending on the choice of the dispersion term , the depth-weighted forecast combination does 

not necessarily require existence of the moments of the forecasts. Therefore, it can be applied 

for financial data with fat-tailed distributions. 
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	1Introduction 
	Since the seminal work by Bates and Granger (1969), forecast combinations have been successfully used in many empirical studies when multiple forecasts of the same variable are available. The forecast combination becomes one of the core methods of forecasting practice, as the cost of collecting real-time forecasts has been dropped signiﬁcantly. It is also known that combined forecasts often produce better forecasts than the ex ante best single forecasting model. See Clemen (1989), Stock and Watson (2001), a
	-

	When we know the individual forecasting models and their information sets (i.e., the predictors), we can readily ﬁnd the optimal weights by minimizing the forecast mean squared error loss. We can also apply ensemble methods in machine learning such as bagging and boosting to combine forecasts. Such approaches, however, require a long training period but a small number of forecasting models, so that the weights can be estimated. In practice, it is often the case that the individual forecasting models are not
	-

	In this paper, we propose a forecast combination based on the order statistics of individual predictability when many forecasts are available. We assume data rich environment of the forecasts but we do not require the knowledge of each forecasting model nor its information set. The weights can be obtained using the cross-section information and hence we do not need a long training period to estimate the weights. 
	More precisely, we modify the notion of data depth (e.g., Zuo and Serﬂing, 2000; Lee and Sul, 2019) in the context of forecast combination and develop the forecast depth, which measures the nearness of each vector of forecasts toward the vector of observed values over the training period. The forecast depth provides a ranking among the forecasting models. The weights for forecast combination are proportional to the forecast depth after trimming out the forecasts from the group of the worst performers. In th
	More precisely, we modify the notion of data depth (e.g., Zuo and Serﬂing, 2000; Lee and Sul, 2019) in the context of forecast combination and develop the forecast depth, which measures the nearness of each vector of forecasts toward the vector of observed values over the training period. The forecast depth provides a ranking among the forecasting models. The weights for forecast combination are proportional to the forecast depth after trimming out the forecasts from the group of the worst performers. In th
	practice in the literature. The main contribution of this paper can be summarized in three folds. First, we develop the forecast depth, based on which we can readily rank the forecasting performance over mul-tiple periods and construct a robust forecast combination in the form of the depth-weighted trimmed mean. This approach only requires the forecast values and does not need to know each forecasting model. The number of forecasts can be large and the training period can be very short. Second, we derive th

	2 Forecast Depth and Depth-Weighted Forecast Combination 
	2 Forecast Depth and Depth-Weighted Forecast Combination 
	As in Bates and Granger (1969), we suppose there are   forecasts +1 of 0+1 for =1.Such multiple forecasts can come from diﬀerent forecasting models or from diﬀerent agents. We consider forecast combination in the form of X  b +1 = +1 (1) =1 for some potentially time-varying weights . In particular, we consider the weight based on the data depth (e.g., Zuo and Serﬂing, 2000; Lee and Sul, 2019) of forecast error vector at given . More precisely, we let   =(+11
	{} is a random sample from a common distribution across , we can consider the square root of the forecast mean squared error (FMSE),  =(E[(0212)|I]) ,or the forecast median absolute deviation (FMAD),2 © ¡ ¯¯¢ ª =inf  :P ¯0 ¯ ≤ |I ≥ 12 .
	 (3) 
	1When 0 =  =0,wedeﬁne O =0. 2When the distribution of {} is heterogeneous across , we can even consider O = | 0 | ,where  =(1)0 be a × 1 vector with kk =1 for all . In such cases,  can be alternatively deﬁned as   )12(lim→∞ −1 =1 E (0 )2 and lim→∞ med1≤≤ inf { : P (| 0 | ≤ ) ≥ 12}, respectively. 
	1When 0 =  =0,wedeﬁne O =0. 2When the distribution of {} is heterogeneous across , we can even consider O = | 0 | ,where  =(1)0 be a × 1 vector with kk =1 for all . In such cases,  can be alternatively deﬁned as   )12(lim→∞ −1 =1 E (0 )2 and lim→∞ med1≤≤ inf { : P (| 0 | ≤ ) ≥ 12}, respectively. 

