
Syracuse University Syracuse University 

SURFACE SURFACE 

Theses - ALL 

August 2018 

Homotypic and Heterotypic Self-Assembly of Claudin Family of Homotypic and Heterotypic Self-Assembly of Claudin Family of 

Tight Junction Proteins Tight Junction Proteins 

Lisa Danielle Nguyen 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/thesis 

 Part of the Engineering Commons 

Recommended Citation Recommended Citation 
Nguyen, Lisa Danielle, "Homotypic and Heterotypic Self-Assembly of Claudin Family of Tight Junction 
Proteins" (2018). Theses - ALL. 269. 
https://surface.syr.edu/thesis/269 

This Thesis is brought to you for free and open access by SURFACE. It has been accepted for inclusion in Theses - 
ALL by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/thesis
https://surface.syr.edu/thesis?utm_source=surface.syr.edu%2Fthesis%2F269&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fthesis%2F269&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/thesis/269?utm_source=surface.syr.edu%2Fthesis%2F269&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


i 

ABSTRACT 

Tight junctions, found in all epithelial cells, are selective barriers that restrict the 

diffusion of ions and molecules within the paracellular space. They are important for 

maintaining cell polarity as well as for compartmentalization and establishing homeostasis 

within the human body. Tight junctions are comprised of complex protein assemblies. Within 

this protein assemble are a family of transmembrane proteins known as claudins that play a 

crucial role in establishing the tight junction network. Claudins are also influential in controlling 

the tight junction permeability. When mutations or malfunctioning occurs within a claudin 

gene, tight junction function is impaired. Disruption of their function is associated with a variety 

of human conditions, such as brain disease, deafness, renal failure, and various cancers. A 

deeper understanding of claudins and of their contribution towards tight junction’s function 

will provide researchers additional insight as to how to eventually approach creating 

therapeutics to treat tight junction-related diseases.  

In this thesis, homotypic and heterotypic cis self-assembly of claudin-claudin 

interactions were studied for both classic and non-classic claudins (-2, -4, -11, -14, -16, -18, -19, 

and -23). Homology modeling was utilized to generate structures for each of the eight claudins 

studied, which were then equilibrated and refined in a DOPC (1,2-Dioleoyl-sn-glycero-3-

phosphocholine) lipid bilayer system. Consequently, self-assemble simulations were carried out 

to study the cis interaction in either homotypic or heterotypic fashion. Each self-assembly 

system contained 72 monomers and was simulated for 4 µs. Results showed aggregation of 

claudin monomers into strand-like assemblies, which were then analyzed through a dimer 

distribution and orientation analysis. Four dimer types (dimers A, B, C, D) were identified and 
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dimer populations were calculated in each of the claudin self-assembly systems. An additional 

new analysis method developed by a colleague and still in the refining phase is also introduced 

and discussed. Results for a single test system are discussed, but nonetheless provide an 

alternative means of analyzing dimers, representing them through various energy state profiles 

rather than of population density probabilities.  
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I. INTRODUCTION 

1.1 Tight Junctions 

 In the human body; organ surfaces, hollow cavities, and blood vessels are lined by 

epithelial and endothelial tissue, which are important for compartmentalization of the various 

parts of the human body. The epithelial cells that make up the tissue play important roles for 

functions like secretion, selective absorption, protection, transcellular transport, and sensing. 

Between adjacent individual epithelial cells, there are distinct cell-cell junctions located 

paracellularly along the membrane, known as the epithelial junctional complex, consisting of 

tight junctions in the utmost apical position of the cell membrane, adherens junctions in the 

middle position, and desmosomes in the bottom position[1,2].   

 The nature of tight junctions and their molecular architecture has been more elusive 

than that of adherens junctions or desmosomes, so detailed research has been performed to 

enlighten others the mystery behind these junctions. Tight junctions were first discovered in 

1963 by Farquhar and Palade through electron microscopic analyses of mammalian epithelial 

cells[2] and their discovery attracted much attention from scientific researchers due to their 

crucial role played in epithelial barrier function. Tight junctions are formed by two adjacent 

epithelial cells joining together to form a seal. They function as barriers that regulate the 

paracellular diffusion of ions and solutes into the cell, with selectivity based on the size and 

charge of the ions and solutes passing through. Tight junction paracellular transport is a 

completely passive transport, driven by electroosmotic gradient flow. There are two types of 

tight junctions: “leaky” and “tight”. “Leaky” tight junctions are located in areas of the body that 

need to transport large volumes of isosmotic fluid like the intestine, while “tight” tight junctions 
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are located in areas where high electroosmotic gradients are required, like the distal tubules 

and collecting ducts of the kidney[3]. Their function as barriers are significant in maintaining the 

state of homeostasis for the body. Disruption in their natural physiological function and state 

are associated with various human diseases.[4]  

 Under freeze-fracture electron microscopy, tight junctions have been observed to be a 

meshwork of fibers, formed by rows of transmembrane proteins,[5,6] predominantly claudins 

and the MARVEL domain proteins. Proteins considered as MARVEL domain proteins contain a 

four transmembrane-helix structure with cytoplasmic N- and C-terminal regions and are 

typically associated with cholesterol-rich membrane environments, such as occludin, 

MARVELD2 (tricellulin), and MARVELD3[4]. Both claudins and MARVEL domain proteins, under 

immunoelectron microscopy, demonstrate the ability to localize to tight junction strands. And 

in the case of non-tight junction forming cells, claudins have demonstrated that ability to 

prompt superficially similar tight junction strands to form and occludin demonstrate the ability 

to form short strand fragments[7-10]. Other transmembrane tight junction-associated 

components include lipolysis-stimulated lipoprotein receptors (angulins), BVES (blood vessel 

epicardial substance, CAR (coxsackievirus and adenovirus receptor), JAMs (junctional adhesion 

molecules), and a trispan protein[4, 11-16]. 

 To function properly, tight junction transmembrane proteins need to interact with the 

cytosolic plaque. This is a complex protein network consisting predominantly of adaptor 

proteins that interact with the junctional membrane proteins’ cytoplasmic domains in addition 

with microtubules and F-actin. There are different types of binding domains: three PDZ (PSD95, 

DlgA, ZO1 homology) domains, a SH3 (SRC homology 3) domain, and a GUK (guanylate kinase 
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homology) domain[4]. Each family of proteins interacts and binds with different domains. The 

first PDZ domain is for claudin binding, the third PDZ domain is where junctional adhesion 

molecules (JAMs) bind, and to the GUK domain is where occludin bind. The nature of these 

binding domain interactions results in tissue-specific functions for different types of tight 

junction transmembrane proteins and the types of tight junctions that resultingly form. Other 

plaque proteins include MAGI (membrane-associated guanylate kinase inverted) proteins, 

MUPP1 (multi-PDZ domain proteins), and a PATJ (PALS1-associated tight junction) protein[4], 

which are also important for establishing function for the tight junction transmembrane 

components.  

