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Abstract 

This paper develops robust panel estimation in the form of trimmed mean group estimation for 

potentially heterogenous panel regression models. It trims outlying individuals of which the sample 

variances of regressors are either extremely small or large. The limiting distribution of the trimmed 

estimator can be obtained in a similar way to the standard mean group estimator, provided the random 

coefficients are conditionally homoskedastic. We consider two trimming methods. The first one is based 

on the order statistic of the sample variance of each regressor. The second one is based on the 

Mahalanobis depth of the sample variances of regressors. We apply them to the mean group estimation 

of the two-way fixed effects model with potentially heterogeneous slope parameters and to the common 

correlated effects regression, and we derive limiting distribution of each estimator. As an empirical 

illustration, we consider the effect of police on property crime rates using the U.S. state-level panel data. 
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1 Introduction  

Though it is popular in practice to impose homogeneity in panel data regression, the homogeneity 

restriction is often rejected (e.g., Baltagi, Bresson, and Pirotte, 2008). Even under the presence 

of heterogeneous slope coefficients, pooling the observations is widely believed to be innocuous. 

As Baltagi and Griffin (1997) and Woodridge (2005) point out, the standard fixed-effects (FE) 

estimators consistently estimate the mean of the heterogeneous slope coefficients. One may use 

the group-heterogeneity approach by Bonhomme and Manresa (2015) or Su, Shi, and Phillips 

(2016), which assumes homogenous slope coefficients within a group but heterogeneous across 

groups. However, with a large cross section size, it is still unknown whether the true slope 

coefficients are homogenous even within each group. 

Meanwhile, under the assumption of heterogeneous panels, Pesaran and Smith (1995) and 

Pesaran, Shin, and Smith (1999) proposed the mean group (MG) estimator, which is the cross-

sectional average of individual-specific time series least squares (LS) estimators. In particular, 

the MG estimator is the most preferable when estimating the long-run effects in dynamic panel 

models (e.g., Pesaran, Smith, and Im, 1996). Maddala, Trost, Li and Joutz (1997) considered 

a model average and shrinkage estimator by combining the individual time series LS estimators 

as well as the FE estimator. In practice, however, the pooled or two-way FE estimator has been 

more popular than the MG estimator, mostly because the MG estimator is known to be less 

efficient. Baltagi, Griffin, and Xiong (2000) empirically demonstrate that the pooling method 

leads to more accurate forecasts than the MG estimator. 

The purpose of this paper is to revisit a salient feature of the MG estimator. We emphasize 

the importance of investigating the individual time series estimators in details when pooling 

or averaging. In particular, we develop the trimmed MG estimator, where we trim individual 

observations whose time series sample variances of regressors are either extremely large or small. 

The trimming instruments are not the estimates of the individual slope coefficients themselves, 

but the time series variances of the regressors. Therefore, it naturally reflects the standard error 

of each time series estimator or the interval estimates. Once we have the sample proportion of 

trimming, the limiting distribution of the trimmed MG estimator can be obtained in a similar 

way to the standard MG estimator, provided the (potentially) heterogeneous slope coefficients 

are conditionally homoskedastic. 

To obtain more robust estimation results, researchers often drop cross-sectional units in a 

panel data set, whose time series variances are unusually large compared to the rest of the units. 

Trimming individual observations with a large sample variance of the regressor (say right-tail 

trim) in our case can be understood in a similar vein. However, dropping such observations will 

result in efficiency loss of the MG or any pooled estimators. Trimming individual observations 

with a small sample variance of the regressor (say left-tail trim) is basically the same as dropping 

the individual time series estimators whose standard errors are large. Therefore, the left-tail 
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trim will offset efficiency loss from the right-tail trim and result in a robust MG estimator with 

little efficiency loss in finite samples. 

In Section 2, we motivate the trimmed MG estimation by comparing popular panel estimators 

in the context of the weighted average (or weighted MG) estimator. We also discuss trimming 

methods in practice and provide some economic examples. Section 3 formally develops the 

trimmed MG estimators in the two-way FE model and the common correlated effects (CCE) 

regression and studies their asymptotic properties. Section 4 reports the results of Monte Carlo 

studies and Section 5 presents an empirical illustration of the effect of police on property crime 

rates across 48 contiguous states of the U.S. Section 6 concludes. 

2 Motivation 

2.1 Weighted mean group estimation 

We consider a panel regression model given by 

  =  +  + 0  +  (1) 

for  = 1       and  = 1      , where  ‘’ stands for the th individual and ‘’ stand for the th 

time.  is an  × 1 vector of exogenous regressors of interest.  and  are individual and 

time fixed effects, respectively. Instead of a time effect , a factor augmented term 0  can 

be considered. The regression coefficient  can be either homogeneous or heterogenous across 

, which is unknown. 

We are interested in estimating the mean of the individual specific slope  coefficients,  = 

E[]. When   is heterogeneous, we suppose that 

 =  +  with | ∼ (0Ω) (2) 

for some × matrix 0  Ω ∞, where   = (1      )
0. When   is indeed homogeneous, 

 corresponds to the true slope parameter value. We estimate  in the form of a weighted 

average (or weighted mean-group) estimator given by 

X
b =  b  (3) 

=1 P
for some non-negative weights {} such that 

=1  = 1. The w eight   can be either a scalar 
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or a matrix. b 
 is typically the least squares estimator of  for each : 

 
 X 

 b 1
 =  Σb 1 


−
 ̇ 

 ̇,


=1 

where we denote the sample variance of the regressor in (1) as 

X1 
Σb =  ̇ ̇ 0

   
=1 

with 
1X X1 

̇ = ̃ − ̃ and ̃ =  − .
  

=1 =1 

Popular examples include the mean group (MG) estimator  b  by Pesaran and Smith (1995) 

and Pesaran, Shin, and Smith (1999), which uses equal (scalar) weights as 

1 
  = (5)

 

in (3). The Bayes (SB) estimator b 
 by Swamy (1970) and Smith (1973) is also a weighted 

average estimator with as the inverse of a consistent estimator of b  () in the context of 

random effect models. In particular, when ∼ N 2   (0  ) for each , we d efine the weights 

as ⎛ ⎞−1 X n o 1 n o− 1 
 ⎝ b2 b−1     

−
 = Σ  + Ωb ⎠ b2 Σb−1   + Ωb (6)

=1 

in (3) using some consistent estimators b2 and Ωb 
 in (2). These two estimators are known 

 
to be asymptotically equivalent under   → ∞ when 

√
 → 0 (e.g., Hsiao, Pesaran, and 

Tahmiscioglu, 1999). 

When slope homogeneity tests or panel poolability tests (e.g., Pesaran and Yamagata, 2008) 

support  =  for all , the  two-way  fixed-effects (FE) estimator 

Ã !X  
1 X − X Xb   = ̇ ̇ 0 ̇ ̇ 

=1 =1 =1 =1 

is often used, which is consistent and the most efficient under the spherical error variance struc-

ture. In fact, it can be also expressed in the form of the average estimator in (3) with the 

 (4)  
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Figure 1: Comparison of the weights 

weights ⎛ ⎞−1 X⎝ b  b   = Σ ⎠ Σ, 
=1 

which is proportional to the inverse of (b 
) for each  under homogeneity (e.g., Sul, 2016). 

In this case, this weight is optimal in the sense that b 
  is the best linear unbiased estimator 

of . 

(7)  

2.2 Trimming based on the variances of regressors 

Comparing the weights (5), (6), and (7), we can see that b 
  puts equal weights for all b 

; 

but both b 
 and b 

  put unequal weights over b 
, where the weights are proportional to Σb, 

the sample variance of   of each . Note that these weights are basically proportional to the 

inverse of each individual variance of b 
, and hence b 

 and b 
  are to be more  efficient than b See Figure 1 for comparison, which depicts the weights of MG and SB (or FE) estimators . bas functions of the sample variance of , Σ, when   is a scalar. 

Because of its lower efficiency, the MG estimator b 
  is not popular in practice. However, 

since b 
  does not use the weights based on Σb ,  it is more robust toward extreme  values  or  

behaviors of . In  contrast,  when  Σb  is extremely large for some individual  because of some 

outlying observations in , both  b 
 and b 

  are heavily influenced by such an individual. In 

some extreme cases, it can even result in inconsistency of b 
 and b 

 . 

In fact, it is a common practice in panel data analysis that th observations with large 

time series variation of  are considered as outlying individuals and dropped to get more 
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Figure 2: Weight of the trimmed MG estimator 

robust estimators of the key structural parameters. For example, consider an uncovered interest 

parity regression, where the dependent variable is a depreciation rate (or a growth rate of 

a foreign exchange rate) and an independent variable is the difference between domestic and 

foreign interest rates. In this context, empirical researchers often exclude foreign countries that 

experienced currency or financial crises, and their interest or exchange rates have large time 

series fluctuations (e.g., a sudden increase during the crisis). Furthermore, a sudden change 

in an independent variable during a particular time period could make the time series more 

persistent, which even leads to nonstationarity. Unless all other variables are nonstationary and 

they are cointegrated, it can yield spurious regression results. 

Based on such observations, we propose a simple robust estimator, the trimmed mean group 

(TMG) estimator, where we still use the equal scalar weights but drop individuals whose Σb  
are extremely large. In particular, we take an equally weighted average over b 

’s in (3), but bthe weights take a hard-threshold trimming based on the sample variance of  of each , Σ. 

However, such an estimator could suffer from big efficiency loss compared with the standard 

MG, SB, or FE estimators, though it achieves higher robustness. As a way of improving the 

efficiency, we also drop th observations whose sample variances of  are extremely small (i.e., b’s with large standard errors). The resulting weighting scheme of the TMG that we develop 

in this paper is depicted in Figure 2, as a function of Σb. 
In sum, we consider the double-sided trimming scheme that drops th observations whose 

sample variances of  are either extremely large or small. Trimming individual observations 

with large sample variances of  (say, right-tail trim) will give robustness toward some outlying 
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individuals. On the other hand, trimming individual observations with small sample variances 

of  (say, left-tail trim) will improve efficiency by offsetting some efficiency loss from dropping 

individual observations with large sample variances of  in the right-tail trim, which is in the 

same (but more extreme) spirit as the SB or FE estimators as we illustrated in Figure 2. 

Remark Instead of the hard-threshold trimming, we could consider a trapezoid type weight. 

We could also apply our trimming scheme on the SB estimator instead of the MG estimator, 

where the “SB” line in Figure 2 is forced to be zero when it is near the origin or extremely 

large. For the latter case, however, the weights are no longer scalar values and we need to 

iterate estimation to obtain such (infeasible) GLS weights, whose finite sample property does 

not necessarily dominate its OLS counterpart—TMG estimator we propose. We hence focus on 

the equal (scalar) weight with trimming in this paper. 

2.3 Examples 

We present some empirical evidence where the trimming idea could improve the results. The 

first example shows the case when large sample variance of the regressor matters. Lee and Sul 

(2019) consider the following relative Purchasing Power Parity (PPP) regression: 

 ∆ =  + 0 +   ( − 
∗
 ) +  , 

where  and  are the foreign exchange rate and the inflation rate of the th foreign country. 

∗ 
 stands for the domestic (U.S. in this example) inflation rate. As Greenaway-McGrevy, Mark, 

Sul, and Wu (2018) showed, the relative PPP in the idiosyncratic level does not hold even 

in the short run. In other words, the idiosyncratic inflation differential is independent of the 

idiosyncratic change of the foreign exchange rate. 

Figure 3 plots 27 point estimates b 
 ( = 27) in Lee and Sul (2019) against the variances of 

inflation rates.1 The total number of time series sample is  = 202 (from 1999.M2 to 2015.M11). 

The point estimate of  of Turkey is near unity, but the inflation differential between Turkey 

and the U.S. is quite huge. Due to several currency crises in Turkey, the inflation rate in Turkey 

has widely fluctuated, which results in a large time series variance of the inflation differential. 

Usually the relative PPP has been investigated in countries with stable inflation, and hence 

researchers may want to exclude Turkey in their sample. In fact, as Lee and Sul (2019) point 

out, the FE estimator b 
  assigns a huge weight on the point estimate of Turkey, which leads 

b  to be biased. However, if we exclude individuals whose time series variances are extremely 

large, we can get a more robust FE estimator. 

