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Abstract 

Using panel data and a “true” fixed effect stochastic frontier model, we estimate persistent and 

transient technical inefficiency in mathematics (Math) and English Language Arts (ELA) test score gains 

in NYC public middle schools from 2014 to 2016. We compare several measures of transient technical 

inefficiency and show that around 58% of NYC middle schools are efficient in Math gains, while 16% 

are efficient in ELA gains. Multivariate inference techniques are used to determine subsets of efficient 

schools, providing actionable decision rules to help policymakers target resources and incentives. 
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1. Introduction

While improving public school education has been an empirical concern of parents, teachers, researchers, 

and policymakers for decades, a challenge has been the debate over the balance between increasing 

financial resources or pressing schools to improve efficiency. This has led to a multi-pronged policy 

approach in the United States (US), including both increased public-school spending – real per-pupil 

expenditures in public education increased from $7,000 in 1980 to $14,000 in 2015 (Baron, 2019) – 

and increased public school accountability – for example, the No Child Left Behind Act of 2001 (NCLB; 

Public Law 107-110). Nonetheless, student academic performance in the US continues to lag other 

Organization for Economic Co-operation and Development (OECD) countries despite spending more 

per pupil (Grosskopf et al., 2014). This suggests inefficiency in US public schools, where a lack of 

competitive market forces may allow it to persist. Consequently, econometrics production models that 

account for the existence of inefficiency are required, and this paper leverages the stochastic frontier 

literature (due to Aigner at al. 1977 and Meeusen and van den Broeck, 1977) to estimate and perform 

inference on inefficiency measures for public middle schools (serving grades 6-8) in New York City from 

2014 to 2016. The nearest neighbors to our research are three recent stochastic frontier analyses of US 

public schools: Chakraborty et al. (2001), Kang and Greene (2001) and Grosskopf et al. (2014). Our 

research adds to this literature by applying a more flexible production specification (Greene 2005a, b) 

and modern inference techniques (Horrace, 2005; Flores-Lagunes et al., 2007), applied to data from the 

largest and one of the most diverse public-school systems in the country. 

Public schools in New York City (NYC) enroll over 1.1 million students in more than 1,700 

schools, of which over 200,000 are in middle school grades (grades 6 through 8) in more than 500 

schools. The city’s size and diversity provide a unique backdrop for a school efficiency study, because it 
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has many schools (the primary unit of observation) that operate under a common set of regulations, 

funding mechanisms, and procedures, reducing the potential for heterogeneity bias due to differences in 

the economic and policy environment. Moreover, understanding school inefficiency in this environment 

is of great importance as 72.8% of students in NYC public schools are from economically disadvantaged 

backgrounds, a characteristic often negatively associated with educational attainment (Hanushek and 

Luque, 2003; Kirjavainen, 2012). To this end, we construct a balanced panel of 425 public middle 

schools that operate from 2012 to 2016 to estimate each school’s technical inefficiency for the cohorts 

of students in grade 8 between the 2014 and 2016 academic years (AY). We begin with a school-level 

educational production function that measures output during middle school as the gains in mean students’ 

test scores in Math and English Language Arts (ELA) between grade 5 (in the spring semester before 

students enter middle school grades) and grade 8 (in the last spring semester of middle school). We use 

gains in testing outcomes to address concerns that produced outputs (e.g., proficiency rates or mean test 

scores) are a result of student quality (selection into middle schools) rather than school efficiency. Our 

production function, then, also includes inputs that broadly fit into three groups – student characteristics, 

teacher characteristics, and school characteristics – in order to provide estimates of and to control for the 

marginal effects of other features of the middle school environment. 

Aside from being the first stochastic frontier analysis of NYC public schools, to the best of our 

knowledge this paper is the first to apply the “true fixed effect stochastic frontier model” of Greene 

(2005a, b) to US school production.1 This model is highly flexible, because it accounts for both persistent 

 

 

1 Kirjavainen (2012) is the only other education paper that applies Greene’s model but to Finnish secondary schools. 
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(time-invariant) and transient (time-varying) inefficiency shocks. For example, Chakraborty et al. (2001) 

estimate only persistent inefficiency in a cross-section of Utah public schools. Kang and Greene (2001) 

estimate only transient inefficiency in an upstate NY public school district. Grosskopf et al. (2014) 

estimate only persistent inefficiency in public districts in Texas. We find that both persistent and 

transient inefficiency are present in NYC middle school production and ignoring either component is an 

empirical mistake.  

In addition to improved flexibility of our specification relative to others, our paper considers 

different measures of transient inefficiency and uses inferential techniques that offer policymakers a 

methodology to determine groups of schools that are on the efficient frontier. In particular, parametric 

stochastic frontier models only yield a truncated (below zero) normal distribution of inefficiency 

conditional on the production function residual for each school. The most common approach to attain 

point estimates of school-level inefficiency is then to calculate the means of these conditional 

distributions (Jondrow et al., 1982) and rank them. However, the mean of a positive and continuous 

random variable can never be zero, so these point estimates can never identify efficient (inefficiency 

equal to zero) schools. 2  Therefore, in addition to calculating the means of these truncated normal 

distributions for each school, we calculate their modes as a point estimate of school-level efficiency 

(Jondrow et al., 1982). Since the truncated normal distribution for each school has a mode at zero 

inefficiency with positive probability, the mode measure allows for efficiency ties, producing a group of 

 

 

2  An exception in the stochastic frontier literature is the Laplace model of Horrace and Parmeter (2018), which yields 

conditional distributions with a probability mass at zero inefficiency.  
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firms that are on the efficient frontier. We also “salvage” the conditional mean point estimate using the 

inferential techniques in Horrace (2005) and Flores-Lagunes et al. (2007), which may be used to select 

a subset of schools that are efficient at the 95% level. We compare the cardinality of the set of mode-

zero schools to the cardinality of the selected subset based on Horrace (2005).3  

In the absence of frontier-based analyses, many studies estimate school (and teacher) 

effectiveness using value-added models (Ladd and Walsh, 2002; Meyer, 1997). We note these 

techniques are different in both purpose and form from the models we use here. Beginning with purpose, 

value-added models typically aim to identify the benefits of educational inputs (for example, if value-

added increases when a policy is implemented) or the underlying quality of an education-producing unit 

(i.e., school or teacher), thus largely ignoring transient technical inefficiency. In fact, one of the major 

controversies of using value-added models for high-stakes public policy decisions stems from the 

assumption that deviations from each school’s (or teacher’s) fixed effect4 may provide evidence that 

estimates are unstable (Koedel et al., 2015; Schochet and Chiang, 2013). 5  The true fixed effect 

stochastic frontier model allows for a portion of annual deviations to reflect transient inefficiencies in 

education production (perhaps, for example, related to effort or changes in curriculum) and to estimate 

the size of transient inefficiency for each unit. Then, in terms of difference in form, traditional value-added 

 

 

3 Mizala et al. (2002) proposed an approach for salvaging the conditional mean point-estimate. The divide production units 

into four quadrants using an efficiency-achievement matrix and treating those in the first quadrant as efficient. However, the 

approach is ad hoc, and is no substitute for a proper inference procedure. 

4 Some use random effects to estimate value-added, but this is relatively rare in the value-added literature. 

5 Another major controversy stems from bias that results from non-random student selection into schools (Angrist, et al., 2017; 

Ladd and Walsh, 2002). 
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models estimate the value-added of a unit as deviations from the conditional mean, while in our model we 

use the regression equation to develop an efficiency frontier. Using our probability statement technique, 

then, we can estimate the likelihood that individual units or groups of units operate on this efficiency 

frontier in a given observation year (or not). Conversely, value-added methods require decisionmakers 

to designate ad hoc cut-offs to assign policy levers, perhaps flagging high-value-added units for rewards 

or low-value-added units for penalty. Taken together, we believe the true fixed effect stochastic frontier 

model can address some of the major controversies that surround the use of value-added models or 

previous stochastic frontier techniques used for education policymaking, in part because the model is 

intended to identify inefficiency rather than quality, and in part because it separates persistent from 

transient inefficiencies, which allows for better targeting of policy levers towards each form of 

inefficiency. 