 Tight junctions function as barriers and they can form two barrier types: a paracellular 

barrier or an intramembrane barrier. The paracellular barrier regulates the transport of ions 

and solutes from between cells and through different body compartments while the 

intramembrane barrier acts as a fence to prevent the exchange of components within the 

membrane of the basolateral to the apical cell surface domains[4].  

 Regarding the permeability of the paracellular barrier, it is affected by two factors: 

solute charge and size. In a charge-selective paracellular pathway, ions and small charged 

molecules can cross through the tight junction, through pores that are estimated to be ~4-8 Å 

wide in diameter[17-19]. In comparison, a size-selective pathway allows larger solutes and 

molecules to pass through, with their size being around ~30-60 Å[17,19]. To determine the degree 

of ion permeability in the charge-selective pathway and how likely ions are to diffuse across the 

paracellular cleft, transepithelial resistance (TER), an instantaneous measurement of the 

electrical resistance within the pathway, is measured. As for large molecules in size-selective 
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diffusion, diffusion is slow and measured over longer periods of time with tracers. Research 

progress has been made to uncover more of the underlying mechanism of charge-selective ion 

permeability while larger molecule diffusion is less understood. From the progress in research 

made regarding charge-selective ion permeability, claudin proteins appear to be the biggest key 

players in influencing ion permeability across the paracellular space.  

 As for the intramembrane barrier of the tight junctions, its fence function has been 

studied by experts by using fluorescent lipid probes and lipids, where the lipids exhibited what 

was a diffusion barrier since they were observed to be not intermixing with the other lipids 

between the apical and basolateral sides within the outer part of the plasma membrane. The 

intramembrane barrier of the tight junctions is important for maintaining a state of epithelial 

polarity. However, this role is somewhat complicated, as some cells with mutated 

intramembrane barriers can still polarize[4]. Further research needs to be done to understand 

and elucidate how the intramembrane barrier contributes to an epithelial cell’s physiological 

function.  

The process of tight junction assembly is important and ultimately affects overall tight 

junction function, including that of polarity and of tissue-specificity. The assembly of tight 

junctions involves a ZO1-α-catenin complex to couple tight and adherens junctions [20,21], 

nectins to recruit JAMA (junctional adhesion molecule-A) [22], and signaling mechanisms like 

protein kinase C (PKC), PKA, AMP-activated protein kinase (AMPK), protein phosphatases, small 

GTPases, and heterotrimeric GTPases [4, 23-27] once they maturely form. Other signaling 

mechanisms are involved as well, but how these different mechanisms work with one another 
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and guide the physiological function of cells needs to be further studied for better 

understanding.  

 

1.2 Claudins 

Of all the components involved with tight junctions, claudins are the key players 

responsible for the selective size, charge, and conductance properties of tight junctions[28,29]. 

The regulation of both claudins and tight junctions for barrier function is important to the 

wellbeing of the human condition, as disease onsets of various cancers, vision abnormalities, 

hearing loss or deafness, respiratory infections, gastrointestinal inflammation and diseases, and 

renal failure[30] are associated problems with claudin gene mutations that lead to a loss in 

regular tight junction function.  

Shoichiro Tsukita and colleagues in 1998 discovered claudin proteins and connected 

their essential contribution to tight junctions[31], as they were the first set of proteins 

demonstrated to have tight junction-forming activity[32]. Protein overexpression, knockdown, 

and knockout experimental tests have been performed on these proteins and subsequent 

results indicated that claudins were the most significant components in the tight junction to 

affect its flux control[33].  

Claudins comprise a 27-membered family of transmembrane proteins. Within the 27 

members of the claudin family of proteins, two main groups have been established to 

categorize them: classic (claudins -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -14, -15, -17, and -19) and 

non-classic (claudins -11, -12, -13, -16, -18, -20, -21, -22, -23, -24, -25, -26, -27)[34,35]. Classic 

claudins share high protein sequence similarity with one another and their extracellular loop 
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amino acid residues have similar lengths and are very similarly commonly present throughout. 

All other claudins that do not share high degrees of sequence similarity with one another are 

categorized thus as non-classic claudins. Structurally, all claudins, both classic and non-classic, 

consist of four domain regions embedded in the cell membrane, two extracellular loops located 

outside of the cell, and an N-terminus and C-terminus located within the cytoplasm of a cell. 

The N-terminal tail end of claudins is relatively short, consisting of around seven amino acids in 

length. Meanwhile, the C-terminal tail is longer, around 25-55 amino acids, and is responsible 

for influencing the degree of stability of claudins and their targeting to tight junctions [36]. The 

first extracellular loop (ECL) contains 40-50 amino acids and the second loop contains around 

15-30 amino acids[33,35]. The first ECL loop contains charged amino acids and influences the 

degree of selectivity of paracellular transport based on charge while the second ECL loop 

influences the degree of selectivity based on ion particles sizes to be passing through the 

paracellular cleft[35]. Other characteristics include disulfide bond presence, a signature GLW 

amino acid sequence, an ion-binding site on the first ECL, and palmitoylation sites[33].  

 Various claudin subtypes are found in the makeup of the tight junction strands, 

interacting via cis and trans to form them. Individual claudin proteins first self-assemble along 

the same membrane in cis and then interact in trans with other self-assembled claudin proteins 

on an opposing membrane to form the tight junctions[37].  When claudins come together, both 

non-classic and classic, and interact in both cis and trans to form the tight junctions, these 

interactions can be of both homotypic (involving the same claudin proteins) or heterotypic 

(involving different claudin proteins) nature. Claudins can form both heterotypic and homotypic 

tight junctions, but their affinity for one another is dependent on the claudin subtypes 
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involved[32]. In a study of cocultures of L cells expressing claudin -1, -2, and -3, combinations of 

claudin-1/-3 and claudin-2/-3 showed the formation of tight junction strands, but not the case 

for claudin-1/-2[38]. In another study done with HeLa cells, heterotypic interactions of claudin-

1/-3 and claudin-3/-5 underwent assembly, but the same case was not observed for heterotypic 

interactions of claudin-4/-5, claudin-1/-4, and claudin-3/-4 [39]. As there are better partners for 

heterotypic interactions, there are also special exceptions where certain claudin subtypes 

cannot interact homotypically with one another, as is the case with claudin-16. When 

interacting homotypically, claudin-16 does not show any association with itself to assemble into 

tight junction strands. However, when incorporated with claudin -19, heteromeric interaction 

and tight junction strand formation is observed[40].  

