
Syracuse University Syracuse University

SURFACE SURFACE

Theses - ALL

August 2018

Homotypic and Heterotypic Self-Assembly of Claudin Family of Homotypic and Heterotypic Self-Assembly of Claudin Family of

Tight Junction Proteins Tight Junction Proteins

Lisa Danielle Nguyen
Syracuse University

Follow this and additional works at: https://surface.syr.edu/thesis

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Nguyen, Lisa Danielle, "Homotypic and Heterotypic Self-Assembly of Claudin Family of Tight Junction
Proteins" (2018). Theses - ALL. 269.
https://surface.syr.edu/thesis/269

This Thesis is brought to you for free and open access by SURFACE. It has been accepted for inclusion in Theses -
ALL by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/thesis
https://surface.syr.edu/thesis?utm_source=surface.syr.edu%2Fthesis%2F269&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fthesis%2F269&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/thesis/269?utm_source=surface.syr.edu%2Fthesis%2F269&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

i

ABSTRACT

Tight junctions, found in all epithelial cells, are selective barriers that restrict the

diffusion of ions and molecules within the paracellular space. They are important for

maintaining cell polarity as well as for compartmentalization and establishing homeostasis

within the human body. Tight junctions are comprised of complex protein assemblies. Within

this protein assemble are a family of transmembrane proteins known as claudins that play a

crucial role in establishing the tight junction network. Claudins are also influential in controlling

the tight junction permeability. When mutations or malfunctioning occurs within a claudin

gene, tight junction function is impaired. Disruption of their function is associated with a variety

of human conditions, such as brain disease, deafness, renal failure, and various cancers. A

deeper understanding of claudins and of their contribution towards tight junction’s function

will provide researchers additional insight as to how to eventually approach creating

therapeutics to treat tight junction-related diseases.

In this thesis, homotypic and heterotypic cis self-assembly of claudin-claudin

interactions were studied for both classic and non-classic claudins (-2, -4, -11, -14, -16, -18, -19,

and -23). Homology modeling was utilized to generate structures for each of the eight claudins

studied, which were then equilibrated and refined in a DOPC (1,2-Dioleoyl-sn-glycero-3-

phosphocholine) lipid bilayer system. Consequently, self-assemble simulations were carried out

to study the cis interaction in either homotypic or heterotypic fashion. Each self-assembly

system contained 72 monomers and was simulated for 4 µs. Results showed aggregation of

claudin monomers into strand-like assemblies, which were then analyzed through a dimer

distribution and orientation analysis. Four dimer types (dimers A, B, C, D) were identified and

ii

dimer populations were calculated in each of the claudin self-assembly systems. An additional

new analysis method developed by a colleague and still in the refining phase is also introduced

and discussed. Results for a single test system are discussed, but nonetheless provide an

alternative means of analyzing dimers, representing them through various energy state profiles

rather than of population density probabilities.

iii

HOMOTYPIC AND HETEROTYPIC SELF-ASSEMBLY OF

CLAUDIN FAMILY OF TIGHT JUNCTION PROTEINS

By

Lisa Nguyen

B.S., MCPHS University, 2016

Thesis

Submitted in partial fulfillment of the requirements for the degree of

Master of Science in Bioengineering

Syracuse University

August 2018

iv

Copyright © Lisa Nguyen 2018

All Rights Reserved

v

ACKNOWLEDGEMENTS

I would like to give my greatest thanks and appreciation to my advisor, Dr. Nangia.

Thank you for giving me the opportunity to join your lab, as it has been one of the most

wonderful things that I could have ever experienced. I have certainly learned a lot about

molecular dynamics, tight junctions, and claudins; my world has very much expanded in thanks

to you. You have been the kindest, encouraging, patient, and supportive advisor that I could

have ever had throughout these two years. As I move onwards towards my future, the time I

spent doing research here is something I will never forget.

I would also like to thank my fellow lab mates, Jerome, Nandhini, and Huilin. Thank you

guys so much for helping me and mentoring me from the beginning to the end of my project. I

am so glad to have met you all. I also could not have done it without you guys. Thank you for

your easy to understand explanations to my many questions as well as your friendliness,

encouragement, and kindness. It was always so pleasurable and fun to come into the lab to

work because of you guys.

Finally, I would like to thank my dearest family and John. I am extremely grateful to have

you in my life. Thank you for supporting me every step of the way throughout this journey, by

telling me to work hard and to never give up. Thank you for constantly pushing me to finish

what I started. I hope to succeed in life and make you guys proud.

vi

TABLE OF CONTENTS

ABSTRACT ………. i

ACKNOWLEDGEMENTS …………..……………………………………………………………………………………………….. v

LIST OF FIGURES ……. viii

LIST OF TABLES ……….. ix

I. INTRODUCTION …….. 1

1.1 Tight Junctions ……………………………………………………………………………………………………….. 1

1.2 Claudins ………. 5

1.3 Current Status …… 8

II. COMPUTATIONAL MODELING OF CLAUDINS AND TIGHT JUNCTIONS ………………………………… 13

 2.1 Computational Modeling & Molecular Dynamics …………………………………………………. 13

 2.2 Predicting and Generating 3D Structures & Homology Modeling …………………………. 16

III. SELF-ASSEMBLY SYSTEM SETUP ………………………………………………………………………………………… 20

 3.1 Refining with Molecular Dynamics in Coarse Grain and Atomistic ……………………….. 20

 3.2 Homotypic and Heterotypic Self-Assembly Setup ………………………………………………… 21

IV. ANALYSIS METHODS ……. 24

 4.1 Dimer Orientation Analysis Method …………………………………………………………………….. 24

 4.2 Mapping Energy Landscape Method ……………………………………………………………………. 26

V. RESULTS & DISCUSSION …………………………………………………………………………………………………….. 28

 5.1 Analysis of Structural Models of Claudin Proteins ………………………………………………… 28

 5.2 Self-Assembly Results & Analysis …………………………………………………………………………. 29

5.3 Mapping Energy Landscape Method Results & Analysis ……………………………………….. 35

vii

5.4 Comparison of the Two Methods …………………………………………………………………………. 36

VI. CONCLUSION ……. 38

VII. APPENDIX …… 41

 7.1 Scripts to Sample Self-Assembly Population and Analyze Dimer Type Formation …. 41

 7.1A ANGLE_RW.py script ………………………………………………………………………………. 41

 7.1B 2D-KDE.py script …………………………………………………………………………………….. 44

VIII. REFERENCES …… 47

IX. VITA ……….. 55

viii

LIST OF FIGURES

FIGURE 1. Atomistic model versus coarse grain model of protein monomer …….…………………… 15

FIGURE 2. Homology modeling of claudin structures using YASARA ………………………………………. 19

FIGURE 3. Homotypic and heterotypic self-assembly setup for claudin-claudin interaction using

VMD software ……..… 22

FIGURE 4. 72 claudin proteins system setup for self-assembly interactions …………………………… 23

FIGURE 5. Classification of dimer type conformations …………………………………………………………… 24

FIGURE 6. Probability Density Function graph plot of dimer types …………………………………………. 27

FIGURE 7. Analysis to evaluate protein structure and stability …………………………………………..….. 29

FIGURE 8. Resulting self-assembly of homotypic classic claudins …………………………………………… 30

FIGURE 9. Resulting self-assembly of homotypic non-classic claudins ………….………………………… 30

FIGURE 10. Results from heterotypic self-assembly …………………..……………………………………..…… 31

FIGURE 11. PDF graphs of claudin-claudin self-assembly interactions ……………………………………. 33

FIGURE 12. Sampling comparison of self-assemble versus mapping energy landscape plots …. 36

FIGURE 13. Mapping Energy Landscape energy analysis plot ……………………………………………….… 37

ix

LIST OF TABLES

TABLE 1. Claudin family of proteins and their associated properties ………………………………… 11-12

TABLE 2. Claudin-specific amino acid residue sequences sent to I-TASSER and QUARK servers to

predict 3D structural models …………………………………………………………………………………………………. 17

TABLE 3. Dimer types identified from self-assembly organization …………………………………………. 25

TABLE 4. Dimer type formation and population density comparison from self-assembly

interactions ……… 34

1

I. INTRODUCTION

1.1 Tight Junctions

 In the human body; organ surfaces, hollow cavities, and blood vessels are lined by

epithelial and endothelial tissue, which are important for compartmentalization of the various

parts of the human body. The epithelial cells that make up the tissue play important roles for

functions like secretion, selective absorption, protection, transcellular transport, and sensing.

Between adjacent individual epithelial cells, there are distinct cell-cell junctions located

paracellularly along the membrane, known as the epithelial junctional complex, consisting of

tight junctions in the utmost apical position of the cell membrane, adherens junctions in the

middle position, and desmosomes in the bottom position[1,2].