1For the factor-augmented regression, we use the method by Greenaway-McGrevy, Han, and Sul (2012). 
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Figure 3: PPP estimates versus variances of relative inflation 

The second example shows the opposite case when a small sample variance of the regres-

sor matters. We estimate an individual marginal propensity to consume (MPC) across 1,875 

households ( = 1875) in South Korea during the period from 1999 to 2003 ( = 5). The data 

source is from the Korea Labor Income Panel Study (KLIPS). To estimate the MPC, we run 

the following two-way FE regression with potentially heterogeneous slope parameters: 

∆ ln  =  +  + ∆ ln  + , 

where  and  are the annual expenditure and wage income of the th household at year . 

Theoretically, the MPC is supposed to be between zero and unity. 

Figure 4 shows the MPC estimates b 
 against the sample variance of the regressor ∆ ln . 

Figure 4-A plots all the estimates. Evidently the MPC estimates widely fluctuate, especially 

when the time series variances of ∆ ln  are small. Figure 4-B magnifies the area of Figure 

4-A where the time series variances of ∆ ln  are near zero. It clearly shows that the point 

estimates of the MPC becomes unreasonably larger as the variances of the regressor get smaller. 

In fact, many estimates are larger than unity and even negative. If we exclude b 
 of which the 

variances of the regressor are near zero, we can obtain a more efficient estimator of the mean of 

individual MPC, say [ ] in this example. E 

2.4 Trimming weights 

We can construct the trimming weights based on the sample covariance of the regressors, Σb, in  

practice. When  is univariate (i.e.,  = 1), we can simply sort Σb  and decide the trimming 
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4-A: Entire estimates 4-B: Subset of estimates 

Figure 4: MPC estimates versus variances of income growth 

point. When  is multivariate (i.e.,  ≥ 2), however, such ordering is not straightforward. In 

such cases, we can consider either a marginal trimming scheme or a joint (or balanced) trimming 

scheme. 

For the marginal trimming approach, we pick one regressor and determine trimmed cross-

sectional units based on the order statistics of the sample variance of the regressor picked. In 

this case, a researcher chooses the key regressor as a trimming instrument or the one with the 

largest variation. We can also apply this marginal trimming idea on each regressor  = 1      

and run the regression  times using each trimmed sample in turn. From each th regression, 

we only report the estimates of the th element of the TMG estimator that corresponds to the 

slope coefficient of the th regressor. 

The joint trimming approach can be done using the intersection of trimmed sets from the 

aforementioned marginal trimming for all  = 1    . More precisely, we let b 2 be the sample 

variance of the th element of the agent ’s regressors for  = 1    . We conduct marginal 

trimming using b2 
 for each  and obtain the joint trimmed set from the intersection of all the 

trimmed units over  = 1    . 

Alternatively, we can use the data depth of Σb (e.g., Lee and Sul, 2019), based on which we 

conduct trimming using the depth-induced statistic. For instance, we form a contour plot over 

the -dimensional space based on the sample Mahalanobis depth of b = (b2 2
2 
     b2 

1 b ) 

defined as b 0Λb−1 −1 () = [1 + ( − b) ( − b)] , 

where b and Λb are the sample mean and sample variance of b. By construction, b () ∈ [0 1] 

and it is close to zero if  = b is either extremely small or large (i.e., for outlying b from 

the center of its distribution). Using this data depth, we can construct multivariate quantile 
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contours and determine the trimming contour line for any dimension of . In  this  case,  we  

define the TMG estimator where we trim th observations with b(b)   for some threshold 

0    1. Note that this depth-based approach automatically trims outliers on both sides, 

possibly asymmetrically. In addition, the Mahalanobis depth is affine invariant, and hence the 

TMG estimator based on the depth-based weights has the invariance property to non-singular 

linear transformations like the typical least squares estimator. 

Though we focus on the diagonal elements of Σb  in the trimming methods, there are cases 

when we need to consider the off-diagonal terms of Σb , such as the regressors of the individual 

 impose near multicollinearity (including the cases with nearly time-invariant regressors in the 

FE model) or cross-product terms are sources of outlyingness. In such cases, we can also consider 

the determinant of  or particular covariances when ranking the individuals, in addition to the 

variance. 

3 Trimmed Mean Group Estimation 

3.1 Trimmed MG estimator for two-way FE models 

The trimming scheme described in the previous section drops the entire history of the th 

individuals when their Σb  are either extremely large or small. Therefore, in the one-way fixed-

effect (FE) model,   =  +0   +, subtracting individual mean (i.e., within transformation) 

for each  is not affected from the trimming step. Hence, it does not matter whether we trim 

before or after the within transformation in this case. 

In contrast, the TMG estimator for the two-way FE regression in (1) 

 =  +   + 0 +  

needs caution. This is because when we take the Wallace-Hussain transformation (Wallace P
and Hussain, 1969) as in (4), subtracting (1) =1  should be modified by the trimming 

step because we will drop some  observations. In particular, we subtract the trimmed mean P 
(1 ) G  ∈G                    

, where G is the set of individuals that are not trimmed in the sample and G
is the cardinality of G. We d efine the Wallace-Hussain transformed  as 

X 1 
̇  = ̃ − ̃,

G 
∈G 

P
where ̃ = − −1 

=1 , instead of (4). So, in practice, we trim the individual observations 

first and then take the Wallace-Hussain transformation. 
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Whether it is the one-way or two-way FE model, once we conduct the proper demeaning 

using the trimmed sample as explained above, we obtain the individual trimmed least squares 
 

estimator  b 
 by regressing ˙ on ̇ . Then, we define the TMG estimator as 

 X X  b    1  1     = b
  = b with 

  = 1    ,
G 

 

{ ∈ G }
G∈G =1 

P
where 1 {·} is the binary indicator. Recall that   = =1 1 { ∈ G} and G is the set of G
individuals that are not trimmed in the sample. 

It is important to note that, though the Wallace-Hussain transformation in (4) eliminates 

fixed effects  and  in the heterogeneous two-way FE regression (1), it does not yields the 

desired regression equation given as 

̇   
 = ̇ 0   + ˙ . 

Instead, it results in a transformed regression 

1 X
    ˙ = ̃   
 

0
  − ̃0 + ̇  = ̇

0
  + ̇ ,G 

∈G 

where 
1 X ˜  ˜ ̇  =  + ˙  with  = ̃0( −  ).G 

∈G 

 
Because of ̃ term, therefore, the least squares estimator by  b 

  regressing ̇  on ˙  for each  

does not necessarily yield a consistent estimator of . In other words, unlike the homogeneous 
 

two-way FE model, b 
 −  = ( −12) no longer holds in this case. Note that this result 

is not because of the trimming, and the same issue applies to the standard MG estimator for 

the heterogeneous two-way FE regression. However, it can be readily verified that the MG 

estimator is still consistent and achieves the asymptotic normality. The same results extend to 

the case of TMG estimator in (8) as summarized in the following theorem. It, hence, implies 

that whether the true model is homogeneous or heterogeneous, we can use the Wallace-Hussain 

transformation for the (trimmed) MG estimation of two-way FE regression models.2 

Theorem 1 Suppose the random coefficient  satisfies (2). Also let G → ∞ as  → ∞  

satisfying  = lim    and  ∈ [1 ∞). Under the same condition in Theorem 1 of Pesaran →∞ G

2A similar result was also found in Lee, Mukherjee, and Ullah (2019) in the context of a partially linear 
two-way FE regression, where the linearized form can be seen as a heterogeneous panel model. 

 (8)  

(9)  

 (10)  
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√ 

(2006),3 we have (b 
  − )→ N (0 ) as   →∞, where    = Ω. 

P
Proof of Theorem 1  Note that  −1    P P =1 ̇̇ 

0
  Σ  0 for each  as  . Since  b  −  −1   

→
 P

→ ∞
  = ( ̇    
  =1 ̇  0 1

 )
− ( −1 ̇  +  −1=1   =1 ̇  ̇ ), (9) and (10) yields 

 1 X X√ 1  
  

 (b bG   − ) =  √ ( ) +  ( 
G  ) (11) 




− √ −
G∈G ∈G Ã ! 

 X 
1  


1 1 X 1 X

= √ ( −  ) + √ (Σ )
− ̇̇ 

   G G 
∈G Ã ∈G ! =1

 
 

1 X X 1 
+√ )−1 (Σ 

 ̇  + (1) 
G  

∈G =1 

≡ 1 +2 +3 + (1), 

where 1 → N (0 Ω) as   →∞ by the CLT, and 2 = ( −12) similarly to Theorem 

1 of Pesaran (2006) since  is exogenous. For 3, we can verify that 

⎛ ⎞⎛ ⎞ 
 

1 XX 1 XX 1 X 1 X ¡ ¢ 
√ ̇ = −   ⎝ ⎝√  ⎠  0 ̃ ̃ ̃  −  ⎠ 

       G G G G
∈G =1 ∈G =1 ∈G ∈GÃ ! 


1 X 1 X ¡ ¢ 

= √ ̃̃ 
0 

 −  ,
G  

∈G =1 

P P 
where ̃ = −1 ̃ and  = −1  . We  thus  write  G ∈G G ∈G 

Ã !X X1 1 0 ¡ ¢−13 = √ (Σ
 ) ̃̃  −  ,

G  
∈G =1 

which satisfies E[3] = 0 since E[−|] = 0. Moreover,  E[(−)(−)0|] = (1−(1))Ω, 
which we denote Ω. Apparently, Ω → Ω  ∞ as  →∞. Under cross-sectional independence, 

3 In this two-way FE case, in particular, we set  =  = Γ = 1 in the multifactor error structure in (13) and 
(14). Hence, E[|   ] = 0 for all  and ; and {    } are cross-sectionally independent, have 
bounded fourth moments, and are stationary and mixing over time with a proper mixing condition yielding the 
CLT. In addition, −1 

̇  
=1 ̇



0 → Σ

 
  0 for each  as  → ∞. However, the cross-sectional independence 

assumption is to simplify the proof. We can relax the cross-sectional independence assumption of  by imposing 
a common factor structure l ike (14) as in the f ollowing section.  
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we have " # X  
1 XX h   i

E 0   1 1  ¡ ¢ ¡ ¢
[3

0  1
3 ] = (   Σ )

− E ̃̃
0
E  −      −  | ̃̃2

0
  (Σ )

−
 G 

∈G =1 " =1 # X  X  X ³ ´³  ´ 1 1 1  0 
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1 2 
 E  ̃

0 1
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2

  Ã =1 ! 
1 1 

=  + 
 2 

G 

 P
for E 12   12  [̃1̃

0
1Ω

1
 ] =  −  E[̃01 ̃1]Ω = (1 ). Therefore, 3 = ( −12 +  ),G ∈G 

−1G p G
and the desired result follows as   →∞ by pre-multiplying G to (11). ¤ 

Since   1,   cannot be smaller than the asymptotic variance of the standard MG ≥
estimator without trimming, which is Ω. Note that when the trimmed sample size is fixed (i.e., 

it does not depend on ),  is simply 1 and   reaches to the asymptotic variance of the 

standard MG estimator. It is worthy to note that, in the limit, the efficiency loss of the TMG 

estimator does not depend on the specific trimming scheme, whether to trim individual samples 

with extremely large or small Σb. It only depends on the reduction of the sample size from 

trimming. This is because we consider exogenous trimming; the efficiency gain from trimming 

the individual samples with small Σb should be understood as the finite sample property. 
 

The asymptotic variance can be consistently estimated by the sample covariance of b as 

 X  b  = 
2 (b 

 − b 
)(

b 
 − b 

)
0 (12) 

G ∈G 

using the same argument in Section 8.2.2 of Pesaran, Smith and Im (1996). 
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3.2 Trimmed CCEMG estimator 

The two-way FE estimator in the previous section becomes inconsistent when a factor augmented 

term is included in the regression model. The pooled common correlated effects (CCE) estima-

tor or the CCE mean-group (CCEMG) estimator by Pesaran (2006) and Chudik and Pesaran 

(2015) can be employed in this case. In particular, we consider a panel regression model with a 

multifactor error structure given by 

 = 0   
 + 0 + 

0
  + ,

 = 0  + Γ
0 
 +  (14) 

for  = 1       and  = 1      , where   is the vector of observed factors and  is the vector 

of latent factors. 

