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Abstract

The radiative decays of the phi meson are known to be a good source of information

about the a0(980) and f0(980) scalar mesons. We discuss these decays starting from

a non-linear model Lagrangian which maintains the (broken) chiral symmetry for the

pseudoscalar (P), scalar (S) and vector (V) nonets involved. The characteristic feature

is derivative coupling for the SPP interaction. In an initial approximation which models

all the scalar nonet radiative processes together with the help of a point like vertex,

it is noted that the derivative coupling prevents the a0 and f0 resonance peaks from

getting washed out (by falling phase space). However, the shapes of the invariant

two final PP mass distributions do not agree well with the experimental ones. For

improving the situation we verify that inclusion of the charged K meson loop diagrams

in the model does reproduce the experimental spectrum shapes in the resonance region.

The derivative coupling introduces quadratic as well as logarithmic divergences in this

calculation. Using dimensional regularization we show in detail that these divergences

actually cancel out among the four diagrams, as expected from gauge invariance. We

point out the features which are expected to be important for further work on this

model and for learning more about the puzzling scalar mesons.

http://arXiv.org/abs/hep-ph/0601052v1
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1 Introduction

Recently, there have been a number of important experimental studies [1] of the rare radiative

decays of the φ(1020) vector meson: φ → ππγ and φ → πηγ. These decays seem to be

dominated by the production (and subsequent decay) of the scalar mesons, a0(980) and

f0(980) according to φ → f0, a0 + γ and hence are generally considered to provide valuable

information about the puzzling light scalar mesons[2] of low energy QCD.

The theoretical analysis of this type of decay was initiated by Achasov and Ivanchenko

[3] and followed up by many others [4]. The starting point was the observation that the φ

meson decays about 50 per cent of the time into K+K−. Since this final state can easily

annihilate to produce either an f0 or a0 together with an emitted photon, it is rather natural

to consider charged K-meson loop diagrams to describe the process. Similarly the φ meson

is observed to decay about 15 per cent of the time to πρ or π+π−π0 so one expects some non

resonant background which is likely to include the emission of a pion with a virtual ρ which

subsequently decays into πγ (and similar diagrams leading to a π0ηγ final state).

The varied calculations along these lines lead to results which more or less agree with

experiment. Of course it is desirable to fine tune this agreement, both to reflect the expected

improved accuracy of new experiments as well as to improve our understanding of strong

interaction calculations. Here we will focus on some technical points, which do not much

change the previous results but may be of interest for future more ambitious calculations as

more experimental data become available. Mainly, we will require that the amplitudes all be

computed from a chiral invariant Lagrangian (containing usual quark mass induced breaking

terms). This is a symmetry of nature apparently so it is desirable to calculate in this way

even though the spontaneous breakdown of chiral symmetry (in the absence of quark mass

terms) means that, especially away from thresholds, one can often get reasonable predictions

by not explicitly taking it into account.

Two approaches are commonly employed to implement the chiral symmetry in the ef-

fective Lagrangian framework. In the linear sigma model approach, scalar partners of the

pseudoscalars are introduced. In the non-linear sigma model approach, one initially deals

with pseudoscalars only, the scalars having been essentially “integrated out”. The character-

istic feature of the non linear model is the appearance of derivative type interaction terms as

opposed to non derivative type interaction terms in the linear model. Nevertheless, the non

linear model is often more convenient to use. For example, the celebrated result [5] for near

threshold pi pi scattering arises in the linear model from a delicate cancellation of two rather

large terms. On the other hand it arises directly from a simple single term of the correct

characteristic strength in the non linear model. In the present paper we shall deal with the
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non linear model approach. Since vector and scalar mesons are also involved in the processes

of interest we will add these to the non linear Lagrangian of pseudoscalars in a conventional

way. Such a formulation essentially implements vector meson dominance automatically for

processes involving photons.

We shall restrict our attention further here to processes of the type φ → γ + virtual scalar

where the virtual scalar (either a0 or f0) subsequently decays to two pseudoscalars. First

we shall consider a possible non - K+ loop contribution to this process. We previously [6]

studied this by introducing an effective strong VVS (vector-vector scalar) interaction based

on an analogy to the effective VVP (vector vector pseudoscalar) interaction used many years

ago [7] to study analogous processes like ω(782) → π0γ. This might open the possibility of

understanding properties of the whole nonet of scalars at once. Especially, it might shed

some light on the composition of the light scalar nonet; whether the light scalar mesons

are composed of one quark and one anti-quark (2-quark picture) or two quarks and two

anti-quarks (4-quark picture).

In the present paper, we point out an interesting effect. If a non derivative SPP type

interaction were to be used there would be a strong tendency for the decreasing phase space

to wash out the predicted scalar meson peak in, for example, dΓ(φ → π0ηγ)/dq. Here q2 is

the invariant squared mass for the πη system. On the other hand, the use of a derivative type

SPP interaction, as is required for chiral symmetry in the non linear sigma model approach,

restores the peak. (There is not necessarily any contradiction with the expectation that the

same physics near threshold should be expressed by suitably generalized linear and non linear

models. One expects the linear model description to include additional terms). However,

we notice that there is experimentally more enhancement of the scalar peak than can be

accounted for by this mechanism. Thus we are led to also consider the usual K+ loop

diagram in our approach.

As mentioned, the K+ loop diagram has been considered by many authors [3, 4]. We

can not basically change the well established results. However we note that the effect of the

derivative couplings will also sharpen the scalar peak. Actually, the derivative SPP couplings

result in quadratic as well as logarithmic divergences and an additional diagram. It has been

found [8] that such“unpleasant details” of the calculation can be circumvented by assuming

gauge invariance. Specifically, gauge invariance requires that the amplitude for φ → photon +

scalar be proportional to ǫµǫ
V
ν (δµνp·k−pµkν), where ǫV and p are respectively the polarization

and momentum four vectors of the φ meson while ǫ and k correspond to the photon. Then

it is only necessary to calculate the coefficient of the pµkν term, which eliminates the need to

calculate two diagrams and worry about divergences actually cancelling each other. Of course

it would be nice to regulate all the diagrams and verify in detail how the cancellations take
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place. We have carried out this somewhat lengthy task using the dimensional regularization

scheme and will give details in the present paper.