 The nature of tight junctions and their molecular architecture has been more elusive

than that of adherens junctions or desmosomes, so detailed research has been performed to

enlighten others the mystery behind these junctions. Tight junctions were first discovered in

1963 by Farquhar and Palade through electron microscopic analyses of mammalian epithelial

cells[2] and their discovery attracted much attention from scientific researchers due to their

crucial role played in epithelial barrier function. Tight junctions are formed by two adjacent

epithelial cells joining together to form a seal. They function as barriers that regulate the

paracellular diffusion of ions and solutes into the cell, with selectivity based on the size and

charge of the ions and solutes passing through. Tight junction paracellular transport is a

completely passive transport, driven by electroosmotic gradient flow. There are two types of

tight junctions: “leaky” and “tight”. “Leaky” tight junctions are located in areas of the body that

need to transport large volumes of isosmotic fluid like the intestine, while “tight” tight junctions

2

are located in areas where high electroosmotic gradients are required, like the distal tubules

and collecting ducts of the kidney[3]. Their function as barriers are significant in maintaining the

state of homeostasis for the body. Disruption in their natural physiological function and state

are associated with various human diseases.[4]

 Under freeze-fracture electron microscopy, tight junctions have been observed to be a

meshwork of fibers, formed by rows of transmembrane proteins,[5,6] predominantly claudins

and the MARVEL domain proteins. Proteins considered as MARVEL domain proteins contain a

four transmembrane-helix structure with cytoplasmic N- and C-terminal regions and are

typically associated with cholesterol-rich membrane environments, such as occludin,

MARVELD2 (tricellulin), and MARVELD3[4]. Both claudins and MARVEL domain proteins, under

immunoelectron microscopy, demonstrate the ability to localize to tight junction strands. And

in the case of non-tight junction forming cells, claudins have demonstrated that ability to

prompt superficially similar tight junction strands to form and occludin demonstrate the ability

to form short strand fragments[7-10]. Other transmembrane tight junction-associated

components include lipolysis-stimulated lipoprotein receptors (angulins), BVES (blood vessel

epicardial substance, CAR (coxsackievirus and adenovirus receptor), JAMs (junctional adhesion

molecules), and a trispan protein[4, 11-16].

 To function properly, tight junction transmembrane proteins need to interact with the

cytosolic plaque. This is a complex protein network consisting predominantly of adaptor

proteins that interact with the junctional membrane proteins’ cytoplasmic domains in addition

with microtubules and F-actin. There are different types of binding domains: three PDZ (PSD95,

DlgA, ZO1 homology) domains, a SH3 (SRC homology 3) domain, and a GUK (guanylate kinase

3

homology) domain[4]. Each family of proteins interacts and binds with different domains. The

first PDZ domain is for claudin binding, the third PDZ domain is where junctional adhesion

molecules (JAMs) bind, and to the GUK domain is where occludin bind. The nature of these

binding domain interactions results in tissue-specific functions for different types of tight

junction transmembrane proteins and the types of tight junctions that resultingly form. Other

plaque proteins include MAGI (membrane-associated guanylate kinase inverted) proteins,

MUPP1 (multi-PDZ domain proteins), and a PATJ (PALS1-associated tight junction) protein[4],

which are also important for establishing function for the tight junction transmembrane

components.

 Tight junctions function as barriers and they can form two barrier types: a paracellular

barrier or an intramembrane barrier. The paracellular barrier regulates the transport of ions

and solutes from between cells and through different body compartments while the

intramembrane barrier acts as a fence to prevent the exchange of components within the

membrane of the basolateral to the apical cell surface domains[4].

 Regarding the permeability of the paracellular barrier, it is affected by two factors:

solute charge and size. In a charge-selective paracellular pathway, ions and small charged

molecules can cross through the tight junction, through pores that are estimated to be ~4-8 Å

wide in diameter[17-19]. In comparison, a size-selective pathway allows larger solutes and

molecules to pass through, with their size being around ~30-60 Å[17,19]. To determine the degree

of ion permeability in the charge-selective pathway and how likely ions are to diffuse across the

paracellular cleft, transepithelial resistance (TER), an instantaneous measurement of the

electrical resistance within the pathway, is measured. As for large molecules in size-selective

4

diffusion, diffusion is slow and measured over longer periods of time with tracers. Research

progress has been made to uncover more of the underlying mechanism of charge-selective ion

permeability while larger molecule diffusion is less understood. From the progress in research

made regarding charge-selective ion permeability, claudin proteins appear to be the biggest key

players in influencing ion permeability across the paracellular space.

 As for the intramembrane barrier of the tight junctions, its fence function has been

studied by experts by using fluorescent lipid probes and lipids, where the lipids exhibited what

was a diffusion barrier since they were observed to be not intermixing with the other lipids

between the apical and basolateral sides within the outer part of the plasma membrane. The

intramembrane barrier of the tight junctions is important for maintaining a state of epithelial

polarity. However, this role is somewhat complicated, as some cells with mutated

intramembrane barriers can still polarize[4]. Further research needs to be done to understand

and elucidate how the intramembrane barrier contributes to an epithelial cell’s physiological

function.

The process of tight junction assembly is important and ultimately affects overall tight

junction function, including that of polarity and of tissue-specificity. The assembly of tight

junctions involves a ZO1-α-catenin complex to couple tight and adherens junctions [20,21],

nectins to recruit JAMA (junctional adhesion molecule-A) [22], and signaling mechanisms like

protein kinase C (PKC), PKA, AMP-activated protein kinase (AMPK), protein phosphatases, small

GTPases, and heterotrimeric GTPases [4, 23-27] once they maturely form. Other signaling

mechanisms are involved as well, but how these different mechanisms work with one another

5

and guide the physiological function of cells needs to be further studied for better

understanding.

1.2 Claudins

Of all the components involved with tight junctions, claudins are the key players

responsible for the selective size, charge, and conductance properties of tight junctions[28,29].

The regulation of both claudins and tight junctions for barrier function is important to the

wellbeing of the human condition, as disease onsets of various cancers, vision abnormalities,

hearing loss or deafness, respiratory infections, gastrointestinal inflammation and diseases, and

renal failure[30] are associated problems with claudin gene mutations that lead to a loss in

regular tight junction function.

Shoichiro Tsukita and colleagues in 1998 discovered claudin proteins and connected

their essential contribution to tight junctions[31], as they were the first set of proteins

demonstrated to have tight junction-forming activity[32]. Protein overexpression, knockdown,

and knockout experimental tests have been performed on these proteins and subsequent

results indicated that claudins were the most significant components in the tight junction to

affect its flux control[33].

Claudins comprise a 27-membered family of transmembrane proteins. Within the 27

members of the claudin family of proteins, two main groups have been established to

categorize them: classic (claudins -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -14, -15, -17, and -19) and

non-classic (claudins -11, -12, -13, -16, -18, -20, -21, -22, -23, -24, -25, -26, -27)[34,35]. Classic

claudins share high protein sequence similarity with one another and their extracellular loop

6

amino acid residues have similar lengths and are very similarly commonly present throughout.

All other claudins that do not share high degrees of sequence similarity with one another are

categorized thus as non-classic claudins. Structurally, all claudins, both classic and non-classic,

consist of four domain regions embedded in the cell membrane, two extracellular loops located

outside of the cell, and an N-terminus and C-terminus located within the cytoplasm of a cell.

The N-terminal tail end of claudins is relatively short, consisting of around seven amino acids in

length. Meanwhile, the C-terminal tail is longer, around 25-55 amino acids, and is responsible

for influencing the degree of stability of claudins and their targeting to tight junctions [36]. The

first extracellular loop (ECL) contains 40-50 amino acids and the second loop contains around

15-30 amino acids[33,35]. The first ECL loop contains charged amino acids and influences the

degree of selectivity of paracellular transport based on charge while the second ECL loop

influences the degree of selectivity based on ion particles sizes to be passing through the

paracellular cleft[35]. Other characteristics include disulfide bond presence, a signature GLW

amino acid sequence, an ion-binding site on the first ECL, and palmitoylation sites[33].