In short, we find that student composition of a school is more predictive of production in ELA, 

while the teacher composition of a school is more predictive of Math production, which is consistent with 

conventional wisdom that ELA achievement is more reflective of home and individual characteristics, and 

Math achievement is more reflective of classroom characteristics (Bryk and Raudenbush, 1988). Second, 

by separating persistent technical inefficiency from transient technical inefficiency, we are able to show 

that both sources of inefficiency harm the productivity of middle schools in NYC (the conditional means 

of both sources range from about one-half to a whole standard deviation, depending on subject 

considered and estimator used). Third, we offer evidence that both efficient and inefficient schools 

operate in all five boroughs of NYC, suggesting school inefficiency is geographically dispersed and 

dispersed across schools serving high and low performing students. Fourth, by separating inefficiency 

from the error term (under our set of distributional assumptions), decisionmakers are better able to 
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assess the extent to which declining exam performance during middle school is due to inefficiency as 

opposed to statistical noise. Finally, we offer policymakers a pair of actionable decision rules that are 

methodologically rigorous and reflect true performance of schools, both derived from the true fixed 

effects model, including application of the conditional mode estimator to identify when schools operate 

efficiently or the more rigorous Horrace (2005) probabilities to identify a subset of the best.  

The rest of the paper is organized as follows. The next section presents the econometric model 

and reviews the stochastic frontier literature as it relates to research in educational inefficiency. Section 

3 discusses the data. Section 4 presents the empirical results. Section 5 concludes. 

2. Stochastic Frontier Models in Education Efficiency 

Stochastic frontier analysis (SFA) is an econometric technique to estimate a production function while 

accounting for statistical noise and inefficiency. A highly flexible specification for panel data is due to 

Greene (2005a, b), who considers the linear production function:  

𝑦𝑦𝑖𝑖𝑖𝑖  = 𝛼𝛼 + 𝑥𝑥𝑖𝑖𝑖𝑖′ 𝛽𝛽 + 𝑣𝑣𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑖𝑖 − 𝑤𝑤𝑖𝑖,    𝑖𝑖 = 1, … ,𝑛𝑛,   𝑡𝑡 = 1, …𝑇𝑇,   (1) 

where 𝑢𝑢𝑖𝑖𝑖𝑖 ≥ 0 is a random effect representing transient (time-varying) inefficiency of the ith school in 

period t, 𝑤𝑤𝑖𝑖 ≥ 0 is a fixed- (or random-) effect, and 𝑣𝑣𝑖𝑖𝑖𝑖  is the usual mean-zero random error term (or 

regression noise). The variable 𝑦𝑦𝑖𝑖𝑖𝑖  is productive output (e.g., student proficiency rates, average test 

scores, or gains in test scores). The 𝑥𝑥𝑖𝑖𝑖𝑖  is a vector of productive inputs (e.g., financial and nonfinancial 

resources, student characteristics and baseline performance, teacher quality and experience, principal 

quality, and other productive inputs), 𝛽𝛽 is an unknown vector of marginal products, and 𝛼𝛼 is an unknown 

constant. Assuming 𝑤𝑤𝑖𝑖  is fixed, let unobserved heterogeneity be 𝛼𝛼𝑖𝑖 = 𝛼𝛼 − 𝑤𝑤𝑖𝑖 , leading to the Greene 
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(2005a, b) true fixed-effect stochastic frontier model.6 In general, 𝑤𝑤𝑖𝑖  captures all forms of time-invariant 

unobserved heterogeneity. Nonetheless, the SFA literature refers to 𝑤𝑤𝑖𝑖  as “persistent technical 

inefficiency,” and we will follow the same practice in what follows. Our empirical focus is characterizing 

and making inferences on 𝑢𝑢𝑖𝑖𝑖𝑖. 

Identification of the model requires mutual independence of the random error components and 

the inputs over i and t. Since the mean of 𝑢𝑢𝑖𝑖𝑖𝑖  (conditional on inputs) is non-zero, identification also 

requires parametric distributional assumptions on the random error components, typically 

𝑣𝑣𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑣𝑣2)  with 𝑢𝑢𝑖𝑖𝑖𝑖~|𝑁𝑁(0,𝜎𝜎𝑢𝑢2)|  (half normal) or 𝑢𝑢𝑖𝑖𝑖𝑖  distributed exponential with variance 𝜎𝜎𝑢𝑢2 . 7 

Then a within- or first-difference transformation of the model and maximum likelihood estimation leads 

to consistent estimates of 𝛼𝛼 , 𝛽𝛽 , 𝜎𝜎𝑢𝑢2 , 𝜎𝜎𝑣𝑣2  (as 𝑇𝑇 𝑜𝑜𝑜𝑜 𝑛𝑛 → ∞) , and the MLE residuals can be used to 

consistently estimate 𝛼𝛼𝑖𝑖  (as 𝑇𝑇 → ∞). A consistent estimate of 𝛼𝛼 is the maximum of the estimated 𝛼𝛼𝑖𝑖 , and 

a consistent estimate of persistent inefficiency (𝑤𝑤𝑖𝑖) is the difference between the estimated 𝛼𝛼 and each 

estimated 𝛼𝛼𝑖𝑖 . The parametric assumptions (whether u is half normal or exponential) imply that the 

distribution of transient inefficiency (𝑢𝑢) conditional on 𝜀𝜀𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑖𝑖  is a truncated (at zero) normal 

distribution parameterized in terms of the estimates of 𝜎𝜎𝑢𝑢2, 𝜎𝜎𝑣𝑣2,  and T with the regression residuals (𝑒𝑒𝑖𝑖𝑖𝑖, 

say), substituted for errors 𝜀𝜀𝑖𝑖𝑖𝑖  (Aigner et al., 1977). 

 

 

6 Assuming fixed w allows identification of the model even when w is correlated with x, the usual panel data result. 

7 Other distributions for u have been proposed, such as truncated normal (Stevenson, 1980), gamma (Greene, 1980a,b), 

uniform and half Cauchy distribution (Nguyen, 2010) and truncated Laplace (Horrace and Parmeter, 2018). Kumbhakar and 

Lovell (2015) show that the choice of distribution most likely does not affect the relative ranking of estimated firm-level 

inefficiency. 
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 Point estimation of firm-level (transient) inefficiency proceeds by calculating moments of the 

truncated normal distribution of u conditional on 𝜀𝜀𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑖𝑖. Jondrow et al. (1982) provide formulae for 

the conditional expectation, 𝐸𝐸(𝑢𝑢|𝜀𝜀𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑖𝑖),  and the conditional mode, 𝑀𝑀(𝑢𝑢|𝜀𝜀𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑖𝑖),  which are 

reproduced in the Appendix. The conditional mean is more commonly employed in empirical exercises as 

a point estimate for inefficiency but has the shortcomings that it is always positive and that the 

probability of ties across 𝑖𝑖 is zero.8 That is, no firm is on the efficient frontier and there are never ties in 

the efficiency scores. On the other hand, the conditional mode, allows for ties at zero.9 We calculate both 

point estimates of transient inefficiency in our application, but suggest that the oft-ignored conditional 

mode may be a more useful point estimate for policymakers. That is, the mode determines a group of 

schools to be on the efficient frontier, so policy prescriptions can be made for the group of schools that 

are under-preforming or to reward schools operating efficiently. This phenomenon is illustrated in Figure 

1, which plots the conditional mean and mode for the Normal-Half Normal (NHN) specification and for 

the Normal-Exponential (NE) specification for continuous values of 𝜀𝜀𝑖𝑖𝑖𝑖  with 𝜎𝜎𝑢𝑢2 = 𝜎𝜎𝑣𝑣2 = 1  and 𝛼𝛼 =

𝛽𝛽 = 0. 

Selecting the schools with conditional mode equal to zero is a useful policy tool, but it is not a 

decision rule grounded in statistical theory, so we also appeal to the selection rule in Flores-Lagunes et al. 

(2007) based on the efficiency probabilities of Horrace (2005), which we briefly describe here and for 

 

 

8  This is an empirical fact to anyone familiar with the empirical literature. It is likely due to economist’s preferences for 

conditional expectations. 

9 To see this, consider a 𝑁𝑁(𝜇𝜇,𝜎𝜎2) density truncated at zero. If 𝜇𝜇 > 0, the mode is positive, otherwise it is zero. 
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which we provide more details in the Appendix. Given the n truncated normal conditional (transient) 

inefficiency distributions of u and given a specific time period t, we follow Horrace (2005) to characterize 

transient inefficiency as the probability that school i’s draw of u is the smallest in any period t, 

𝜋𝜋𝑖𝑖𝑖𝑖 = Pr (𝑢𝑢𝑖𝑖𝑖𝑖 < 𝑢𝑢𝑗𝑗𝑖𝑖 , 𝑗𝑗 ≠ 𝑖𝑖|𝜀𝜀1𝑖𝑖, … , 𝜀𝜀𝑛𝑛𝑖𝑖). 