As claudin protein expression is tissue-specific and each claudin subtype has individual 

attributes, the amalgamation of these determinants directs the barrier or pore properties of 

each cell type’s paracellular pathway[32]. Barrier-forming claudins increase transepithelial 

resistance and decrease solute permeability. Meanwhile, pore-forming claudins decrease 

transepithelial resistance and increase solute permeability[33]. While tight junctions function as 

epithelial barriers to restrict diffusion of solutes through the paracellular cleft, their barrier and 

channel properties and degree of solute permeability are dependent on the nature of claudin 

expression and interaction. Certain claudins have been known to be cation or anion-selective 

and form barrier or channel/pore tight junctions, predominantly forming one tight junction 

property configuration over the other based on whatever current ions are present. Previous 

research in the field has established and determined the barrier and pore-forming properties of 

the following claudins: claudins -2, -10, and -15 act as cation-selective pore-forming claudins, 
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claudins -10 and -17 act as anion-selective pore-forming claudins, claudins -7 and -19 form 

cation-selective barriers, and claudins -1, -3, -4, -5, -6, -8, -9, -11, -14, and -18 form anion-

selective tight junction barriers[33]. Table 1 lists and describes the various properties of all the 

claudin proteins such as selectivity, protein length, classification, etc. 

 

1.3 Current Status 

 Though research has progressed significantly since 1963 when tight junctions were first 

discovered, their true structure remains to be established[4]. Experimental approaches have 

looked at tight junction assembly mechanisms and different claudin proteins interactions with 

respect to how they form tight junction strand networks. One such experiment, performed by 

Milatz et al. looked at the isoforms of claudin-10 and claudin-10 chimeras and observed how 

they interacted with each other to form tight junction-like strands[41]. Taking three claudin-10 

isoforms and two claudin-10 chimeras to use in their experiment, the researchers 

demonstrated that the proteins were able to interact in cis with each other using FRET 

(Forster/fluorescence resonance energy transfer) and then further interact in trans to integrate 

into tight junction-like strands by viewing the results under freeze-fracture electron 

microscopy. One redundancy in experimental approaches toward studying one protein is that 

basic conditions of experimental setups may mean that a protein being currently researched is 

only important under certain conditions or in a specific type of cell or system[4]. Compared to 

experimental means of studying proteins like claudins, computational methods provide a 

means to look at an entire protein system in a less biased way, as computational methods can 

incorporate many types of cells and systems to study, sampling more varied conditions.  
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 My colleagues in the Nangia Lab work with computational tools and methods to study 

protein and protein systems such as claudins. Previous research done in the lab includes 

studying and reporting the results of a cis natured type of self-assembly, a non-bonded energy 

directed organization of system components from a disordered state to one of equilibrium, of 

classical claudins -1,-2,-3,-4,-5,-15, and -19 and a trans type self-assembly for claudin-5. Their 

self-assembly simulations showed that claudin proteins in cis self-assembled into dimeric and 

trimeric interfaces that can form even larger strands. Additionally, they looked into the pore 

structure of these classic claudins and revealed more about their selectivity in terms of 

individually as well as how they contribute to overall tight junction function[42-44]. 

 Self-assembly resulted in strand formation of claudin proteins, with the basis of each 

claudin protein monomer forming dimeric interfaces with one another. Four dimeric interfaces 

have been identified so far through previous work done by the Nangia Lab[42-44], with each 

dimeric interface indicating the orientation to which claudin monomers aggregated close 

together individually as they formed strands. These orientation classifications: Dimer A, B, C, 

and D, indicate the patterns that claudin interactions undergo the most in a cis self-assembly. 

This organization of the dimer types is pertinent information that can be used to hypothesize 

how claudins form the barrier and pore-types of structures that they do in trans interactions. 

 In this thesis, the resulting self-assembly organization of classic and non-classic claudins 

-2, -4, -11, -14, -16, -18, -19, and -23 in cis are observed and analyzed to see what type of dimer 

orientations results, just like previous work done by the lab for classic claudins. Interactions of 

both homotypic and heterotypic conditions will be done for these claudins. The homotypic 

interactions will consist of claudin-2/-2, claudin -4/-4, claudin -11/-11, claudin -14/-14, claudin -
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16/-16, claudin -18/-18, claudin -19/-19, and claudin -23/-23. In addition, heterotypic 

interactions of claudin -2/23 and claudin -4/23 will be simulated and compared to their 

homotypic self-assembly counterparts. Researching both non-classic and classic claudins in 

homotypic and heterotypic interactions and comparing the two to each other can give insight 

about any patterns or differences that may occur between a similar group (classic claudins) 

versus a group that is more dissimilar (non-classic claudins). Their individual differences in 

sequence and overall structure will give different strand formation results, leading to different 

dimer types, indicating different properties for stability and function for a claudin protein.  

 Furthermore, limitations of the current self-assembly method will be discussed and a 

brief introduction to a new method involving energetics analysis, currently in the testing phase 

for analyzing claudin-claudin interactions and their resulting dimer confirmations, developed by 

my colleague in the lab, will be briefly covered. 
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II. COMPUTATIONAL MODELING OF CLAUDINS AND TIGHT JUNCTIONS 

2.1 Computational Modeling & Molecular Dynamics 

 For researching and uncovering the nature of claudins and how they contribute to the 

overall tight junction formation and function, computational modeling is utilized. It is a 

modeling method that uses computers to study and simulate complex real-life phenomenon 

using the principles of physics, mathematics, and computer science.  Using refined models and 

powerful software packages and computer resources, theoretical computational studies give 

representations and results of complex systems, revealing much more data and information 

than experimental methods are limited in giving. Results achieved through computational 

means are processed more quickly and can be repeated in a shorter time-scale if necessary to 

give accurate results, compared to their experimental equivalents.  

 This research uses computational modeling to generate the 3D structures of claudin 

proteins and organize them into the desired system to simulate and observe their patterns of 

self-assembly, an important biomolecular mechanism that involves the autonomous 

organization of components into patterns or structures[45]. Aside from observing whether 

claudins in their self-assembly lead to the formation of a strand-like network, as seen in tight 

junctions, observed will be the differences present in self-assembly for various claudin types. 

One of the tools available and used for this research to study claudins and their self-assembly is 

molecular dynamics (MD). MD is a computer simulation method that studies the physical 

movements of atoms and molecules[46]. Based on Newton’s second law of motion, MD takes a 

static model of a biomolecule system and calculates the molecular forces acting on each atom, 

nonbonded and bonded energies, and let the atoms and molecules within the system interact 



14 

with one another over a fixed period of time to observe the dynamic evolution of the 

movement of atoms in the system over time.  