In section 2, we first present the chiral Lagrangian of pseudoscalars, vectors and scalars

which will be used for the subsequent calculations. Our initial motivation, described in

Ref. [6], was to relate all the decays of the types S→ γγ, V →Sγ and S →Vγ to each other

by using a simple effective point like interaction. We next consider the φ(1020) decays into

π0η and π0π0 proceeding respectively from intermediate a0(980) and f0(980) resonances in

this simple model. It can be seen that the spectrum shapes for large q are not as sharply

peaked as the experimental data indicate.

In section 3, we calculate the form of the charged K meson loop contributions to these

two decays using a non-linear chiral Lagrangian which maintains the chiral invariance when

vectors and scalars as well as pseudoscalars are included. The extension to include photon

interactions is given. It is noted that individual diagrams contain quadratic as well as

logarithmic divergences. A careful treatment using the dimensional regularization scheme

shows that these divergences both cancel leaving a finite answer.

In section 4 we study the spectrum shape of the K-loop contributions to these decays. We

find that this has a characteristic shape which does in fact agree with experiment, suggesting

that the dynamics of the K loop plays an important role.

Section 5 contains a brief summary. Some discussion will be given on the status of the

present program and related future work.

2 VVS type contributions to φ → π0ηγ and φ → π0π0γ

Our calculation is based on a standard non-linear chiral Lagrangian containing, in addition

to the pseudoscalar nonet matrix field φ, the vector meson nonet matrix ρµ and a scalar

nonet matrix field denoted by N . Under chiral unitary transformations of the three light

quarks; qL,R → UL,R · qL,R, the chiral matrix U = exp(2iφ/Fπ), where Fπ ≃ 0.131 GeV,

transforms as U → UL · U · U †
R. The convenient matrix K(UL, UR, φ) [9] is defined by the

following transformation property of ξ (U = ξ2): ξ → UL · ξ · K† = K · ξ · U †
R, and specifies

the transformations of “constituent-type” objects. The fields we need transform as

N → K · N · K† ,

ρµ → K · ρµ · K† +
i

g̃
K · ∂µK

† ,

Fµν(ρ) = ∂µρν − ∂νρµ − ig̃ [ρµ , ρν ] → K · Fµν · K† , (2.1)
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where the coupling constant g̃ is about 4.04. One may refer to Ref. [10] for our treatment

of the pseudoscalar-vector Lagrangian and to Ref. [11] for the scalar addition. The entire

Lagrangian is chiral invariant (modulo the quark mass term induced symmetry breaking

pieces) and, when electromagnetism is added, gauge invariant. The U(3)L ×U(3)R invariant

portion of the effective Lagrangian reads: #1

L0 = − F 2
π

2
Tr(pµpµ) − 1

4
Tr(Fµν(ρ)Fµν(ρ))

− 1

2
Tr(DµNDµN) − m2

v

2g̃2
Tr
[
(g̃ρµ − vµ)2

]

− aTr(NN) − cTr(N)Tr(N)

+ F 2
π [AǫabcǫdefN

d
a (pµ)e

b(pµ)f
c + BTr(N)Tr(pµpµ)

+ CTr(Npµ)Tr(pµ) + DTr(N)Tr(pµ)Tr(pµ)] (2.2)

where DµN = ∂µN − ig̃ρµN + iNg̃ρµ.#2 Furthermore vµ, pµ = (i/2)(ξ∂µξ
† ± ξ†∂µξ), where

ξ = U1/2. These terms include the parameters m2
v, a, c, A, B, C and D. More details about

the evaluation of these parameters are discussed in Refs. [16] and [10].

It should be remarked that the effect of adding vectors to the chiral Lagrangian of pseu-

doscalars only is to replace the photon coupling to the charged pseudoscalars as,

ieAµ Tr
(
Qφ

↔

∂µ φ
)
→

eAµ

[
kg̃F 2

πTr (Qρµ)

+i

(
1 − k

2

)
Tr
(
Qφ

↔

∂µ φ
)]

+ · · · , (2.3)

where Aµ is the photon field, Q = diag(2/3,−1/3,−1/3) and k =
(

mv

g̃Fπ

)2
with mv ≃

0.76 GeV. The ellipses stand for symmetry breaking corrections. We see that in this model,

#1This Lagrangian can be rewritten within the framework of the hidden local symmetry (HLS) [12, 13].

The method of including vector mesons used in this paper based on the proposal in Refs. [14] is equivalent

to that based on the HLS approach at tree level. [15] When we consider the vector mesons inside the loop,

the two approaches might have some differences. In the present analysis, however, we will consider the loop

corrections from only the kaon, which provides a large enhancement to the φ radiative decay amplitude. All

other loop corrections from vector mesons are naturally expected to be small. In this sense, the method used

in this paper is completely equivalent to the recently developed method [13] used in the HLS. Note that the

scalar mesons have not been included inside the loop in either approach.
#2One could also use for the covariant derivative, the combination cg̃ρµ + (1 − c)vµ with c being an

arbitrary constant. In any case, there are a few more terms such as tr ((g̃ρµ − vµ)N (g̃ρµ − vµ)N) and

tr
(
(g̃ρµ − vµ)

2
N2
)
, which include the same number of derivatives. We note that the above extra terms as

well as the interaction terms from the covariant derivative do not contribute in the present analysis, where

we are considering the processes related to only one scalar meson.
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Sakurai’s vector meson dominance [17] simply amounts to the statement that k = 2 (the

KSRF relation [18]). This is a reasonable numerical approximation which is essentially stable

to the addition of symmetry breakers [10, 19] and we employ it here by neglecting the last

term in Eq. (2.3).