The original CCE estimator obtains the individual slope parameter estimates from the least 

squares of 
0 0   =  +   + 0 +  P

for each , where   = =1  with    = ( 
0
)
0 for some weights {} satisfying Assumption 

5 of Pesaran (2006). For our case, however,  is to be affected by the trimming step as in the two-

way FE regression; it would not even be a consistent estimator for the latent factor particularly 

when  includes extreme outliers. In this case, we let 

X  
  =  , 

 (13)  

  

=1 

where  
 now imposes  the same trimming scheme as   

 in (8) but still satisfies Assumption 5 of 
 

Pesaran (2006). The trimmed CCE estimator b 
 for individual slope parameter  is then 

obtained from the least squares of 

0    =   + 
0 + 0 + , 

which uses  instead of . From Theorem 1 of Pesaran (2006), we still have 

³ ´ b  −  =  −12   (15) 

 
for each  = 1     , provided

√
   → 0 as   → ∞. We d efine the trimmed CCE mean-
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group (TCCEMG) estimator as 

X  1 X b    
 = b = 

  
b
,G 

∈G =1 

where  
 is  the same trimming weight as in (8).  Similar  to T heorem 1, We derive the l imiting  

distribution of  b as follows. 

Theorem 2 Suppose the random coefficient  satisfies (2). Also let G → ∞ as   → ∞  

satisfying  = lim    and  ∈ [1 ∞). Under the same condition in Theorem 1 of Pesaran →∞ G
 

(2006), we have 
√ 

  (b − )→ N (0 Ω) as   →∞ and 
√
  → 0. 

Proof of Theorem 2  Note that 

√ X 
1  1 X 

(b  b 
 − ) =  √ ( )( − ) +  √ (

 ) ( )
  

=1 =1 

−
µ ¶ X  1 1

=  √ + 


√ (
 ) ( − )

 
=1 

from Theorem 1 of Pesaran (2006). The result follows immediately since  satisfies (2), where P P only depends on , and  (1) (
 )2 = (1) (1 { ∈ G} G)2 = G →  as =1 =1 

 →∞. ¤ 

We can readily estimate the asymptotic variance of b 
  in Theorem 2 as the sample 

 
covariance of b 

 as in (12): 

X   

2 (b 
 − b 

)(
b 
 − b 

)
0 . 

G ∈G 

 
We now denote an “induced” order statistic {b 

[]}, where  [] are reordered based on the 

given trimming scheme. As a special case, this induced order statistic could correspond to the 
  

order statistic of {b 
[]} itself (e.g., the ranking of b 

 is the same as the ranking of Σb  
in our case). In such cases, we can define the TCCEMG estimator whose trimming scheme is 

 
directly from the order statistic of {b 

[]}. 
For instance, for the scalar  case ( = 1), we can consider the TCCEMG estimator in the 
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form of the sample trimmed mean defined as 

bXc  1 
b 
∗

= b  b c − b c [],
 

=bc+1 

where 0      1 are some fixed numbers denoting the lower and upper trimmed pro-

portions, and bc denotes the largest integer that does not exceed the constant . Similarly as 

Stigler (1973), we let 

 = sup { :  () ≤ } and  = inf { :  () ≥ } , 

where  (·) is the cdf of . Then, we can obtain the limiting distribution of b 
 as in the 

following theorem. We let  (·) be the cdf of trimmed , which is defined as 

⎧ ⎪⎨  0 if   

 () =   ()(⎪  ⎩ 
− ) if  ≤  ≤ 

1 if   , 

(16)  

and Z ∞ Z ∞ 

 =   (), 2 = ( −  )
2 (). 

−∞ −∞ 

Theorem 3 Suppose the random coefficient  satisfies (2) with continuous , and t he t rimming  

scheme is based on the order statistic of {}. When   ∈ R,  under t he same condition  in  
  

Theorem 1 of Pesaran (2006) and Theorem of Stigler (1973), we have 
√
(b ∗

 −  )→ 
 

N (0 (−)−2 ) as   →∞ and 
√

 2   → 0, where   = ( )
2

 −  + (1− ) ( −  ) + 

 (1− ) ( − 2  ) − 2 (1− ) ( −  ) ( −  ). 

Proof of Theorem 3  Note that 

√ √ 
bXb 

c∗  1  ( b 
 −  ) =  p × p (  

       
[] −  )b c− b c b c− b c []

=bc+1 

√ bXc ³ ´  
+ [] − b 

c − bc 
=bc+1 µ ¶ √ bXc ³ ´ 1  

=  √ + 
 

[] −  
 bc − bc 

=bc+1 
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from Theorem 1 of Pesaran (2006). The result follows from the Theorem of Stigler (1973) with 

 =  = 0 in their expression. ¤ 

When  is symmetrically distributed about the origin and  = 1−  with 12    1, 

we have  =  = 0. Furthermore, in this case, the asymptotic variance can be simplified as 

 = (2 − 1) −12 . 


Given ( ), since  b 
 is consistent to  with large  as in (15), the values  and 

can be obtained as the bcth and the bcth elements in the ordered statistic {b 
[]}, 

respectively. Therefore, we can estimate the asymptotic variance in Theorem 3 as 

1 
bXc ³ ´ ∗ 2 

b = b b 
− [] 


−  

  
=bc+1 

with b ∗ 
  given in (16). 

4 Monte Carlo Simulation  

We consider two data generating processes (DGPs). The first DGP is given by 

 = 11 + 22 + ,

where  =  1 +  with  = 1 2 and −  =  +  . The innovation  are −1   

generated from N (0 2 
 ) where 

 2 ∼ 2 
 1 for  = 1 2. Meanwhile, we generate  from the

standard normal. We consider two values of  = 0 08, but only report the case with  = 0  

here.4 There is little difference between the two cases except for the absolute magnitude of the 

mean square error (MSE). The size of tests and relative MSEs are almost identical. 

The second DGP includes a common factor, which is given as 

 =  + 11 + 22 +  (18) 

and 
 1 = 1 + 1 and  = 2 2 + 2, 

where 2 = 1 +  with both  and 1 being generated from  [1 2]. In addition,  
 = 

 

U
 1 +  for  = 1 2 and  =  1 + , where  , , and   are same as in the − −

first DGP above.  =  1 + , where   is generated from the standard normal. For the 

 (17)  

−

4When  = 08 we discard the first 100 observations to avoid the effect of the initial condition. 

16 



homogeneous  case, we set  = 1  for all  and  = 1 2. Meanwhile, for the heterogeneous  
case, we set  ∼ N (1 1) for each  = 1 2. 

For both DGPs, we also consider the case with outliers by letting the variance of each 

regressor as 2 = 25  and the slope parameter values as  = 5  for  =  − 1   for both  

 = 1 2, implying that the last two cross-sectional units are outliers. We consider sample sizes 

of  = 50 100 200 500 and  = 5 10 25 50 100. All simulation results are based on 5000 

iterations. Tables are collected at the end of this paper. 

Table 1 reports the MSE values for four estimators in the first DGP in (17) under the 

absence of any outliers: the two-way FE estimator; the MG estimator; the TMG estimator 

(DTMG) with a joint trimming method based on the Mahalanobis depth of the sample variance 

of (1 2)0 , and the TMG estimator (XTMG) with a marginal trimming method based on 

individually trimmed sets using each sample variance of  for  = 1 2. The reported MSE 

values in Table 1 are the averages over those of b 
1 and b 

2, and they are all multiplied by 100. 

We trim 20% of : for the depth-based trimming, it drops the 20% of the cross-section samples 

with the smallest depth; for the marginal trimming, it drops 10% of the cross-section samples 

from the bottom and the top respectively. Since the DGP does not have outliers in this case, 

we want to see whether or not the 20% of trimming leads to noticeable efficiency loss in finite 

samples. The first four columns show the case of homogenous coefficients, and the next four 

columns report the case of heterogeneous coefficients. Evidently, for all cases of  and   the 

FE estimator produces the minimum MSE since we purposely design the DGP in this way.5 As 

there are no outliers, the MSE of the DTMG estimator is generally larger than that of the MG 

estimator for all cases. The variances of all −1 are generated from the 2 distribution so 1 

that only individuals in the right side of the distribution are excluded from the Mahalanobis-

depth-based trimming, which leads to inefficient estimation under the absence of any outliers. 

Meanwhile, the MSE of the XTMG is smaller than that of the MG estimator since the XTMG 

trims out individuals both in left and right tails. 

Table 2 shows the  average size of the  -test of each estimator in the first DGP in (17). For 

each  = 1 2, we construct the -ratio for the null hypothesis of 0 : E[] = 1  and take the 

average of the rejection rates over  = 1 2. The nominal size is 5%. With a small  like  = 50, 

the FE estimator shows a mild upward size distortion in the case of homogenous coefficients. As 

 increases, the rejection frequencies with the FE estimator approaches the nominal size very 

quickly. Meanwhile, with heterogeneous coefficients, the rejection rate with the FE estimator is 

slightly higher than that with homogenous coefficients. However, the difference between the two 

reduces quickly as  increases. The MG estimator suffers little size distortion except for small 

 Nonetheless, all trimmed estimators perform better compared to the MG estimator. 

Table 3 provides the MSE of each estimator in the first DGP in (17) under the presence of two 

5 If we set 2 
 = 1 for all  and  but generate  with widely heterogeneous variances, then the FE estimator 

is no longer efficient. 
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outliers on the right tail of the distribution as described above. Since only the last two individuals 

are outliers, the FE estimator becomes biased in finite . But  as   → ∞, the bias approaches 
zero. More importantly, the FE estimator becomes more biased than the MG estimator since the 

FE estimator assigns higher weights on the last two individuals as 2 = 2 
 = 25. On  the  −1 

other hand, the DTMG and XTMG estimators exclude outlying individuals whose regressors’ 

sample variances are relatively larger than the rest of the individuals in this case. 

Table 4 reports the size of the -test of each estimator in the first DGP in (17) under the 

presence of two outliers. Evidently the FE and MG estimators suffer from serious size distortion 

when  is small. As  increases, however, the influence of the outliers becomes localized, so that 

the sizes of both estimators become milder. Meanwhile, the sizes of both trimmed estimators 

DTMG and XTMG are about the nominal size. Only when  is small, both trimmed estimators 

show mild size distortions, but as  increases, these size distortions disappear very quickly. 

Tables 5 and 6 show the MSEs and sizes of the -test of the four CCE estimators in the second 

DGP in (18). The first two estimators are the pooled CCE (pool) and CCEMG (MG), which do 

not trim out any individuals. The last two estimators are trimmed CCEMG estimators, whose 

trimming schemes are the same as those of DTMG and XTMG, respectively. The overall results 

in Tables 5 and 6 are quite similar to those in Tables 3 and 4. 

5 Empirical Illustration: Effect of Police on Crime 

As an empirical illustration, we consider the effect of police on crime using the following two-way 

FE regression: 

∆ ln  =  +  + 1∆ ln  1 +   − 2∆ ln −1 + 3∆ ln −1 + , ( 19)

where  is the number of reported property crimes per capita,  is the number of police 

officers,  is the unemployment rate, and  is the percentage of black population in state  and 

year . This is similar to Levitt (1997) but we exclude other control variables (i.e., public welfare 

spending, percentage of female-headed households, and percentage of ages between 15 and 24 

years old) because of the limited data availability. We include the pre-determined ∆ ln −1 to 

minimize any simultaneity. We also take first-difference for all variables because they are either 

(1) or near (1) processes but do not impose cointegrating relations. 

The annual property crimes and the number of police officers across 48 contiguous states from 

years 1970 to 2013 are collected from the FBI Uniform Crime Reports. Unemployment r ates  

and the percentage of black population are collected from the Bureau of Economic Analysis and 

the Census Bureau, respectively. This regression was also used by Han, Kwak and Sul (2019) for 

violent crime; they examine whether  or 0  should be in (19) and report that the two-way FE 
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estimation is good enough. Sul (2019) shows that the property crime rates across 48 contiguous 

U.S. states have a single common factor with a homogeneous factor loading, hence including the 

time effect  is sufficient. 1 is the main interest and it describes the average marginal effect 

from idiosyncratic increases in the sworn officers on idiosyncratic growth rates of the property 

crime rates, after controlling for the common dynamics . 

Table 7 reports the estimation results of the two-way FE estimation and the CCE estima-

tion. The numbers in the parentheses are -ratios, which are constructed using a panel robust 

covariance estimator. In the first two columns, the FE estimate of 1 is positive though not 

significantly different from zero. Meanwhile, the property crime rates are decreasing as unem-

ployment rates increase, but this relationship is not statistically significant. The percentage of 

black population influences negatively on the property crime rates and it is statistically signifi-

cant, which is a puzzling finding. Furthermore, the MG estimation gives very similar results. 

We next consider the TMG results based three different trimming ratios, 20%, 10% and 5%. 