 MD is run under the guidelines of force fields, equations set to parameterize the atomic 

and molecular components of the system, dictating the conditions of MD operations to 

calculate overall potential energies of movement of system components. Two types of 

representations of a molecule are atomistic and coarse-grain models, shown in Figure 1, with 

each type of model represented by a different type of force field. An atomistic model would 

utilize a force field such as CHARMM[47] where every type of atom within the molecular system 

is accounted for. Meanwhile, a coarse-grained model utilizes a MARTINI force field[48], which 

maps every number of four heavy atoms as one larger bead, thereby simplifying the overall 

representation of atoms in the system. When simulating a molecular system in an all-atom 

scale of representation, results are detailed but limitations arise with large system sizes, as the 

level of detail in an all-atom scale of representation leads to requirements of long simulation 

times to completely calculate all potential energy and movement within the large system. 

Coarse-grain model simulations, on the other hand, are more simplified in their representation 

due to the mapping of heavy atoms into beads and thus make for more rapid calculating of 

energy potentials than compared to atomistic models. It is better to run simulations in coarse-

grain representation due to the higher efficiency when computing for large molecular system 

sizes.  

 Certain packages are available for users to use to run molecular dynamics, such as 

GROMACS (GROningen MAchine for Chemical Simulations)[49]. This package comes with  
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some necessary tools to create a well-prepared system to run an accurate MD simulation of the 

desired biomolecule. The preparation steps include running energy minimization, equilibration, 

NVT, and NPT before running the production MD simulation to get as accurate a result of how 

the molecule may interact over time within the specified system. Energy minimization relaxes 

the structure to ensure that there are no steric clashes or inappropriate geometry. Equilibration 

takes surrounding molecules like ions or water in a system and optimizes them around the 

target molecule itself. The temperature of the system is brought up to a specified value, known 

as running an NVT or isothermal-isochoric ensemble, followed by an NPT or isothermal-isobaric 

ensemble, where a pressure is applied to the system until a stable density is reached. Once the 

system is well-equilibrated where the temperature and pressure are adequate, a production 
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MD run is executed, simulating the movements of molecules to observe the dynamics of the 

system from initial time period to a specified simulation period.  

 

2.2 Predicting and Generating 3D Structures & Homology Modeling 

 Since many of the 3D structures of claudins are not entirely known, the use of servers 

like I-TASSER[50], QUARK[51], FG-MD[52], locPREFMD[53], RAPTOR-X[54], RCD+[55], and PPM[56] are 

utilized to predict, generate, and refine the resulting 3D structures of this work’s target claudin 

proteins. Once complete, these structures are compiled and undergo homology modeling, using 

the YASARA[57] program, to predict the most accurate individual 3D structures as possible. Only 

then after these preparation steps, can the claudin models then be further used to set up the 

system for self-assembly.  

 I-TASSER (Iterative Threading ASSEmbler Refinement) is an online server run by Zhang 

Lab of University of Michigan that predicts 3D structures of proteins based on their amino acid 

sequences. It predicts the protein’s secondary structure, solvent accessibility, and normalized B-

factor (a value indicating the stability of the residues in the protein) of the protein and 

generates different 3D structural models, predicting how each one would look. The resulting 

models have c-score values, indicating the amount of confidence that the server had in the 

resulting models. C-score values range from [-5,2] but a c-score value greater than -1.5 

“indicates a model of correct global topology”[50]. Predicted models that had a good c-score 

value range from -1 to 1 were selected and used in the next step of homology modeling by 

YASARA.  
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 Next, QUARK, also run by Zhang Lab, was used. It predicts 3D protein structure as well, 

with the exception that their models are based off free-modeling through replica-exchange 

Monte-Carlo simulation instead of established homologous templates[51]. For generating 3D 

models on both the I-TASSER and QUARK servers, protein FASTA sequences for claudin -11 

(Entry ID: O75508), -14 (Entry ID: O95500), -16 (Entry ID: Q9Y5I7), -18 (Entry ID: P56856), -19 

(Entry ID: Q8N6F1), and -23 (Entry ID: Q96B33) were taken from the UniProt database[58] and 

uploaded onto each of the servers. Generating claudin -2 and -4 structures from their FASTA 

sequences were not included, as complete homology models were already readily available to 

use due in thanks to previous work done by a colleague, Flaviyan J. Irudayanathan. The more 

known and stable regions of the claudin sequences were sent to I-TASSER and the more 

unstable and disordered regions, mainly the tail ends of the claudin protein, were sent to the 

QUARK server. Table 2 describes which part of the claudin’s amino acid sequence was sent to 

which server. 
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 Additional servers and tools used included the FG-MD, locPREFMD server, and the 

RAPTOR-X Contact Prediction tool. FG-MD (Fragment-Guided Molecular Dynamics) uses 

algorithms to refine initial protein models to look more like their native structures, reshaping 

them into appropriate geometries that contain no steric clashes, with improved torsion angles 

and hydrogen-binding[52]. The locPREFMD (local Protein structure REFinement via Molecular 

Dynamics) server by Feig lab further improves upon stereochemistry of atoms in the protein 

molecule[53], and the RAPTOR-X Contact Prediction tool looks at protein model residue contacts  

and evaluates the quality of that contact prediction through confidence scores[54]. In addition to 

these servers being used to generate and refine the 3D claudin structures, the RCD+ (Random 

Coordinate Descent) server was specifically used on the loop sequence of claudin-18 to refine 

it, using an algorithm involving geometric algebra to update its loop arrangement and to 

enhance the random selection of bonds[55].  

Once the servers finished their jobs and completed predicting and refining the protein 

sequences, their files were compiled into YASARA (Yet Another Scientific Artificial Reality 

Application) to undergo homology modeling, the process of using 3D crystal structure models of 

other known proteins as templates due to known sequence and structural similarity, to 

generate accurate target protein models in 3D. Not only were the files from the servers used as 

templates, but the recently discovered and known crystal structures of claudin -4 

(PDB:5B2G)[59], claudin-15 (PDB:4P79)[60], and claudin-19 (PDB:3X29)[61] were used as templates 

as well. Oligomerization state option was set to one and the number of templates option was 

set to a minimum of five templates. Once homology models for claudins -2, -4, -11, -14, -16, -
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18, -19, and -23 were completely generated, as shown in Figure 2, each claudin was sent to the 

PPM server of the Orientations of Proteins in Membranes (OPM) database to find their correct 

orientation within a membrane, as this server orients transmembrane and peripheral proteins 

properly into a membrane by calculating its relative position and orientation within a 

membrane with consideration for the properties of hydrophobic thickness, tilt angle, and 

transfer free energy[56]. 
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III. SELF-ASSEMBLY SYSTEM SETUP 

3.1 Refining with Molecular Dynamics in Coarse Grain and Atomistic  

 Once homology modeling was complete, claudin structures were prepared for MD 

simulation. Claudins -2, -4, -11, -14, -16, -18, -19, and -23 were individually uploaded into the  

martini bilayer maker from CHARMM-GUI, using the elnedyn martini force field, to input itself 

into a coarse-grained lipid membrane system[47]. The system size was set to 75 Å in the X and Y 

direction, with a 1:1 upper leaflet and lower leaflet ratio of DOPC (1,2-Dioleoyl-sn-glycero-3-

phosphocholine) lipid, generated with 0.15 M of NaCl ions and put in a water box. The 

temperature was increased and set to 310.15 K for isothermal-isochoric (NVT) and isothermal-

isobaric (NPT) ensemble.  