These are within-sample, relative “efficiency probabilities.” Then one may estimate the probabilities by 

substituting 𝜀𝜀𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑖𝑖  above and use the estimated efficiency probabilities to select a subset of schools 

that contains the unknown efficient school at a prespecified confidence level (e.g., 95%), following 

Flores-Lagunes et al (2007).10 Let the population rankings of the unknown efficiency probabilities be, 

𝜋𝜋[𝑛𝑛]𝑖𝑖 > 𝜋𝜋[𝑛𝑛−1]𝑖𝑖 > ⋯ > 𝜋𝜋[1]𝑖𝑖, 

and let the sample rankings of the estimated probabilities, 𝜋𝜋�𝑖𝑖𝑖𝑖, be  

𝜋𝜋�(𝑛𝑛)𝑖𝑖 > 𝜋𝜋�(𝑛𝑛−1)𝑖𝑖 > ⋯ > 𝜋𝜋�(1)𝑖𝑖, 

where [𝑖𝑖] ≠ (𝑖𝑖) in general. Then, the Flores-Lagunes et al. (2007) procedure is to sum the estimated 

probabilities, 𝜋𝜋�𝑖𝑖𝑖𝑖, from largest to smallest until the sum is at least 0.95.  Then the school indices in the sum 

represent a “subset of the best schools,” containing the unknown best school, 𝑖𝑖 = [𝑛𝑛] , with probability 

at least 95%. Equivalently, the school indices in the subset of the best cannot be distinguished and are all 

on the within-sample efficient frontier (in a statistical sense). If the subset of the best is a singleton, then 

there is only one efficient school, [𝑛𝑛] = (𝑛𝑛). The subset could contain all n schools, so all schools are on 

the frontier. The lower the cardinality of the subset, the sharper the statistical inference on [n].  

 

 

10 We do not show how to do this, so the reader is referred to Horrace (2005) and Flores-Lagunes et al. (2007). 
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Education researchers have adopted SFA to estimate production frontiers and to analyze school 

inefficiency, including: universities (Dolton et al. 2003, Gronberg et al. 2012, Stevens 2005, and Zoghbi 

et al. 2013); school districts (Chakraborty et al. 2001, Grosskopf et al. 2014, and Kang and Greene 

2001); and primary and middle schools (Garcia-Diaz et al. 2016, Kirjavainen 2012, Pereira and Moreira 

2011; Salas-Velasco 2019). 11 Only a few of these studies focus on inefficiency in US public school 

education. Chakraborty et al. (2001) set T = 1 and w = 0 in (1) to measure the inefficiency of public 

education in Utah. Kang and Greene (2001) set w = 0 in (1) to analyze technical inefficiency in an upstate 

NY public school district from 1989 to 1993. Grosskopf et al. (2014) set T = 1 and w = 0 in (1) to analyze 

data from 965 public school districts in Texas. In all these papers, the only estimate of US school-level 

inefficiency considered is the conditional mean, 𝐸𝐸(𝑢𝑢|𝜀𝜀𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑖𝑖) , and none of these papers consider 

inference over the identification of efficient and inefficient schools in any meaningful way. 

Compared to the other, earlier models, the “true fixed effect” model relaxes the assumption that 

technical inefficiency must be time invariant and allows for unobserved school heterogeneity. Unlike 

Greene (2005a, b), however, we estimate the model using marginal maximum simulated likelihood 

estimation (MMSLE), proposed by Belotti and Ilardi (2018).12 The maximum likelihood dummy variable 

estimation originally proposed by Greene (2005a, b) suffers from an incidental parameter problem, 

resulting in inconsistent estimates of 𝜎𝜎𝑢𝑢2 and 𝜎𝜎𝑣𝑣2. 13  MMSLE addresses the incidental parameter problem 

 

 

11 Surveys of SFA in education are Worthington (2001), Johnes (2004) and De Witte and López-Torres (2017). 

12 This estimation is available on Stata in command sftfe. 

13 More detailed explanation of the incidental parameter problem can be found in Neyman and Scott (1948) and Lancaster 

(2000). 
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by treating the marginal likelihood function as an expectation with respect to the change of residuals and 

estimates variances through simulation. MMSLE also allows for consideration of both normal-half normal 

and normal-exponential distribution assumptions for the technical inefficiency parameter, 𝑢𝑢𝑖𝑖 .14  

3. Data 

We use data from the New York State Education Department (NYSED) and New York City Departments 

of Education (NYC DOE) to construct a balanced panel of education outputs (test score gains) and 

education inputs (student, teacher, and school characteristics) for cohorts of NYC public school students 

that completed middle school between AY 2014 and AY 2016. Specifically, we use school-level data 

from the NYS School Report Cards (SRC), which contains information on school enrollments by grade, 

student demographics, and teacher characteristics in every NYS public school. We merge SRC data to 

aggregated student data that summarizes the mean gains in Math and English Language Arts (ELA) test 

scores between grades 5 and 8 for each cohort in every school as well as mean characteristics of those 

test takers.15 The resulting panel contains 425 public middle schools in NYC, excluding charter schools 

and schools that open, close, or otherwise are missing data during our sample period. The schools are 

scattered across all five NYC boroughs, including 133 in Brooklyn, 115 in the Bronx, 84 in Manhattan, 

80 in Queens, and 13 in Staten Island. 

 

 

14 Chen et al. (2014) proposes an alternative using marginal maximum likelihood estimation (MMLE), which utilizes closed 

skew normal distributions properties (González-Farías et al., 2004) to derive closed-form expressions of the marginal 

likelihood function to address the incidental parameter problem. 

15 In the following, unless specified, we use test-takers and students interchangeably. 
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3.1 Educational Outcomes 

We construct cohort-level measures of normalized test score gains to measure schools’ education 

production. We use test scores on annual standardized exams implemented by the New York State 

Testing Program (NYSTP), which administrates state-wide mathematics (Math) and English language 

arts (ELA) tests to students from grade 3 to grade 8 in compliance with the standards of the NCLB Act 

and, later, the “Every Student Succeeds Act (ESSA) of 2015” (Public Law 114-95, 2015).16 

Following common practice in education economics research, we normalize student test 

performance across grades and years as standardized z-scores with a mean of zero and a standard 

deviation of one for each grade and year, thus pegging performance to the citywide mean for each cohort. 

The standardized exams are administered in the second half of each academic year (usually in April or 

May), so we calculate z-score changes (“gains”) between grade 5 and grade 8 to reflect education 

production during the middle school period (which spans grade 6 to grade 8).17 Thus, for example, if a 

student is at precisely the citywide mean for students in grade 5 in AY 2012 and one standard deviation 

above average in grade 8 in AY 2015, their gain score takes a value of one (1). This has implications for 

interpretations of the marginal products in equation 1. For example, if 𝛽𝛽 equals 0.5 for a variable in 𝑥𝑥𝑖𝑖𝑖𝑖, 

such as the share of students with limited English proficiency, then increasing this share of students from 

 

 

16 More information can be found on https://www.schools.nyc.gov/learning/in-our-classrooms/testing. 

17 We also use specifications that treat grade 8 z-scores as the output, either with baseline performance in grade 5 included 

as a student characteristic or without that additional variable. The first of these models are akin to value-added models and 

produce similar results to those presented in this paper. The second do not control for baseline performance (an all-too-

common practice in previous SFA research), so some estimates differ because they reflect both marginal effects and 

uncontrolled student quality. 
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0 to 1 increases average gains in test scores by one-half of a standard deviation. For our main sample, we 

restrict each cohort to those students who take both the Math and the ELA standardized exams in both 

grade 5 and grade 8 to limit the extent to which the composition of a cohort changes by students 

transferring into and out of NYC schools and the bias that results from nonrandom selection into the 

testing population by exam (such as students taking one exam but not the other due to expected 

performance). By including only students with complete exam data in each cohort, we ensure that the 

mean cohort-level gain scores reflect true changes in performance over time for the same students, rather 

than changes in the composition of test takers.18 

3.2 Educational Inputs 

Following Grosskopf et al. (2014), we include school, teacher, and test-taker characteristics among our 

educational inputs. Column one of Table 1 lists input variables included in this study. Test-taker 

characteristics include sociodemographic information, such as share of the cohort by race/ethnicity 

(white, black, Hispanic, Asian, or multiracial), gender, with limited English proficiency, with disabilities, 

and from economically disadvantaged households. Teacher characteristics include the number of 

teachers per one hundred students, and teacher quality measures, such as the share of teachers with a 

master’s degree or greater, teaching without valid certification, out of certification, and who have more 

than three years of experiences. School characteristics include the share of classes taught by teachers 

 

 

18 To test the sensitivity of our results to cohort restrictions, we relax the sample constraints to keep students with either 

complete (grade 5 and 8) Math or ELA exams (rather than both subjects). Results are substantively similar (in magnitude and 

direction) to the main results reported and are available from the authors upon request. 
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without certification, the average number of classes per one hundred students, the number of staff 

(excluding teachers) per one hundred pupils, and the number of principal and assistant principals per one 

hundred students. 