As in the previous section, for the depth-based trimming, we drop 20%, 10%, and 5% of the 

cross-section samples with the smallest depth, respectively; for the marginal trimming, we drop 

10%, 5%, and 2.5% of the cross-section samples from each side of the tail of the distribution, 

respectively. We first test for the independence between (1 2 3) and the variance of 

the regressors using the test proposed by Sul (2016) and Campello, Galvao, and Juhl (2019),6 

which is asymptotically distributed as 23. The test statistic is 6978, which is smaller than the 

5% critical value of 781. Therefore, the time series variance of each regressor can be used as 

a trimming instrument in this illustration. All the TMG estimates of 1 are not significantly 

different from zero regardless of the trimming fractions, though they are negative, which implies 

that an exogenous increase in the number of officers does not reduce property crime rates if 

other things are equal. Similarly, all the TMG estimates of 2 are negative and  not significantly 

different from zero, even though the point estimates are slightly different depending on the choice 

of trimming instruments. Lastly, the TMG estimates of 3 are not significantly different from 

zero at the 5% level regardless of the trimming methods and threshold values. However, for the 

two-way FE case, we find that some TMG estimates are significantly different from zero at the 

10% level. This result shows a weak evidence of the effect of police on property crime and the 

TMG estimation method yields a robust finding even in a simple regression form. 

To better understand how the trimming affects the estimation results, we plot the relation 

between the variance of each regressor and its corresponding slope parameter estimates in Figures 

5,  6,  and 7.  They are  based on the  two-way FE estimation;  the empty  squared ones are  outliers  

based on the marginal variance of the regressor in XTMG estimation and the empty circled 

ones are outliers identified by the Mahalanobis depth of the variances in DTMG estimation, 

both based on 20% trimming. We find that Delaware and Wyoming show extremely large 

6Both test are for the null hypothesis of ( Σ) = 0. They require strict exogeneity, which holds in our 
example. 
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Table 7: Determinants of property crime 

Two-way FE Estimation 

FE MG DTMG XTMG 
20% 10% 5% 20% 10% 5% 

∆ ln −1 0.027 
(1.10) 

0.014 
(0.39) 

-0.018 
(-0.66) 

-0.003 
(-0.10) 

-0.006 
(-0.23) 

0.003 
(0.09) 

-0.001 
(-0.04) 

-0.006 
(-0.23) 

∆ ln −1 -0.017 
(-1.52) 

-0.014 
(-1.31) 

-0.005 
(-0.90) 

-0.001 
(-0.29) 

-0.004 
(-0.86) 

-0.003 
(-0.46) 

-0.002 
(-0.28) 

-0.002 
(-0.44) 

∆ ln −1 -0.489∗∗ 

(-3.96) 
-0.269∗ 

(-1.80) 
-0.167 
(-1.22) 

-0.190 
(-1.51) 

-0.202∗ 

(-1.65) 
-0.203 
(-1.45) 

-0.210∗ 

(-1.68) 
-0.192 
(-1.54) 

CCE Estimation 

pool MG DTMG XTMG 
20% 10% 5% 20% 10% 5% 

∆ ln −1 0.019 0.001 -0.011 -0.004 -0.001 -0.010 0.010 0.001 
(0.70) (0.02) (-0.25) (-0.10) (-0.03) (-0.23) (-0.24) (0.02) 

∆ ln −1 -0.015 -0.014 -0.012 -0.011 -0.018 -0.015 -0.010 -0.012 
(-1.21) (-1.22) (-1.04) (-1.04) (-1.64) (-1.18) (-0.86) (-1.06) 

∆ ln −1 
 -0.593∗∗ -0.315 -0.224 -0.269 -0.329 -0.269 -0.308 -0.294 

(-4.36) (-1.39) (-0.85) (-1.12) (-1.42) (-1.19) (-1.33) (-1.29) 

Note: Numbers in parentheses are t-ratio using a panel robust covariance estimator; * and ** are significant at 10% and 

5%, respectively. For Two-way FE, “FE” is the fixed effect, “MG” is the mean group, “DTMG” is the 

Mahalanobis-depth-based trimmed MG, and “XTMG” is the marginally trimmed MG estimators. For CCE, 

“pool” is the pooled CCE, “MG” is the CCEMG, “DTMG” is the Mahalanobis-depth-based trimmed CCEMG, 

and “XTMG” is the marginally trimmed CCEMG estimators. % for DTMG and XTMG stands for the trimming 

fraction. 

variances of ∆ ln −1 and ∆ ln −1, respectively; New Hampshire and Wyoming show very 

large variances for most of the cases and hence trimmed; California and Connecticut show very 

small variances for most of the cases and hence also trimmed. Note that the Mahalanobis 

depth considers variances of three regressors simultaneously, thus joint trimming based on the 

Mahalanobis depth can drop states whose marginal variances are not extreme. However, both 

joint and marginal trimmings overlap most of the cases, especially for extreme outliers. Note 

that trimming based on the variance of ∆ ln  appears to have the most impact on the E[] 

estimate. This is because most of the trimmed states’ point estimates under this scheme are 

negative as shown in Figure 7, whereas they are spread symmetrically about zero for the other 

cases as  shown  in  Figures 5 and 6.  
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Figure 5: Relationship between b 
1 and d (∆ ln −1) 

Figure 6: Relationship between b 
2 and d (∆ ln −1) 
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Figure 7: Relationship between b 
3 and d (∆ ln −1) 

6 Concluding Remarks  

This paper shows the importance of individual-specific time series estimation and a way to 

average them for robust panel data analysis. Since pooled estimators, including the two-way 

FE or pooled CCE, assign heavier weights on the individuals as the corresponding regressor’s 

variance gets larger, they are sensitive to outlying observations in the sample variance of the 

regressor. The MG estimators, without considering such outliers, may not be fully robust either. 

To obtain more robust estimators without much sacrifice of efficiency, this paper proposes a 

trimmed MG estimator, where we trim individual observations of which the sample variances of 

regressors are outlying (i.e., either extremely small or large). 

Though this paper focuses on static panel regression, the idea can be extended to dynamic 

regression. In addition, we suppose the trimming thresholds are given in this paper, but we 

could pick the thresholds by optimizing some objective function such as the higher-order MSE 

of the TMG estimator. Finally, an endogenous trimming directly based on the order statistic 

of b 
 could be more desirable though its asymptotic analysis is not straightforward. We leave 

these important topics for future challenges. 
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Table 1: MSE comparisons under the absence of any outliers 

n T 

1 = 1  & 2 = 1  for all  

FE MG DTMG XTMG 

1 ∼ N (1 1) & 2 ∼ N (1 1) 

FE MG DTMG XTMG 

50 5 0.560 15.75 26.77 15.65 9.195 20.14 29.34 19.10 

100 5 0.263 11.79 19.482 7.516 4.736 13.23 21.88 8.792 

200 5 0.132 8.252 14.502 3.465 2.378 9.562 15.811 4.274 

500 5 0.052 5.230 9.127 1.314 0.989 5.958 9.755 1.575 

50 10 0.246 2.440 4.050 2.495 7.197 5.475 7.482 5.426 

100 10 0.115 1.833 3.042 1.315 3.794 3.266 4.636 2.637 

200 10 0.058 1.322 2.216 0.653 1.919 2.038 2.971 1.333 

500 10 0.022 0.870 1.455 0.257 0.776 1.144 1.761 0.515 

50 25 0.090 0.709 1.109 0.694 6.479 3.249 4.017 3.332 

100 25 0.044 0.510 0.824 0.365 3.326 1.753 2.305 1.662 

200 25 0.021 0.381 0.599 0.195 1.634 0.994 1.330 0.827 

500 25 0.008 0.253 0.401 0.080 0.675 0.497 0.700 0.333 

50 50 0.042 0.309 0.486 0.307 6.136 2.731 3.315 2.933 

100 50 0.021 0.231 0.367 0.171 3.183 1.418 1.796 1.449 

200 50 0.010 0.174 0.275 0.089 1.550 0.722 0.959 0.715 

500 50 0.004 0.115 0.183 0.037 0.623 0.327 0.436 0.286 

50 100 0.022 0.153 0.232 0.152 5.778 2.548 3.103 2.808 

100 100 0.011 0.113 0.176 0.082 3.025 1.270 1.582 1.376 

200 100 0.005 0.081 0.130 0.042 1.494 0.627 0.799 0.668 

500 100 0.002 0.055 0.086 0.017 0.626 0.268 0.350 0.270 

Note: “FE” is the fixed effect, “MG” is the mean group, “DTMG” is the Mahalanobis-depth-based trimmed MG, 

and “XTMG” is the marginally trimmed MG estimators. 

25 



Table 2: Sizes of tests under the absence of any outliers 

(Nominal size: 5%) 

n T 

1 = 1  & 2 = 1  for all  

FE MG DTMG XTMG 

1 ∼ N (1 1) & 2 ∼ N (1 1) 

FE MG DTMG XTMG 

50 5 0.084 0.044 0.045 0.047 0.120 0.062 0.057 0.058 

100 5 0.066 0.044 0.041 0.047 0.084 0.056 0.052 0.057 

200 5 0.064 0.047 0.045 0.049 0.070 0.051 0.048 0.051 

500 5 0.054 0.043 0.046 0.047 0.058 0.050 0.048 0.050 

50 10 0.081 0.042 0.045 0.050 0.106 0.088 0.079 0.071 

100 10 0.064 0.045 0.045 0.052 0.077 0.071 0.061 0.057 

200 10 0.058 0.045 0.046 0.050 0.064 0.061 0.054 0.057 

500 10 0.052 0.045 0.047 0.047 0.056 0.055 0.050 0.051 

50 25 0.077 0.044 0.046 0.051 0.098 0.100 0.087 0.080 

100 25 0.062 0.043 0.042 0.048 0.077 0.082 0.077 0.066 

200 25 0.056 0.042 0.043 0.051 0.063 0.071 0.064 0.058 

500 25 0.051 0.045 0.045 0.051 0.060 0.060 0.059 0.054 

50 50 0.074 0.042 0.043 0.049 0.097 0.106 0.096 0.085 

100 50 0.061 0.041 0.039 0.048 0.079 0.087 0.083 0.064 

200 50 0.058 0.043 0.042 0.048 0.063 0.070 0.069 0.058 

500 50 0.055 0.048 0.046 0.052 0.055 0.061 0.056 0.053 

50 100 0.075 0.042 0.040 0.052 0.094 0.114 0.111 0.092 

100 100 0.068 0.041 0.042 0.048 0.077 0.094 0.089 0.070 

200 100 0.057 0.041 0.045 0.050 0.062 0.071 0.067 0.059 

500 100 0.054 0.045 0.046 0.047 0.058 0.066 0.060 0.056 

Note: “FE” is the fixed effect, “MG” is the mean group, “DTMG” is the Mahalanobis-depth-based trimmed MG, 

and “XTMG” is the marginally trimmed MG estimators. 
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Table 3: MSE comparisons under the presence of two outliers 

n T 

 = 1  for all  except  = − 1   

2 = 2 
−1  = 25; −1 =  = 5  

FE MG DTMG XTMG 

 ∼ N (1 1) except  = − 1   

2 = 2 = 25;  −1−1  =  = 5  

FE MG DTMG XTMG 

50 5 402.9 64.73 23.98 14.15 406.2 68.28 28.32 18.25 

100 5 191.2 21.87 17.71 9.161 194.2 23.93 20.85 8.513 

200 5 74.43 10.28 13.90 3.467 76.00 11.26 15.15 4.098 

500 5 16.48 5.465 8.865 1.313 17.25 6.063 9.366 1.544 

50 10 413.7 43.23 3.577 2.203 417.8 46.16 7.008 5.053 

100 10 189.0 10.58 2.806 1.263 191.3 12.03 4.420 2.526 

200 10 69.44 3.022 2.063 0.635 71.59 3.732 2.957 1.280 

500 10 15.24 1.078 1.421 0.260 15.79 1.301 1.690 0.507 

50 25 423.4 38.30 0.988 0.610 424.3 40.32 3.947 3.290 

100 25 186.7 8.334 0.762 0.358 189.7 9.324 2.211 1.629 

200 25 68.0 1.861 0.555 0.182 69.08 2.425 1.264 0.807 

500 25 14.04 0.403 0.384 0.077 14.38 0.614 0.667 0.319 

50 50 425.6 36.53 0.439 0.275 428.0 38.90 3.322 2.904 

100 50 187.2 7.744 0.330 0.163 188.5 8.837 1.714 1.417 

200 50 67.00 1.592 0.260 0.084 68.03 2.124 0.943 0.723 

500 50 13.66 0.256 0.172 0.035 14.26 0.479 0.441 0.281 

50 100 426.7 36.08 0.207 0.130 429.0 37.94 3.085 2.758 

100 100 187.3 7.535 0.163 0.077 188.0 8.389 1.523 1.320 

200 100 66.41 1.459 0.120 0.040 67.35 1.973 0.804 0.678 

500 100 13.60 0.196 0.084 0.017 14.10 0.406 0.346 0.267 

Note: “FE” is the fixed effect, “MG” is the mean group, “DTMG” is the Mahalanobis-depth-based trimmed MG, 

and “XTMG” is the marginally trimmed MG estimators. 
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Table 4: Sizes of tests under the presence of two outliers 