 The coarse-grained system initialized first with an energy minimization run for 50 ns 

with no position restraints. After energy minimization, a series of equilibration steps was run 

for 500 ns with a position restraint on the lipid bilayer and at a temperature of 310.15 K for NVT 

and NPT ensemble. Following equilibration, a dynamics production run was executed without 

position restraints for a simulation time of 2 µs.  

 Once the coarse-grained production run finished simulating, the final file generated 

from the production run is input into CHARMM-GUI again to be reverse-mapped into an all-

atom system in the CHARMM forcefield using the backwards.py script[47,62]. Using the input all-

atom converter martini maker input generator, terminal group patching and disulfide bonds are 

selected and identified for the program to include. Then, ions and a water box are built around 

the membrane components.  
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 Like the coarse-grained system, a simulation was run starting with energy minimization, 

then several steps of equilibration, followed by a production run. Energy minimization was run 

on the atomistic system with no position restraints for 5 ns. After minimization, an equilibration 

run was done for 1 ns of time at a temperature of 310.15 K with hydrogen bond constraints 

according to LINCS algorithm. Finally, a production run followed for 100 ns with Nose-Hoover 

temperature coupling at 310.15K with hydrogen bond constraints from LINCS constraint 

algorithm. Once the atomistic simulation completed production, the structure was released, 

and a cluster analysis was performed, taking the first cluster of each claudin to use for their 

respective setups for self-assembly. 

 

3.2 Homotypic and Heterotypic Self-Assembly Setup 

 For both homotypic and heterotypic claudin-claudin self-assembly setups, two claudin 

monomer proteins, retrieved from the cluster analysis, are put in a grid with 5 nm diagonal 

distance apart. For the homotypic claudin-claudin setups, two of the same claudins were put in 

place together; heterotypic claudin-claudin setups involved two different claudins put together. 

See Figure 3. Homotypic self-assembly setups were done for claudin -2/-2, claudin -4/-4, claudin 

-11/-11, claudin -14/-14, claudin -16/-16, claudin -18/-18, claudin -19/-19, and claudin -23/-23. 

As for heterotypic setups, they were claudin -2/-23 and claudin -4/-23. 

 For every claudin-claudin system that was set up, the martinize.py python script[63] was 

used to map the system back into coarse-grained beads instead of individual atoms. Secondary 

structure files were also retrieved and run with the martinize.py script to generate an .itp file 

for later use with the topology file. Following the previous action, the insane.py script[64] was  
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used to generate a box around the claudin-claudin grid and surround it in a lipid bilayer and fill 

it with ions and water. VMD (Visual Molecular Dynamics) software[65] was used to visualize the 

system.  

Once all claudins were properly mapped and orientated in the lipid bilayer membrane, 

using the gmx genconf[49] command available through the GROMACS package, the two 

monomer grid was multiplied and scaled up to a larger grid size containing 72 monomer 

proteins. Homotypic systems contained 72 of the same claudin monomers while heterotypic 

systems contained 36 of one type of claudin and 36 of another. See Figure 4. The initial box size 

increased from (10.1, 10.1, 9.8) to (61.5, 61.5, 9.7) in the xyz direction. Energy minimization and 

a series of equilibration steps are run again to prepare the system for the self-assembly 
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production run. Once they completed, the production run was set to run for a period of 4 µs in 

triplicate.  
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IV. ANALYSIS METHODS 

4.1 Dimer Orientation Analysis Method 

 Previously developed by my colleagues at the Nangia Lab, they have observed the 

patterns of claudin-claudin self-assembly and their results led them to identify their 

organization by classifying the types of interactions they see as dimer types: dimer A, B, C, and 

D[42-44]. See Figure 5.  Dimers are defined by the degree of angle rotation undergone between 

the transmembrane regions of two claudin proteins. Each dimer is classified by a unique degree 

of rotation with respect to one another. See Table 3.  

 

 Observed through previous research, claudin-claudin self-assembly leads to strand 

formation. Therefore, scripts were generated to further analyze the meaning behind the strand 

formation and the types of individual units, or dimers, leading to their strand formation. The 

ANGLE_RW.py and 2D-KDE.py scripts were created and used to analyze the angle and dimer 

types that formed from homotypic and heterotypic self-assembly. See Appendix 7.1 for more  

 



25 

 

detailed information into the strings and commands for both of the scripts used. Generating 

plots with the ANGLE_RW.py and 2D-KDE.py scripts give the following figure, Figure 6, that 

visualizes the types of dimer conformations as well as how populous that dimer type is. It 

shows their distribution in the form of a graph based on kernel density estimation, a sampling 

tool used in statistics that looks at the population or conformation of a protein most likely to 

appear. Based on the kernel density estimation, the graph generated is a probability density 

function (PDF) type of graph, where the density of a random variable is measured, indicating 

the relative likelihood that the random variable would be equivalent to the whole sample. 

Areas filled with more of the blue color correspond to low probability for dimer population, 

while more of the red color correspond to higher probability. Additionally, within the plot, 

boxes lettered A, B, C, and D correspond to the regions where the respective dimer types are 

spatially located. 
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4.2 Mapping Energy Landscape Method 

 An alternative means of analyzing the self-assembly dimer conformation types was 

developed by my colleague at the Nangia Lab, Nandhini Rajagopal. This new method, termed  

the Mapping Energy Landscape method, analyzes dimers in terms of energetics, rather than 

based on the population like the previous method. While this method is currently in testing 

phase, it’s results have provided additional insight into the nature of understanding claudin-

claudin interactions and their resulting dimer formation.  

 Instead of setting up the system with 72 claudins in a grid with a large box size, this 

method takes 2 claudin monomers and puts them together in a box, filling the box with the 

same components as the self-assembly method: lipids, water, and ions. Taking the two claudin 

proteins, a number of random orientations, each one different, are generated. Following this 

step, a short simulation is run to energy minimize and equilibrate the system, letting the claudin 

proteins interact and orient however they like. At the end of the simulation time, the claudin 

proteins are able to sample the entire angle space and the resulting energies associated with 

each angle orientation are plotted on a graph for visual representation. Results should display a 

profile of various energies associated with different angle conformations. The conformations 

lowest in energy values should correspond to the most stable of dimers.  
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V. RESULTS AND DISCUSSION 

5.1 Analysis of Structural Models of Claudin Proteins 

 Before proceeding onwards with self-assembly simulations, the generated claudin 

monomer structures were analyzed through various techniques to evaluate and verify 

confidence in their structural integrity and stability. Techniques include root mean square 

deviation (RMSD), root mean square fluctuation (RMSF), hydrogen bond analysis, and cluster 

analysis, all available to use as commands through the GROMACS package. RMSD was used to 

measure the deviations of atom positions within the claudin protein with respect to its 

reference claudin protein, and RMSF was used to measure these residue deviations over time, 

to see which residues of the claudin protein experience the most flux. These two techniques 

indicate the degree of stability between the atoms and the protein structure. As for a hydrogen 

bond analysis, this measured all the existing hydrogen bonds in the protein’s structure and gave 

an indication of the stability of the secondary structure of the claudin protein. See Figure 7 for 

the graphs showing the RMSD, RMSF, and hydrogen bond analysis performed for all eight 

claudins.  