The second column of Table 1 reports citywide summary statistics of the educational inputs. 

Hispanic students are the largest racial/ethnic group in NYC, accounting for nearly half of students in the 

average middle school, followed by black students at 34.7%. More than three-fourths of students in the 

average NYC public middle school are economically disadvantaged, and roughly 17% are students with 

disabilities. We also report summary statistics by borough in columns 2-6 of Table 1. The share of white 

students accounts for only 3.88% in middle schools in the Bronx, but nearly half for the schools in Staten 

Island. Compared with other boroughs, schools in the Bronx also have the largest share of students from 

economically disadvantaged backgrounds (83.94%) and with limited English proficiency (8.83%). In 

terms of teacher and school inputs, middle schools in the Bronx have the highest share of teachers out of 

certificate (20.62%) and without valid certification (1.58%). Schools in Staten Island is at the other end 

of the spectrum, having the lowest mean shares of students from economically disadvantaged 

background (58.52%) or with limited English proficiency (1.52%). The share of teachers with master or 

higher degrees (66.58%) and with three or more years of experience (94.12%) are also the highest in 

Staten Island. We note, as well, that performance varies across districts, with the mean grade 8 Math and 

ELA z-scores 16% and 20% of a standard deviation below average for schools in the Bronx, but 25% and 

21% of a standard deviation above average for schools in Staten Island. Average middle school gains in 

test performance also vary by district, but not to the same degree; the borough with the smallest gains is 

the Bronx with 7% and 1% of a standard deviation gains in Math and ELA, respectively, and the borough 
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with the greatest gains is Manhattan with 16% and 11% of a standard deviation gains in those two 

subjects.19  

4. Results 

Estimates from the "true" fixed-effect stochastic frontier model in equation 1 are shown in in Table 2. We 

only present estimates for Math (column 2) and ELA (columns 3) scores using normal-exponential and 

normal-half normal specifications of the model, respectively. The normal-half model for Math and the 

normal-exponential model for ELA did not converge, so estimates are not presented.  

4.1 Marginal Effect of Education Inputs 

Columns 2 and 3 of Table 2 contain the marginal effects for improvements in Math and ELA scores, 

respectively. Generally speaking, we find that improvements in Math scores are largely uncorrelated with 

test-taker and school characteristics, while teacher characteristics are important. Improvement in ELA 

scores are largely due to student characteristics.  

Beginning with the marginal effects of test-taker characteristics, we find none of the student 

characteristics are correlated with middle school Math gains at the 95% significance level (though “share 

multiracial” is positively and “share limited English proficient” is negatively correlated with Math gains 

with p-values less than 0.1). Conversely, share female, Asian, and limited English proficiency are all 

positively correlated with ELA gains (while other test taker characteristics are not). For example, an 

 

 

19 All gain scores calculated as the difference between grades 8 and 5 mean performance. At first blush, it is counterintuitive 

that gain scores are above 0 for all boroughs, but we note that this reflects that students entering the district in middle school 

are lower performing than those enrolled and who take the exams in both grades. 



16 

 

increase in the share of a cohort who is female from none to all (0 to 1) is associated with greater gains 

during middle school of nearly one-fifth of a standard deviation (0.190). Put differently, a 10 percentage-

point increase in the female share of students is correlated with 1.90 percent of a standard deviation 

greater increases in gain scores. Similarly, 10 percentage-point increases in share of a cohort who are 

Asian or with limited English proficiency increase ELA gains by 4.53% and 3.85% of a standard deviation, 

respectively. 

Unlike test taker characteristics, we find teacher characteristics are more strongly correlated with Math 

performance gains than ELA. As the number of teachers per 100 pupils increases by 1, Math gains 

increase by 3.49% of a standard deviation. As the share of teachers with at least three years of 

experience increases by 10 percentage-points, Math gains increase by 6.62% of a standard deviation. 

Perhaps surprisingly, share of teachers with master’s or doctorate degrees is negatively associated with 

gains in Math (a 10 percentage-point increase is linked with 6.62% of a standard deviation decrease in 

Math gains) and share of teachers without certification are positively associated (a 10 percentage-point 

increase is linked with 13.64% of a standard deviation greater gains). None of these teacher 

characteristics are correlated with ELA gains. 

School characteristics appear to matter little for education production in both subjects, because none of 

the school characteristics are significantly correlated with gains in middle school Math or ELA 

performance at the 95% level (though the number of professional staff per 100 pupils is positively 

correlated with Math gains at the 90% level and the number of classes per 100 pupils is positively 

correlated with ELA gains at the 90% level).  
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4.2 Persistent Technical Inefficiency Estimates 

After controlling for production inputs, Figure 3 summarizes the distribution of our estimates of 

Persistent Technical Inefficiency (PTI) by borough and by test subject (Math or ELA). That is, the figure 

plots the empirical distribution of our estimates of 𝑤𝑤𝑖𝑖 = 𝛼𝛼 − 𝛼𝛼𝑖𝑖 . The rectangular boxes show the 

medians, 25th, and 75th percentiles of Persistent Technical Inefficiency (PTI) for each subject and 

borough. The lower and upper whiskers below and above each box are the percentiles that are 1.5 times 

the interquartile range below and above the 25th and 75th percentiles, respectively, for each subject and 

borough. The dots are individual estimates of PTI for schools outside the whisker percentiles: the most 

and least persistently efficient schools in the sample. For example, there are two dots at PTI = 0, indicating 

that the persistently efficient ELA school is in Brooklyn and the persistently efficient Math school in the 

Bronx. It also appears that there is a second Bronx school that is very close to the efficient frontier in the 

Math test. In general, we find that the interquartile ranges of PTI are largely higher (and, perhaps, wider) 

in the Bronx, Brooklyn, and Manhattan than in Queens and Staten Island. Differences in estimated PTI 

are less stark for ELA, but it does seem they are slightly higher in the Bronx than elsewhere. Of greater 

note, perhaps, is that the distributions of inefficiency across the NYC’s boroughs are not so large as to 

reflect a “tale of two cities” – there are schools in the Bronx that are estimated to have low PTI as well as 

schools in Staten Island with moderate to moderately high estimated PTI. We note that direct 

comparisons across the two subjects should be avoided, because the educational production functions 

for Math and ELA are estimated separately with different distributional assumptions on the transient 

inefficiency component, u. 

We report the mean and standard error of Persistent Technical Inefficiency (PTI) in Table 3. 

Consistent with Figure 3, the Bronx has the highest mean PTI: 1.08 for Math and 0.58 for ELA, both of 
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which are significantly higher than the average citywide PTI. In other words, over the period the Bronx is 

persistently about one standard deviation below the efficient frontier of normalized test score 

improvements in Math and about a half a standard deviation below the frontier in ELA. Conversely, 

Staten Island has the smallest PTI for Math and ELA (0.82 and 0.45 for Math and ELA, respectively), and 

differences from the citywide mean are statistically significant. Under our modelling assumptions, this 

implies that schools in the Bronx persistently operate less efficiently on average than those in Staten 

Island (or Queens, for the matter). Given that these schools also serve the lowest performing students, as 

shown in Table 1, the results suggest that PTI increased the student achievement gap across boroughs 

during this period. 

Do schools with large Persistent Technical Inefficiency (PTI) in Math also have large PTI in ELA? 

Figure 4 presents a scatterplot of PTI in Math against PTI in ELA in all years with a linear fit line 

superimposed (the slope of the line is 1.13, with a t-statistic of 16.35). A Spearman test, comparing 

school ranks in Math PTI and ELA PTI, finds a positive (0.6169) and significant statistic (p-value = 

0.0000), suggesting a strong monotonic relationship between PTI in Math and PTI in ELA. 

