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Two chiral nonet model with massless quarks

Amir H. Fariborz a ‡, Renata Jora b †, and Joseph Schechter c §
a Department of Mathematics/Science, State University of New York Institute of Technology, Utica, NY 13504-3050, USA. and

b,c Department of Physics, Syracuse University, Syracuse, NY 13244-1130, USA,
(Dated: February 1, 2008)

We present a detailed study of a linear sigma model containing one chiral nonet transforming
under U(1)A as a quark-antiquark composite and another chiral nonet transforming as a diquark-
anti diquark composite (or, equivalently from a symmetry point of view, as a two meson molecule).
The model provides an intuitive explanation of a current puzzle in low energy QCD: Recent work has
suggested the existence of a lighter than 1 GeV nonet of scalar mesons which behave like four quark
composites. On the other hand, the validity of a spontaneously broken chiral symmetric description
would suggest that these states be chiral partners of the light pseudoscalar mesons, which are two
quark composites. The model solves the problem by starting with the two chiral nonets mentioned
and allowing them to mix with each other. The input of physical masses in the SU(3) invariant limit
for two scalar octets and an “excited” pion octet results in a mixing pattern wherein the light scalars
have a large four quark content while the light pseudoscalars have a large two quark content. One
light isosinglet scalar is exceptionally light. In addition, the pion pion scattering is also studied and
the current algebra theorem is verified for massless pions which contain some four quark admixture.

PACS numbers: 13.75.Lb, 11.15.Pg, 11.80.Et, 12.39.Fe

I. INTRODUCTION

The topic of anomalously light scalar mesons in QCD has become a subject of increasing interest in the last fifteen
years or so [1]-[39]. Of course light scalars, especially the light isoscalar called first sigma and now f0(600), have been
discussed for at least three times as long, although without general agreement on their actual existence. The difficulty
people had previously in accepting the light scalars was largely due to the great success of the simple quark model,
in which the lightest scalars are expected to be p-wave quark- antiquark composite states and hence to be in the 1
to 1.5 GeV range, like the other p-wave states. It seems that physicists now believe more in their existence because
there have been an increasing number of investigations, using a variety of techniques and models, which suggest that
they do exist. Common features in many of these approaches have been the use of unitarity (which no one denies)
and some input at low energy from chiral dynamics (which is also considered reasonable).

Of course, the strongly interacting gauge theory QCD has not been “solved” and any possible new features in
the low energy region where the effective coupling constant is especially strong raise the hope of improving one’s
understanding of this basic theory. Perhaps the most fascinating possibility is that the very light scalars contain two
quarks and two antiquarks. Variants based on a diquark- anti diquark picture [40] or a meson-meson “molecule”
picture [41] have been discussed.

A lot of attention has been given to the question of a possible nonet grouping for the light (less than 1 GeV) scalars.
The candidates are the already mentioned f0(600), the Kappa(800-900) [not conclusively established according to [1]],
the established a0(980) and the established f0(980). It has been pointed out [See for examples [40], [17] and [18]]
that a characteristic signature of a four quark content would be an inverted mass ordering, with an almost degenerate
I = 0, I = 1 pair being the heaviest rather than the lightest states when the light quark masses are “ turned on.”
This seems to be the case.

Associating the four quark states with the lightest scalars naturally raises the question of where are the p-wave quark,
antiquark scalars. The candidates for the non-zero isospin states are the established a0(1450) and the established
K∗

0 (1430). For the I = 0 states the established candidates are the f0(1370), f0(1500) and the f0(1710), one of which
may be a glueball. There is a slight puzzle since the non strange a0(1450) with a listed mass of 1474 MeV is heavier
than the strange K∗

0 (1430) with a listed mass of 1414 Mev. In addition some branching ratios are not well predicted
by SU(3) invariance. A possible way to overcome this problem [[29], [33]] is to allow mixing between the lighter 4
quark and heavier 2 quark scalar nonets. This feature is incorporated as a basic part of the present paper.
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While it is rather difficult to treat low energy QCD dynamically, great success has been obtained at low energies
using the underlying chiral symmetry of QCD. We also incorporate this as an aid in getting more information about
the system. This feature will be implemented by using linear rather than the more usual nonlinear representations
for the pseudoscalar and scalar fields. If both four quark and two quark scalars are present, this means that four
quark pseudoscalars should also appear in the model. Experimental candidates for the non-zero isospin, higher mass
pseudoscalars are the π(1300) and the two not yet conclusively established strange states K(1460) and K(1830). The
candidates for the higher mass isoscalar pseudoscalars are the η(1295), η(1405), η(1475) and the not conclusively
established η(1760). It is possible that one or more of these experimental candidates also contain glueball and radial
excitation admixtures. At first glance it might seem puzzling that the picture seems to be: light mass two quark and
heavy mass four quark states for the pseudoscalars at the same time as light mass four quark and heavy mass two
quark states for their “chiral partners,” the scalars. We shall make no initial assumption on this matter but let the
experimental particle spectrum together with the mixing inherent in the model tell us the answer.