(Nominal size: 5%) 

n T 

 = 1  for all  except  = − 1   

2 = 2 
−1  = 25; −1 =  = 5  

FE MG DTMG XTMG 

 ∼ N (1 1) except  = − 1   

2 = 2 = 25;  −1−1  =  = 5  

FE MG DTMG XTMG 

50 5 0.709 0.434 0.045 0.051 0.689 0.395 0.059 0.060 

100 5 0.387 0.223 0.044 0.047 0.417 0.210 0.051 0.051 

200 5 0.091 0.107 0.048 0.047 0.166 0.107 0.046 0.052 

500 5 0.001 0.062 0.040 0.048 0.063 0.062 0.049 0.052 

50 10 0.867 0.778 0.043 0.053 0.817 0.669 0.078 0.071 

100 10 0.491 0.493 0.042 0.051 0.501 0.386 0.062 0.058 

200 10 0.053 0.214 0.044 0.050 0.174 0.182 0.059 0.054 

500 10 0.000 0.079 0.045 0.050 0.060 0.079 0.053 0.050 

50 25 0.979 0.970 0.045 0.050 0.919 0.830 0.095 0.081 

100 25 0.638 0.797 0.046 0.052 0.572 0.528 0.075 0.062 

200 25 0.015 0.416 0.046 0.046 0.180 0.256 0.064 0.058 

500 25 0.000 0.116 0.042 0.049 0.062 0.097 0.059 0.052 

50 50 0.997 0.998 0.042 0.049 0.954 0.890 0.106 0.088 

100 50 0.745 0.950 0.041 0.049 0.615 0.605 0.079 0.067 

200 50 0.004 0.637 0.043 0.048 0.185 0.304 0.069 0.059 

500 50 0.000 0.180 0.046 0.050 0.073 0.115 0.057 0.050 

50 100 1.000 1.000 0.045 0.048 0.965 0.911 0.112 0.091 

100 100 0.829 0.996 0.043 0.045 0.631 0.641 0.084 0.070 

200 100 0.001 0.848 0.042 0.046 0.183 0.330 0.073 0.060 

500 100 0.000 0.285 0.046 0.051 0.069 0.127 0.063 0.054 

Note: “FE” is the fixed effect, “MG” is the mean group, “DTMG” is the Mahalanobis-depth-based trimmed MG, 

and “XTMG” is the marginally trimmed MG estimators. 
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Table 5: MSE comparisons among CCEs under the presence of two outliers 

n T 

 = 1  for all  except  = − 1   

2 = 2 
−1  = 25; −1 =  = 5  

pool MG DTMG XTMG 

 ∼ N (1 1) except for  = − 1   

2 = 2 = 25;  −1−1  =  = 5  

pool MG DTMG XTMG 

50 10 217.3 14.67 12.782 15.08 233.2 16.56 16.40 15.10 

50 25 214.1 7.185 2.190 2.013 229.0 9.045 4.868 4.698 

50 50 214.6 6.178 0.932 0.757 233.2 8.259 3.600 3.429 

50 100 214.4 5.894 0.433 0.357 231.8 7.624 2.952 2.917 

100 10 86.52 8.189 9.109 8.469 99.84 8.860 10.30 9.780 

100 25 81.00 2.891 1.569 1.354 94.96 3.778 2.780 2.684 

100 50 79.74 2.275 0.620 0.552 93.90 3.221 1.985 1.871 

100 100 79.05 2.044 0.308 0.263 92.63 2.948 1.598 1.594 

200 10 31.78 5.230 6.987 6.560 39.42 5.974 9.567 6.190 

200 25 27.70 1.360 1.047 0.902 36.19 1.928 1.919 1.771 

200 50 27.08 0.946 0.603 0.428 35.11 1.418 1.135 1.084 

200 100 26.60 0.760 0.207 0.185 34.70 1.221 0.863 0.832 

500 10 7.655 2.853 4.391 3.558 10.84 3.088 4.449 3.931 

500 25 6.423 0.612 0.680 0.585 9.343 0.775 0.903 0.822 

500 50 6.207 0.332 0.269 0.234 8.999 0.519 0.525 0.491 

500 100 6.093 0.231 0.127 0.111 8.872 0.422 0.391 0.372 

Note: “pool” is the pooled CCE, “MG” is the CCEMG, “DTMG” is the Mahalanobis-depth-based trimmed 

CCEMG, and “XTMG” is the marginally trimmed CCEMG estimators. 
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Table 6: Sizes of CCE tests under the presence of two outliers 

(Nominal size: 5%) 

n T 

 = 1  for all  except  = − 1   

2 = 2 
−1  = 25; −1 =  = 5  

pool MG DTMG XTMG 

 ∼ N (1 1) except  = − 1   

2 = 2 = 25;  −1−1  =  = 5  

pool MG DTMG XTMG 

50 10 0.502 0.124 0.043 0.050 0.524 0.113 0.054 0.061 

50 25 0.618 0.256 0.044 0.041 0.611 0.168 0.058 0.061 

50 50 0.703 0.357 0.042 0.043 0.655 0.197 0.059 0.058 

50 100 0.759 0.457 0.043 0.044 0.662 0.192 0.063 0.065 

100 10 0.178 0.087 0.042 0.044 0.281 0.080 0.048 0.052 

100 25 0.110 0.203 0.041 0.042 0.291 0.126 0.052 0.056 

100 50 0.067 0.324 0.042 0.042 0.287 0.154 0.058 0.059 

100 100 0.036 0.459 0.043 0.042 0.283 0.166 0.058 0.059 

200 10 0.015 0.066 0.045 0.045 0.120 0.066 0.048 0.048 

200 25 0.000 0.139 0.046 0.043 0.128 0.098 0.051 0.052 

200 50 0.000 0.240 0.049 0.046 0.123 0.122 0.056 0.060 

200 100 0.000 0.375 0.042 0.045 0.129 0.133 0.055 0.056 

500 10 0.002 0.053 0.051 0.044 0.065 0.051 0.047 0.048 

500 25 0.000 0.084 0.044 0.049 0.081 0.070 0.052 0.049 

500 50 0.000 0.125 0.048 0.047 0.079 0.083 0.049 0.053 

500 100 0.000 0.209 0.045 0.046 0.079 0.097 0.057 0.053 

Note: “pool” is the pooled CCE, “MG” is the CCEMG, “DTMG” is the Mahalanobis-depth-based trimmed 

CCEMG, and “XTMG” is the marginally trimmed CCEMG estimators. 
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	1Introduction
	Though it is popular in practice to impose homogeneity in panel data regression, the homogeneity restriction is often rejected (e.g., Baltagi, Bresson, and Pirotte, 2008). Even under the presence of heterogeneous slope coeﬃcients, pooling the observations is widely believed to be innocuous. As Baltagi and Griﬃn (1997) and Woodridge (2005) point out, the standard ﬁxed-eﬀects (FE) estimators consistently estimate the mean of the heterogeneous slope coeﬃcients. One may use the group-heterogeneity approach by B
	Meanwhile, under the assumption of heterogeneous panels, Pesaran and Smith (1995) and Pesaran, Shin, and Smith (1999) proposed the mean group (MG) estimator, which is the cross-sectional average of individual-speciﬁc time series least squares (LS) estimators. In particular, the MG estimator is the most preferable when estimating the long-run eﬀects in dynamic panel models (e.g., Pesaran, Smith, and Im, 1996). Maddala, Trost, Li and Joutz (1997) considered a model average and shrinkage estimator by combining
	The purpose of this paper is to revisit a salient feature of the MG estimator. We emphasize the importance of investigating the individual time series estimators in details when pooling or averaging. In particular, we develop the trimmed MG estimator, where we trim individual observations whose time series sample variances of regressors are either extremely large or small. The trimming instruments are not the estimates of the individual slope coeﬃcients themselves, but the time series variances of the regre
	To obtain more robust estimation results, researchers often drop cross-sectional units in a panel data set, whose time series variances are unusually large compared to the rest of the units. Trimming individual observations with a large sample variance of the regressor (say right-tail trim) in our case can be understood in a similar vein. However, dropping such observations will result in eﬃciency loss of the MG or any pooled estimators. Trimming individual observations with a small sample variance of the r
	To obtain more robust estimation results, researchers often drop cross-sectional units in a panel data set, whose time series variances are unusually large compared to the rest of the units. Trimming individual observations with a large sample variance of the regressor (say right-tail trim) in our case can be understood in a similar vein. However, dropping such observations will result in eﬃciency loss of the MG or any pooled estimators. Trimming individual observations with a small sample variance of the r
	trim will oﬀset eﬃciency loss from the right-tail trim and result in a robust MG estimator with little eﬃciency loss in ﬁnite samples. In Section 2, we motivate the trimmed MG estimation by comparing popular panel estimators in the context of the weighted average (or weighted MG) estimator. We also discuss trimming methods in practice and provide some economic examples. Section 3 formally develops the trimmed MG estimators in the two-way FE model and the common correlated eﬀects (CCE) regression and studies

	2 Motivation 
	2 Motivation 
	2.1 Weighted mean group estimation 
	2.1 Weighted mean group estimation 
	We consider a panel regression model given by   = + +0  + (1) for =1 and =1,where ‘’ stands for the th individual and ‘’ stand for the th time.  is an × 1vector of exogenous regressors of interest.  and  are individual and time ﬁxed eﬀects, respectively. Instead of a time eﬀect , a factor augmented term 0  can be considered. The regression coeﬃcient  can be either homogeneous or heterogenous across , which is unknown. We are interested in estimating the mean
	or a matrix. b  is typically the least squares estimator of  for each :   X  b1 =  Σb1 −   ,=1 where we denote the sample variance of the regressor in (1) as X1 Σb =   0  =1 with 1XX1  =˜ − ˜ and ˜ =  − . =1 =1 Popular examples include the mean group (MG) estimator  b by Pesaran and Smith (1995) and Pesaran, Shin, and Smith (1999), which uses equal (scalar) weights as 1  = (5) in (3). The Bayes (SB) estimator b  by Swamy (1970) and Smith (1973) 
	Figure
	Figure 1: Comparison of the weights weights ⎛⎞−1 X⎝ b  b  = Σ ⎠Σ, =1 which is proportional to the inverse of (b ) for each  under homogeneity (e.g., Sul, 2016). In this case, this weight is optimal in the sense that b  is the best linear unbiased estimator of . 
	Figure 1: Comparison of the weights weights ⎛⎞−1 X⎝ b  b  = Σ ⎠Σ, =1 which is proportional to the inverse of (b ) for each  under homogeneity (e.g., Sul, 2016). In this case, this weight is optimal in the sense that b  is the best linear unbiased estimator of . 


	2.2 Trimming based on the variances of regressors 
	2.2 Trimming based on the variances of regressors 
	Comparing the weights (5), (6), and (7), we can see that puts equal weights for all ; but both and put unequal weights over , where the weights are proportional to Σ, thesamplevarianceof  of each . Note that these weights are basically proportional to the inverse of each individual variance of , and hence and aretobemore eﬃcient than 
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	See Figure 1 for comparison, which depicts the weights of MG and SB (or FE) estimators 
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	as functions of the sample variance of , Σ,when is a scalar. 
	 