 Various claudin subtypes are found in the makeup of the tight junction strands,

interacting via cis and trans to form them. Individual claudin proteins first self-assemble along

the same membrane in cis and then interact in trans with other self-assembled claudin proteins

on an opposing membrane to form the tight junctions[37]. When claudins come together, both

non-classic and classic, and interact in both cis and trans to form the tight junctions, these

interactions can be of both homotypic (involving the same claudin proteins) or heterotypic

(involving different claudin proteins) nature. Claudins can form both heterotypic and homotypic

tight junctions, but their affinity for one another is dependent on the claudin subtypes

7

involved[32]. In a study of cocultures of L cells expressing claudin -1, -2, and -3, combinations of

claudin-1/-3 and claudin-2/-3 showed the formation of tight junction strands, but not the case

for claudin-1/-2[38]. In another study done with HeLa cells, heterotypic interactions of claudin-

1/-3 and claudin-3/-5 underwent assembly, but the same case was not observed for heterotypic

interactions of claudin-4/-5, claudin-1/-4, and claudin-3/-4 [39]. As there are better partners for

heterotypic interactions, there are also special exceptions where certain claudin subtypes

cannot interact homotypically with one another, as is the case with claudin-16. When

interacting homotypically, claudin-16 does not show any association with itself to assemble into

tight junction strands. However, when incorporated with claudin -19, heteromeric interaction

and tight junction strand formation is observed[40].

As claudin protein expression is tissue-specific and each claudin subtype has individual

attributes, the amalgamation of these determinants directs the barrier or pore properties of

each cell type’s paracellular pathway[32]. Barrier-forming claudins increase transepithelial

resistance and decrease solute permeability. Meanwhile, pore-forming claudins decrease

transepithelial resistance and increase solute permeability[33]. While tight junctions function as

epithelial barriers to restrict diffusion of solutes through the paracellular cleft, their barrier and

channel properties and degree of solute permeability are dependent on the nature of claudin

expression and interaction. Certain claudins have been known to be cation or anion-selective

and form barrier or channel/pore tight junctions, predominantly forming one tight junction

property configuration over the other based on whatever current ions are present. Previous

research in the field has established and determined the barrier and pore-forming properties of

the following claudins: claudins -2, -10, and -15 act as cation-selective pore-forming claudins,

8

claudins -10 and -17 act as anion-selective pore-forming claudins, claudins -7 and -19 form

cation-selective barriers, and claudins -1, -3, -4, -5, -6, -8, -9, -11, -14, and -18 form anion-

selective tight junction barriers[33]. Table 1 lists and describes the various properties of all the

claudin proteins such as selectivity, protein length, classification, etc.

1.3 Current Status

 Though research has progressed significantly since 1963 when tight junctions were first

discovered, their true structure remains to be established[4]. Experimental approaches have

looked at tight junction assembly mechanisms and different claudin proteins interactions with

respect to how they form tight junction strand networks. One such experiment, performed by

Milatz et al. looked at the isoforms of claudin-10 and claudin-10 chimeras and observed how

they interacted with each other to form tight junction-like strands[41]. Taking three claudin-10

isoforms and two claudin-10 chimeras to use in their experiment, the researchers

demonstrated that the proteins were able to interact in cis with each other using FRET

(Forster/fluorescence resonance energy transfer) and then further interact in trans to integrate

into tight junction-like strands by viewing the results under freeze-fracture electron

microscopy. One redundancy in experimental approaches toward studying one protein is that

basic conditions of experimental setups may mean that a protein being currently researched is

only important under certain conditions or in a specific type of cell or system[4]. Compared to

experimental means of studying proteins like claudins, computational methods provide a

means to look at an entire protein system in a less biased way, as computational methods can

incorporate many types of cells and systems to study, sampling more varied conditions.

9

 My colleagues in the Nangia Lab work with computational tools and methods to study

protein and protein systems such as claudins. Previous research done in the lab includes

studying and reporting the results of a cis natured type of self-assembly, a non-bonded energy

directed organization of system components from a disordered state to one of equilibrium, of

classical claudins -1,-2,-3,-4,-5,-15, and -19 and a trans type self-assembly for claudin-5. Their

self-assembly simulations showed that claudin proteins in cis self-assembled into dimeric and

trimeric interfaces that can form even larger strands. Additionally, they looked into the pore

structure of these classic claudins and revealed more about their selectivity in terms of

individually as well as how they contribute to overall tight junction function[42-44].

 Self-assembly resulted in strand formation of claudin proteins, with the basis of each

claudin protein monomer forming dimeric interfaces with one another. Four dimeric interfaces

have been identified so far through previous work done by the Nangia Lab[42-44], with each

dimeric interface indicating the orientation to which claudin monomers aggregated close

together individually as they formed strands. These orientation classifications: Dimer A, B, C,

and D, indicate the patterns that claudin interactions undergo the most in a cis self-assembly.

This organization of the dimer types is pertinent information that can be used to hypothesize

how claudins form the barrier and pore-types of structures that they do in trans interactions.

 In this thesis, the resulting self-assembly organization of classic and non-classic claudins

-2, -4, -11, -14, -16, -18, -19, and -23 in cis are observed and analyzed to see what type of dimer

orientations results, just like previous work done by the lab for classic claudins. Interactions of

both homotypic and heterotypic conditions will be done for these claudins. The homotypic

interactions will consist of claudin-2/-2, claudin -4/-4, claudin -11/-11, claudin -14/-14, claudin -

10

16/-16, claudin -18/-18, claudin -19/-19, and claudin -23/-23. In addition, heterotypic

interactions of claudin -2/23 and claudin -4/23 will be simulated and compared to their

homotypic self-assembly counterparts. Researching both non-classic and classic claudins in

homotypic and heterotypic interactions and comparing the two to each other can give insight

about any patterns or differences that may occur between a similar group (classic claudins)

versus a group that is more dissimilar (non-classic claudins). Their individual differences in

sequence and overall structure will give different strand formation results, leading to different

dimer types, indicating different properties for stability and function for a claudin protein.

 Furthermore, limitations of the current self-assembly method will be discussed and a

brief introduction to a new method involving energetics analysis, currently in the testing phase

for analyzing claudin-claudin interactions and their resulting dimer confirmations, developed by

my colleague in the lab, will be briefly covered.

11

12

13

II. COMPUTATIONAL MODELING OF CLAUDINS AND TIGHT JUNCTIONS

2.1 Computational Modeling & Molecular Dynamics

 For researching and uncovering the nature of claudins and how they contribute to the

overall tight junction formation and function, computational modeling is utilized. It is a

modeling method that uses computers to study and simulate complex real-life phenomenon

using the principles of physics, mathematics, and computer science. Using refined models and

powerful software packages and computer resources, theoretical computational studies give

representations and results of complex systems, revealing much more data and information

than experimental methods are limited in giving. Results achieved through computational

means are processed more quickly and can be repeated in a shorter time-scale if necessary to

give accurate results, compared to their experimental equivalents.

 This research uses computational modeling to generate the 3D structures of claudin

proteins and organize them into the desired system to simulate and observe their patterns of

self-assembly, an important biomolecular mechanism that involves the autonomous

organization of components into patterns or structures[45]. Aside from observing whether

claudins in their self-assembly lead to the formation of a strand-like network, as seen in tight

junctions, observed will be the differences present in self-assembly for various claudin types.

One of the tools available and used for this research to study claudins and their self-assembly is

molecular dynamics (MD). MD is a computer simulation method that studies the physical

movements of atoms and molecules[46]. Based on Newton’s second law of motion, MD takes a

static model of a biomolecule system and calculates the molecular forces acting on each atom,

nonbonded and bonded energies, and let the atoms and molecules within the system interact

14

with one another over a fixed period of time to observe the dynamic evolution of the

movement of atoms in the system over time.

 MD is run under the guidelines of force fields, equations set to parameterize the atomic

and molecular components of the system, dictating the conditions of MD operations to

calculate overall potential energies of movement of system components. Two types of

representations of a molecule are atomistic and coarse-grain models, shown in Figure 1, with

each type of model represented by a different type of force field. An atomistic model would

utilize a force field such as CHARMM[47] where every type of atom within the molecular system

is accounted for. Meanwhile, a coarse-grained model utilizes a MARTINI force field[48], which

maps every number of four heavy atoms as one larger bead, thereby simplifying the overall

representation of atoms in the system. When simulating a molecular system in an all-atom

scale of representation, results are detailed but limitations arise with large system sizes, as the

level of detail in an all-atom scale of representation leads to requirements of long simulation

times to completely calculate all potential energy and movement within the large system.

Coarse-grain model simulations, on the other hand, are more simplified in their representation

due to the mapping of heavy atoms into beads and thus make for more rapid calculating of

energy potentials than compared to atomistic models. It is better to run simulations in coarse-

grain representation due to the higher efficiency when computing for large molecular system

sizes.