	The forecast depth is deﬁned as3 1 D = . 1+O By construction, the forecast depth D takesvaluesbetween zeroa ndone; itisonew hen  =0. It also satisﬁes the typical properties of the data depth (e.g., Zuo and Serﬂing, 2000). In particular, for a given , D does not change from any location shift or rescaling of  (Aﬃne Invariance); D reaches the maximal value 1 if the model  makes perfect prediction (Maximality at Center); D decreases monotonically as it moves away from the maximal de
	Dminimal value 0as the forecast error diverges (Vanishing at Inﬁnity). The monotonicity yields awell-deﬁned quantile function of  since it excludes any quantile-crossing problem, which is to be the key to construct a depth-based trimming in the weight . The last property is important for the forecast robustness against very under-performed forecasters or outliers. 
	0

	The forecast depth D is in a similar form as the “projection depth”.However, unlike the projection depth, it considers the distance from each forecast toward the observed value (i.e., the forecast error) instead of the distance toward a central location parameter of the distribution of , such as the mean or the median. More importantly, we preset the normalization vector  in our case that can be potentially heterogeneous, whereas the typical projection depth needs to search for the  vector so that 
	4 

	0
	the forecast errors during the training period  =(−+1 −−1 − −). 
	 
	0 
	−+1
	 
	0 
	−1
	 
	0

	Several examples of the normalization vector can be considered. If we consider the forecast performance in the most recent observations are more important than the distant ones, we can 
	P
	0
	let the th element of =() as  =() ()for  =1,where (·) is some non-increasing one-side kernel function. Examples include the discount factor approach by Bates and Granger (1969) such that ()=for some 1,and theBox— Cox transform weights by Diebold and Pauly (1987). If we treat all the forecast errors during the training period equally important, then  =1. Note that such choices of  do not require 
	1
	=1 
	− 

	It should be emphasized that the original notion of depth is mainly motivated to deﬁne a robust central location of multi-dimensional variables, which is not straightforward to deﬁne by simply extending the standard notion of median for univariate variables. In our case, on the other hand, the central location is already given as the vector of observed values  , and hence the forecast depth provides a normalized distance from a vector of  toward the vector of observed values  . 
	3
	0 
	forecasts 
	0 

	The projection depth is deﬁned as follow. For an i.i.d. sample {}, the projection depth of  is given as D =1[1 + O], where the outlyingness is deﬁned as 
	4

	 = sup | − ()|() ∈R:kk=1 
	O
	0
	0
	0

	for some location and dispersion parameters () and () of the distribution of . 
	0
	0
	0

	a balanced longitudinal data structure in , that is all forecasts are not necessarily available 
	over the given training period. Therefore, we can even deﬁne heterogeneous normalization vector 
	P
	 =(1)by letting  =() () for  =1 with  ≤  for 
	 
	0 
	=1 

	each . 
	When a balanced data of  is available and if we consider that individual forecast +1 
	follows a homogeneous autoregressive structure, then  can be obtained from the normalP
	-

	ized ﬁtted () coeﬃcients in +1 =  +1− + can also let  beP
	=1 
	+1.We 

	the normalized inverse of cross-sectional FMSE, (1)(−+1 − ),at each time 
	 
	0 
	−+1
	2

	=1 
	{− +1− 1} during the  training period, which is of a similar normalization scheme as the standard Mahalanobis distance. 
	The forecast depth provides a ranking of predictability among the forecasting models or agents, since the better performing models have higher levels of forecast depth. We can also use the forecast depth as a tool to detect very under-performed forecasting models. We hence propose to deﬁne the weight for the forecast combination in (1) that is proportional to the individual forecast depth. More precisely, we set some trimming parameter  ∈ (01) and let 
	1{D ≥ }(D)
	b
	b

	 = P, (4) =1 
	 

	1{D ≥ }(D) 
	b
	b

	where 1{·} is the binary indicator, (·) is some scalar weight function, and the forecast depth 
	estimator D is deﬁned as 
	b