	Because of its lower eﬃciency, the MG estimator is not popular in practice. However, since does not use the weights based on Σ, itismorerobusttowardextreme values or behaviors of .In contrast, when Σ is extremely large for some individual  because of some outlying observations in ,both and are heavily inﬂuenced by such an individual. In some extreme cases, it can even result in inconsistency of and . 
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	In fact, it is a common practice in panel data analysis that th observations with large time series variation of  are considered as outlying individuals and dropped to get more 
	Figure
	Figure 2: Weight of the trimmed MG estimator 
	robust estimators of the key structural parameters. For example, consider an uncovered interest parity regression, where the dependent variable is a depreciation rate (or a growth rate of a foreign exchange rate) and an independent variable is the diﬀerence between domestic and foreign interest rates. In this context, empirical researchers often exclude foreign countries that experienced currency or ﬁnancial crises, and their interest or exchange rates have large time series ﬂuctuations (e.g., a sudden incr
	Based on such observations, we propose a simple robust estimator, the trimmed mean group (TMG) estimator, where we still use the equal scalar weights but drop individuals whose Σ are extremely large. In particular, we take an equally weighted average over ’s in (3), but 
	b
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	b
	the weights take a hard-threshold trimming based on the sample variance of  of each , Σ. However, such an estimator could suﬀer from big eﬃciency loss compared with the standard MG, SB, or FE estimators, though it achieves higher robustness. As a way of improving the eﬃciency, we also drop th observations whose sample variances of  are extremely small (i.e., 
	b
	’s with large standard errors). The resulting weighting scheme of the TMG that we develop in this paper is depicted in Figure 2, as a function of Σ. 
	
	b

	In sum, we consider the double-sided trimming scheme that drops th observations whose sample variances of  are either extremely large or small. Trimming individual observations with large sample variances of  (say, right-tail trim) will give robustness toward some outlying 
	In sum, we consider the double-sided trimming scheme that drops th observations whose sample variances of  are either extremely large or small. Trimming individual observations with large sample variances of  (say, right-tail trim) will give robustness toward some outlying 
	individuals. On the other hand, trimming individual observations with small sample variances of  (say, left-tail trim) will improve eﬃciency by oﬀsetting some eﬃciency loss from dropping individual observations with large sample variances of  in the right-tail trim, which is in the same (but more extreme) spirit as the SB or FE estimators as we illustrated in Figure 2. Remark Instead of the hard-threshold trimming, we could consider a trapezoid type weight. We could also apply our trimming scheme on t


	2.3 Examples 
	2.3 Examples 
	We present some empirical evidence where the trimming idea could improve the results. The ﬁrst example shows the case when large sample variance of the regressor matters. Lee and Sul (2019) consider the following relative Purchasing Power Parity (PPP) regression:  ∆ =  + 0 +   ( − ∗ )+ , where  and  are the foreign exchange rate and the inﬂation rate of the th foreign country. ∗  stands for the domestic (U.S. in this example) inﬂation rate. As Greenaway-McGrevy, Mark, Sul, and Wu
	1For the factor-augmented regression, we use the method by Greenaway-McGrevy, Han, and Sul (2012). 
	1For the factor-augmented regression, we use the method by Greenaway-McGrevy, Han, and Sul (2012). 

	Figure
	Figure 3: PPP estimates versus variances of relative inﬂation 
	The second example shows the opposite case when a small sample variance of the regres-sor matters. We estimate an individual marginal propensity to consume (MPC) across 1,875 households ( = 1875) in South Korea during the period from 1999 to 2003 ( =5). The data source is from the Korea Labor Income Panel Study (KLIPS). To estimate the MPC, we run the following two-way FE regression with potentially heterogeneous slope parameters: ∆ ln  =  +  + ∆ ln  + , where  and  are the annual exp
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	2.4 Trimming weights 
	2.4 Trimming weights 
	We can construct the trimming weights based on the sample covariance of the regressors, Σ,in practice. When  is univariate (i.e.,  =1), we can simply sort Σ and decide the trimming 
	b
	b

	4-A: Entire estimates 4-B: Subset of estimates 
	Figure
	Figure 4: MPC estimates versus variances of income growth 
	point. When  is multivariate (i.e., ≥ 2), however, such ordering is not straightforward. In such cases, we can consider either a marginal trimming scheme or a joint (or balanced) trimming scheme. 
	For the marginal trimming approach, we pick one regressor and determine trimmed cross-sectional units based on the order statistics of the sample variance of the regressor picked. In this case, a researcher chooses the key regressor as a trimming instrument or the one with the largest variation. We can also apply this marginal trimming idea on each regressor  =1 and run the regression  times using each trimmed sample in turn. From each th regression, we only report the estimates of the th element 
	The joint trimming approach can be done using the intersection of trimmed sets from the aforementioned marginal trimming for all  =1. More precisely, we let bbe the sample variance of the th element of the agent ’s regressors for  =1. We conduct marginal trimming using b
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	for each  and obtain the joint trimmed set from the intersection of all the trimmed units over  =1. 
	 

	Alternatively, we can use the data depth of Σ (e.g., Lee and Sul, 2019), based on which we conduct trimming using the depth-induced statistic. For instance, we form a contour plot over the -dimensional space based on the sample Mahalanobis depth of b =(bb
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	where band Λ are the sample mean and sample variance of b. By construction, ()∈ [01] and it is close to zero if  = b is either extremely small or large (i.e., for outlying b from the center of its distribution). Using this data depth, we can construct multivariate quantile 
	where band Λ are the sample mean and sample variance of b. By construction, ()∈ [01] and it is close to zero if  = b is either extremely small or large (i.e., for outlying b from the center of its distribution). Using this data depth, we can construct multivariate quantile 
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	contours and determine the trimming contour line for any dimension of .In this case, we deﬁne the TMG estimator where we trim th observations with b(b)  for some threshold 0  1. Note that this depth-based approach automatically trims outliers on both sides, possibly asymmetrically. In addition, the Mahalanobis depth is aﬃne invariant, and hence the TMG estimator based on the depth-based weights has the invariance property to non-singular linear transformations like the typical least squares esti
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	3 Trimmed Mean Group Estimation 
	3.1 Trimmed MG estimator for two-way FE models 
	3.1 Trimmed MG estimator for two-way FE models 
	The trimming scheme described in the previous section drops the entire history of the th individuals when their Σb are either extremely large or small. Therefore, in the one-way ﬁxed-eﬀect(FE)model,  =  +0   +, subtracting individual mean (i.e., within transformation) for each  isnot aﬀected from the trimming step. Hence, it does not matter whether we trim before or after the within transformation in this case. In contrast, the TMG estimator for the two-way FE regression in (1)  =  +  
	Whether it is the one-way or two-way FE model, once we conduct the proper demeaning using the trimmed sample as explained above, we obtain the individual trimmed least squares  estimator  b  by regressing  on  . Then, we deﬁne the TMG estimator as  X X b   1  1  = b = b with =1  ,G {∈G}G∈G =1 Pwhere 1{·} is the binary indicator. Recall that  ==1 1{ ∈G} and G is the set of Gindividuals that are not trimmed in the sample. It is important to note that, though the Wallac
	the heterogeneous two-way FE regression. However, it can be readily veriﬁed that the MG estimator is still consistent and achieves the asymptotic normality. The same results extend to the case of TMG estimator in (8) as summarized in the following theorem. It, hence, implies that whether the true model is homogeneous or heterogeneous, we can use the Wallace-Hussain transformation for the (trimmed) MG estimation of two-way FE regression models.2 Theorem 1 Suppose the random coeﬃcient  satisﬁes (2). Also le
	2A similar result was also found in Lee, Mukherjee, and Ullah (2019) in the context of a partially linear two-way FE regression, where the linearized form can be seen as a heterogeneous panel model. 
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	which satisﬁes E[]=0since E[−|]=0.Moreover, E[(−)(−)|]=(1−(1))Ω, which we denote Ω. Apparently, Ω →Ω  ∞as  →∞. Under cross-sectional independence, 
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	≥estimator without trimming, which is Ω. Note that when the trimmed sample size is ﬁxed (i.e., it does not depend on ),  is simply 1 and  reaches to the asymptotic variance of the standard MG estimator. It is worthy to note that, in the limit, the eﬃciency loss of the TMG estimator does not depend on the speciﬁc trimming scheme, whether to trim individual samples with extremely large or small Σ. It only depends on the reduction of the sample size from trimming. This is because we consider exogenous t
	b
	b

	 
	The asymptotic variance can be consistently estimated by the sample covariance of as
	b 

	 
	 
	X 

	b
	 = (−)(−)(12) 
	
	2 
	b 
	 
	b 
	
	b 
	 
	b 
	
	0 

	G 
	∈G 
	using the same argument in Section 8.2.2 of Pesaran, Smith and Im (1996). 

	3.2 Trimmed CCEMG estimator 
	3.2 Trimmed CCEMG estimator 
	The two-way FE estimator in the previous section becomes inconsistent when a factor augmented term is included in the regression model. The pooled common correlated eﬀects (CCE) estima-tor or the CCE mean-group (CCEMG) estimator by Pesaran (2006) and Chudik and Pesaran (2015) can be employed in this case. In particular, we consider a panel regression model with a multifactor error structure given by  = 0    +0 +0  +, = 0  +Γ0  + (14) for  =1 and  =1,where  is 
	 
	=1 where  nowimposes thesametrimmingschemeas   in (8) but still satisﬁes Assumption 5 of  Pesaran (2006). The trimmed CCE estimator b  for individual slope parameter  is then obtained from the least squares of 0    =  +0 +0 +, which uses  instead of . From Theorem 1 of Pesaran (2006), we still have ³´ b  −=−12   (15)  for each  =1,provided√  →0as  →∞.Wed eﬁne the trimmed CCE mean-
	group (TCCEMG) estimator as X 1 X b   = b =   b,G ∈G =1 where   is thesametrimmingweightasin(8). Similar toT heorem1,Wederivethel imiting distribution of  b as follows. Theorem 2 Suppose the random coeﬃcient  satisﬁes (2). Also let G →∞as   →∞ satisfying  =lim  and  ∈[1 ∞). Under the same condition in Theorem 1 of Pesaran →∞G (2006), wehave √   (b −)→ N (0Ω) as   →∞and √ →0. ProofofTheorem2  Note that √ X1  1 X (b b  −)= √ (
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	We now denote an “induced” order statistic {},where [] are reordered based on the given trimming scheme. As a special case, this induced order statistic could correspond to the 
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	order statistic of {} itself (e.g., the ranking of is the same as the ranking of Σ in our case). In such cases, we can deﬁne the TCCEMG estimator whose trimming scheme is 
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	directly from the order statistic of {}. For instance, for the scalar  case ( =1), we can consider the TCCEMG estimator in the 
	directly from the order statistic of {}. For instance, for the scalar  case ( =1), we can consider the TCCEMG estimator in the 
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	form of the sample trimmed mean deﬁned as bXc  1 b ∗= b  bc −bc [],=bc+1 where 0    1 are some ﬁxed numbers denoting the lower and upper trimmed pro-portions, and bc denotes the largest integer that does not exceed the constant . Similarly as Stigler (1973), we let  =sup{ : () ≤} and  =inf{ :  ()≥} , where  (·) is the cdf of . Then, we can obtain the limiting distribution of b  as in the following theorem. We let (·) be the cdf of trimmed , which

	and Z ∞ Z ∞  =  (), 2 =( −)2 (). −∞ −∞ Theorem 3 Suppose the random coeﬃcient  satisﬁes (2) with continuous ,andt het rimming scheme is based on the order statistic of {}.When  ∈ R, undert hesamecondition in   Theorem 1 of Pesaran (2006) and Theorem of Stigler (1973), we have √(b ∗ −)→  N (0 (−)−2) as   →∞and √ 2  →0,where  =()2 − + (1−)( −)+  (1−)( −2 )−2 (1−)( −)( −). ProofofTheorem3  Note that √ √ bXbc∗  1  (b  −
	from Theorem 1 of Pesaran (2006). The result follows from the Theorem of Stigler (1973) with  = =0in their expression. ¤ When  is symmetrically distributed about the origin and  =1−  with 12  1, we have  = =0. Furthermore, in this case, the asymptotic variance can be simpliﬁed as  =(2 − 1) −12 . Given (),since b  is consistent to  with large  as in (15), the values  and can be obtained as the bcth and the bcth elements in the ordered statistic {b []}, respe



	4MonteCarloSimulatio
	4MonteCarloSimulatio
	We consider two data generating processes (DGPs). The ﬁrst DGP is given by  =11 +22 +,where  = 1 + with  =1 2 and − = +. The innovation are −1  generated from N (02  )where  2∼ 2  1 for  =1 2. Meanwhile, we generate  from thestandard normal. We consider two values of  =0 08, but only report the case with  =0 here.4 There is little diﬀerence between the two cases except for the absolute magnitude of the mean square error (MSE). The size of t
	−
	When  =08 we discard the ﬁrst 100 observations to avoid the eﬀect of the initial condition. 
	4

	homogeneous case, we set =1 for all  and  =12. Meanwhile, for the heterogeneous case, we set ∼ N (11) for each  =12. 
	 