 4.3 Transient Technical Inefficiency 

Table 4 shows summary statistics of each school’s Transient Technical Inefficiency (TTI) with plotted 

distributions for Math and ELA shown in Figures 4 and 5, respectively. Remember, all that these models 

admit is the truncated (at zero) normal distribution of TTI conditional on the residual values of 425 school 

in each of 3 years. Here we point estimate (summarize) these conditional distributions for each of the 

425 * 3 = 1,275 school-years using their conditional means and modes (and later the conditional 

probability that each school is efficient) as described in section 2 and the Appendix. The first row of Table 

4 contains summary statistics for the conditional mean of the Math TTI distributions for all schools in all 
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years. For example, the mean of the conditional mean point estimates of TTI for Math is 0.115. That is, 

conditional on the residuals, we expect that Math TTI is 0.115 (3rd column) for all schools and years. Thus, 

on average TTI reduces improvements in Math scores by 0.115 standard deviations in the sample, which 

is comparable in magnitude to the mean gains in Math scores during this period (0.12 standard deviations 

citywide as reported in Table 1). Put differently, the grade 8 student achievement gap in Math for schools 

in the Bronx and Staten Island is approximately 0.41 standard deviations (as indicated in Table 1); the 

mean citywide TTI is 28% the size of that gap. 

The first row of Table 4 contains other statistics for the conditional mean estimates of Math TTI 

as well. For example, the observation with the minimal conditional mean point estimate for Math TTI has 

a value of 0.022, implying that it is 0.022 standard deviations below the efficient frontier. That is, based 

on the conditional mean estimates, the most efficient school-year in the sample for Math TTI is inefficient 

in expectation. Therefore, the conditional mean point estimate of TTI is made relative to an out-of-

sample standard (a theoretical best school whose TTI distribution can be described as a Dirac delta at u 

= 0). The first row of Table 4 also reports the 25th, 50th and 75th percentiles of the conditional means of 

Math TTI distributions, as well as the maximal point estimate, which implies that we expect the least 

efficient school-year in the sample to be 0.715 standard deviations below the (theoretical) efficiency 

frontier.  

 The second row in Table 4 summarizes the conditional mode point estimates of the Math TTI 

distributions. Compared to the conditional mean point estimates (first row), which are expectations, the 

conditional modes provide estimates of the most common (or likely) value of TTI for each observation. 

While the conditional mean is a measure of central tendency that can never equal zero for a non-negative 

u, the conditional mode can occur anywhere in the non-negative support of the truncated normal 
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distributions that characterizes TTI. In particular we see in the second row of Table 4 that the average of 

the conditional mode point estimates is 0.045, which is considerably lower than the average of the 

conditional mean estimates (0.115) in the first row.  We also see that the minimal estimate of the 

conditional mode is exactly zero (5th column). That is, for this school-year the most likely draw from its 

conditional distribution of TTI is u = 0, an efficient draw. Looking across the second row in Table 4, this is 

also true of the school at the 25th percentile (6th column) and the median school (7th column), meaning 

that at least half the schools in the sample are likely to be efficient (their conditional mode is on the 

frontier) even though they are appear inefficient in expectation (their conditional mean is not). While the 

conditional mean and the conditional mode of TTI summarize the truncated normal distributions in 

different ways, the mode has the added benefit of providing an ad hoc decision rule for selecting efficient 

schools: those with conditional modes equal to zero.20 For example, in the last row of the table we see 

that the minimal value for the conditional mode of the ELA TTI is zero (5th column), as expected.  

However, the 25th percentile is positive 0.018 (6th column), implying that at least 75% of the observed 

school-years are unlikely to be efficient. 

 Finally, we note that in Table 4 the maximum conditional mean and the mode estimates appear 

to be the same for Math TTI, 0.715 (last column, first and second rows) and for ELA TTI, 0.339 (last 

column, third and fourth rows), but this equivalence is rounding error. Due to the nature of a normal 

distribution truncated at zero, the distribution’s mean is always larger than its mode. For the maximal 

 

 

20 A statistically rigorous decision rule is based on the Horrace (2005) efficiency probabilities, and is considered in the sequel. 
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school-year observation in the last column of Table 4, however, the amount of truncation is so small that 

at three significant digits (0.715 for Math and 0.339 for ELA) its effect is negligible.21 

Figures 5 and 6 plot the empirical distributions of our TTI estimates in Table 4 (note the axes scales for 

the two subjects differ). The conditional mean (red) and mode (blue) distributions in Figure 5 correspond 

to the summary statistics in rows 1 and 2 (respectively) of Table 4, while the distributions in Figure 6 

correspond to the statistics in rows 3 and 4 of the table. The usefulness of the conditional mode as a 

decision rule for selecting efficient schools each year is clear. In Figure 5, the blue spike at zero indicates 

that more than 60% of the school-year observations in the sample are likely to be efficient in terms of 

their conditional distributions of Math TTI. In Figure 6 the blue spike indicates that about 19% of the 

school-year observations in the sample are likely to be efficient in terms of their conditional distributions 

of ELA TTI. Again, this is an ad hoc decision rule, but one that is easily understood by policymakers. What 

could a policymaker make of the red distributions of the conditional means in Figures 5 and 6? Not much 

compared to the blue distributions of the conditional modes in these figures. 

In Table 5 we compare TTI by borough and academic year, reporting the percentage of schools 

with zero estimated TTI based on the conditional mode point estimate and our ad hoc decision rule. The 

table is self-explanatory. Staten Island has the highest percentage of schools operating efficiently (5th 

column) in Math (62%), followed by Queens (60%), the Bronx (59%), Manhattan (58%) and Brooklyn 

 

 

21 As with any truncated normal distribution with a very large mean equal to its mode (due to symmetry), the distribution is no 

longer symmetric after truncation at zero. That is, its new, post-truncation mean is necessarily larger than its mode, which is 

unchanged when the pre-truncated mean is positive. Moreover, the mean shifts further to the right as the amount of truncation 

increases. 
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(55%) in order. Conversely, Manhattan and Brooklyn have the highest percentage of transiently efficient 

schools (last column) in ELA (18%), followed by the Bronx (17%), Queens (13%), and then Staten Island 

(10%). Looking at the trend over time, we find middle schools in the Bronx show consistent 

improvements in the percentage of schools operating efficiently, while other boroughs do not have 

consistent improvements in efficiency over the period. The share of middle schools in the Bronx with zero 

TTI increases from 49% to 60% to 67% in Math and 11% to 16% to 24% in ELA. Schools in Queens, on 

the other hand, are less likely to operate with zero TTI in Math over time (71% to 65% to 45%) with no 

consistent trends in ELA (20% to 6% to 11%). All other boroughs also do not display consistent positive 

or negative trends in TTI.22 

Figure 7 shows a weak but positive relationship between Math TTI and ELA TTI during our 

sample period (the slope of the line is 0.56 with a t-statistic of 12.62). The Spearman test statistics each 

year range between 0.2834 and 0.3312 and are statistically significant. 

4.4 Efficiency Probabilities 

As suggested previously, the above-described ad hoc rule to identify efficient school-year observations 

lacks statistical rigor. Therefore, we calculate school-level efficiency probabilities (Horrace, 2005) to 

identify the subset of schools that operate efficiently each year in terms of TTI (Flores-Lagunes et al., 

2007). A more thorough discussion of the technique is contained in the Appendix, but as stated earlier, 

it uses the conditional truncated normal distribution of TTI for each school to calculate the probability 

 

 

22 While it is tempting to compare the magnitudes of TTI in Table 4 to the PTI in Table 3, the reader is reminded that PTI may 

also contain other sources of time-invariant unobserved heterogeneity, so comping TTI to PTI is ill-advised in general. 
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that each school is efficient in each year (has the smallest u conditional on the data), then selects a 

minimum cardinality subset of schools that contain the efficient school with at least 95% probability. This 

is a rigorous statistical decision rule, and we have two goals in the analyses that follow. The first is to 

calculate this minimal cardinality “subset of the best” schools in each year at the 95% level, and the 

second is to compare the cardinality of the subset of the best in each year to the cardinality of the subset 

of zero-mode schools in each year.  