The proposed effective SVV type terms in the effective Lagrangian are [6]:

LSV V = βA ǫabcǫ
a′b′c′ [Fµν(ρ)]aa′ [Fµν(ρ)]bb′ N

c
c′

+ βB Tr [N ] Tr [Fµν(ρ)Fµν(ρ)]

+ βC Tr [NFµν(ρ)] Tr [Fµν(ρ)]

+ βD Tr [N ] Tr [Fµν(ρ)] Tr [Fµν(ρ)] . (2.4)

Chiral invariance is evident from Eq. (2.1) and the four flavor-invariants are needed for

generality. (A term ∼ Tr(FFN) is linearly dependent on the four shown). Actually the βD

term does not contribute in our model so there are only three relevant parameters βA, βB

and βC .

2.1 a0(980) production

The Feynman diagram for the contribution from the new VVS terms to the decay process

φ(p, ǫV ) → π0(q1)η(q2)γ(k, ǫ) is shown in Fig. 1. Note that the photon is produced through

)
1

(qπ

0ρ

0

)
2

(q

ε)

)Vε

(k,

(p,φ

a

γ

η

Figure 1: Feynman diagram for φ(p, ǫV ) → π0(q1)η(q2)γ(k, ǫ) using an effective VVS term

its mixing with vector mesons according to Eq. (2.3). The Feynman amplitude is
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e(q1 · q2)Y
(πη)
a0

[
(p · k)(ǫV · ǫ) − (p · ǫ)(k · ǫV )

]
, (2.5)

where

Y (πη)
a0

=
Ca0

φ

g̃
Da0

(q2) γa0πη . (2.6)

Here Ca0

φ is given in terms of the coefficients of Eq. (2.4) and a scalar mixing angle in Eq. (8)

of Ref. [6] and will be considered, for generality, a single parameter. Furthermore we use the

simple a0 propagator:

Da0
(q2) =

1

m2
a0
− q2 − ima0

Γa0

. (2.7)

Also, q is the positive quantity:

q =
[
(p0 − k0)

2 − (p − k)2
]1/2

. (2.8)

Finally, the SPP type coupling constant in Eq. (2.6) as well as others needed in this paper

are defined from the Lagrangian density:

LSPP = −γaoπηa
0
0∂µπ

0∂µη − γf0ππ√
2

f0∂µπ
0∂µπ

0

− γaKK̄√
2

a0
0∂µK−∂µK

+ − γfKK̄√
2

f0∂µK
−∂µK+ + · · · . (2.9)

The relations between these coefficients to A, B, C, D in Eq. (2.2) are given in Appendix C

of Ref. [11]. The “q-distribution” dΓ(φ → π0ηγ)/dq is expressed as

dΓ(φ → π0ηγ)

dq
=

α

768π2

(
M2

φ − q2

Mφ

)3√
[q2 − (mη + mπ)2] [q2 − (mη − mπ)2]

q2

×
(
q2 − m2

π − m2
η

)2 ∣∣∣Y (πη)
a0

∣∣∣
2

. (2.10)

Discussion of the phase space integral is given, for example, in Ref. [20].

Now let us see how well we can fit the experimental data on the π0η invariant mass

distribution in this model. We will use the inputs: ma0
= 984.7 MeV (from the PDG

table [20]); Γa0
= 70 MeV (from [21]); γa0πη = −6.80 GeV−1 (from [21, 22]).

Let us perform two types of fits for obtaining the best value of Ca0

φ (assuming g̃ to be

fixed at the value 4.04):

(I) use the data for all values of q = mπ0η , (2.11)

(II) use the data for mπ0η ≥ 850 MeV . (2.12)

The results are
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(I) Ca0

φ = 3.7 ± 0.1 GeV−1 , χ2/d.o.f = 41/(32 − 1) ,

(II) Ca0

φ = 3.6 ± 0.1 GeV−1 , χ2/d.o.f = 32/(17 − 1) . (2.13)

Figure 2 shows the resulting plots of dB(φ → π0ηγ)/dq together with the experimental data.

Note that, since only the combination γa0πηC
a0

φ /g̃ appears in our fitting procedure, the best

fitted curve will not change even if we allow the values of γa0πη and g̃ to vary.

750 800 850 900 950 1000

2

4

6

8

Figure 2: dB(φ → π0ηγ)/dq × 107 (in units of MeV−1) as a function in the π0-η invariant

mass q = mπ0η (in MeV). Solid line shows the a0 contribution with the best fitted value

Ca0

φ = 3.7 GeV−1, and the dashed line shows that with Ca0

φ = 3.6 GeV−1, Experimental data

indicated by white diamonds (3) are from the SND collaboration in Ref. [23], and those by filled

triangles and filled diamonds are shown in Ref. [24] extracted from the KLOE collaboration in

Ref. [25].

This model gives a poor fit to the experimental data in the energy region above 950 MeV.

One possibility is that the fit may be improved by raising the mass of a0 above 984.7 MeV.

Actually, Ref. [23] gives the best fit value as ma0
= 995+52

−10 MeV. Let us then fit the a0 mass

together with value of Ca0

φ . The results are

(I) Ca0

φ = 4.0 ± 0.1 GeV−1 , ma0
= 993.2 ± 2.8 MeV , χ2/d.o.f = 39/(32 − 2) ,

(II) Ca0

φ = 3.9 ± 0.1 GeV−1 , ma0
= 990.4 ± 2.5 MeV , χ2/d.o.f = 31/(17 − 2) . (2.14)

Note that the best fit value of ma0
in case (II) is very close to the values shown in Ref. [23].

In Fig. 3, we plot dB(φ → π0ηγ)/dq together with the experimental data. This figure shows

that it is still difficult to reproduce the experimental data in the energy region above 950 MeV

in the present model even if one allows the a0 mass to vary.