 Certain packages are available for users to use to run molecular dynamics, such as

GROMACS (GROningen MAchine for Chemical Simulations)[49]. This package comes with

15

some necessary tools to create a well-prepared system to run an accurate MD simulation of the

desired biomolecule. The preparation steps include running energy minimization, equilibration,

NVT, and NPT before running the production MD simulation to get as accurate a result of how

the molecule may interact over time within the specified system. Energy minimization relaxes

the structure to ensure that there are no steric clashes or inappropriate geometry. Equilibration

takes surrounding molecules like ions or water in a system and optimizes them around the

target molecule itself. The temperature of the system is brought up to a specified value, known

as running an NVT or isothermal-isochoric ensemble, followed by an NPT or isothermal-isobaric

ensemble, where a pressure is applied to the system until a stable density is reached. Once the

system is well-equilibrated where the temperature and pressure are adequate, a production

16

MD run is executed, simulating the movements of molecules to observe the dynamics of the

system from initial time period to a specified simulation period.

2.2 Predicting and Generating 3D Structures & Homology Modeling

 Since many of the 3D structures of claudins are not entirely known, the use of servers

like I-TASSER[50], QUARK[51], FG-MD[52], locPREFMD[53], RAPTOR-X[54], RCD+[55], and PPM[56] are

utilized to predict, generate, and refine the resulting 3D structures of this work’s target claudin

proteins. Once complete, these structures are compiled and undergo homology modeling, using

the YASARA[57] program, to predict the most accurate individual 3D structures as possible. Only

then after these preparation steps, can the claudin models then be further used to set up the

system for self-assembly.

 I-TASSER (Iterative Threading ASSEmbler Refinement) is an online server run by Zhang

Lab of University of Michigan that predicts 3D structures of proteins based on their amino acid

sequences. It predicts the protein’s secondary structure, solvent accessibility, and normalized B-

factor (a value indicating the stability of the residues in the protein) of the protein and

generates different 3D structural models, predicting how each one would look. The resulting

models have c-score values, indicating the amount of confidence that the server had in the

resulting models. C-score values range from [-5,2] but a c-score value greater than -1.5

“indicates a model of correct global topology”[50]. Predicted models that had a good c-score

value range from -1 to 1 were selected and used in the next step of homology modeling by

YASARA.

17

 Next, QUARK, also run by Zhang Lab, was used. It predicts 3D protein structure as well,

with the exception that their models are based off free-modeling through replica-exchange

Monte-Carlo simulation instead of established homologous templates[51]. For generating 3D

models on both the I-TASSER and QUARK servers, protein FASTA sequences for claudin -11

(Entry ID: O75508), -14 (Entry ID: O95500), -16 (Entry ID: Q9Y5I7), -18 (Entry ID: P56856), -19

(Entry ID: Q8N6F1), and -23 (Entry ID: Q96B33) were taken from the UniProt database[58] and

uploaded onto each of the servers. Generating claudin -2 and -4 structures from their FASTA

sequences were not included, as complete homology models were already readily available to

use due in thanks to previous work done by a colleague, Flaviyan J. Irudayanathan. The more

known and stable regions of the claudin sequences were sent to I-TASSER and the more

unstable and disordered regions, mainly the tail ends of the claudin protein, were sent to the

QUARK server. Table 2 describes which part of the claudin’s amino acid sequence was sent to

which server.

18

 Additional servers and tools used included the FG-MD, locPREFMD server, and the

RAPTOR-X Contact Prediction tool. FG-MD (Fragment-Guided Molecular Dynamics) uses

algorithms to refine initial protein models to look more like their native structures, reshaping

them into appropriate geometries that contain no steric clashes, with improved torsion angles

and hydrogen-binding[52]. The locPREFMD (local Protein structure REFinement via Molecular

Dynamics) server by Feig lab further improves upon stereochemistry of atoms in the protein

molecule[53], and the RAPTOR-X Contact Prediction tool looks at protein model residue contacts

and evaluates the quality of that contact prediction through confidence scores[54]. In addition to

these servers being used to generate and refine the 3D claudin structures, the RCD+ (Random

Coordinate Descent) server was specifically used on the loop sequence of claudin-18 to refine

it, using an algorithm involving geometric algebra to update its loop arrangement and to

enhance the random selection of bonds[55].

Once the servers finished their jobs and completed predicting and refining the protein

sequences, their files were compiled into YASARA (Yet Another Scientific Artificial Reality

Application) to undergo homology modeling, the process of using 3D crystal structure models of

other known proteins as templates due to known sequence and structural similarity, to

generate accurate target protein models in 3D. Not only were the files from the servers used as

templates, but the recently discovered and known crystal structures of claudin -4

(PDB:5B2G)[59], claudin-15 (PDB:4P79)[60], and claudin-19 (PDB:3X29)[61] were used as templates

as well. Oligomerization state option was set to one and the number of templates option was

set to a minimum of five templates. Once homology models for claudins -2, -4, -11, -14, -16, -

19

18, -19, and -23 were completely generated, as shown in Figure 2, each claudin was sent to the

PPM server of the Orientations of Proteins in Membranes (OPM) database to find their correct

orientation within a membrane, as this server orients transmembrane and peripheral proteins

properly into a membrane by calculating its relative position and orientation within a

membrane with consideration for the properties of hydrophobic thickness, tilt angle, and

transfer free energy[56].

20

III. SELF-ASSEMBLY SYSTEM SETUP

3.1 Refining with Molecular Dynamics in Coarse Grain and Atomistic

 Once homology modeling was complete, claudin structures were prepared for MD

simulation. Claudins -2, -4, -11, -14, -16, -18, -19, and -23 were individually uploaded into the

martini bilayer maker from CHARMM-GUI, using the elnedyn martini force field, to input itself

into a coarse-grained lipid membrane system[47]. The system size was set to 75 Å in the X and Y

direction, with a 1:1 upper leaflet and lower leaflet ratio of DOPC (1,2-Dioleoyl-sn-glycero-3-

phosphocholine) lipid, generated with 0.15 M of NaCl ions and put in a water box. The

temperature was increased and set to 310.15 K for isothermal-isochoric (NVT) and isothermal-

isobaric (NPT) ensemble.

 The coarse-grained system initialized first with an energy minimization run for 50 ns

with no position restraints. After energy minimization, a series of equilibration steps was run

for 500 ns with a position restraint on the lipid bilayer and at a temperature of 310.15 K for NVT

and NPT ensemble. Following equilibration, a dynamics production run was executed without

position restraints for a simulation time of 2 µs.

 Once the coarse-grained production run finished simulating, the final file generated

from the production run is input into CHARMM-GUI again to be reverse-mapped into an all-

atom system in the CHARMM forcefield using the backwards.py script[47,62]. Using the input all-

atom converter martini maker input generator, terminal group patching and disulfide bonds are

selected and identified for the program to include. Then, ions and a water box are built around

the membrane components.

21

 Like the coarse-grained system, a simulation was run starting with energy minimization,

then several steps of equilibration, followed by a production run. Energy minimization was run

on the atomistic system with no position restraints for 5 ns. After minimization, an equilibration

run was done for 1 ns of time at a temperature of 310.15 K with hydrogen bond constraints

according to LINCS algorithm. Finally, a production run followed for 100 ns with Nose-Hoover

temperature coupling at 310.15K with hydrogen bond constraints from LINCS constraint

algorithm. Once the atomistic simulation completed production, the structure was released,

and a cluster analysis was performed, taking the first cluster of each claudin to use for their

respective setups for self-assembly.

3.2 Homotypic and Heterotypic Self-Assembly Setup

 For both homotypic and heterotypic claudin-claudin self-assembly setups, two claudin

monomer proteins, retrieved from the cluster analysis, are put in a grid with 5 nm diagonal

distance apart. For the homotypic claudin-claudin setups, two of the same claudins were put in

place together; heterotypic claudin-claudin setups involved two different claudins put together.

See Figure 3. Homotypic self-assembly setups were done for claudin -2/-2, claudin -4/-4, claudin

-11/-11, claudin -14/-14, claudin -16/-16, claudin -18/-18, claudin -19/-19, and claudin -23/-23.

As for heterotypic setups, they were claudin -2/-23 and claudin -4/-23.

 For every claudin-claudin system that was set up, the martinize.py python script[63] was

used to map the system back into coarse-grained beads instead of individual atoms. Secondary

structure files were also retrieved and run with the martinize.py script to generate an .itp file

for later use with the topology file. Following the previous action, the insane.py script[64] was

22

used to generate a box around the claudin-claudin grid and surround it in a lipid bilayer and fill

it with ions and water. VMD (Visual Molecular Dynamics) software[65] was used to visualize the

system.

Once all claudins were properly mapped and orientated in the lipid bilayer membrane,

using the gmx genconf[49] command available through the GROMACS package, the two

monomer grid was multiplied and scaled up to a larger grid size containing 72 monomer

proteins. Homotypic systems contained 72 of the same claudin monomers while heterotypic

systems contained 36 of one type of claudin and 36 of another. See Figure 4. The initial box size

increased from (10.1, 10.1, 9.8) to (61.5, 61.5, 9.7) in the xyz direction. Energy minimization and

a series of equilibration steps are run again to prepare the system for the self-assembly

23

production run. Once they completed, the production run was set to run for a period of 4 µs in

triplicate.