	 
	 
	 

	For both DGPs, we also consider the case with outliers by letting the variance of each regressor as =25 and the slope parameter values as =5 for  =  − 1 for both 
	2 
	 

	 
	 =12, implying that the last two cross-sectional units are outliers. We consider sample sizes of  =50100200500 and  =5102550100. All simulation results are based on 5000 iterations. Tables are collected at the end of this paper. 
	Table 1 reports the MSE values for four estimators in the ﬁrst DGP in (17) under the absence of any outliers: the two-way FE estimator; the MG estimator; the TMG estimator (DTMG) with a joint trimming method based on the Mahalanobis depth of the sample variance of (), and the TMG estimator (XTMG) with a marginal trimming method based on individually trimmed sets using each sample variance of  for  =12. The reported MSE values in Table 1 are the averages over those of and , and they are all
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	1 
	that only individuals in the right side of the distribution are excluded from the Mahalanobisdepth-based trimming, which leads to ineﬃcient estimation under the absence of any outliers. Meanwhile, the MSE of the XTMG is smaller than that of the MG estimator since the XTMG trims out individuals both in left and right tails. 
	-

	Table2showsthe averagesizeofthe -test of each estimator in the ﬁrst DGP in (17). For each  =12, we construct the -ratio for the null hypothesis of : E[]=1 and take the average of the rejection rates over  =12. The nominal size is 5%. With a small  like  =50, the FE estimator shows a mild upward size distortion in the case of homogenous coeﬃcients. As  increases, the rejection frequencies with the FE estimator approaches the nominal size very quickly. Meanwhile, with heterogeneous coeﬃcients, the 
	0 
	

	Table 3 provides the MSE of each estimator in the ﬁrst DGP in (17) under the presence of two 
	If we set 
	5
	2 

	 =1for all  and  but generate  with widely heterogeneous variances, then the FE estimator is no longer eﬃcient. 
	outliers on the right tail of the distribution as described above. Since only the last two individuals are outliers, the FE estimator becomes biased in ﬁnite .But as  →∞, the bias approaches zero. More importantly, the FE estimator becomes more biased than the MG estimator since the FE estimator assigns higher weights on the last two individuals as = 
	2 
	2 

	=25.On the 
	 

	−1 
	other hand, the DTMG and XTMG estimators exclude outlying individuals whose regressors’ sample variances are relatively larger than the rest of the individuals in this case. 
	Table 4 reports the size of the -test of each estimator in the ﬁrst DGP in (17) under the presence of two outliers. Evidently the FE and MG estimators suﬀer from serious size distortion when  is small. As  increases, however, the inﬂuence of the outliers becomes localized, so that the sizes of both estimators become milder. Meanwhile, the sizes of both trimmed estimators DTMG and XTMG are about the nominal size. Only when  is small, both trimmed estimators show mild size distortions, but as  increases,
	Tables 5 and 6 show the MSEs and sizes of the -test of the four CCE estimators in the second DGP in (18). The ﬁrst two estimators are the pooled CCE (pool) and CCEMG (MG), which do not trim out any individuals. The last two estimators are trimmed CCEMG estimators, whose trimming schemes are the same as those of DTMG and XTMG, respectively. The overall results in Tables 5 and 6 are quite similar to those in Tables 3 and 4. 
	5 Empirical Illustration: Eﬀect of Police on Crime 
	5 Empirical Illustration: Eﬀect of Police on Crime 
	As an empirical illustration, we consider the eﬀect of police on crime using the following two-way FE regression: ∆ ln  =  +  + 1∆ ln 1 +  −2∆ ln −1 +3∆ ln −1 + ,( 19)where  is the number of reported property crimes per capita,  is the number of police oﬃcers,  is the unemployment rate, and  is the percentage of black population in state  and year . This is similar to Levitt (1997) but we exclude other control variables (i.e., public welfare spending, percentage of female
	estimation is good enough. Sul (2019) shows that the property crime rates across 48 contiguous U.S. states have a single common factor with a homogeneous factor loading, hence including the time eﬀect  is suﬃcient. 1 is the main interest and it describes the average marginal eﬀect from idiosyncratic increases in the sworn oﬃcers on idiosyncratic growth rates of the property crime rates, after controlling for the common dynamics . Table 7 reports the estimation results of the two-way FE estimation and t
	estimation is good enough. Sul (2019) shows that the property crime rates across 48 contiguous U.S. states have a single common factor with a homogeneous factor loading, hence including the time eﬀect  is suﬃcient. 1 is the main interest and it describes the average marginal eﬀect from idiosyncratic increases in the sworn oﬃcers on idiosyncratic growth rates of the property crime rates, after controlling for the common dynamics . Table 7 reports the estimation results of the two-way FE estimation and t

	Table 7: Determinants of property crime 
	Two-way FE Estimation 
	Table
	TR
	FE 
	MG 
	DTMG 
	XTMG 

	20% 
	20% 
	10% 
	5% 
	20% 
	10% 
	5% 

	∆ ln −1 
	∆ ln −1 
	0.027 (1.10) 
	0.014 (0.39) 
	-0.018 (-0.66) 
	-0.003 (-0.10) 
	-0.006 (-0.23) 
	0.003 (0.09) 
	-0.001 (-0.04) 
	-0.006 (-0.23) 

	∆ ln −1 
	∆ ln −1 
	-0.017 (-1.52) 
	-0.014 (-1.31) 
	-0.005 (-0.90) 
	-0.001 (-0.29) 
	-0.004 (-0.86) 
	-0.003 (-0.46) 
	-0.002 (-0.28) 
	-0.002 (-0.44) 

	∆ ln −1 
	∆ ln −1 
	-0.489∗∗ (-3.96) 
	-0.269∗ (-1.80) 
	-0.167 (-1.22) 
	-0.190 (-1.51) 
	-0.202∗ (-1.65) 
	-0.203 (-1.45) 
	-0.210∗ (-1.68) 
	-0.192 (-1.54) 


	CCE Estimation 
	Sect
	Sect
	Sect
	Table
	TR
	pool 
	MG 
	DTMG 
	XTMG 

	20% 
	20% 
	10% 
	5% 
	20% 
	10% 
	5% 

	∆ 
	∆ 
	ln 
	−1 
	0.019 
	0.001 
	-0.011 
	-0.004 
	-0.001 
	-0.010 
	0.010 
	0.001 

	TR
	(0.70) 
	(0.02) 
	(-0.25) 
	(-0.10) 
	(-0.03) 
	(-0.23) 
	(-0.24) 
	(0.02) 

	∆ 
	∆ 
	ln 
	−1 
	-0.015 
	-0.014 
	-0.012 
	-0.011 
	-0.018 
	-0.015 
	-0.010 
	-0.012 

	TR
	(-1.21) 
	(-1.22) 
	(-1.04) 
	(-1.04) 
	(-1.64) 
	(-1.18) 
	(-0.86) 
	(-1.06) 

	∆ 
	∆ 
	ln 
	−1 
	 -0.593∗∗
	-0.315 
	-0.224 
	-0.269 
	-0.329 
	-0.269 
	-0.308 
	-0.294 

	TR
	(-4.36) 
	(-1.39) 
	(-0.85) 
	(-1.12) 
	(-1.42) 
	(-1.19) 
	(-1.33) 
	(-1.29) 





	Note: Numbers in parentheses are t-ratio using a panel robust covariance estimator; * and ** are signiﬁcant at 10% and 5%, respectively. For Two-way FE, “FE” is the ﬁxed eﬀect, “MG” is the mean group, “DTMG” is the Mahalanobis-depth-based trimmed MG, and “XTMG” is the marginally trimmed MG estimators. For CCE, “pool” is the pooled CCE, “MG” is the CCEMG, “DTMG” is the Mahalanobis-depth-based trimmed CCEMG, and “XTMG” is the marginally trimmed CCEMG estimators. % for DTMG and XTMG stands for the trimming fra
	variances of ∆ ln −1 and ∆ ln −1, respectively; New Hampshire and Wyoming show very large variances for most of the cases and hence trimmed; California and Connecticut show very small variances for most of the cases and hence also trimmed. Note that the Mahalanobis depth considers variances of three regressors simultaneously, thus joint trimming based on the Mahalanobis depth can drop states whose marginal variances are not extreme. However, both joint and marginal trimmings overlap most of the cases,
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	6ConcludingRemarks
	6ConcludingRemarks
	This paper shows the importance of individual-speciﬁc time series estimation and a way to average them for robust panel data analysis. Since pooled estimators, including the two-way FE or pooled CCE, assign heavier weights on the individuals as the corresponding regressor’s variance gets larger, they are sensitive to outlying observations in the sample variance of the regressor. The MG estimators, without considering such outliers, may not be fully robust either. To obtain more robust estimators without muc
	Though this paper focuses on static panel regression, the idea can be extended to dynamic regression. In addition, we suppose the trimming thresholds are given in this paper, but we could pick the thresholds by optimizing some objective function such as the higher-order MSE of the TMG estimator. Finally, an endogenous trimming directly based on the order statistic of could be more desirable though its asymptotic analysis is not straightforward. We leave these important topics for future challenges. 
	b 
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	Table 1: MSE comparisons under the absence of any outliers 
	n 
	n 
	n 
	T 
	1 =1 & 2 =1 for all  FE MG DTMG XTMG 
	1 ∼ N (1 1) & 2 ∼ N (1 1) FE MG DTMG XTMG 

	50 
	50 
	5 
	0.560 15.75 26.77 15.65 
	9.195 20.14 29.34 19.10 

	100 
	100 
	5 
	0.263 11.79 19.482 7.516 
	4.736 13.23 21.88 8.792 

	200 
	200 
	5 
	0.132 8.252 14.502 3.465 
	2.378 9.562 15.811 4.274 

	500 
	500 
	5 
	0.052 5.230 9.127 1.314 
	0.989 5.958 9.755 1.575 

	50 
	50 
	10 
	0.246 2.440 4.050 2.495 
	7.197 5.475 7.482 5.426 

	100 
	100 
	10 
	0.115 1.833 3.042 1.315 
	3.794 3.266 4.636 2.637 

	200 
	200 
	10 
	0.058 1.322 2.216 0.653 
	1.919 2.038 2.971 1.333 

	500 
	500 
	10 
	0.022 0.870 1.455 0.257 
	0.776 1.144 1.761 0.515 

	50 
	50 
	25 
	0.090 0.709 1.109 0.694 
	6.479 3.249 4.017 3.332 

	100 
	100 
	25 
	0.044 0.510 0.824 0.365 
	3.326 1.753 2.305 1.662 

	200 
	200 
	25 
	0.021 0.381 0.599 0.195 
	1.634 0.994 1.330 0.827 

	500 
	500 
	25 
	0.008 0.253 0.401 0.080 
	0.675 0.497 0.700 0.333 

	50 
	50 
	50 
	0.042 0.309 0.486 0.307 
	6.136 2.731 3.315 2.933 

	100 
	100 
	50 
	0.021 0.231 0.367 0.171 
	3.183 1.418 1.796 1.449 

	200 
	200 
	50 
	0.010 0.174 0.275 0.089 
	1.550 0.722 0.959 0.715 

	500 
	500 
	50 
	0.004 0.115 0.183 0.037 
	0.623 0.327 0.436 0.286 

	50 
	50 
	100 
	0.022 0.153 0.232 0.152 
	5.778 2.548 3.103 2.808 

	100 
	100 
	100 
	0.011 0.113 0.176 0.082 
	3.025 1.270 1.582 1.376 

	200 
	200 
	100 
	0.005 0.081 0.130 0.042 
	1.494 0.627 0.799 0.668 

	500 
	500 
	100 
	0.002 0.055 0.086 0.017 
	0.626 0.268 0.350 0.270 


	Note: “FE” is the ﬁxed eﬀect, “MG” is the mean group, “DTMG” is the Mahalanobis-depth-based trimmed MG, and “XTMG” is the marginally trimmed MG estimators. 
	Table 2: Sizes of tests under the absence of any outliers (Nominal size: 5%) 
	n 
	n 
	n 
	T 
	1 =1 & 2 =1 for all  FE MG DTMG XTMG 
	1 ∼ N (1 1) & 2 ∼ N (1 1) FE MG DTMG XTMG 