For comparison with the chiral symmetric case, we will now investigate the effect of

using non-derivative coupling at the a0π
0η interaction vertex. This amounts to multiplying

Eq. (2.10) by the factor:
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750 800 850 900 950 1000

2

4

6

8

Figure 3: dB(φ → π0ηγ)/dq × 107 (in units of MeV−1) as a function in the π0-η invariant

mass q = mπ0η (in MeV). Solid line shows the a0 contribution with the best fitted values

Ca0

φ = 4.0 GeV−1 and ma0
= 993.2 MeV, and the dashed line shows that with Ca0

φ = 3.9 GeV−1

and ma0
= 990.4 MeV. Experimental data are as in Fig. 2.

(m2
a0
− m2

π − m2
η)

2

(q2 − m2
π − m2

η)
2

, (2.15)

which has the effect of deemphasizing the high q region. It yields

(I) Ca0

φ = 2.13 ± 0.07 GeV−1 , χ2/d.o.f = 113/(32 − 1) ,

(II) Ca0

φ = 2.68 ± 0.08 GeV−1 , χ2/d.o.f = 67.9/(17 − 1) . (2.16)

Furthermore, Fig. 4 shows the plot of dB(φ → π0ηγ)/dq together with the experimental

data. Comparing this figure with Fig. 2 and the results in Eq. (2.16) with those in Eq. (2.13)

indicates that the derivative coupling model gives a better fit. The non derivative coupling

factor clearly seems to wash out the resonance peak.

2.2 f0(980) production

The treatment of the decay φ → π0π0γ assuming only the VVS type interaction where S is

identified as f0(980) and subsequently decays to the two neutral pions, proceeds in a similar

manner. Again it is found that the use of a chiral symmetric derivative type interaction is

to be preferred because it does not wash out the scalar resonance peak. However the overall

fit to the ππ invariant mass distribution is not good, again suggesting that the VVS type of

contribution is not the dominant one. In this case, dΓ(φ → π0π0γ)/dq is given by,

dΓ(φ → π0π0γ)

dq
=

α

1536π2

(
M2

φ − q2

Mφ

)3√
q2 − 4m2

π

(
q2 − 2m2

π

)2 ∣∣∣Y (ππ)
f0

∣∣∣
2

, (2.17)

where
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750 800 850 900 950 1000

2

4

6

8

Figure 4: dB(φ → π0ηγ)/dq × 107 (in units of MeV−1) as a function in the π0-η invariant

mass q = mπ0η (in MeV). Solid line shows the a0 contribution in the non-derivative coupling

model with the best fit value Ca0

φ = 2.13 GeV−1 and the dashed line shows that with Ca0

φ =

2.68 GeV−1 Experimental data are as in Fig. 2.

Y
(ππ)
f0

=
Cf0

φ

g̃
Df0

(q2)
√

2γf0ππ . (2.18)

The f0 propagator is:

Df0
(q2) =

1

m2
f0
− q2 − imf0

Γf0

, (2.19)

and we will use the mass of the f0(980) to be [26] 987 MeV. The coupling constant γf0ππ is

related to the width of f0 as [26]

Γf0
=

3

64π

γ2
f0ππ

mf0

√√√√1 − 4m2
π

m2
f0

(
m2

f0
− 2m2

π

)2
. (2.20)

In Ref. [26] a treatment of ππ scattering suggested Γf0
≈ 64.6MeV and correspondingly

|γf0ππ| ≈ 2.25 GeV−1. Considering both ππ and πK scattering, γf0ππ ≈ 1.47 GeV−1 and

Γf0
≈ 27.6MeV were determined in Ref. [11].

Using for example |γf0ππ| = 1.47 GeV−1 let us next fit the value of Cf0

φ to the experimental

data. Furthermore, to avoid any possible confusion with an expected low energy contribution

from the σ we shall use experimental data only in the region

mπ0π0 ≥ 850 MeV . (2.21)

This yields

Cf0

φ ≈ 9.3GeV−1 , χ2/d.o.f. = 101/(17 − 1) . (2.22)

In Fig. 5, we show the resultant f0 contribution together with the experimental data [27, 28].



11

400 500 600 700 800 900 1000

20

40

60

80

875 900 925 950 975 1000
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(a) (b)

Figure 5: dB(φ → π0π0γ)dq×108 (in units of MeV−1) as a function of the dipion invariant mass

q = mπ0π0 (in MeV). Solid line shows the f0 contribution with Cf0

φ = 9.3 GeV−1. (a) shows

the result in the entire energy region, and (b) shows that in mπ0π0 ≥ 850 MeV. Experimental

data shown by ◦ are from Ref. [27], and those by • are from Ref. [28].

3 Charged K loop contribution

Now let us explore the K-loop contributions to the radiative φ decays. The relevant Feynman

diagrams are shown in Fig. 6. The diagrams (c) and (d) each give the same result while (a)

and (b) are required by gauge invariance. Notice from Eq. (2.3) that the direct photon-two

pseudoscalar vertex vanishes in this model when k = 2 is adopted, as we are doing here. #3

Thus the two pseudoscalars first couple to ρ, ω and φ which then transform to a photon as

shown in Figs. (c) and (d). The strong vector-two pseudoscalar interaction vertices may be

read from the fourth term of Eq. (2.2) while the scalar-two pseudoscalar interaction vertices

are derived from the A, B, C and D terms of this equation (and explicitly given in Eq. (2.9)).

Note again that the Lagrangian density of Eq. (2.2) treats all of the pseudoscalars, scalars

and vectors in a consistent chiral invariant manner. It can be modified to include gauge

invariant photon interactions by making the replacements:

vµ → ṽµ = vµ +
1

2
eAµ

(
ξQξ† + ξ†Qξ

)
,

pµ → p̃µ = pµ +
1

2
eAµ

(
ξQξ† − ξ†Qξ

)
,

#3In the present analysis, we just use k = 2 for simplicity in calculation so that two kaons couple to gamma

only through vector meson intermediate lines keeping vector meson dominance.
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(a) (b)

p

k

q
l - Q

l l - p

l

(c)

l + k
l

(d)

l + p

l

l - Q

l - Q

Figure 6: Feynman diagrams for the charged K loop contributions to φ(p, ǫV ) → a0(Q)+γ(k, ǫ).