	¯¯ 
	¯ ¯ 
	
	0 

	1 ( −  )
	0

	bb
	D = with O = b 
	1+O
	b
	 

	for some consistent estimator b. For each of the aforementioned examples, we can use 
	Ã!
	1
	2

	
	X 
	b =( − )( − ) 
	1 
	0
	 
	0
	 
	0
	0

	 
	=1 
	and 
	¯¯ 
	¯ 
	b =med≤≤ ( − ) , 
	1
	¯ 
	0
	 
	0

	respectively. Since we deﬁne the training period over a rolling window of the most recent  periods, the weight in (4) is naturally time-varying. 
	From (1) and (4), the proposed combined forecast is then deﬁned as a form of the trimmed 
	From (1) and (4), the proposed combined forecast is then deﬁned as a form of the trimmed 
	depth-weighted mean given as P 1b=1{D ≥ } (bD)+1b+1 = P, bb=1 1{D ≥ } (D)where {5+1} =1 are the individual forecasts of +1 at the current time . This combined forecast assigns the weight on +1 based on its forecast depth during the training period: if the th model’s forecast error 0 is near zero and hence the forecast depth estimator bD is near maximum, then its forecast +1 gets a high weight; if its forecast error is too large, on the other hand, it is tr


	3 Forecasting New COVID-19 Cases 
	3 Forecasting New COVID-19 Cases 
	We apply the depth-weighted forecast combination (5) to predict weekly COVID-19 cases in the United States. The data is collected from the Centers for Disease Control and Prevention (CDC) COVID Data Tracker (deaths) as of January 11, 2021, which is update on January 14, 2021. The dataset includes weekly forecast history from 34 individual modeling groups.It also includes the ensemble forecast that is reported in the weekly forecast digest by the CDC, where the conﬁdence interval at each prediction point is 
	https://covid.cdc.gov/covid-data-tracker/#forecasting_weekly
	-
	6 
	-

	For  ≥ 1,the -step ahead combined forecast can be similarly deﬁned as 
	5

	 
	=1 1{D ≥ } (D)+
	
	

	+ = .
	 
	=1 1{D ≥ } (D) 
	
	

	The list of the agents and details of the forecasting models can be found at . 
	6
	https://www.cdc.gov/coronavirus/2019-ncov/covid-data/mathematical-modeling.html

	individual model forecasts (Busetti 2017).
	7 

	First, we compare diﬀerent forecast combination approaches, including the ensemble forecast reported by the CDC (Ensemble), equally-weighted average (Equal), inverse FMSE based average (iMSE), and the forecast-depth based average (FD) developed in this paper. For the forecast-depth based combination, we consider 4 diﬀerent cases by combining the following choices. For a given training period size ,FD is the forecast-depth using the normalization vector  =1 and FD is one using (normalized)  =1− (( 
	-

	P 
	12
	FMSE, b =(()) , and “(mad)” uses the sample FMAD, b =med≤≤||. 
	−1 
	=1
	0
	2
	1
	0

	Note that we do not have a balanced longitudinal data structure in this exercise since each modeling group has a diﬀerent length of forecast history. Instead of artiﬁcially forming a balanced longitudinal data, we deﬁne the  training period as the most recent  forecasts from the target forecasting week. For a given target forecasting week, any modeling group  is dropped in the average if it does not have at least  most recent forecasts to form the training period. Modeling groups often report several fo
	-
	-

	Tables 1 to 4 report the FMSE comparisons among diﬀerent forecast combinations for week ahead forecasting for  =14, respectively. Values in the tables are the ratio of the FMSE of each combined forecast to that of the ensemble forecast by the CDC, that are averaged over the most recent 15 weeks of forecasting performance, from the week ending on 10/3/2020 to the week ending on 1/9/2021. So, values less than 1 implies that the FMSE is smaller than that of the ensemble forecast; smaller values implies 
	-

	¡¢
	2

	 −15
	P

	, the FMSE is calculated as (115) b− for each combined forecast b
	 
	0 
	 

	= −1 +1 +1 +1In each table,  is the training period size, “trim” is the trimming proportion from the entire cross-section, and is the average sample size having  training periods. The forecast-depth based combination shows good performance with about 80% of the FMSE of the ensemble forecast. It also outperforms other methods in general. For some cases, the inverse FMSE based average outperforms the forecast-depth based method, but its performance is not stable. We can conclude that the forecast-depth
	. 
	 