24

IV. ANALYSIS METHODS

4.1 Dimer Orientation Analysis Method

 Previously developed by my colleagues at the Nangia Lab, they have observed the

patterns of claudin-claudin self-assembly and their results led them to identify their

organization by classifying the types of interactions they see as dimer types: dimer A, B, C, and

D[42-44]. See Figure 5. Dimers are defined by the degree of angle rotation undergone between

the transmembrane regions of two claudin proteins. Each dimer is classified by a unique degree

of rotation with respect to one another. See Table 3.

 Observed through previous research, claudin-claudin self-assembly leads to strand

formation. Therefore, scripts were generated to further analyze the meaning behind the strand

formation and the types of individual units, or dimers, leading to their strand formation. The

ANGLE_RW.py and 2D-KDE.py scripts were created and used to analyze the angle and dimer

types that formed from homotypic and heterotypic self-assembly. See Appendix 7.1 for more

25

detailed information into the strings and commands for both of the scripts used. Generating

plots with the ANGLE_RW.py and 2D-KDE.py scripts give the following figure, Figure 6, that

visualizes the types of dimer conformations as well as how populous that dimer type is. It

shows their distribution in the form of a graph based on kernel density estimation, a sampling

tool used in statistics that looks at the population or conformation of a protein most likely to

appear. Based on the kernel density estimation, the graph generated is a probability density

function (PDF) type of graph, where the density of a random variable is measured, indicating

the relative likelihood that the random variable would be equivalent to the whole sample.

Areas filled with more of the blue color correspond to low probability for dimer population,

while more of the red color correspond to higher probability. Additionally, within the plot,

boxes lettered A, B, C, and D correspond to the regions where the respective dimer types are

spatially located.

26

4.2 Mapping Energy Landscape Method

 An alternative means of analyzing the self-assembly dimer conformation types was

developed by my colleague at the Nangia Lab, Nandhini Rajagopal. This new method, termed

the Mapping Energy Landscape method, analyzes dimers in terms of energetics, rather than

based on the population like the previous method. While this method is currently in testing

phase, it’s results have provided additional insight into the nature of understanding claudin-

claudin interactions and their resulting dimer formation.

 Instead of setting up the system with 72 claudins in a grid with a large box size, this

method takes 2 claudin monomers and puts them together in a box, filling the box with the

same components as the self-assembly method: lipids, water, and ions. Taking the two claudin

proteins, a number of random orientations, each one different, are generated. Following this

step, a short simulation is run to energy minimize and equilibrate the system, letting the claudin

proteins interact and orient however they like. At the end of the simulation time, the claudin

proteins are able to sample the entire angle space and the resulting energies associated with

each angle orientation are plotted on a graph for visual representation. Results should display a

profile of various energies associated with different angle conformations. The conformations

lowest in energy values should correspond to the most stable of dimers.

27

28

V. RESULTS AND DISCUSSION

5.1 Analysis of Structural Models of Claudin Proteins

 Before proceeding onwards with self-assembly simulations, the generated claudin

monomer structures were analyzed through various techniques to evaluate and verify

confidence in their structural integrity and stability. Techniques include root mean square

deviation (RMSD), root mean square fluctuation (RMSF), hydrogen bond analysis, and cluster

analysis, all available to use as commands through the GROMACS package. RMSD was used to

measure the deviations of atom positions within the claudin protein with respect to its

reference claudin protein, and RMSF was used to measure these residue deviations over time,

to see which residues of the claudin protein experience the most flux. These two techniques

indicate the degree of stability between the atoms and the protein structure. As for a hydrogen

bond analysis, this measured all the existing hydrogen bonds in the protein’s structure and gave

an indication of the stability of the secondary structure of the claudin protein. See Figure 7 for

the graphs showing the RMSD, RMSF, and hydrogen bond analysis performed for all eight

claudins.

In Figure 7A, RMSD shown for each claudin protein exhibits a certain degree of

fluctuation, but the RMSF graph in Figure 7B showing spikes at certain residue points may

account for the fluctuations observed in the RMSD graphs for their respective claudin proteins.

As shown in Figure 7C, the hydrogen bonds for all claudin proteins were generally observed to

be occurring at a constant rate, indicating a stable secondary structure. Following these

analyses and verifying the stability of the generated claudin structures, a cluster analysis was

performed to identify similar structures that were sampled during the MD simulation. One

29

cluster is chosen from among the others, with being that the chosen cluster contains the

biggest similar protein conformations. Following choosing the best cluster, then the setup for

self-assembly is completed and the simulations are run.

5.2 Self-Assembly Results & Analysis

 Upon completion of the ten self-assembly simulations, for the time duration of 4 µs, the

following results were observed in Figure 8 and 9 for homotypic and Figure 10 for heterotypic

claudin-claudin interactions. After 4 µs, each claudin-claudin interaction, both homotypic and

30

31

32

heterotypic, self-assembled from an initial starting configuration of isolated monomers into a

more organized stand-like assembly, like that which is observed and found in tight junction

strands. For each strand-like assembly observed in each claudin-claudin system, the way they

have fashioned themselves is contingent on the means of how the claudin monomers within

the system have assembled to form dimers and further organize into the resulting strands

beheld.

 Each interaction system has been analyzed, identifying individual dimer types and their

respective density of population, illustrated in Figure 11. From these graphs, it is evident that

various claudin-claudin interactions result in different dimer type formations. See Table 4 for an

overall comparison of the different dimer types that form from self-assembly as well as their

population densities. For the self-assembly dimeric interactions and occurrences between the

classic claudins (claudin -2/-2, -4/-4, -14/-14, and -19/-19), since they share a high degree of

similarity with each other, one could predict a pattern of dimers to form. However, this was not

the observed case, suggesting that regardless of similarity, the individual differences in claudin

subtypes result in different dimer type formations. As for the homotypic self-assembly results

for the non-classic claudins (claudin -11/-11, -16/-16, -18/-18, and -23/-23), they too do not

exhibit any such patterns in forming dimer types. To compare the homotypic interactions of the

classic versus the non-classic claudins, the classic claudin self-assemblies were more densely

populated in dimer types than their non-classic counterparts.

 When looking at the results of the heterotypic systems (claudin -2/-23 and -4/-23), the

resulting dimer formations are observed to be slightly different upon interacting with two

dissimilar claudin subtypes rather than with two identical subtypes. One case in particular

33

34

35

regarding the assembly of claudin-4 and claudin-23 together demonstrated an overall lack in

formation of Dimer C, as compared to the homotypic assembly interaction of claudin -4/-4 that

led to the presence and population of many Dimer C. This result suggests the combination of

different claudin subtypes upon assembly interactions will either promote or inhibit the

formation of various dimer types, likely due to their distinct individual properties.

5.3 Mapping Energy Landscape Method Results & Analysis

 As previously mentioned, this new method of analyzing dimers is still in the refining

process. A single test run was computed for claudin-2/-23, sampling 1000 random orientations

in the angle space and calculating each energy of interaction. Compared to the sampling done

by the self-assembly method, this method was able to sample more of the angle space,

illustrated in Figure 12. While the mapping energy landscape method always sampled different

dimer orientations each time, the self-assembly method of sampling had overlap with some of

the same points.

After generating the random orientations to be sampled, the system undergoes

equilibration and a short simulation time of 300 ns for each sample, the resulting energy profile

is plotted in a graph, shown in Figure 13. Since the spatial locations of dimers A, B, C, and D are

the same as the self-assembly method, the results provide new and additional information

regarding the energetic favorability of each dimer conformation. For the claudin-2/-23

interaction, dimer C appears to be energetically favorable, indicated by a lower energy value.

The results from the self-assembly method for claudin -2/-23 certainly supports this idea (refer

36

to Figure 11I and Table 4). Comparing the two methods, there is a correlation between the two,

as areas with a high population in the self-assembly method are seen to have energy dips in the

mapping energy landscape method. Certain areas that do not appear to match must be

sampled more in the self-assembly method, as this alternative method of mapping energy

landscapes should complement the previous density of population method, given enough

sampling.

5.4 Comparison of the Two Methods

 Both methods of self-assembly and mapping energy landscape analyses provide ways to

examine the dimeric interfaces that are essential for claudins to organize into strand-like

patterns, as seen in those necessary for establishing tight junction function. Though self-

37

assembly is a known method used in the Nangia lab, it has its own set of limitations. For one

example, the 72 monomer system used to set up the simulation runs for each claudin’s self-

assembly are very large. One of the self-assembly systems used for this research contained pver

323,964 beads. To process such a large system, using 24 processors/node, the job required

weeks (20 days) worth of time for completion, running at a performance rate of 180 ns/day.