The solid line denotes the a0 meson, the wavy line the photon, the double solid line the vector

mesons (ρ, ω, φ) and the dashed line the K meson. p, k and Q are the momenta of the φ

meson, the photon and the a0(980), respectively, and l is the loop momentum.
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ρµ → ρ̃µ = ρµ , (3.1)

where A and Q were defined after Eq. (2.3). Under an infinitesimal electromagnetic gauge

transformation with δAµ = ∂µλ(x), p̃µ and ṽµ − g̃ρ̃µ in Eq. (3.1) do not contain any terms

proportional to ∂µλ(x). When substituted into Eq. (2.2), the above replacements yield, in

addition to Eq. (2.3) the four field photon interaction terms in the Lagrangian density:

em2
v

g̃F 2
π

AµφµK
+K− + i

eγaKK√
2

Aµa
0
0(K

+∂µK− − K−∂µK
+) + · · · , (3.2)

where φµ is the φ-meson field and a0
0 is the neutral a0(980) scalar meson field. #4 Now

it is straightforward to obtain the K loop amplitudes (with the assumption k = 2) for

φ(p, ǫV ) → a0(Q) + γ(k, ǫ):

Sa = h
∫ d4l

i(2π)4

[l · (Q − l)][ǫ · ǫV ]

[l2 + m2
K ][(Q − l)2 + m2

K ]
,

Sb = −h

2

∫
d4l

i(2π)4

[(2l − p) · ǫV ][(2l − p) · ǫ]
[l2 + m2

K ][(p − l)2 + m2
K ]

,

Sc = Sd = −h

2

∫
d4l

i(2π)4

[l · (Q − l)][(2l + k) · ǫ][(2l + k − Q) · ǫV ]

[l2 + m2
K ][(Q − l)2 + m2

K ][(k + l)2 + m2
K ]

, (3.3)

where

h =
em2

vγaKK√
2g̃F 2

π

≈
√

2eg̃γaKK , (3.4)

and the KSRF relation was used in the last step. Note that the quantity defined in Eq. (2.8),

q2 = −Q2. To get the amplitude for the decay φ → f0γ we should replace γaKK by γfKK in

Eq. (3.4).

The next step is to regulate the divergences which occur in these amplitudes. We employ

the dimensional regularization scheme and thus continue from 4 to d space-time dimensions

according to the formula:

∫
ddl

i(2π)d

1

(l2 + s)n
=

Γ(n − d/2)

(4π)d/2Γ(n)sn−d/2
, (3.5)

where n is an integer while s is arbitrary. The physical amplitudes will emerge in the limit

when ǫ = 4 − d → 0. It is convenient to define:

#4The terms such as ǫabcǫdefNd
a (g̃ρµ − vµ)

e

b
(g̃ρµ − vµ))

f

c
can be added into the Lagrangian (2.2). Although

they do not contribute at tree level to the radiative decays studied in the present analysis, they generate the

vertex of type SV γPP , which gives the quantum correction to SV γ vertex. Since this quantum correction

does not depend on the external momenta, its contribution is absorbed into the redefiniton of the effective

SV γ coupling CS
V .
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1

ǭ
=

2

ǫ
− γ + ln(4π), (3.6)

where γ ≈ 0.577 is the Euler-Mascheroni constant.

For Sa we use the identity l ·Q− l2 = −1/2[(l−Q)2 +m2
K ]−1/2(l2 +m2

K)+(m2
K +Q2/2)

to write:

Sa = ihδµνǫ
V
µ (p)ǫν(k)[−A0(m

2
K) +

1

2
(2m2

K + Q2)B0(Q
2)], (3.7)

where

A0(m
2
K) =

∫
ddl

i(2π)d

1

l2 + m2
K

,

B0(Q
2) =

∫
ddl

i(2π)d

1

[l2 + m2
K ][(l − Q)2 + m2

K ]
. (3.8)

For Sb we define:

Sb = −i
h

2
ǫV
µ (p)ǫν(k)Bµν(p),

Bµν(p) =
∫

ddl

i(2π)d

(2l − p)µ(2l − p)ν

[l2 + m2
K ][(p − l)2 + m2

K ]
. (3.9)

Finally, for the triangle diagrams we similarly rearrange the numerator to get:

Sc = Sd = −i
h

2
ǫV
µ (p)ǫν(k)[−1

2
Bµν(k) + QµBν(−k) +

1

2
QµkνB0(k

2)

− 1

2
Bµν(p) − Bµ(p)Qν +

1

2
pµQνB0(p

2) +
1

2
(2m2

K + Q2)Xµν(p, k)], (3.10)

wherein B0(p
2) and Bµν(p) have been already defined while,

Bµ(p) =
∫

ddl

i(2π)d

lµ
[l2 + m2

K ][(l − p)2 + m2
K ]

, (3.11)

and

Xµν(p, k) =
∫

ddl

i(2π)d

(2l + k − Q)µ(2l + k)ν

[l2 + m2
K ][(Q − l)2 + m2

K ][(k + l)2 + m2
K ]

. (3.12)

Note that k2 = 0 since it corresponds to a physical photon momentum.

Using Feynman’s trick for combining denominators and Eqs. (3.5) and (3.6) we evaluate

the integral B0(p
2) near d = 4:

B0(p
2) =

1

(4π)2
[
1

ǭ
− F0(p

2)],

F0(p
2) =

∫ 1

0
dx ln[m2

K − x(x − 1)p2]. (3.13)
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We also find

Bµ(p) =
1

2
pµB0(p

2). (3.14)

The presence of a pole at d = 4 indicated by the term 1/ǭ corresponds, of course, to a

logarthmic divergence in the cutoff regularization method.