	50 
	50 
	5 
	0.084 0.044 0.045 0.047 
	0.120 0.062 0.057 0.058 

	100 
	100 
	5 
	0.066 0.044 0.041 0.047 
	0.084 0.056 0.052 0.057 

	200 
	200 
	5 
	0.064 0.047 0.045 0.049 
	0.070 0.051 0.048 0.051 

	500 
	500 
	5 
	0.054 0.043 0.046 0.047 
	0.058 0.050 0.048 0.050 

	50 
	50 
	10 
	0.081 0.042 0.045 0.050 
	0.106 0.088 0.079 0.071 

	100 
	100 
	10 
	0.064 0.045 0.045 0.052 
	0.077 0.071 0.061 0.057 

	200 
	200 
	10 
	0.058 0.045 0.046 0.050 
	0.064 0.061 0.054 0.057 

	500 
	500 
	10 
	0.052 0.045 0.047 0.047 
	0.056 0.055 0.050 0.051 

	50 
	50 
	25 
	0.077 0.044 0.046 0.051 
	0.098 0.100 0.087 0.080 

	100 
	100 
	25 
	0.062 0.043 0.042 0.048 
	0.077 0.082 0.077 0.066 

	200 
	200 
	25 
	0.056 0.042 0.043 0.051 
	0.063 0.071 0.064 0.058 

	500 
	500 
	25 
	0.051 0.045 0.045 0.051 
	0.060 0.060 0.059 0.054 

	50 
	50 
	50 
	0.074 0.042 0.043 0.049 
	0.097 0.106 0.096 0.085 

	100 
	100 
	50 
	0.061 0.041 0.039 0.048 
	0.079 0.087 0.083 0.064 

	200 
	200 
	50 
	0.058 0.043 0.042 0.048 
	0.063 0.070 0.069 0.058 

	500 
	500 
	50 
	0.055 0.048 0.046 0.052 
	0.055 0.061 0.056 0.053 

	50 
	50 
	100 
	0.075 0.042 0.040 0.052 
	0.094 0.114 0.111 0.092 

	100 
	100 
	100 
	0.068 0.041 0.042 0.048 
	0.077 0.094 0.089 0.070 

	200 
	200 
	100 
	0.057 0.041 0.045 0.050 
	0.062 0.071 0.067 0.059 

	500 
	500 
	100 
	0.054 0.045 0.046 0.047 
	0.058 0.066 0.060 0.056 


	Note: “FE” is the ﬁxed eﬀect, “MG” is the mean group, “DTMG” is the Mahalanobis-depth-based trimmed MG, and “XTMG” is the marginally trimmed MG estimators. 
	Table 3: MSE comparisons under the presence of two outliers 
	n 
	n 
	n 
	T 
	 =1 for all  except = − 1 2 = 2 −1  = 25; −1 =  =5 FE MG DTMG XTMG 
	 ∼ N (11) except = − 1 2 = 2 =25; −1−1  =  =5 FE MG DTMG XTMG 

	50 
	50 
	5 
	402.9 64.73 23.98 14.15 
	406.2 68.28 28.32 18.25 

	100 
	100 
	5 
	191.2 21.87 17.71 9.161 
	194.2 23.93 20.85 8.513 

	200 
	200 
	5 
	74.43 10.28 13.90 3.467 
	76.00 11.26 15.15 4.098 

	500 
	500 
	5 
	16.48 5.465 8.865 1.313 
	17.25 6.063 9.366 1.544 

	50 
	50 
	10 
	413.7 43.23 3.577 2.203 
	417.8 46.16 7.008 5.053 

	100 
	100 
	10 
	189.0 10.58 2.806 1.263 
	191.3 12.03 4.420 2.526 

	200 
	200 
	10 
	69.44 3.022 2.063 0.635 
	71.59 3.732 2.957 1.280 

	500 
	500 
	10 
	15.24 1.078 1.421 0.260 
	15.79 1.301 1.690 0.507 

	50 
	50 
	25 
	423.4 38.30 0.988 0.610 
	424.3 40.32 3.947 3.290 

	100 
	100 
	25 
	186.7 8.334 0.762 0.358 
	189.7 9.324 2.211 1.629 

	200 
	200 
	25 
	68.0 1.861 0.555 0.182 
	69.08 2.425 1.264 0.807 

	500 
	500 
	25 
	14.04 0.403 0.384 0.077 
	14.38 0.614 0.667 0.319 

	50 
	50 
	50 
	425.6 36.53 0.439 0.275 
	428.0 38.90 3.322 2.904 

	100 
	100 
	50 
	187.2 7.744 0.330 0.163 
	188.5 8.837 1.714 1.417 

	200 
	200 
	50 
	67.00 1.592 0.260 0.084 
	68.03 2.124 0.943 0.723 

	500 
	500 
	50 
	13.66 0.256 0.172 0.035 
	14.26 0.479 0.441 0.281 

	50 
	50 
	100 
	426.7 36.08 0.207 0.130 
	429.0 37.94 3.085 2.758 

	100 
	100 
	100 
	187.3 7.535 0.163 0.077 
	188.0 8.389 1.523 1.320 

	200 
	200 
	100 
	66.41 1.459 0.120 0.040 
	67.35 1.973 0.804 0.678 

	500 
	500 
	100 
	13.60 0.196 0.084 0.017 
	14.10 0.406 0.346 0.267 


	Note: “FE” is the ﬁxed eﬀect, “MG” is the mean group, “DTMG” is the Mahalanobis-depth-based trimmed MG, and “XTMG” is the marginally trimmed MG estimators. 
	Table 4: Sizes of tests under the presence of two outliers (Nominal size: 5%) 
	n 
	n 
	n 
	T 
	 =1 for all  except = − 1 2 = 2 −1  = 25; −1 =  =5 FE MG DTMG XTMG 
	 ∼ N (11) except = − 1 2 = 2 =25; −1−1  =  =5 FE MG DTMG XTMG 

	50 
	50 
	5 
	0.709 0.434 0.045 0.051 
	0.689 0.395 0.059 0.060 

	100 
	100 
	5 
	0.387 0.223 0.044 0.047 
	0.417 0.210 0.051 0.051 

	200 
	200 
	5 
	0.091 0.107 0.048 0.047 
	0.166 0.107 0.046 0.052 

	500 
	500 
	5 
	0.001 0.062 0.040 0.048 
	0.063 0.062 0.049 0.052 

	50 
	50 
	10 
	0.867 0.778 0.043 0.053 
	0.817 0.669 0.078 0.071 

	100 
	100 
	10 
	0.491 0.493 0.042 0.051 
	0.501 0.386 0.062 0.058 

	200 
	200 
	10 
	0.053 0.214 0.044 0.050 
	0.174 0.182 0.059 0.054 

	500 
	500 
	10 
	0.000 0.079 0.045 0.050 
	0.060 0.079 0.053 0.050 

	50 
	50 
	25 
	0.979 0.970 0.045 0.050 
	0.919 0.830 0.095 0.081 

	100 
	100 
	25 
	0.638 0.797 0.046 0.052 
	0.572 0.528 0.075 0.062 

	200 
	200 
	25 
	0.015 0.416 0.046 0.046 
	0.180 0.256 0.064 0.058 

	500 
	500 
	25 
	0.000 0.116 0.042 0.049 
	0.062 0.097 0.059 0.052 

	50 
	50 
	50 
	0.997 0.998 0.042 0.049 
	0.954 0.890 0.106 0.088 

	100 
	100 
	50 
	0.745 0.950 0.041 0.049 
	0.615 0.605 0.079 0.067 

	200 
	200 
	50 
	0.004 0.637 0.043 0.048 
	0.185 0.304 0.069 0.059 

	500 
	500 
	50 
	0.000 0.180 0.046 0.050 
	0.073 0.115 0.057 0.050 

	50 
	50 
	100 
	1.000 1.000 0.045 0.048 
	0.965 0.911 0.112 0.091 

	100 
	100 
	100 
	0.829 0.996 0.043 0.045 
	0.631 0.641 0.084 0.070 

	200 
	200 
	100 
	0.001 0.848 0.042 0.046 
	0.183 0.330 0.073 0.060 

	500 
	500 
	100 
	0.000 0.285 0.046 0.051 
	0.069 0.127 0.063 0.054 


	Note: “FE” is the ﬁxed eﬀect, “MG” is the mean group, “DTMG” is the Mahalanobis-depth-based trimmed MG, and “XTMG” is the marginally trimmed MG estimators. 
	Table 5: MSE comparisons among CCEs under the presence of two outliers 
	n 
	n 
	n 
	T 
	 =1 for all  except = − 1 2 = 2 −1  = 25; −1 =  =5 pool MG DTMG XTMG 
	 ∼ N (11) except for = − 1 2 = 2 =25; −1−1  =  =5 pool MG DTMG XTMG 

	50 
	50 
	10 
	217.3 14.67 12.782 15.08 
	233.2 16.56 16.40 15.10 

	50 
	50 
	25 
	214.1 7.185 2.190 2.013 
	229.0 9.045 4.868 4.698 

	50 
	50 
	50 
	214.6 6.178 0.932 0.757 
	233.2 8.259 3.600 3.429 

	50 
	50 
	100 
	214.4 5.894 0.433 0.357 
	231.8 7.624 2.952 2.917 

	100 
	100 
	10 
	86.52 8.189 9.109 8.469 
	99.84 8.860 10.30 9.780 

	100 
	100 
	25 
	81.00 2.891 1.569 1.354 
	94.96 3.778 2.780 2.684 

	100 
	100 
	50 
	79.74 2.275 0.620 0.552 
	93.90 3.221 1.985 1.871 

	100 
	100 
	100 
	79.05 2.044 0.308 0.263 
	92.63 2.948 1.598 1.594 

	200 
	200 
	10 
	31.78 5.230 6.987 6.560 
	39.42 5.974 9.567 6.190 

	200 
	200 
	25 
	27.70 1.360 1.047 0.902 
	36.19 1.928 1.919 1.771 

	200 
	200 
	50 
	27.08 0.946 0.603 0.428 
	35.11 1.418 1.135 1.084 

	200 
	200 
	100 
	26.60 0.760 0.207 0.185 
	34.70 1.221 0.863 0.832 

	500 
	500 
	10 
	7.655 2.853 4.391 3.558 
	10.84 3.088 4.449 3.931 

	500 
	500 
	25 
	6.423 0.612 0.680 0.585 
	9.343 0.775 0.903 0.822 

	500 
	500 
	50 
	6.207 0.332 0.269 0.234 
	8.999 0.519 0.525 0.491 

	500 
	500 
	100 
	6.093 0.231 0.127 0.111 
	8.872 0.422 0.391 0.372 


	Note: “pool” is the pooled CCE, “MG” is the CCEMG, “DTMG” is the Mahalanobis-depth-based trimmed CCEMG, and “XTMG” is the marginally trimmed CCEMG estimators. 
	Table 6: Sizes of CCE tests under the presence of two outliers (Nominal size: 5%) 
	n 
	n 
	n 
	T 
	 =1 for all  except = − 1 2 = 2 −1  = 25; −1 =  =5 pool MG DTMG XTMG 
	 ∼ N (11) except = − 1 2 = 2 =25; −1−1  =  =5 pool MG DTMG XTMG 

	50 
	50 
	10 
	0.502 0.124 0.043 0.050 
	0.524 0.113 0.054 0.061 

	50 
	50 
	25 
	0.618 0.256 0.044 0.041 
	0.611 0.168 0.058 0.061 

	50 
	50 
	50 
	0.703 0.357 0.042 0.043 
	0.655 0.197 0.059 0.058 

	50 
	50 
	100 
	0.759 0.457 0.043 0.044 
	0.662 0.192 0.063 0.065 

	100 
	100 
	10 
	0.178 0.087 0.042 0.044 
	0.281 0.080 0.048 0.052 

	100 
	100 
	25 
	0.110 0.203 0.041 0.042 
	0.291 0.126 0.052 0.056 

	100 
	100 
	50 
	0.067 0.324 0.042 0.042 
	0.287 0.154 0.058 0.059 

	100 
	100 
	100 
	0.036 0.459 0.043 0.042 
	0.283 0.166 0.058 0.059 

	200 
	200 
	10 
	0.015 0.066 0.045 0.045 
	0.120 0.066 0.048 0.048 

	200 
	200 
	25 
	0.000 0.139 0.046 0.043 
	0.128 0.098 0.051 0.052 

	200 
	200 
	50 
	0.000 0.240 0.049 0.046 
	0.123 0.122 0.056 0.060 

	200 
	200 
	100 
	0.000 0.375 0.042 0.045 
	0.129 0.133 0.055 0.056 

	500 
	500 
	10 
	0.002 0.053 0.051 0.044 
	0.065 0.051 0.047 0.048 

	500 
	500 
	25 
	0.000 0.084 0.044 0.049 
	0.081 0.070 0.052 0.049 

	500 
	500 
	50 
	0.000 0.125 0.048 0.047 
	0.079 0.083 0.049 0.053 

	500 
	500 
	100 
	0.000 0.209 0.045 0.046 
	0.079 0.097 0.057 0.053 


	Note: “pool” is the pooled CCE, “MG” is the CCEMG, “DTMG” is the Mahalanobis-depth-based trimmed CCEMG, and “XTMG” is the marginally trimmed CCEMG estimators. 
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