Additionally, even with the long simulation time and running each system in triplicate, the

amount of sampling achieved on the system was never enough. With this new method, the

system size is much smaller, thus more affordable and more efficient to compute and run

simulations.

38

VI. CONCLUSION

 As mentioned throughout this thesis, both homotypic and heterotypic systems—classic

and non-classic claudins—exhibited a strand-like formation from self-assembly simulations. No

one claudin-claudin self-assembly interaction yielded the same results. All the classic claudin-

claudin interactions (-2/-2, -4/-4, -14/-14, -19/-19), though highly similar in sequence homology

and structure with each other, did not exhibit any specific pattern of dimer formation. All non-

classic claudin-claudin interactions (-11/-11, -16/-16, -18/-18, -23/-23) do not demonstrate any

patterns of specific dimer types either. Both the homotypic types of interactions formed varying

amounts of dimer A, B, C, and D at the end of their self-assembly simulation. The heterotypic

interaction was interesting because less of dimer C formed for the heterotypic interaction of

claudin -4/-23 compared to the homotypic interaction of claudin -4/-4. This indicates that the

pairing of certain claudins with each other may either inhibit the formation of certain dimer

types or proliferate the formation of certain dimer types, thereby affecting the overall tight

junction network that will resultingly form and subsequently the degree of tight junction

permeability. These self-assembly interactions studied were of the cis nature, of along the same

membrane. The next step should be to see how these same claudin-claudin interactions act in a

trans interaction and what types of dimers they form, so as to hypothesize which dimers, based

on established research, are responsible for a claudin’s barrier-forming or pore-forming

property.

39

 The structures of the eight claudin proteins being researched in this thesis were not fully

known, so various servers and homology modeling were utilized to predict, refine, and

construct an accurate 3D claudin structural model to be used for self-assembly simulation. Built

in a coarse-grain system, each claudin was put in a lipid bilayer system and energy minimized,

equilibrated, and processed before it could be input to a 72 monomer grid to be used for self-

assembly simulation. After 4 µs of simulation and observing the results, all the claudin

monomers formed strands by creating dimeric interfaces, which were analyzed by using an

established dimer analysis method developed by previous colleagues working at the Nangia

Lab. When the current method of analyzing self-assembly dimer configurations proved to have

its limitations, another method was developed at the Nangia Lab in hopes of addressing and

improving upon the previous method. Termed as mapping energy landscapes, this analysis

technique makes up for certain flaws that pre-existed in the previous dimer analysis method

such as sampling more to make up for the previous inadequate sampling, requiring lesser

resources and computational processing time, and providing more qualitative answers in terms

of results. If the previous method with self-assembly had enough sampling, the results of the

new method should have granted similar results. Since this new method is more efficient, it

should be improved upon to be used to better study claudin-claudin interactions. Once all

twenty-seven claudins have been studied in all possible combinations, then perhaps this

method could be used to study any two interacting transmembrane entities, not limited to just

claudin transmembrane proteins.

40

 Comprehensive understanding of the molecular interactions of claudin-claudin proteins

is necessary, as since they are key players in controlling tight junction function, they then are

promising targets for drug developers to create drugs to treat tight junction-related diseases.

Since less is currently known about the homotypic nature of interaction for non-classic claudins

as well as certain heterotypic interactions of claudin proteins, it is, therefore, significant to

study these interactions, learn about their self-assembly organization, and hypothesize how

their orientations that form from self-assembly contribute to overall tight junction barrier

function.

41

VII. APPENDIX

7.1 Scripts to Sample Self-Assembly Population and Analyze Dimer Type Formation

7.1A ANGLE_RW.py script
#!/usr/bin/env python
import numpy as np
import argparse
import os, sys
import MDAnalysis
import MDAnalysis.analysis.distances as Mdistance
def angle1 (v1,v2):
Given two 2D vectors this function will return
angles using the atan2 formula.
 return np.math.atan2(np.linalg.det([v1,v2]),np.dot(v1,v2))
def unit_vector(vector):
 """ Returns the unit vector of the vector. """
 return vector / np.linalg.norm(vector)
n_atom = []
parser = argparse.ArgumentParser()
parser.add_argument('-f', nargs=1, dest='ref_gro', default=['no'], help=argparse.SUPPRESS,
required=True)
parser.add_argument('-x', nargs=1, dest='ref_xtc', default=['no'], help=argparse.SUPPRESS,
required=True)
parser.add_argument('-o', nargs=1, dest='angle_file', default=['angle_file.txt'],
help=argparse.SUPPRESS)
parser.add_argument('-nmol', nargs=1, dest='n_mol', default=[1], type=int,
help=argparse.SUPPRESS)
parser.add_argument('-tmol', nargs=1, dest='t_mol', default=[1], type=int,
help=argparse.SUPPRESS)
parser.add_argument('-natom', nargs=1, dest='n_atom', default=[], type=int, action='append',
help=argparse.SUPPRESS)
args = parser.parse_args()
args.ref_gro = args.ref_gro[0]
args.ref_xtc = args.ref_xtc[0]
args.angle_file = args.angle_file[0]
args.n_mol = args.n_mol[0]
args.t_mol = args.t_mol[0]
if not os.path.isfile(args.ref_gro):
 print "Error: file " + str(args.ref_gro) + " not found."
 sys.exit(1)
else:
 args.angle_file = (args.ref_gro[:-4].split('/')[-1]).split('_')[0] + "_angle_file.txt"
if not os.path.isfile(args.ref_xtc):

42

 print "Error: file " + str(args.ref_xtc) + " not found."
 sys.exit(1)
if os.path.isfile(args.angle_file):
 print "Error: file " + str(args.angle_file) + " already exisits."
 overwrite = raw_input("Do you wish to overwrite [y/n] : ")
 if overwrite in ['y','Y']:
 angle_file = os.getcwd() + '/' + str(args.angle_file)
 angle_file = args.angle_file
 else:
 sys.exit(1)
else:
 angle_file = os.getcwd() + '/' + str(args.angle_file)
 angle_file = args.angle_file
output = open(angle_file, 'w')
u = MDAnalysis.Universe(args.ref_gro,args.ref_xtc)
if not len(args.n_atom) > 1:
 print "Reading Files"
 num_residues = max(u.atoms.resnums)
 print "Number of Residues", num_residues
 tot_residues = u.select_atoms("name BB").n_atoms
 num_mol = tot_residues/num_residues
 print "Number of Mol", num_mol
 num_atoms = u.atoms.n_atoms
 atom_per_mol = num_atoms/num_mol
 print "Number of Atom per mol", atom_per_mol
else:
 mol_natom = []
 if not args.n_mol or not args.t_mol:
 print "please specify the number of molecules and totatl molecules"
 sys.exit(1)
 else:
 print "There are", args.n_mol, " different molecules in the system"
 for i in range(args.n_mol):
 print "mol", i, " has ", args.n_atom[i] ,"atoms"
 for i in range(args.t_mol):
 mol_natom.append(0)
 for i in range(args.t_mol):
 if i % 2 == 0:
 mol_natom[i] = int(args.n_atom[0][0])
 else:
 mol_natom[i] = int(args.n_atom[1][0])
num_frames = u.trajectory.n_frames
print "Number of trajectories", num_frames
mol = []

43

counter = 0
counter2 = 0
counter3 = 0
if not len(args.n_atom) > 1:
 mol = [u.atoms[i:i+atom_per_mol] for i in xrange(0,u.atoms.n_atoms,atom_per_mol)]
else:
 j = 0
 for i in xrange(args.t_mol):
 mol.append(u.atoms[j:j+mol_natom[i]])
 j += mol_natom[i]
 num_mol = args.t_mol
dimer_count = 0
time = 0
for ts in u.trajectory:
 time = time+ts.dt
 print "Processing tracetory frame ts =", time
 for i in range(num_mol):
 for j in range(i+1,num_mol):
 d = Mdistance.distance_array(mol[i].select_atoms("name BB").positions,
mol[j].select_atoms("name BB").positions,box=ts.dimensions, backend='OpenMP')
 if (d <= 10.0).sum() >= 20:
 # C1 = mol[i].select_atoms("name BB").center_of_mass(pbc=True)[0:2]
 # C2 = mol[j].select_atoms("name BB").center_of_mass(pbc=True)[0:2]
 C1 = mol[i].select_atoms("name BB and (resid 12-23 81-93 122-136 165-
180)").center_of_mass(pbc=True)[0:2]
 C2 = mol[j].select_atoms("name BB and (resid 12-23 81-93 122-136 165-
180)").center_of_mass(pbc=True)[0:2]
 X1 = mol[i].select_atoms("name BB and resid 6-26").center_of_mass(pbc=True)[0:2]
 X2 = mol[j].select_atoms("name BB and resid 6-26").center_of_mass(pbc=True)[0:2]
 C1_C2 = C2 - C1
 C2_C1 = C1 - C2
 C1_X1 = X1 - C1
 C2_X2 = X2 - C2
 VC1_X1 = [C1_X1[1],-C1_X1[0]]
 VC2_X2 = [C2_X2[1],-C2_X2[0]]
 alpha_1 = angle1(VC1_X1,C1_C2)
 beta_1 = angle1(C2_X2,C2_C1)
 if beta_1 < 0:
 beta_1 = (2*np.pi)+beta_1
 alpha_2 = angle1(VC2_X2,C2_C1)
 beta_2 = angle1(C1_X1,C1_C2)
 if beta_2 < 0:
 beta_2 = (2*np.pi)+beta_2
 output.write("%.5f \t %.5f\n" % (beta_1,beta_2))