Table 6 contains the results. The first row of the table is for Math TTI in AY 2014. In 2014 there 

were 246 schools (3rd column) with conditional modes equal to zero. Since we have a balanced panel of 

425 schools, this means that 58% percent of schools are efficient in 2014 based on our ad hoc decision 

rule, and this number corresponds to the 58% in the last row, 2nd column of Table 5. Call these 246 

schools the “zero-mode subset” of efficient schools. The 4th column of Table 6 is the sum of the efficiency 

probabilities for the schools in the zero-mode subset. That is, the probability that the most efficient firm 

in the sample is contained in the zero-mode subset is 75.22% in 2014 for Math TTI. Put another way, the 

schools in the zero-mode subset are statistically indistinguishable from the unknown efficient school with 

probability 75.22%. Thus, the efficiency probabilities allow us to assign a confidence level to our ad hoc 

decision rule, however it is well below typical confidence levels like 90% or 95%. Nonetheless there is 

policy value in knowing the zero-mode subset. The second and third rows of Table 6 show that the 

cardinalities of the zero-mode subsets (3rd column) in AY 2015 and 2016 (259 and 231 schools 

respectively) are similar to AY 2014, as are the zero-mode probabilities (4th column), which are 76.10% 

and 73.09%, respectively. In sum, we are about 75% confident that about 60% of NYC schools are likely 

operating efficiently in terms of Math TTI. 
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Moving to the ELA test results in Table 6 (rows 4-6), we see that the cardinalities of the zero-

mode subsets (3rd column) are 61, 75, 72 with probabilities (4th column) 32.30%, 37.97% and 40.77% 

in AY 2014, 2015 and 2016, respectively. These are much lower cardinalities and probabilities than the 

Math TTI results, and this is reflected in the smaller blue spike at zero in Figure 6 compared to Figure 5 

(which have different scales). Why might this be the case? Is there something inherent in ELA education 

that lends itself to lower efficiencies relative to Math education? It is, in fact, a commonly found empirical 

phenomenon that ELA achievement is more reflective of home environment and individual 

characteristics, while Math performance is more responsive to classroom characteristics – a finding that 

is also consistent with theory about the pedagogy of ELA and Math instruction (Bryk and Raudenbush, 

1988). It is noteworthy too, that our results in Table 2 also show test-taker characteristics are more 

predictive of greater ELA gains, while teacher characteristics are correlated with greater Math gains. 

Keep in mind, however, that we are assuming that the distribution of Math TTI is half-normal and that of 

ELA TTI is exponential, and this was driven by nonconvergence of the likelihood maximization in 

alternative specifications. Aside from this technical detail, it may simply be that mathematical standards 

for “correctness” are objective and those for the language arts are more subjective, so identifying “best 

practices” in ELA may be more difficult than in Math. There is a branch of SFA that attempts to explore 

the determinants of technical inefficiency (e.g., Cho and Schmidt, 2020). Perhaps such an analysis may 

be helpful here, but this is left for future research. 

The 5th column of Table 6 contains the cardinality of the 95% minimal cardinality subset of the 

best (Flores-Lagunes et al., 2007), and in the first row we see that for Math TTI in 2014, 372 of our 425 

middle schools were indistinguishable from the best middle school in the sample with 95% probability. 

Here, and in the other rows of the table, the zero-mode subset is always a proper subset of the subset of 
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the best. (Whether this is a coincidence or not remains to be seen and is left for future research.) The 

implication is that even if the zero-mode decision rule is ad hoc and does not achieve usual confidence 

levels, at least it identifies a subset of schools that are contained in the subset of the best, as based on a 

rigorous statistical decision rule. 

Looking down the 5th column across academic years for Math TTI, 369 to 374 (depending on year) 

of the 425 schools are statistically indistinguishable from efficient at the 95% level. For ELA, 326 to 339 

of 425 schools are statistically indistinguishable from efficient. These are useful statistics that 

policymakers may use to determine which and how many schools to target when designing interventions 

that are intended to improve performance. 

5. Conclusions 

This study provides summaries of persistent and transient technical efficiency estimates for each of 425 

NYC middle schools using recent advancements in stochastic frontier modeling. Using the “true” fixed 

effect stochastic frontier model to estimate gains in mathematics (Math) and English language arts (ELA), 

we find substantial variation in persistent technical inefficiency across the city and between boroughs. 

We note that while some boroughs have higher shares of persistently inefficient schools than others, 

there is a wide and overlapping distribution across each of the five boroughs in the city, suggesting school 

efficiency in NYC is not a “tale of two cities”. Thus, while the mean Math and ELA persistent technical 

inefficiency in the city are 0.99 and 0.53 standard deviations, respectively – both larger than the student 

achievement gap between schools in the borough that enrolls the highest performing students (Staten 

Island) and schools in the borough that teaches the lowest performing students (the Bronx) – school 

inefficiency itself is widely distributed across the NYC’s boroughs and schools. Still, to give a sense of 
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magnitude of the results, if the city could find a way to remove persistent technical inefficiency in schools 

in the Bronx, for example, it would eliminate the achievement gap across boroughs (and, in fact, even 

overshoot the target). 

We next produce estimates of transient technical inefficiency, using both a conditional mean and 

a conditional mode estimator. Under the conditional mode estimator and an ad hoc decision rule, we find 

around 58% of schools are transiently technically efficient in Math and 16% in ELA. We then apply a 

probability statement approach to offer rigorous inferential insights on which school-years are 

statistically on the efficient frontier, and which are very likely not. Based on the results of our “zero-mode 

subset” and the minimal cardinality subset of the best, the model can be used for both subjects to provide 

substantial information to decisionmakers on which schools likely did and did not operate efficiently each 

year. These are important distinctions for policymakers to be able to make; for example, the difference in 

the mean achievement gains for students attending a school-year observation in the zero-mode subset in 

ELA using the conditional mode is estimated to make 6.2 percent of a standard deviation greater gains 

than if that school were operating at the median level of inefficiency for ELA in that year (equivalent to 

about 15% of the gap between mean grade 8 achievement in Staten Island and the Bronx). 

Another innovation of this study is the use of student-level academic performance data to 

estimate gains over time, which are then aggregated to the cohort-school-level to more accurately 

measure the education produced during the middle school years. These sorts of “gains models” are 

common in other education research but have not yet been used in stochastic frontier modelling. This 

innovation allows for improved estimates of the marginal effects of student, teacher, and school inputs 

on education production as well as a more compelling methodology for determining which schools are 

persistently efficient in each year. 
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Our results suggest that policymakers should more rigorously consider the role inefficiency plays 

in reducing education production in public schools. First, we identify which features (and types of 

features) in the school environment are beneficial or harmful to education production in middle schools, 

interestingly finding that student composition of a school is more important for the production of ELA 

gains, while teacher composition of a school is more important for the production of Math gains. These 

results are consistent with the conventional wisdom that ELA achievement is more responsive to home 

and individual characteristics and Math achievement is more responsive to classroom characteristics 

(Bryk and Raudenbush, 1988).  

Second, by separating persistent technical inefficiency from transient technical inefficiency, we 

offer a methodology for school district administrators to separate the systemic features of a school that 

harm efficiency (such as, perhaps, building or principal quality) from those that change perennially (such 

as, perhaps, teacher effort or curriculum design). Third, by separating inefficiency from the error term 

(under the above-described distributional assumptions), decisionmakers are better able to assess the 

extent to which declining exam performance is due to inefficiency as opposed to statistical noise.  

Fourth, for any of these considerations, arming policymakers with actionable decision rules that are 

methodologically rigorous and reflect true performance of schools is a tall ask of any statistical model. 

We believe that using the proposed true fixed effects model with either the conditional mode estimator 

to identify when schools operate efficiently or using the more rigorous Horrace (2005) probabilities 

present districts with useful tools to make high-leverage decisions such as bonus pay, promotions, 

intervention targeting, among others. The methods presented here can address some of the shortcomings 

of previous work estimating the effectiveness of schools, by offering estimates of inefficiency (rather 

than other quality measures) and separating persistent from transient inefficiencies. These advances may 
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allow for better targeting of policy levers towards disincentivizing each form of inefficiency, with threat 

of dismissal or reorganization working towards reducing the former and with docked pay or performance 

incentives perhaps reducing the latter. This work motivates future efforts to estimate the effects of such 

policies on both forms of technical inefficiency. 
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Appendix 

The Conditional Mean and Mode 

When v is normal and u is half-normal, the model is Normal-Half Normal (NHN). When u is exponential, 

the model is Normal-Exponential (NE). Per Jondrow et al. (1982), the closed-form expressions of the 

conditional mean under normal-half normal and normal-exponential assumptions are:  

 