Using the integrals defined above we can compactly write the total amplitude as:

S = Sa + Sb + Sc + Sd

= i
h

2
ǫV
µ (p)ǫν(k)[δµν(−2A0(m

2
K) + (2m2

K + Q2)B0(q
2)) + Bµν(k)

− (2m2
K + Q2)Xµν(p, k)]. (3.15)

Notice, in particular, that the contribution of Sb has cancelled out against a piece of the

triangle diagrams.

The evaluation of an integral of the form Bµν(p) is a little more complicated. We use

covariance (in d-dimensions) to relate it to the other integrals as:

Bµν(p) = δµν
4

1 − d
[−A0(m

2
K)

2
+ (m2

K +
p2

4
)B0(p

2)]

+ pµpν [
4

p2
((1 +

1

2

d

1 − d
)A0(m

2
K) − m2

K(1 +
d

1 − d
)B0(p

2)

− p2

4

d

1 − d
B0(p

2)) − B0(p
2)]. (3.16)

We see that Bµν contains the integral A0(m
2
K) which is noted from Eq. (3.8) to involve a

quadratic divergence in the cut-off regularization scheme. In the dimensional regularization

approach this corresponds [29] to a pole at d = 2, as may be seen from Eq. (3.5). It is

necessary to check that this divergence cancels out in the total amplitude. This may be done

by using Eq. (3.16) to get, near d = 2:

Bµν(k)|k2=0 = 2A0(m
2
K)δµν + · · · , (3.17)

where the three dots indicate terms not containing A0(m
2
K). Substituting this into Eq. (3.15)

(considered at d=2) shows that all dependence on A0(m
2
K) at d = 2 is cancelled, as desired.

We interpret this as the cancellation of the quadratic divergences in the individual diagrams.

For the physical case we must consider, of course, the amplitude evaluated near d = 4.

The integral A0(m
2
K) is, near d = 4:

A0(m
2
K) = − m2

K

(4π)2

[
1

ǭ
+ 1 − ln(m2

K)
]

. (3.18)

Using Eq. (3.16) we find for Bµν(k) near d = 4 and k2 = 0:
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Bµν(k) = 2A0(m
2
K)δµν +

1

3(4π)2
kµkν

[
1

ǭ
− ln(m2

K) +
2

3

]
, (3.19)

wherein the first term was separated for convenience. Note that the kµkν term will not

contribute to the physical amplitude because it gets multiplied by the photon polarization

vector ǫν(k). Now substituting Eq. (3.19) into the total amplitude, Eq. (3.15), shows that

its effect is simply to cancel the −2A0(m
2
K) term.

To evaluate the remaining, Xµν(p, k) term we first use covariance to express it as:

Xµν(p, k) = δµνX1 + pµpνX2 + kµkνX3 + pµkνX4 + kµpνX5 , (3.20)

where each of the Xi depends on p2 and p·k. The Xi may be determined by calculating Xµµ,

kµXµν , pνXµν and kµpνXµν both from Eq. (3.20) and from Eq. (3.12). This leads to the

relations (remembering k2 = 0):

X2 = 0,

B0(Q
2) = X1 + k·pX5,

0 = k·pX3 + p2X4,

X5 =
1

(p·k)2
[

p2

d − 2
(B0(Q

2) − B0(p
2)) + (p·k +

Q2 − p2

d − 2
)B0(Q

2)

+
4m2

Kk·p
d − 2

C(p2, k·p)], (3.21)

where the finite integral C(p2, k·p) is given by:

C(p2, k·p) =
∫

d4l

i(2π)4

1

[l2 + m2
K ][(l − Q)2 + m2

K ][(l + k)2 + m2
K ]

. (3.22)

Actually, only the coefficients X1 and X5 remain after Xµν is multiplied by the polarization

vectors of the photon and φ meson; furthermore these two coefficients are related as above.

Substituting back into the total amplitude, Eq. (3.15) and making use of the cancellation

between the A0(m
2
K) and Bµν(k) terms discussed before, yields:

S = i
h

2
ǫV
µ (p)ǫν(k)

(
−δµν

p·k +
kµpν

(p·k)2

)
(2m2

K + Q2)

[
p2

2

{
B0(Q

2) − B0(p
2)
}

+ 2m2
K(p·k)C(p2, p·k) − p·k

(4π)2

]
. (3.23)

Note that the last term arises from the 1/ǫ term in B0(Q
2) multiplying the leading ǫ term of

its factor. From Eq. (3.13) we see that the logarithmic divergences cancel out of the difference

(B0(Q
2) − B0(p

2)). Thus the final amplitude is completely finite; both the logarithmic and

quadratic divergences have been seen to cancel using regularized expressions for everything.
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The quadratic divergences arose in the first place because of the derivative-type interactions

required by use of the non linear sigma model terms to describe the pseudoscalar meson

interactions. In addition, the starting Lagrangian treated the vector and scalar mesons in

the same chiral invariant framework.

Evaluation of the finite integrals in Eq. (3.23) yields the final expression for the Feynman

amplitude, iS:

iS = −h

2

1

(4π)2
ǫV
µ (p)ǫν(k)(− δµν

p · k +
kµpν

(p·k)2
)(2m2

K + Q2)
{
−p·k

+
p2

2

(
σ(p2)[ln

1 + σ(p2)

1 − σ(p2)
− iπ] − σ(Q2)[ln

1 + σ(Q2)

1 − σ(Q2)
− iπ]

)

+
m2

K

2

(
[ln

1 + σ(p2)

1 − σ(p2)
− iπ]2 − [ln

1 + σ(Q2)

1 − σ(Q2)
− iπ]2

)}
, (3.24)

where,

σ(p2) =

√√√√1 +
4m2

K

p2
,

σ(Q2) =

√√√√1 +
4m2

K

Q2
, (3.25)

Note that Eq. (3.24) holds only in the kinematical range where −Q2 = q2 > 4m2
K ; the

positive quantity, q was also defined in Eq. (2.8). Furthermore note that p2 = −m2
φ. In the

kinematical range where −Q2 = q2 < 4m2
K , one should replace

[ln
1 + σ(Q2)

1 − σ(Q2)
− iπ] → −2i tan−1 1

σ̃(Q2)
,

σ(Q2) → iσ̃(Q2) = i

√√√√−1 − 4m2
K

Q2
, (3.26)

in Eq. (3.24) above.