44

print "Finished with the Analysis"
output.close()

7.1B 2D-KDE.py script

#!/usr/bin/env python
import numpy as np
import matplotlib.pyplot as plt
import argparse
import os, sys
plt.style.use('classic')
xmin = 0
xmax = 2*np.pi
Xtick=np.linspace(xmin, xmax, 3,endpoint=True)
Ytick=np.linspace(xmin, xmax, 3,endpoint=True)
x, y = np.mgrid[xmin:xmax:720j, xmin:xmax:720j]
positions = np.vstack([x.ravel(), y.ravel()]).T
from scipy.stats import iqr
d = min(positions.std(),iqr(positions)/1.349)
n = (positions.size/2)**(0.2)
bw = 0.9*(d/n)
def stat_kde(a, b):
 from scipy.stats import gaussian_kde
 ab = np.vstack([a,b])
 knl = gaussian_kde(ab, bw_method='silverman')
 kde = np.reshape(knl(positions).T, x.shape)
 return kde
def sci_kde(a, b):
 from sklearn.neighbors import KernelDensity
 ab = np.vstack([a,b]).T
 knl = KernelDensity(bandwidth=bw, metric='euclidean',
 kernel='gaussian', algorithm='ball_tree')
 knl.fit(ab)
 kde = np.reshape(np.exp(knl.score_samples(positions)), x.shape)
 return kde
parser = argparse.ArgumentParser()
parser.add_argument('-f', nargs=1, dest='ang_file', default=['no'], help=argparse.SUPPRESS,
required=True)
args = parser.parse_args()
args.ang_file = args.ang_file[0]
if not os.path.isfile(args.ang_file):
 print "Error: file " + str(args.ang_file) + " not found."
 sys.exit(1)

45

else:
 args.image_file = (args.ang_file[:-4].split('/')[-1]).split('_')[0] + "_kde.png"
if os.path.isfile(args.image_file):
 print "Error: file " + str(args.image_file) + " already exisits."
 overwrite = raw_input("Do you wish to overwrite [y/n] : ")
 if overwrite in ['y','Y']:
 image_file = os.getcwd() + '/' + str(args.image_file)
 image_file = args.image_file
 else:
 sys.exit(1)
else:
 image_file = os.getcwd() + '/' + str(args.image_file)
 image_file = args.image_file
data = np.genfromtxt(args.ang_file, dtype=float)
a = data[:,0]
b = data[:,1]
#sk = stat_kde(a,b)
from timeit import default_timer as timer
start = timer()
...
ck = sci_kde(a,b)
end = timer()
print(end - start)
fig = plt.figure(figsize=(15,12))
#Set limits
plt.xlim(xmin,xmax)
plt.ylim(xmin,xmax)
plt.plot([xmin,xmax],[xmin,xmax],'r',
 ls=':', lw=5,
 dash_capstyle='round',
 zorder = ck.min())
levels = np.linspace(ck.min(), ck.max(), 30)
kplot = plt.contourf(x, y, ck,
 levels=levels,
 cmap=plt.cm.coolwarm,
 extent=[xmin, xmax, xmin, xmax],
 norm=plt.Normalize(vmax=abs(ck).max(), vmin=abs(ck).min()),
 alpha=0.90)
if ck.max() > 0.16:
 cbar = fig.colorbar(kplot,format="%.1f")
else:
 cbar = fig.colorbar(kplot,format="%.2f")
cbar.ax.tick_params(length=10,width=3,labelsize=40)
cbar.set_ticks(np.linspace(ck.min(),ck.max(),3))

46

plt.xticks(Xtick,[r'0',r'π',r'2π'],fontsize=50)
plt.yticks(Ytick,[r'0',r'π',r'2π'],fontsize=50)
plt.xlabel(r'$\theta \/\ (rad)$',fontsize=50,weight='bold')
plt.ylabel(r'$\theta ^\prime \/\ (rad)$',fontsize=50,weight='bold')
Draw contour lines
#cbar.set_label(r'PDF',fontsize=50)
plt.tight_layout()
plt.savefig(args.image_file, transparent=True, bbox_inches='tight',dpi=300)
#plt.show()

47

VIII. REFERENCES

1. Cereijido, M., Contreras, R. G. & Shoshani, L. Cell adhesion, polarity, and epithelia in the

dawn of metazoans. Physiol. Rev. 84, 1229–1262 (2004).

2. Farquhar, M. G. & Palade, G. E. Junctional complexes in various epithelia. J. Cell Biol. 17,

375–412 (1963).

3. Van Itallie, C. M. & Anderson, J. M. The Molecular Physiology of Tight Junction Pores The

Molecular Physiology of Tight. Physiology 19, 331–338 (2004).

4. Zihni, C., Mills, C., Matter, K. & Balda, M. S. Tight junctions: From simple barriers to

multifunctional molecular gates. Nat. Rev. Mol. Cell Biol. 17, 564–580 (2016).

5. Claude, P. & Goodenough, D. A. Fracture faces of zonulae occludentes from “tight” and

“leaky” epithelia. J. Cell Biol. 58, 390–400 (1973).

6. Staehelin, L. A., Mukherjee, T. M. & Williams, A. W. Freeze-etch appearance of the tight

junctions in the epithelium of small and large intestine of mice. Protoplasma 67, 165–

184 (1969).

7. Furuse, M. et al. Overexpression of occludin, a tight junction integral membrane protein,

induces the formation of intracellular multilamellar bodies bearing tight junction-like

structures. J. Cell Sci. 109, 429–435 (1996).

8. Furuse, M., Sasaki, H., Fujimoto, K. & Tsukita, S. A single gene product, claudin-1 or -2,

reconstitutes tight junction strands and recruits occludin in fibroblasts. J. Cell Biol. 143,

391–401 (1998).

48

9. Morita, K., Furuse, M., Fujimoto, K. & Tsukita, S. Claudin multigene family encoding four-

transmembrane domain protein components of tight junction strands. Proc. Natl Acad.

Sci. USA 96, 511–516 (1999).

10. Kubota, K. et al. Ca2+ -independent cell-adhesion activity of claudins, a family of integral

membrane proteins localized at tight junctions. Curr. Biol. 9, 1035–1038 (1999).

11. Osler, M. E., Chang, M. S. & Bader, D. M. Bves modulates epithelial integrity through an

interaction at the tight junction. J. Cell Sci. 118, 4667–4678 (2005).

12. Luissint, A. C., Nusrat, A. & Parkos, C. A. JAM-related proteins in mucosal homeostasis

and inflammation. Semin. Immunopathol. 36, 211–226 (2014).

13. Martin-Padura, I. et al. Junctional adhesion molecule, a novel member of the

immunoglobulin superfamily that distributes at intercellular junctions and modulates

monocyte transmigration. J. Cell Biol. 142, 117–127 (1998).

14. Cohen, C. J. et al. The coxsackievirus and adenovirus≈receptor is a transmembrane

component of the tight junction. Proc. Natl Acad. Sci. USA 98, 15191–15196 (2001).

15. Higashi, T. et al. Analysis of the ‘angulin’ proteins LSR, ILDR1 and ILDR2—tricellulin

recruitment, epithelial barrier function and implication in deafness pathogenesis. J. Cell

Sci. 126, 966–977 (2013).

16. Masuda, S. et al. LSR defines cell corners for tricellular tight junction formation in

epithelial cells. J. Cell Sci. 124, 548–555 (2011).

17. Yu, A. S. Claudins and the kidney. J. Am. Soc. Nephrol. 26, 11–19 (2015).

49

18. Yu, A. S. et al. Molecular basis for cation selectivity in claudin-2-based paracellular

pores: identification of an electrostatic interaction site. J. Gen. Physiol. 133, 111–127

(2009).

19. Lingaraju, A. et al. Conceptual barriers to understanding physical barriers. Semin. Cell

Dev. Biol. 42, 13–21 (2015).