	Second, based on the available forecasts up to the week ending 1/9/2021, we report predictions for the next 4 weeks (ending on 1/16/2021, 1/23/2021, 1/30/2021, 2/6/2021) as of January 14, 2021. For each -week ahead prediction ( =14), we consider 30 diﬀerent cases of  =15 and  =000105 for each of the four forecast combinations, FD(mse), FD(mad), FD(mse), and FD(mad). Figure 1 reports the predictions of the average among these depth-weighted forecast combinations in black square 
	-
	-

	For further details about the ensemble forecast, see medRxiv 2020.08.19.20177493; doi: . 
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	https://doi.org/10.1101/2020.08.19.20177493

	Table 1: 1-step ahead FMSE ratio to the Ensemble forecast 
	Table 1: 1-step ahead FMSE ratio to the Ensemble forecast 
	Note: Values in the table are the ratio of the forecast mean square error of each combined forecast to that of the ensemble forecast, that are averaged over the most recent 15 weeks of forecasting, 10/3/2020 -1/9/2021. 
	Table 2: 2-step ahead FMSE ratio to the Ensemble forecast 
	Note: Values in the table are the ratio of the forecast mean square error of each combined forecast to that of the ensemble forecast, that are averaged over the most recent 15 weeks of forecasting, 10/3/2020 -1/9/2021. 
	Table 3: 3-step ahead FMSE ratio to the Ensemble forecast 
	Note: Values in the table are the ratio of the forecast mean square error of each combined forecast to that of the ensemble forecast, that are averaged over the most recent 15 weeks of forecasting, 10/3/2020 -1/9/2021. 
	Table 4: 4-step ahead FMSE ratio to the Ensemble forecast 
	Figure 1: COVID-19 New Cases Forecast (US National) 
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	23.3 
	0.8769 
	0.7556 
	0.8361 0.7932 0.7594 0.7543 0.7577 0.7668 
	0.8319 0.7912 0.7581 0.7526 0.7556 0.7641 
	0.8397 0.8078 0.7716 0.7659 0.7831 0.7974 
	0.8366 0.8052 0.7703 0.7644 0.7812 0.7944 

	4 
	4 
	0.0 0.1 0.2 0.3 0.4 0.5 
	22.7 
	0.8804 
	0.7675 
	0.8382 0.8002 0.7595 0.7493 0.7367 0.7757 
	0.8337 0.7976 0.7581 0.7479 0.7354 0.7737 
	0.8376 0.8055 0.7657 0.7673 0.7795 0.7818 
	0.8334 0.8024 0.7641 0.7651 0.7764 0.7789 

	5 
	5 
	0.0 0.1 0.2 0.3 0.4 0.5 
	21.9 
	0.8834 
	0.7669 
	0.8422 0.8039 0.7587 0.7780 0.7882 0.7670 
	0.8363 0.7998 0.7557 0.7754 0.7845 0.7635 
	0.8435 0.8074 0.7724 0.7677 0.7717 0.7743 
	0.8390 0.8048 0.7707 0.7660 0.7695 0.7720 

	TR
	avg 
	23.3 
	0.8806 
	0.8688 
	0.7937 
	0.7921 
	0.7988 
	0.7973 


	ktrim 
	ktrim 
	ktrim 
	 
	equal 
	iMSE 
	FD(mse) 
	FD(mad) 
	FD(mse) 
	FD(mad) 

	1 
	1 
	0.0 0.1 0.2 0.3 0.4 0.5 
	24.3 
	0.8789 
	1.3785 
	0.8613 0.8390 0.8115 0.8047 0.8047 0.7712 
	0.8638 0.8423 0.8170 0.8111 0.8120 0.7809 
	0.8613 0.8390 0.8115 0.8047 0.8047 0.7712 
	0.8638 0.8423 0.8170 0.8111 0.8120 0.7809 