𝐸𝐸(𝑢𝑢𝑖𝑖𝑖𝑖|𝜀𝜀𝑖𝑖𝑖𝑖,𝑁𝑁𝑁𝑁𝑁𝑁) = 𝜎𝜎∗ � 
𝜙𝜙 �𝜀𝜀𝑖𝑖𝑖𝑖𝜆𝜆𝜎𝜎 �

1 −Φ�𝜀𝜀𝑖𝑖𝑖𝑖𝜆𝜆𝜎𝜎 �
− �

𝜀𝜀𝑖𝑖𝑖𝑖𝜆𝜆
𝜎𝜎
�� , 𝐸𝐸(𝑢𝑢𝑖𝑖𝑖𝑖|𝜀𝜀𝑖𝑖𝑖𝑖,𝑁𝑁𝐸𝐸) = 𝜎𝜎𝑣𝑣 � 

𝜙𝜙(𝐴𝐴)
1 −Φ(𝐴𝐴) − 𝐴𝐴� 

 

where 𝜎𝜎2 = 𝜎𝜎𝑢𝑢2 + 𝜎𝜎𝑣𝑣2, 𝜎𝜎∗2 =  𝜎𝜎𝑢𝑢2𝜎𝜎𝑣𝑣2/(𝜎𝜎𝑢𝑢2 + 𝜎𝜎𝑣𝑣2), 𝜆𝜆 = 𝜎𝜎𝑢𝑢
𝜎𝜎𝑣𝑣

  and 𝐴𝐴 = 𝜀𝜀𝑖𝑖𝑖𝑖
𝜎𝜎𝑣𝑣

+ 𝜎𝜎𝑣𝑣
𝜎𝜎𝑢𝑢

. 𝜙𝜙 and Φ are the probability 

density function and cumulative distribution function of standard normal distribution. Estimates are 

formed by substituting the MMLE estimates for their population parameters into these formulae while 

setting 𝜀𝜀𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑖𝑖.  A less commonly employed estimator proposed by Jondrow et al. (1982) is the mode 

of the conditional distribution of 𝑢𝑢𝑖𝑖𝑖𝑖| 𝜀𝜀𝑖𝑖𝑖𝑖 , denoted as 𝑀𝑀(𝑢𝑢𝑖𝑖𝑖𝑖| 𝜀𝜀𝑖𝑖𝑖𝑖), to measure transient technical 

inefficiency. Under normal-half normal and normal-exponential distribution assumptions, the conditional 

mode estimator can be written as: 

 

𝑀𝑀(𝑢𝑢𝑖𝑖𝑖𝑖|𝜀𝜀𝑖𝑖𝑖𝑖,𝑁𝑁𝑁𝑁𝑁𝑁) = �−𝜀𝜀𝑖𝑖𝑖𝑖 �
𝜎𝜎𝑢𝑢2

𝜎𝜎𝑢𝑢2 + 𝜎𝜎𝑣𝑣2
� ,     𝑖𝑖𝑖𝑖 𝜀𝜀𝑖𝑖𝑖𝑖 ≤  0,

0, 𝑖𝑖𝑖𝑖 𝜀𝜀𝑖𝑖𝑖𝑖 >  0 .
   

 𝑀𝑀(𝑢𝑢𝑖𝑖𝑖𝑖|𝜀𝜀𝑖𝑖𝑖𝑖,𝑁𝑁𝐸𝐸) =

⎩
⎪
⎨

⎪
⎧−𝜀𝜀𝑖𝑖𝑖𝑖 −

𝜎𝜎𝑣𝑣2

𝜎𝜎𝑢𝑢
,     𝑖𝑖𝑖𝑖 𝜀𝜀𝑖𝑖𝑖𝑖 ≤  −

𝜎𝜎𝑣𝑣2

𝜎𝜎𝑢𝑢
,

0, 𝑖𝑖𝑖𝑖 𝜀𝜀𝑖𝑖𝑖𝑖 >  −
𝜎𝜎𝑣𝑣2

𝜎𝜎𝑢𝑢
 .
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The parametric forms of both conditional mean and conditional mode estimators under NHN and NE are 

functions of 𝜀𝜀𝑖𝑖𝑖𝑖. To better understand the differences between the conditional mean and the conditional 

mode estimators, we standardize the standard errors 𝜎𝜎𝑣𝑣  and 𝜎𝜎𝑢𝑢  to one and plot their relationships with 

𝜀𝜀𝑖𝑖𝑖𝑖  under NHN in Figure 1 and under NE in Figure 2. The figures show that both conditional mean and 

conditional mode estimators are monotonically decreasing with the regression residual. The conditional 

mode estimator, however, is always below the conditional mean estimate given the same residual. 

Moreover, when the residual surpasses a threshold (0 under NHN or −𝜎𝜎𝑣𝑣2

𝜎𝜎𝑢𝑢
 under NE), the conditional 

mode estimator takes a value of zero whereas the conditional mean estimator is positive and 

monotonically decreasing. This is intuitive – the more negative the regression residual, the farther the 

school is below that frontier and the more likely it is to be operating with large inefficiency. When the 

regression residual is large and positive, the school’s estimated productivity is above the production 

frontier, suggesting the inefficiency is likely to be small. The difference between the estimators, then, is 

that, when above the threshold, the estimated TTI using the conditional mean estimator is small but still 

positive, whereas using the conditional mode estimator is zero. We use this conditional mode property 

to identify “zero-mode” schools that are likely to be operating efficiently. 

Similar to the conditional mean estimator, the conditional mode estimator can be used to rank 

schools. However, unlike the conditional mean, the ranking allows for ties if more than one school is 

estimated to have zero TTI. Among schools with positive conditional mode estimates (non-zero 

estimated inefficiency), however, the order of the rankings is the same as from the conditional mean.  
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Conditional Efficiency Probabilities and the Subset of the Best Schools 

While conditional mean estimates can be used to rank schools and conditional mode estimates can be 

used to find zero-mode efficient schools, neither estimate can produce joint probability statements on 

the relative ranking of the schools. To assess the reliability of the results and to draw inference on the 

efficiency rankings, we turn to the probability statement approach (Horrace, 2005; Flores-Lagunes et al., 

2007; Horrace and Richards-Shubik, 2012; Horrace et al., 2015). Assuming independence of u over i 

and t, the probability of the event “school 𝑖𝑖 is efficient at time 𝑡𝑡” is: 

𝜋𝜋𝑖𝑖𝑖𝑖 = 𝑃𝑃� 𝑢𝑢𝑖𝑖𝑖𝑖 ≤ 𝑢𝑢𝑗𝑗𝑖𝑖  ∀ 𝑖𝑖 ≠ 𝑗𝑗 � 𝜀𝜀1𝑖𝑖, … , 𝜀𝜀𝑛𝑛𝑖𝑖 } = � 𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖| 𝜀𝜀𝑖𝑖𝑖𝑖(𝑢𝑢)��1 − 𝐹𝐹𝑢𝑢𝑗𝑗𝑖𝑖| 𝜀𝜀𝑗𝑗𝑖𝑖(𝑢𝑢)� 𝑑𝑑𝑢𝑢
𝑛𝑛

𝑗𝑗≠𝑖𝑖

∞

0
,       

where 𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖| 𝜀𝜀𝑖𝑖𝑖𝑖(𝑢𝑢) and 𝐹𝐹𝑢𝑢𝑖𝑖𝑖𝑖| 𝜀𝜀𝑖𝑖𝑖𝑖(𝑢𝑢)  are the probability density function and cumulative distribution 

function of 𝑢𝑢𝑖𝑖𝑖𝑖| 𝜀𝜀𝑖𝑖𝑖𝑖 , respectively. If u is half-normal with variance 𝜎𝜎𝑢𝑢2 , then 𝑢𝑢𝑖𝑖𝑖𝑖| 𝜀𝜀𝑖𝑖𝑖𝑖  is 

𝑁𝑁+(− 𝜀𝜀𝑖𝑖𝑖𝑖𝜎𝜎𝑢𝑢2

𝜎𝜎𝑣𝑣2+ 𝜎𝜎𝑢𝑢2
, 𝜎𝜎𝑢𝑢2𝜎𝜎𝑣𝑣2

𝜎𝜎𝑢𝑢2+𝜎𝜎𝑣𝑣2
) . If u is exponential, then 𝑢𝑢𝑖𝑖𝑖𝑖| 𝜀𝜀𝑖𝑖𝑖𝑖  is 𝑁𝑁+(−𝜀𝜀𝑖𝑖𝑖𝑖 + 𝜎𝜎𝑣𝑣2/𝜎𝜎𝑢𝑢,𝜎𝜎𝑣𝑣2) . To estimate the 

probabilities 𝜋𝜋𝑖𝑖𝑖𝑖, the regression residuals, 𝑒𝑒𝑖𝑖𝑖𝑖, are substituted into the above formulas for errors, 𝜀𝜀𝑖𝑖𝑖𝑖. Then, 

given any subset of the n schools (like our zero-mode subset), we can assign a confidence level to the set 

containing the efficient school by summing the probabilities 𝜋𝜋𝑖𝑖𝑖𝑖  for the schools in the set.  Alternatively, 

let the population rankings of the unknown efficiency probabilities be, 

 𝜋𝜋[𝑛𝑛]𝑖𝑖 > 𝜋𝜋[𝑛𝑛−1]𝑖𝑖 > ⋯ > 𝜋𝜋[1]𝑖𝑖, 

and let the sample rankings of the estimated probabilities, 𝜋𝜋�𝑖𝑖𝑖𝑖, be  

𝜋𝜋�(𝑛𝑛)𝑖𝑖 > 𝜋𝜋�(𝑛𝑛−1)𝑖𝑖 > ⋯ > 𝜋𝜋�(1)𝑖𝑖, 

where [𝑖𝑖] ≠ (𝑖𝑖) in general. We can determine a 95% minimal cardinality subset of the best school by 

summing the probabilities from the largest (n) to the smallest (1) until the sum is at least 0.95. Then, the 
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school indices in the sum are “in contention for the best school” with probability at least 95% at time t. In 

other words, these schools cannot be statistically distinguished from the (unknown) best school in the 

population, [n]. For example, if 𝜋𝜋�(𝑛𝑛)𝑖𝑖 > 0.95 , then the minimal cardinality subset is a singleton 

containing only the index (n), and the inference is very sharp. If 𝜋𝜋�(𝑛𝑛)𝑖𝑖 < 0.95, but 𝜋𝜋�(𝑛𝑛)𝑖𝑖 + 𝜋𝜋�(𝑛𝑛−1)𝑖𝑖 >