In Figure 7A, RMSD shown for each claudin protein exhibits a certain degree of 

fluctuation, but the RMSF graph in Figure 7B showing spikes at certain residue points may 

account for the fluctuations observed in the RMSD graphs for their respective claudin proteins. 

As shown in Figure 7C, the hydrogen bonds for all claudin proteins were generally observed to 

be occurring at a constant rate, indicating a stable secondary structure. Following these 

analyses and verifying the stability of the generated claudin structures, a cluster analysis was 

performed to identify similar structures that were sampled during the MD simulation. One 
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cluster is chosen from among the others, with being that the chosen cluster contains the 

biggest similar protein conformations. Following choosing the best cluster, then the setup for 

self-assembly is completed and the simulations are run.  

 

 

 

5.2 Self-Assembly Results & Analysis 

 Upon completion of the ten self-assembly simulations, for the time duration of 4 µs, the 

following results were observed in Figure 8 and 9 for homotypic and Figure 10 for heterotypic 

claudin-claudin interactions. After 4 µs, each claudin-claudin interaction, both homotypic and   
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heterotypic, self-assembled from an initial starting configuration of isolated monomers into a 

more organized stand-like assembly, like that which is observed and found in tight junction 

strands. For each strand-like assembly observed in each claudin-claudin system, the way they 

have fashioned themselves is contingent on the means of how the claudin monomers within 

the system have assembled to form dimers and further organize into the resulting strands 

beheld. 

 Each interaction system has been analyzed, identifying individual dimer types and their 

respective density of population, illustrated in Figure 11. From these graphs, it is evident that 

various claudin-claudin interactions result in different dimer type formations. See Table 4 for an 

overall comparison of the different dimer types that form from self-assembly as well as their 

population densities. For the self-assembly dimeric interactions and occurrences between the 

classic claudins (claudin -2/-2, -4/-4, -14/-14, and -19/-19), since they share a high degree of 

similarity with each other, one could predict a pattern of dimers to form. However, this was not 

the observed case, suggesting that regardless of similarity, the individual differences in claudin 

subtypes result in different dimer type formations. As for the homotypic self-assembly results 

for the non-classic claudins (claudin -11/-11, -16/-16, -18/-18, and -23/-23), they too do not 

exhibit any such patterns in forming dimer types. To compare the homotypic interactions of the 

classic versus the non-classic claudins, the classic claudin self-assemblies were more densely 

populated in dimer types than their non-classic counterparts.  

 When looking at the results of the heterotypic systems (claudin -2/-23 and -4/-23), the 

resulting dimer formations are observed to be slightly different upon interacting with two 

dissimilar claudin subtypes rather than with two identical subtypes. One case in particular  
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regarding the assembly of claudin-4 and claudin-23 together demonstrated an overall lack in 

formation of Dimer C, as compared to the homotypic assembly interaction of claudin -4/-4 that 

led to the presence and population of many Dimer C. This result suggests the combination of 

different claudin subtypes upon assembly interactions will either promote or inhibit the 

formation of various dimer types, likely due to their distinct individual properties.  

 

5.3 Mapping Energy Landscape Method Results & Analysis 

 As previously mentioned, this new method of analyzing dimers is still in the refining 

process. A single test run was computed for claudin-2/-23, sampling 1000 random orientations 

in the angle space and calculating each energy of interaction. Compared to the sampling done 

by the self-assembly method, this method was able to sample more of the angle space, 

illustrated in Figure 12. While the mapping energy landscape method always sampled different 

dimer orientations each time, the self-assembly method of sampling had overlap with some of 

the same points.   

After generating the random orientations to be sampled, the system undergoes 

equilibration and a short simulation time of 300 ns for each sample, the resulting energy profile 

is plotted in a graph, shown in Figure 13. Since the spatial locations of dimers A, B, C, and D are 

the same as the self-assembly method, the results provide new and additional information 

regarding the energetic favorability of each dimer conformation. For the claudin-2/-23 

interaction, dimer C appears to be energetically favorable, indicated by a lower energy value. 

The results from the self-assembly method for claudin -2/-23 certainly supports this idea (refer  
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to Figure 11I and Table 4). Comparing the two methods, there is a correlation between the two, 

as areas with a high population in the self-assembly method are seen to have energy dips in the 

mapping energy landscape method. Certain areas that do not appear to match must be 

sampled more in the self-assembly method, as this alternative method of mapping energy 

landscapes should complement the previous density of population method, given enough 

sampling.  

 

5.4 Comparison of the Two Methods 

 Both methods of self-assembly and mapping energy landscape analyses provide ways to 

examine the dimeric interfaces that are essential for claudins to organize into strand-like 

patterns, as seen in those necessary for establishing tight junction function. Though self- 
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assembly is a known method used in the Nangia lab, it has its own set of limitations. For one 

example, the 72 monomer system used to set up the simulation runs for each claudin’s self-

assembly are very large. One of the self-assembly systems used for this research contained pver 

323,964 beads. To process such a large system, using 24 processors/node, the job required 

weeks (20 days) worth of time for completion, running at a performance rate of 180 ns/day. 