	2 
	2 
	0.0 0.1 0.2 0.3 0.4 0.5 
	23.6 
	0.8663 
	1.1753 
	0.8530 0.8215 0.8035 0.8046 0.8234 0.8617 
	0.8596 0.8299 0.8138 0.8155 0.8345 0.8718 
	0.8498 0.8224 0.8049 0.8157 0.8076 0.8146 
	0.8533 0.8270 0.8111 0.8217 0.8136 0.8215 

	3 
	3 
	0.0 0.1 0.2 0.3 0.4 0.5 
	23.1 
	0.8691 
	0.7889 
	0.8431 0.8061 0.8004 0.7843 0.7894 0.7758 
	0.8409 0.8057 0.7999 0.7843 0.7893 0.7766 
	0.8476 0.8090 0.8102 0.8065 0.7943 0.7843 
	0.8487 0.8117 0.8128 0.8085 0.7973 0.7890 

	4 
	4 
	0.0 0.1 0.2 0.3 0.4 0.5 
	22.5 
	0.8727 
	0.8234 
	0.8584 0.8365 0.8238 0.8273 0.8301 0.8337 
	0.8558 0.8359 0.8245 0.8285 0.8312 0.8351 
	0.8549 0.8212 0.8189 0.8121 0.8165 0.8423 
	0.8543 0.8222 0.8203 0.8139 0.8179 0.8424 

	5 
	5 
	0.0 0.1 0.2 0.3 0.4 0.5 
	21.5 
	0.8798 
	0.8203 
	0.8669 0.8475 0.8285 0.8477 0.8255 0.9286 
	0.8642 0.8469 0.8298 0.8488 0.8273 0.9294 
	0.8680 0.8410 0.8367 0.8362 0.8218 0.8914 
	0.8684 0.8436 0.8401 0.8399 0.8268 0.8937 

	TR
	avg 
	23.0 
	0.8733 
	0.9973 
	0.8271 
	0.8302 
	0.8240 
	0.8276 


	ktrim 
	ktrim 
	ktrim 
	 
	equal 
	iMSE 
	FD(mse) 
	FD(mad) 
	FD(mse) 
	FD(mad) 

	1 
	1 
	0.0 0.1 0.2 0.3 0.4 0.5 
	24.0 
	0.8566 
	1.2269 
	0.8251 0.8095 0.7891 0.7892 0.7853 0.7774 
	0.8205 0.8068 0.7878 0.7885 0.7852 0.7778 
	0.8251 0.8095 0.7891 0.7892 0.7853 0.7774 
	0.8205 0.8068 0.7878 0.7885 0.7852 0.7778 

	2 
	2 
	0.0 0.1 0.2 0.3 0.4 0.5 
	23.3 
	0.8584 
	1.0379 
	0.8308 0.8099 0.8183 0.7961 0.7962 0.7872 
	0.8274 0.8085 0.8154 0.7943 0.7950 0.7869 
	0.8309 0.8147 0.8145 0.8262 0.7995 0.7854 
	0.8274 0.8131 0.8120 0.8235 0.7981 0.7850 

	3 
	3 
	0.0 0.1 0.2 0.3 0.4 0.5 
	22.8 
	0.8616 
	0.8530 
	0.8474 0.8367 0.8086 0.8015 0.8181 0.8606 
	0.8444 0.8359 0.8099 0.8038 0.8204 0.8625 
	0.8406 0.8162 0.8066 0.8161 0.8201 0.8470 
	0.8391 0.8170 0.8082 0.8171 0.8215 0.8488 

	4 
	4 
	0.0 0.1 0.2 0.3 0.4 0.5 
	22.2 
	0.8641 
	0.8139 
	0.8483 0.8313 0.8146 0.8156 0.8316 0.8269 
	0.8438 0.8288 0.8139 0.8157 0.8310 0.8273 
	0.8497 0.8389 0.8155 0.8152 0.8241 0.8778 
	0.8478 0.8390 0.8178 0.8183 0.8274 0.8802 