4 Comparing the K loop with experiment

The expression in Eq. (3.24) describes the decay φ → a0γ. To get the Feynman amplitude for

φ → π0ηγ, we should multiply Eq. (3.24) by the factor (q1 · q2)Da0
(q2)γa0πη, where Da0

(q2)

was defined in Eq. (2.7). This assumes a simple form for the a0 propagator, which can

only be an approximation. However our main concern here is an initial exploration of the

resonance region in the present framework so it seems reasonable for now. We write the

resulting Feynman amplitude as
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iS(φ → π0ηγ) = e(q1 · q2)X
(πη)
a0

[
(p · k)(ǫV · ǫ) − (p · ǫ)(k · ǫV )

]
, (4.1)

which thereby defines X(πη)
a0

. Note that the sum X(πη)
a0

+ Y (πη)
a0

, where Y (πη)
a0

is defined in

Eq. (2.6), would correspond to a model containing both the K loop contribution to the

resonant amplitude as well as a point vertex contribution to the resonant amplitude. For

now we focus on the K-loop contribution. The decay spectrum shape, dΓ/dq is then obtained

by replacing Y (πη)
a0

in Eq. (2.10) by X(πη)
a0

. Conventionally, one uses instead,

dB(φ → π0ηγ)

dq
=

1

Γ(φ)

dΓ(φ → π0ηγ)

dq
, (4.2)

where Γ(φ) = 4.26MeV.

In section 2.1 we observed that, even though the use of derivative type SPP coupling

helped somewhat, the tree interaction involving the a0(980) resonance was unable to explain

the shape of the peak at large q in the experimental data for dB(φ → π0ηγ)/dq. Now

we will look at the result of using the K-loop amplitude for this purpose. Taking [20]

ma = 985MeV and Γa = 50-100MeV, the only quantity which is not well known is the

product of the scalar meson coupling constants γaKKγaπη. In Fig. 7, it is shown that a choice

γaKKγaπη = 125 GeV−2 can nicely explain the shape of the experimental data in the region

of q near the a0(980) resonance.

875 900 925 950 975 1000
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Figure 7: Predicted dB(φ → π0ηγ)/dq in the region of the a0(980) resonance with γaKKγaπη =

125 GeV−2 and Γa = 0.1GeV. The vertical scale has units 10−7 MeV−1. Experimental data

are as in Fig. 2.

For q below the resonance region, the K loop contribution in the present model falls off

rapidly, as one might reasonably expect with derivative coupling, and lies lower than the

data points. In addition to the nonresonant background [3] which is usually included to

explain this region, there might be some tree level resonance production which was observed

in Fig. 2 to peak around 950MeV.
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The main feature of the data is that there is a very rapid falloff with apparent discontinu-

ity of the slope, when q reaches the KK̄ threshold. This is a clear signal for the importance

of the K loop contribution. One may see this feature by referring to Fig. 8, for which the

a0(980) mass has been artificially lowered to 970MeV. Comparing with the previous figure

shows that the sharp fall-off is exactly the same in both cases, clearly unaffected by the dif-

ference of assumed resonance masses in the two cases. The difference in masses, on the other

hand, shows up as a difference in position of the peaks. It should be remarked that the peak

position is also affected by the decreasing phase space with increasing q. This characteristic

feature of the K-loop contribution was first illustrated by Achasov [30] by considering the

behavior of the result with lowered values of the K-meson mass.

875 900 925 950 975 1000

1

2

3

4

5

Figure 8: Predicted dB(φ → π0ηγ)/dq in the region of the a0(980) resonance but where the

a0 mass was artificially lowered to 970MeV. Here γaKKγaπη = 115 GeV−2 and Γa = 0.1GeV.

Experimental data are as in Fig. 2.

Next, let us check the dependence of the prediction on the width of a0(980). Figure 9

shows that the predicted dB(φ → π0ηγ)/dq in the region of the a0(980) resonance with

γaKKγaπη = 95GeV−2 and Γa = 0.05GeV. Comparing this prediction with that given in

Fig. 7, we see that the smaller a0 width gives a sharper peak, and that a smaller value

of γaKKγaπη can also reproduce the experimental data at the peak position. For further

decreasing the value of γaKKγaπη the inclusion of the K-loop correction into the propagator

of a0(980) may be important as pointed out in Ref. [30].

The K-loop contribution to the branching distribution, dB(φ → π0π0γ)/dq may be

similarly evaluated and compared to experiment. There is similarly a problem for the tree

level resonance model to reproduce this experimental shape in the high q region. The K loop

amplitude φ → f0(980)γ is given by Eq. (3.24) wherein the overall factor h is now obtained

by replacing γaKK in Eq. (3.4) by γfKK. To get the Feynman amplitude for φ → π0π0γ, we

should multiply Eq. (3.24) by the factor
√

2(q1 · q2)Df0
(q2)γf0ππ, where Df0

(q2) was defined
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Figure 9: Predicted dB(φ → π0ηγ)/dq in the region of the a0(980) resonance with γaKKγaπη =

95 GeV−2 and Γa = 0.05GeV. Experimental data are as in Fig. 2.

in Eq. (2.19). This defines X
(ππ)
f0

as in Eq. (4.1). The spectrum shape is determined by using

Eq. (2.17) with X
(ππ)
f0

replacing Y
(ππ)
f0

.

Taking [20] mf = 980 ± 10MeV and Γf = 40-100MeV, the only quantity which is not

well known is the product of the scalar meson coupling constants γfKKγfππ. In Fig. 10, it is

shown that a choice γaKKγfππ = 86 GeV−2 can nicely explain the shape of the experimental

data in the region of q near the f0(980) resonance.