20. Rajasekaran, A. K., Hojo, M., Huima, T. & Rodriguez-Boulan, E. Catenins and zonula

occludens-1 form a complex during early stages in the assembly of tight junctions. J. Cell

Biol. 132, 451–463 (1996).

21. Maiers, J. L., Peng, X., Fanning, A. S. & DeMali, K. A. ZO-1 recruitment to α-catenin — a

novel mechanism for coupling the assembly of tight junctions to adherens junctions. J.

Cell Sci. 126, 3904–3915 (2013).

22. Fukuhara, A. et al. Involvement of nectin in the localization of junctional adhesion

molecule at tight junctions. Oncogene 21, 7642–7655 (2002).

23. Zihni, C., Balda, M. S. & Matter, K. Signalling at tight junctions during epithelial

differentiation and microbial pathogenesis. J. Cell Sci. 127, 3401–3413 (2014).

24. Gonzalez-Mariscal, L. et al. Tight junctions and the regulation of gene expression. Semin.

Cell Dev. Biol. 36, 213–223 (2014).

25. Quiros, M. & Nusrat, A. RhoGTPases, actomyosin signaling and regulation of the

epithelial apical junctional complex. Semin. Cell Dev. Biol. 36, 194–203 (2014).

26. Balda, M. S. et al. Assembly and sealing of tight junctions: possible participation of G-

proteins, phospholipase C, protein kinase C and calmodulin. J. Mem. Biol. 122, 193–202

(1991).

50

27. Garrido-Urbani, S., Bradfield, P. F. & Imhof, B. A. Tight junction dynamics: the role of

junctional adhesion molecules (JAMs). Cell Tissue Res. 355, 701–715 (2014).

28. Powell DW. Barrier function of epithelia. Am J Physiol Gastrointest Liver Physiol 241:

G275–G288, (1981).

29. Tsukita S and Furuse M. Claudin-based barrier in simple and stratified cellular sheets.

Curr Opin Cell Biol 14: 531–536, (2002).

30. Sawada, N. et al. Tight junctions and human diseases. Med. Electron Microsc. 36, 147–

156 (2003).

31. Furuse, M. et al. Occludin : A Novel Integral Membrane Protein Localizing at Tight

Junctions. J. Cell Biol. 123, 1777–1788 (1993).

32. Furuse, M. (2010). Chapter 1 - Introduction: Claudins, Tight Junctions, and the

Paracellular Barrier. Current Topics in Membranes. A. S. L. Yu, Academic Press. 65: 1-19.

33. Gunzel, D. & Yu, A. S. L. Claudins and the Modulation of Tight Junction Permeability.

Physiological Reviews 93, (2013).

34. Krause, G. et al. Structure and function of claudins. Biochim. Biophys. Acta - Biomembr.

1778, 631–645 (2008).

35. Haseloff, R. F., Piontek, J. & Blasig, I. E. The Investigation of cis- and trans-Interactions

Between Claudins. Curr. Top. Membr. 65, 97–112 (2010).

36. Müller, D. et al. A novel claudin 16 mutation associated with childhood hypercalciuria

abolishes binding to ZO-1 and results in lysosomal mistargeting. Am. J. Hum. Genet. 73,

1293–1301 (2003).

51

37. Van Itallie, C. M. & Anderson, J. M. Claudin interactions in and out of the tight junction.

Tissue Barriers 1, e25247 (2013).

38. Furuse, M. et al. Claudin-based tight junctions are crucial for the mammalian epidermal

barrier: A lesson from claudin-1-deficient mice. J. Cell Biol. 156, 1099–1111 (2002).

39. D’Souza, T., Agarwal, R. & Morin, P. J. Phosphorylation of Claudin-3 at threonine 192 by

cAMP-dependent protein kinase regulates tight junction barrier function in ovarian

cancer cells. J. Biol. Chem. 280, 26233–26240 (2005).

40. Hou, J. et al. Claudin-16 and claudin-19 interact and form a cation-selective tight

junction complex. J. Clin. Invest. 118, 619–628 (2008).

41. Milatz, S. et al. Tight junction strand formation by claudin-10 isoforms and claudin-10a/-

10b chimeras. Ann. N. Y. Acad. Sci. 1405, 102–115 (2017).

42. Irudayanathan, F. J., Trasatti, J. P., Karande, P. & Nangia, S. Molecular Architecture of

the Blood Brain Barrier Tight Junction Proteins-A Synergistic Computational and in Vitro

Approach. J. Phys. Chem. B 120, 77–88 (2016).

43. Irudayanathan, F. J., Wang, N., Wang, X. & Nangia, S. Architecture of the paracellular

channels formed by claudins of the blood–brain barrier tight junctions. Ann. N. Y. Acad.

Sci. 1405, 131–146 (2017).

44. Irudayanathan, F. J. et al. Self-assembly Simulations of Classic Claudins-Insights into the

Pore Structure, Selectivity and Higher Order Complexes. (2018).

45. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science (80-.). 295,

2418–2421 (2002).

52

46. Durrant, J. & McCammon, J. A. Molecular dynamics simulations and drug discovery.

BMC Biol. 9, 1–9 (2011).

47. Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: A Web-Based Graphical User Interface

for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

48. Hsu, P. C., Jefferies, D. & Khalid, S. Molecular Dynamics Simulations Predict the

Pathways via Which Pristine Fullerenes Penetrate Bacterial Membranes. J. Phys. Chem. B

120, 11170–11179 (2016).

49. Berendsen, H. J. C., van der Spoel, D. & van Drunen, R. GROMACS: A message-passing

parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43–56 (1995).

50. Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 1–8

(2008).

51. Xu, D. & Zhang, Y. Ab initio protein structure assembly using continuous structure

fragments and optimized knowledge-based force field. Proteins Struct. Funct.

Bioinforma. 80, 1715–1735 (2012).

52. Zhang, J., Liang, Y. & Zhang, Y. Atomic-level protein structure refinement using

fragment-guided molecular dynamics conformation sampling. Structure 19, 1784–1795

(2011).

53. Feig, M. Local Protein Structure Refinement via Molecular Dynamics Simulations with

locPREFMD. J. Chem. Inf. Model. 56, 1304–1312 (2016).

54. Ma, J., Wang, S., Wang, Z. & Xu, J. Protein contact prediction by integrating joint

evolutionary coupling analysis and supervised learning. Bioinformatics 31, 3506–3513

(2015).

53

55. López-Blanco, J. R., Canosa-Valls, A. J., Li, Y. & Chacón, P. RCD+: Fast loop modeling

server. Nucleic Acids Res. 44, W395–W400 (2016).

56. Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and

PPM web server: Resources for positioning of proteins in membranes. Nucleic Acids Res.

40, 370–376 (2012).

57. Krieger, E. & Vriend, G. New ways to boost molecular dynamics simulations. J. Comput.

Chem. 36, 996–1007 (2015).

58. Bateman, A. et al. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 45,

D158–D169 (2017).

59. Shinoda, T., et al. (2016). "Structural basis for disruption of claudin assembly in tight

junctions by an enterotoxin." Sci Rep 6: 33632.

60. Suzuki, H., et al. (2014). "Crystal structure of a claudin provides insight into the

architecture of tight junctions." Science 344(6181): 304-307.

61. Saitoh, Y., et al. (2015). "Tight junctions. Structural insight into tight junction

disassembly by Clostridium perfringens enterotoxin." Science 347(6223): 775-778.

62. Wassenaar, T. A., Pluhackova, K., Böckmann, R. A., Marrink, S. J. & Tieleman, D. P. Going

backward: A flexible geometric approach to reverse transformation from coarse grained

to atomistic models. J. Chem. Theory Comput. 10, 676–690 (2014).

63. De Jong, D. H. et al. Improved parameters for the martini coarse-grained protein force

field. J. Chem. Theory Comput. 9, 687–697 (2013).

54

64. Wassenaar, T. A., Ingólfsson, H. I., Böckmann, R. A., Tieleman, D. P. & Marrink, S. J.

Computational lipidomics with insane: A versatile tool for generating custom

membranes for molecular simulations. J. Chem. Theory Comput. 11, 2144–2155 (2015).

65. Humphrey, W., Dalke, A. & Schulten, K. {}: {Visual} molecular dynamics. J. Mol. Graph.

14, 33–38 (1996).

55

IX. VITA

Author Name: Lisa Nguyen

Date of Birth: October 21, 1994

Undergraduate School Attended:

MCPHS University (2012-2016)

Degrees Awarded:

B.S. Medical and Molecular Biology, May 2016

	Homotypic and Heterotypic Self-Assembly of Claudin Family of Tight Junction Proteins
	Recommended Citation

	tmp.1538164447.pdf.pd046