	5 
	5 
	0.0 0.1 0.2 0.3 0.4 0.5 
	21.2 
	0.8815 
	0.8254 
	0.8620 0.8478 0.8382 0.8314 0.8643 0.8807 
	0.8580 0.8460 0.8380 0.8324 0.8648 0.8813 
	0.8666 0.8575 0.8413 0.8311 0.8222 0.8829 
	0.8656 0.8587 0.8443 0.8354 0.8279 0.8877 

	TR
	avg 
	22.7 
	0.8644 
	0.9514 
	0.8227 
	0.8217 
	0.8239 
	0.8242 


	Note: Values in the table are the ratio of the forecast mean square error of each combined forecast to that of the ensemble forecast, that are averaged over the most recent 15 weeks of forecasting, 10/3/2020 -1/9/2021. 
	Figure
	ensemble forecast reported by the CDC in blue circle line (Ensemble). It also includes the average of each forecast combination (FD(mse), FD(mad), FD(mse), FD(mad)) over 30 diﬀerent choices of (), but they are very close to each other and hence almost indistinguishable from their average, avgFD. The pointwise 95% conﬁdence interval of the avgFD forecast point is obtained as the average of the conﬁdence intervals of each depth-weighted forecast combinations using the normal approximation based on (
	Finally, we report some of the forecast depth values. The forecast depth naturally gives a ranking among the forecasting models based on their past performance. Therefore, we can use this information to tell the performance of each model. As an illustration, we report the forecast depth of FD(mse) for the length of training period  =15ending at 1/9/2021. Figures 2 to 6 depict the scatter plots of the forecast depth values to the forecasting error of all the forecast 
	Table 5: New COVID-19 cases prediction 
	forecasting week 
	forecasting week 
	forecasting week 
	avgFD 
	95% CI of avgFD 
	Ensemble 

	1/16/2021 
	1/16/2021 
	1706930 
	[1636061, 1777798] 
	1700701 

	1/23/2021 
	1/23/2021 
	1375329 
	[1259383, 1491274] 
	1409573 

	1/30/2021 
	1/30/2021 
	1878847 
	[1642163, 2115530] 
	1780502 

	2/6/2021 
	2/6/2021 
	1927617 
	[1629979, 2225256] 
	1753039 


	Note: Values in the table are predictions of the new COVID-19 case in the following four weeks, as of January 14, 2021. 
	modeling groups in the sample for each . Interestingly, during this recent training periods, we can ﬁnd that some models consistently report more accurate predictions than others.
	8 

	Figure
	Figure 2: Forecast Depth (k=1) 

	4 Limiting Distribution of Combined Forecast 
	4 Limiting Distribution of Combined Forecast 
	We now derive limiting distribution of the depth-weighted forecast combination (5), based on which we can conduct further inferences. For each ,wedeﬁne a (normalized) forecasting error 
	The lable on each dot represents the modeling group. The list of them is availabe from the authors upon request. 
	8

	Figure
	Figure 3: Forecast Depth (k=2) 
	Figure 3: Forecast Depth (k=2) 
	Figure 5: Forecast Depth (k=4) 

	Figure
	Figure 4: Forecast Depth (k=3) 
	Figure
	Figure
	Figure 6: Forecast Depth (k=5) 
	vector given as Ã!Ã ! 0 0( − 0 ) +1 == ∈ R2, +1 +1 − 0+1  which is a random sample from an underlying distribution   =(12)0for all .Tos implify the notations, we drop the subscript “” in the distribution notations in what follows. When we further suppose that  (+10   +1)0=(−+1+1)0∈ Ris stationary over ,though it is not required to derived the results below, this simpliﬁcation is natural. Note that, however, imposing stationarity of the forecas
	{D≥}D1{D() ≥ }(D())() 
	R 
	=1 
	0
	1
	0
	1
	2
	1
	b
	1
	1
	b
	1
	b 

	= R , (6) 
	1{D() ≥ }(D())() 
	1
	b
	1
	1
	b
	1
	b
	1 
	1

	where  =()∈ R. As the number of forecasts  increases, () will converge to a depth-weighted trimmed mean forecast error given by
	1
	2
	0 
	2 
	b
	10 