Additionally, even with the long simulation time and running each system in triplicate, the 

amount of sampling achieved on the system was never enough. With this new method, the 

system size is much smaller, thus more affordable and more efficient to compute and run 

simulations.  
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VI. CONCLUSION 

 As mentioned throughout this thesis, both homotypic and heterotypic systems—classic 

and non-classic claudins—exhibited a strand-like formation from self-assembly simulations. No 

one claudin-claudin self-assembly interaction yielded the same results. All the classic claudin-

claudin interactions (-2/-2, -4/-4, -14/-14, -19/-19), though highly similar in sequence homology 

and structure with each other, did not exhibit any specific pattern of dimer formation. All non-

classic claudin-claudin interactions (-11/-11, -16/-16, -18/-18, -23/-23) do not demonstrate any 

patterns of specific dimer types either. Both the homotypic types of interactions formed varying 

amounts of dimer A, B, C, and D at the end of their self-assembly simulation. The heterotypic 

interaction was interesting because less of dimer C formed for the heterotypic interaction of 

claudin -4/-23 compared to the homotypic interaction of claudin -4/-4. This indicates that the 

pairing of certain claudins with each other may either inhibit the formation of certain dimer 

types or proliferate the formation of certain dimer types, thereby affecting the overall tight 

junction network that will resultingly form and subsequently the degree of tight junction 

permeability. These self-assembly interactions studied were of the cis nature, of along the same 

membrane. The next step should be to see how these same claudin-claudin interactions act in a 

trans interaction and what types of dimers they form, so as to hypothesize which dimers, based 

on established research, are responsible for a claudin’s barrier-forming or pore-forming 

property.  
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 The structures of the eight claudin proteins being researched in this thesis were not fully 

known, so various servers and homology modeling were utilized to predict, refine, and 

construct an accurate 3D claudin structural model to be used for self-assembly simulation. Built 

in a coarse-grain system, each claudin was put in a lipid bilayer system and energy minimized, 

equilibrated, and processed before it could be input to a 72 monomer grid to be used for self-

assembly simulation. After 4 µs of simulation and observing the results, all the claudin 

monomers formed strands by creating dimeric interfaces, which were analyzed by using an 

established dimer analysis method developed by previous colleagues working at the Nangia 

Lab. When the current method of analyzing self-assembly dimer configurations proved to have 

its limitations, another method was developed at the Nangia Lab in hopes of addressing and 

improving upon the previous method. Termed as mapping energy landscapes, this analysis 

technique makes up for certain flaws that pre-existed in the previous dimer analysis method 

such as sampling more to make up for the previous inadequate sampling, requiring lesser 

resources and computational processing time, and providing more qualitative answers in terms 

of results. If the previous method with self-assembly had enough sampling, the results of the 

new method should have granted similar results. Since this new method is more efficient, it 

should be improved upon to be used to better study claudin-claudin interactions. Once all 

twenty-seven claudins have been studied in all possible combinations, then perhaps this 

method could be used to study any two interacting transmembrane entities, not limited to just 

claudin transmembrane proteins. 
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 Comprehensive understanding of the molecular interactions of claudin-claudin proteins 

is necessary, as since they are key players in controlling tight junction function, they then are 

promising targets for drug developers to create drugs to treat tight junction-related diseases.  

Since less is currently known about the homotypic nature of interaction for non-classic claudins 

as well as certain heterotypic interactions of claudin proteins, it is, therefore, significant to 

study these interactions, learn about their self-assembly organization, and hypothesize how 

their orientations that form from self-assembly contribute to overall tight junction barrier 

function. 
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VII. APPENDIX 

7.1 Scripts to Sample Self-Assembly Population and Analyze Dimer Type Formation  

7.1A ANGLE_RW.py script  
#!/usr/bin/env python 
import numpy as np 
import argparse 
import os, sys 
import MDAnalysis 
import MDAnalysis.analysis.distances as Mdistance 
def angle1 (v1,v2): 
# Given two 2D vectors this function will return  
#       angles using the atan2 formula. 
     return np.math.atan2(np.linalg.det([v1,v2]),np.dot(v1,v2)) 
def unit_vector(vector): 
    """ Returns the unit vector of the vector.  """ 
    return vector / np.linalg.norm(vector) 
n_atom = [] 
parser = argparse.ArgumentParser() 
parser.add_argument('-f',     nargs=1, dest='ref_gro', default=['no'], help=argparse.SUPPRESS, 
required=True) 
parser.add_argument('-x',     nargs=1, dest='ref_xtc', default=['no'], help=argparse.SUPPRESS, 
required=True) 
parser.add_argument('-o',     nargs=1, dest='angle_file', default=['angle_file.txt'], 
help=argparse.SUPPRESS) 
parser.add_argument('-nmol',  nargs=1, dest='n_mol', default=[1], type=int, 
help=argparse.SUPPRESS) 
parser.add_argument('-tmol',  nargs=1, dest='t_mol', default=[1], type=int, 
help=argparse.SUPPRESS) 
parser.add_argument('-natom', nargs=1, dest='n_atom', default=[], type=int, action='append', 
help=argparse.SUPPRESS) 
args = parser.parse_args() 
args.ref_gro = args.ref_gro[0] 
args.ref_xtc = args.ref_xtc[0] 
args.angle_file = args.angle_file[0] 
args.n_mol = args.n_mol[0] 
args.t_mol = args.t_mol[0] 
if not os.path.isfile(args.ref_gro): 
    print "Error: file " + str(args.ref_gro) + " not found." 
    sys.exit(1) 
else: 
    args.angle_file = (args.ref_gro[:-4].split('/')[-1]).split('_')[0] + "_angle_file.txt" 
if not os.path.isfile(args.ref_xtc): 
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    print "Error: file " + str(args.ref_xtc) + " not found." 
    sys.exit(1) 
if os.path.isfile(args.angle_file): 
    print "Error: file " + str(args.angle_file) + " already exisits." 
    overwrite = raw_input("Do you wish to overwrite [y/n] : ") 
    if overwrite in ['y','Y']: 
        angle_file = os.getcwd() + '/' + str(args.angle_file) 
        angle_file = args.angle_file 
    else: 
        sys.exit(1) 
else: 
    angle_file = os.getcwd() + '/' + str(args.angle_file) 
    angle_file = args.angle_file 
output = open(angle_file, 'w') 
u = MDAnalysis.Universe(args.ref_gro,args.ref_xtc) 
if not len(args.n_atom) > 1: 
    print "Reading Files" 
    num_residues = max(u.atoms.resnums) 
    print "Number of Residues", num_residues 
    tot_residues = u.select_atoms("name BB").n_atoms 
    num_mol      = tot_residues/num_residues 
    print "Number of Mol", num_mol 
    num_atoms    = u.atoms.n_atoms 
    atom_per_mol = num_atoms/num_mol 
    print "Number of Atom per mol", atom_per_mol 
else: 
    mol_natom = [] 
    if not args.n_mol or not args.t_mol: 
        print "please specify the number of molecules and totatl molecules" 
        sys.exit(1) 
    else: 
        print "There are", args.n_mol, " different molecules in the system" 
        for i in range(args.n_mol): 
            print "mol", i, " has ", args.n_atom[i] ,"atoms" 
        for i in range(args.t_mol): 
            mol_natom.append(0) 
        for i in range(args.t_mol): 
            if i % 2 == 0: 
                mol_natom[i] = int(args.n_atom[0][0]) 
            else: 
                mol_natom[i] = int(args.n_atom[1][0]) 
num_frames   = u.trajectory.n_frames 
print "Number of trajectories", num_frames 
mol          = [] 
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counter      = 0 
counter2     = 0 
counter3     = 0 
if not len(args.n_atom) > 1: 
    mol = [u.atoms[i:i+atom_per_mol] for i in xrange(0,u.atoms.n_atoms,atom_per_mol)] 
else: 
    j = 0 
    for i in xrange(args.t_mol): 
        mol.append(u.atoms[j:j+mol_natom[i]]) 
        j +=  mol_natom[i] 
    num_mol =  args.t_mol 
dimer_count = 0 
time  = 0 
for ts in u.trajectory: 
    time = time+ts.dt 
    print "Processing tracetory frame ts =", time 
    for i in range(num_mol): 
        for j in range(i+1,num_mol): 
            d = Mdistance.distance_array(mol[i].select_atoms("name BB").positions, 
mol[j].select_atoms("name BB").positions,box=ts.dimensions, backend='OpenMP') 
            if (d <= 10.0).sum() >= 20: 
                # C1    = mol[i].select_atoms("name BB").center_of_mass(pbc=True)[0:2] 
                # C2    = mol[j].select_atoms("name BB").center_of_mass(pbc=True)[0:2] 
                C1    = mol[i].select_atoms("name BB and (resid 12-23 81-93 122-136 165-
180)").center_of_mass(pbc=True)[0:2] 
                C2    = mol[j].select_atoms("name BB and (resid 12-23 81-93 122-136 165-
180)").center_of_mass(pbc=True)[0:2] 
                X1    = mol[i].select_atoms("name BB and resid 6-26").center_of_mass(pbc=True)[0:2] 
                X2    = mol[j].select_atoms("name BB and resid 6-26").center_of_mass(pbc=True)[0:2] 
                C1_C2  = C2 - C1 
                C2_C1  = C1 - C2 
                C1_X1  = X1 - C1 
                C2_X2  = X2 - C2 
                VC1_X1 = [C1_X1[1],-C1_X1[0]] 
                VC2_X2 = [C2_X2[1],-C2_X2[0]] 
                alpha_1  = angle1(VC1_X1,C1_C2) 
                beta_1   = angle1(C2_X2,C2_C1) 
                if beta_1 < 0: 
                    beta_1 = (2*np.pi)+beta_1 
                alpha_2  = angle1(VC2_X2,C2_C1) 
                beta_2   = angle1(C1_X1,C1_C2) 
                if beta_2 < 0: 
                    beta_2 = (2*np.pi)+beta_2 
                output.write("%.5f \t %.5f\n" % (beta_1,beta_2)) 
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print "Finished with the Analysis" 
output.close() 
 