875 900 925 950 975 1000
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Figure 10: Predicted dB(φ → π0π0γ)/dq in the region of the f0(980) resonance with

γfKKγfππ = 86 GeV−2 and Γf = 0.1GeV. The vertical scale has units 10−8MeV−1.

As in the case of the φ → π0ηγ process, the K-loop description of dB/dq only explains

the upper q region near the scalar resonance. To cover the lower q region some non resonant

background [3] is required. Possibly a tree level resonant background, corresponding to using

X
(ππ)
f0

+ Y
(ππ)
f0

in Eq. (2.17), would also be appropriate.

In both cases considered in this section, it is also desirable to include the effects of
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using multichannel scalar meson propagators [31] for a better approximation to the detailed

dynamics. A very recent treatment of the φ → π0π0γ process in this framework is given in

[32].

5 Summary and discussion

Historically, the study of elementary particle spectroscopy has been built around the orga-

nization of these particles into SU(3) flavor multiplets and the consequent predicted (broken

symmetry) mass formulas and interaction vertices. The still mysterious scalars can be ex-

pected to yield up some of their secrets by this type of analysis. Indeed some recent analyses

have already been carried out [11, 33, 34, 35, 36]. The most dramatic feature is that the

light scalars appear to exhibit, as originally suggested by Jaffe [37], a reverse mass ordering

compared to the other meson multiplets.

In Ref. [6] an attempt was made to extend the SU(3) analysis to relate all the decays of

the types S→ γγ, V→Sγ and S→Vγ to each other by using a simple effective VVS point-

like interaction, together with vector meson dominance. The analogous assumption [7] of a

point-like VVP structure was very successful [38] in phenomenologically correlating P→ γγ,

V→Pγ and P→Vγ decays. Such an approach was the original motivation which led to the

present investigation. In section 2 we compared the spectrum shape of the decays φ → ηπ0,

measuring the effects of an intermediate a0(980) resonance and φ → π0π0, measuring the

effects of an intermediate f0(980) resonance, in the point like VVS model with the corre-

sponding experimental observations. It was found that the resonant peaks in the model were

pushed lower due to decreasing phase space. This contrasted with experiment which does

not indicate this effect. On the other hand, if one were to use a tree model of this type with

non derivative SPP type couplings, the resonant peaks were seen to get completely washed

out. This would appear to be an advantage for the derivative coupling, which is dictated by

chiral symmetry in the present framework. Nevertheless, since even with derivative coupling

the spectrum shape is not very well fitted, there must be another mechanism at work.

Now, it has been emphasized [30] that the K-loop model for the φ radiative decays

constitutes a special mechanism which does give a characteristic spectrum shape in agreement

with experiment. This is readily understandable since the φ(1020) meson is just a little bit

heavier than the two K mesons which comprise its main decay product. We thus studied the

K-loop diagrams using the chiral Lagrangian of pseudoscalars, vectors and scalars given in

Eqs. (2.2) and (2.4) with the relevant photon terms introduced by the substitutions shown in

Eq. (3.1). Most of the calculations of this process have not started from a chiral symmetric
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Lagrangian and have thus used non-derivative type SPP type interaction vertices. The use

of derivative coupling introduces an extra complication in that there is an new diagram,

shown as (b) in Fig. 6. In addition, individual diagrams now contain quadratic as well

as logarithmic divergences. It is known that these divergences are forced to cancel from

gauge invariance. However we have used the dimensional regularization scheme and shown

explicitly in section 3 that both the log and quadratic divergences cancel in the regularized

expressions. This may be of some interest in dealing with processes of the present type.

In section 4, we observed that the shape of the a0(980) and f0(980) resonance regions

in the φ radiative decays could be explained by the corresponding K-loop amplitudes. Fur-

thermore, it was evident that the characteristic sharp drop in the amplitude at large q2

was associated with the the KK̄ threshold rather than with the falloff of the resonance

away from its peak. For this work, we used the coupling constant products γaKKγaπη and

γfKKγfππ respectively as fitting parameters for the φ radiative decay spectra into π0η and

π0π0. Elsewhere, we plan to study more precisely the values of these coupling constants

obtained by comparing with experiment, chiral models of meson meson scattering in which

the same interactions are used. We also will study how the point-like diagrams with resonant

contributions discussed in section 2 can be used in conjunction with the K-loop diagrams

to improve the fit to the resonant region. This will presumably become even more interest-

ing when more data points become available. Another point of interest concerns the extent

to which the various SPP coupling constants can be correlated assuming a single nonet of

scalars. This arises because there is some evidence [39] that two scalar nonets (one presum-

ably made from 4 quarks and the other from two quarks) mix to make up the physical scalar

states. A recent exploration of the effect of such a mixture on φ(1020) radiative decays has

been given in Ref. [40]. Still another correction to the simple picture employed here would

be to use more realistic resonance propagators by including pseudoscalar loops [31].

Of course, in order to make a careful comparison with experiment one should include

non-resonant contributions which are expected to dominate for small q. These will include

the emission of a pion with a virtual ρ which subsequently decays into πγ (and similar

diagrams leading to a π0ηγ final state) as discussed in Ref. [3]. There will also be non

resonant contributions from the K-loop diagrams. A variety of interference mechanisms to

explain the full spectrum are discussed in Ref. [41]. It should be noted that the “background”

contributions may very well have a non-trivial effect also in the resonance region itself.

Using the results obtained here and taking into account the features just discussed, we

will continue to study the φ radiative decays with the expectation that it may contribute to

the understanding of the puzzling scalar mesons and ultimately to low energy QCD.

DEDICATION: We are pleased to dedicate this paper to Rafael Sorkin in connection
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with the world wide web celebration of his sixtieth birthday. We have benefited a great deal

from our interactions with Rafael. We wish him good health and continued success in his

endeavor to understand the deepest mysteries of space-time structure.
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