	R 
	1{D() ≥ }(D()) ()
	2
	1
	1
	1
	1

	()= (7)
	R 

	1{D() ≥ }(D())() 
	1
	1
	1
	1
	1 
	1

	provided sup |b − | = (1) and sup|() − ()| = (1), which holds in general from the standard results. We can rewrite the numerator of () in (7) as 
	∈R
	∈R
	2 
	b

	Z½Z ¾ 
	()1 {D() ≥ } (D())() , (8) 
	2
	2
	|1 
	2
	1
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	1 
	1

	By the aﬃne invariance property of the depth, we have D()= D(),where is the joint distribution of  ∈ R.
	9
	0
	1
	
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	
	1 
	 

	
	Since 1{D() ≥ }(D())()= 1{D() ≥ }(D()) (), () can be also written as  
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	
	
	2
	1{D(
	1
	
	1
	) ≥ }(D(
	1
	
	1
	)) ()

	1{D() ≥ }(D()) () 
	1
	1
	1
	1

	R 
	where ()= E [+1|]. This expression implies that the mean forecast error () in (7) is a weighted average of the projection of +1 on a linear combination of the past forecast errors , where the weights are given by 1{D(·) ≥}(D(·)) that is based on the linear combination of the forecast error during the training period. 
	2
	2
	|1 
	2
	0
	0
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	To obtain the asymptotic representation of the depth-weighted forecast combination, we deﬁne the inﬂuence function of () in (7). We let  be the point-mass distribution at ∈Rand ()=(1 −) +  be a version of  that is contaminated by an  amount of an arbitrary point-mass distribution at ,where 0 ≤≤1. Then, the inﬂuence function of () is deﬁned as 
	2 

	1 
	(; ())= lim {(()) −()}
	→0+  
	and the limiting distribution of () can be obtained from 
	b

	() −()= √ (+1; ()) +  (1) 
	√ 
	b
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	³ ´X
	 
	 

	=1 
	for given . To this end, we ﬁrst assume the following conditions, similarly as Wu and Zuo (2009) and Lee and Sul (2019). We deﬁne 
	√
	b(·)= ((·) −(·)), 
	
	b
	1
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	√ 
	(·)= (D(·) −D(·)). 
	b
	b
	1
	1

	We also let (·)= −((1 −))(·) and (·)=((1 −))(·). 
	Assumption 1 (i) (·) is continuously diﬀerentiable with a bounded derivative (·). (ii) 
	StyleSpan
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	∞. (iii) ()() ∈(0∞) with satisfying sup |()−()| = (1).(iv) sup|()− 
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	()| = (1). (v) The joint density function () of +1 exists and satisﬁes (− 
	1
	2
	2 

	())()∞at = ()(). 
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	The following theorem summarizes the asymptotic properties of () in (6). Note that DD ∈I but we allow that +1 ∈I+1. 
	b
	b

	Theorem 1 Suppose Assumption 1 holds. Then, for given  and , () → () as →∞. 
	b

	Furthermore, 
	
	³´ 
	√ 1 X 
	() −()= (+1; ()) +  (1) ,
	b
	√ 

	 
	=1 
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	as we assume sup |() −()| = (1). The asymptotic normality follows similarly as the proof of Theorem 4.1 in Wu and Zuo (2009), so we sketch the proof here. Since (·) (·), we write 
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	for some ∆() between D() and D(),where sup|∆()−D()| ≤ sup|D() − D()| ≤ sup |() − ()| =  (1) for some positive ∞. By Lemma A.3 of Wu and Zuo (2009), sup(1 + ||)|()| = (1) and there exists (; D()) such that ()= (; D())b()+ (1) uniformly over ∈ [()()]. Similarly as the proof of Theorem 2 in Lee and Sul (2019), therefore, we can verify that 
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	5ConcludingR emarks 
	In this paper, we develop the notion of forecast depth and a depth-weighted forecast combination with trimming. Since the weights are not obtained by minimizing some loss function, we do not discuss any optimality properties. However, the weights can be calculated even when we have many forecasts but the training period is as short as just one, and hence it has much potential in practice as complementing other forecast combinations. In comparison, when long training period is available, a recent work by Die
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