7.1B 2D-KDE.py script  

#!/usr/bin/env python 
import numpy as np 
import matplotlib.pyplot as plt 
import argparse 
import os, sys 
plt.style.use('classic') 
xmin = 0 
xmax = 2*np.pi 
Xtick=np.linspace(xmin, xmax, 3,endpoint=True) 
Ytick=np.linspace(xmin, xmax, 3,endpoint=True) 
x, y = np.mgrid[xmin:xmax:720j, xmin:xmax:720j] 
positions = np.vstack([x.ravel(), y.ravel()]).T 
from scipy.stats import iqr 
d = min(positions.std(),iqr(positions)/1.349) 
n = (positions.size/2)**(0.2) 
bw =  0.9*(d/n) 
def stat_kde(a, b): 
    from scipy.stats import gaussian_kde 
    ab = np.vstack([a,b]) 
    knl = gaussian_kde(ab, bw_method='silverman') 
    kde = np.reshape(knl(positions).T, x.shape) 
    return kde 
def sci_kde(a, b): 
    from sklearn.neighbors import KernelDensity 
    ab = np.vstack([a,b]).T 
    knl = KernelDensity(bandwidth=bw, metric='euclidean', 
                        kernel='gaussian', algorithm='ball_tree') 
    knl.fit(ab) 
    kde = np.reshape(np.exp(knl.score_samples(positions)), x.shape) 
    return kde 
parser = argparse.ArgumentParser() 
parser.add_argument('-f',     nargs=1, dest='ang_file', default=['no'], help=argparse.SUPPRESS, 
required=True) 
args = parser.parse_args() 
args.ang_file = args.ang_file[0] 
if not os.path.isfile(args.ang_file): 
    print "Error: file " + str(args.ang_file) + " not found." 
    sys.exit(1) 
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else: 
    args.image_file = (args.ang_file[:-4].split('/')[-1]).split('_')[0] + "_kde.png" 
if os.path.isfile(args.image_file): 
    print "Error: file " + str(args.image_file) + " already exisits." 
    overwrite = raw_input("Do you wish to overwrite [y/n] : ") 
    if overwrite in ['y','Y']: 
        image_file = os.getcwd() + '/' + str(args.image_file) 
        image_file = args.image_file 
    else: 
        sys.exit(1) 
else: 
    image_file = os.getcwd() + '/' + str(args.image_file) 
    image_file = args.image_file 
data = np.genfromtxt(args.ang_file, dtype=float) 
a = data[:,0] 
b = data[:,1] 
#sk = stat_kde(a,b) 
from timeit import default_timer as timer 
start = timer() 
# ... 
ck = sci_kde(a,b) 
end = timer() 
print(end - start) 
fig = plt.figure(figsize=(15,12)) 
#Set limits 
plt.xlim(xmin,xmax) 
plt.ylim(xmin,xmax) 
plt.plot( [xmin,xmax],[xmin,xmax],'r', 
                ls=':', lw=5, 
                dash_capstyle='round', 
                zorder = ck.min()) 
levels = np.linspace(ck.min(), ck.max(), 30) 
kplot  = plt.contourf(x, y, ck, 
                    levels=levels, 
                    cmap=plt.cm.coolwarm, 
                    extent=[xmin, xmax, xmin, xmax], 
                    norm=plt.Normalize(vmax=abs(ck).max(), vmin=abs(ck).min()), 
                    alpha=0.90) 
if ck.max() > 0.16: 
    cbar = fig.colorbar(kplot,format="%.1f") 
else: 
    cbar = fig.colorbar(kplot,format="%.2f") 
cbar.ax.tick_params(length=10,width=3,labelsize=40) 
cbar.set_ticks(np.linspace(ck.min(),ck.max(),3)) 
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plt.xticks(Xtick,[r'$0$',r'$\pi$',r'$2\pi$'],fontsize=50) 
plt.yticks(Ytick,[r'$0$',r'$\pi$',r'$2\pi$'],fontsize=50) 
plt.xlabel(r'$\theta \/\ (rad)$',fontsize=50,weight='bold') 
plt.ylabel(r'$\theta ^\prime \/\ (rad)$',fontsize=50,weight='bold') 
# Draw contour lines 
#cbar.set_label(r'PDF',fontsize=50) 
plt.tight_layout() 
plt.savefig(args.image_file, transparent=True, bbox_inches='tight',dpi=300) 
#plt.show() 
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