0.95 (say), then the minimal cardinality subset is {(𝑛𝑛), (𝑛𝑛 − 1)}. It is possible that the subset contains all 

n schools, {(𝑛𝑛), (𝑛𝑛 − 1), … , (1)}. This occurs when ∑ 𝜋𝜋�(𝑖𝑖)𝑖𝑖
𝑛𝑛−1
𝑖𝑖=1 < 0.95 or equivalently when 𝜋𝜋�(1)𝑖𝑖 >

1 − 0.95. 
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Tables  

Table 1. Summary Statistics for NYC Public Middle Schools 
 

Variable NYC Manhattan The Bronx Brooklyn Queens Staten Island 

Test-Taker Characteristics        

  Share Male 49.60% 48.98% 49.47% 49.05% 50.88% 51.00% 

  Share Female 50.40% 51.02% 50.53% 50.95% 49.12% 49.00% 

  Share White 10.40% 8.87% 3.88% 10.20% 15.45% 49.27% 

  Share Black 34.70% 26.55% 28.03% 49.73% 31.12% 14.14% 

  Share Hispanic 45.00% 56.26% 64.54% 30.90% 31.50% 27.47% 

  Share Asian 9.07% 7.18% 3.03% 8.61% 20.60% 8.29% 

  Share Multiracial 0.81% 1.14% 0.50% 0.56% 1.33% 0.84% 

  Share Limited English  6.09% 7.48% 8.82% 4.56% 4.02% 1.54% 

  Share Disadvantaged 77.00% 75.03% 83.94% 78.72% 69.31% 58.52% 

  Share Disabled 16.90% 20.74% 17.06% 16.14% 13.54% 18.52% 

  Number of Test-Takers 93.83 56.86 76.64 90.48 143.61 212.51 

Teacher Characteristics        
  No. Teachers / 100 Students 7.42 8.01 7.47 7.84 6.49 6.71 

  Share Master Deg. or Higher 40.50% 35.62% 32.67% 44.02% 47.02% 66.58% 

  Share More 3yrs Experience 86.00% 84.40% 80.80% 89.40% 88.34% 94.12% 

  Share Out of Certificate 15.90% 16.36% 20.62% 14.38% 11.78% 11.31% 

  Share Without Certificate 1.12% 1.14% 1.58% 1.13% 0.59% 0.17% 

School Characteristics        
  No. of Classes /100 Students 26.76 27.26 27.01 28.6 24.05 25.5 

  Share Classes Uncertified 15.10% 15.44% 19.41% 13.79% 11.37% 11.12% 

  No. Staff / 100 Students 1.00 1.13 1.06 1.03 0.81 0.95 

  No. Principals / 100 Students 3.02 2.44 3.00 2.99 3.49 4.23 

Mean z-score        

  Grade 5 Math -0.11 -0.13 -0.24 -0.11 0.04 0.11 

  Grade 8 Math 0.01 0.02 -0.16 0.01 0.21 0.25 

  Grade 5 ELA -0.09 -0.12 -0.21 -0.08 0.07 0.13 

  Grade 8 ELA -0.03 0.00 -0.20 -0.03 0.13 0.21 

n 425 84 115 133 80 13 
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Table 2. Results of “True” Fixed Effect Model estimated by MMSLE 

  Math ELA 

Test-Taker Characteristics    

  Share Female -0.147 0.190*** 

  Share Black -0.0731 0.00227 

  Share Hispanic 0.174 0.134 

  Share Asian 0.301 0.453*** 

  Share Multiracial 0.832* 0.284 

  Share Limited English -0.262* 0.385*** 

  Share Disadvantaged -0.165 -0.0826 
  Share Disabled -0.0932 0.0971 

Teacher Characteristics   

  No. Teachers / 100 Students 0.0349*** 0.0146 

  Share Master Deg. or Higher -0.662*** 0.00811 

  Share More 3yrs Experience 0.635*** 0.0900 

  Share Out of Certificate -0.130 -0.0260 

  Share Without Certificate 1.364** 0.00143 

School Characteristics   

  No. of Classes /100 Students -0.00289 0.00284* 

  Share Classes Uncertified 0.351 0.323 

  No. Staff / 100 Students 0.0818* 0.00120 

  No. Principals / 100 Students -0.0122 -0.0108 

𝜎𝜎𝑢𝑢  0.1240 0.1320 

𝜎𝜎𝑣𝑣  0.1370 0.1110 

𝜆𝜆 0.9051 1.1892 

Observations 1,275 1,275 

n 425 425 

Distribution Assumed NE NHN 

*** p<0.01, ** p<0.05, * p<0.1 
 

 

Table 3. Mean of Persistent Technical Efficiency by Subject and Borough 

Subject NYC Manhattan The Bronx Brooklyn Queens Staten Island 

Math 0.99 1.04 1.08*** 0.97 0.90*** 0.82** 

 (0.29) (0.29) (0.31) (0.30) (0.23) (0.24) 

ELA 0.53 0.51 0.59*** 0.51 0.53 0.45* 

  (0.16) (0.14) (0.15) (0.18) (0.13) (0.15) 
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 4. Summary Statistics of TTI – All Schools in All Years 

Subject Estimator Mean  S.D. Min 25%ile 50%ile 75%ile Max 

Math Conditional Mean 0.115 0.063 0.022 0.076 0.100 0.132 0.715 
 Conditional Mode 0.045 0.081 0.000 0.000 0.000 0.056 0.715 

ELA Conditional Mean 0.102 0.038 0.024 0.075 0.096 0.121 0.339 

  Conditional Mode 0.067 0.056 0.000 0.018 0.062 0.103 0.339 

S.D. = Standard Deviation 
 
 

Table 5. Percentage of Zero-Mode Transiently Efficient Schools by Subject, Borough 
and Year 

 Math ELA 
 AY2014 AY2015 AY2016 Average AY2014 AY2015 AY2016 Average 

Manhattan 50% 70% 55% 58% 11% 30% 13% 18% 
The Bronx 49% 60% 67% 59% 11% 16% 24% 17% 
Brooklyn 62% 52% 50% 55% 17% 19% 17% 18% 
Queens 71% 65% 45% 60% 20% 6% 11% 13% 

Staten Island 62% 77% 46% 62% 8% 15% 8% 10% 

Total 58% 61% 54% 58% 14% 18% 17% 16% 
 
 

Table 6. Subsets of the Best Schools in terms of TTI 

Test Cohort 
Zero-Mode 

School Count 
Zero-Mode 
Probabilities 

Schools in 95% 
Best Subset 

Math  AY2014 246 75.22% 372 
 AY2015 259 76.10% 374 
  AY2016 231 73.09% 369 

ELA AY2014 61 32.30% 334 
 AY2015 75 37.97% 339 
  AY2016 72 40.77% 326 

Zero-mode probabilites are probabilites that the zero-mode subset contains the TTI efficient school in the sample. 
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Figures 

Figure 1. Relationship between Transient Technical Inefficiency and Residual under 
NHN 

 

 
 
 

Figure 2. Relationship between Transient Technical Inefficiency and Residual under 
NE 
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Figure 3. Persistent Technical Efficiency (PTI) by Borough 

 
 
 
 

Figure 4. Correlation of Persistent Technical Inefficiency in Math and ELA 
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Figure 5. Distribution of Transient Technical Inefficiency in Math  

 
 
 
 
 

Figure 6. Distribution of Transient Technical Inefficiency in ELA 
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Figure 7. Correlation of Transient Technical Inefficiency between Math and ELA 
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