At a technical level it is amusing to note that the U(1)A transformation properties distinguish the two quark from
the four quark fields. Since it is known that the U(1)A symmetry is badly broken in QCD, this means that we have to
model the breaking in some detail. For this purpose we will use an extra term in addition to the usual one. We adopt a
counting scheme for selecting the most important terms, out of the many possible ones. We assign a number N equal
to the number of underlying quark plus antiquark lines associated with each effective term. Then it seems reasonable
to pick up the terms with smallest N values. On this basis the extra term for saturating the U(1)A anomaly has the
same justification as the conventional one.

Clearly, with so many scalar and pseudoscalar fields present, the model is fairly complicated to analyze. At the same
time it is widely believed that massless (ie zero mass light quarks) QCD is an excellent qualitative approximation.
Except for the pseudoscalar Nambu Goldstone bosons of the theory, the masses of the physical particles made from
light quarks are largely due to the spontaneous breakdown of chiral symmetry. We will employ this limit of the theory
in the present paper and note that it very much simplifies the analysis. Especially, the characteristic mixing matrix
pattern of the two quark and four quark states becomes very clear. The puzzle of opposite two quark vs four quark
structures of the scalars and pseudoscalars seems to be neatly solved by the mixing mechanism.

Even though the nonlinear chiral model is more convenient for systematically studying the loop corrections at
very low energies, the linear sigma models have a long history of elucidating key features of the strong interactions.
Roughly speaking the use of the nonlinear model amounts to integrating out the scalars (although it is technically
somewhat more general than that). Certainly for learning about the scalars themselves it is rather convenient to have
them present in the Lagrangian to begin with. The most famous example of the linear model is of course the Higgs
potential of the standard model. One of the classical triumphs of the nonlinear model is the derivation of the “current
algebra” formula for low energy pion scattering. This can be obtained, though in a more complicated way, also in the
linear model. We verify this in detail in the present paper. One might wonder, since the pion in the present model has
a small (but non negligible) four quark content, whether the current algebra result strictly does hold in the present
model. Our result shows that it does hold for the zero pion mass case we are considering here.

The two chiral nonet model was introduced in [31] as a convenient way to study the possibility of mixing between
quark- antiquark (qq̄) spin zero mesons and two quark- two antiquark (qqq̄q̄) spin zero mesons. Altogether there are
two pseudoscalar and two scalar nonets contained in the model. It was found that, in the zero quark mass limit
with just a few explicit chiral invariant terms contained, there was a possibility of a situation in which the lightest
pseudoscalars could have zero mass (i.e. be Nambu-Goldstone bosons) and be primarily qq̄ type while the next heaviest
mesons could be scalars, primarily of qqq̄q̄ type. Furthermore, the next heaviest mesons could be pseudoscalars of
mainly four quark type while the heaviest could be scalars, mainly of two quark type. A treatment [43] of the model
with similar chiral invariant terms and several different quark mass terms also found that light scalars with relatively
large admixtures of qqq̄q̄ type states are favored. Actually, the model can be rather complicated since there are twenty
one renormalizable chiral invariant terms which can be made as well as a similar number of renormalizable quark
mass type terms which transform as the (3, 3∗)+ (3∗, 3) representation of chiral SU(3)L× SU(3)R. In [44], the present
authors studied the more general version of the model in which all possible chiral invariant, even non renormalizable,
terms were included together with the single usual realization of the quark mass term. The same overall picture
was found. However, because the method relied on the symmetry properties of the Lagrangian, only the properties
of the pseudoscalar states and the strange scalar states could be studied. In the present paper, we shall initiate a
much more systematic investigation. We first study precisely how the general results get constrained when a specific
choice of invariant interaction terms is made. We introduce a scheme for ordering all the non-derivative terms of the
Lagrangian according to their likely importance. This enables us to select a limited number of leading order terms
in a meaningful way as well as to provide the framework for possible higher order extensions. At leading order, and
with the extra simplification of zero quark masses, all our results were determined analytically, without any need for
a numerical fitting procedure. There are essentially only four main input parameters and only one of them has a non
negligible experimental error. We do our calculations for all allowable values of this parameter (m[π(1300)]) and also
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take into account the small experimental error on another of the three parameters. The results obtained dramatically
predict the existence of a very low mass scalar isosinglet state. Especially, the puzzle concerning the coexistence of
lighter (mainly) two quark pseudoscalars with lighter (largely) four quark scalars is clearly seen to be solved.

A brief review of the model and the relevant notation is presented in Sec. II. Section III shows the great simpli-
fications obtained by going to massless QCD and also gives our notations appropriate to the flavor SU(3) invariant
situation in this limit. General results, valid for any choice of terms in the invariant potential, are also presented in
this section. Section IV gives a systematic procedure for deciding which terms are most important in the model. It
mainly contains the worked out model using the leading terms in this scheme. A numerical analysis is presented and
the masses of the two SU(3) singlet scalar states of the model are predicted. The two and four quark contents for each
state of the model are displayed. Sections V, VI and VII are devoted to proving, for any choice of invariant potential,
the current algebra theorem for the scattering of massless pions. Discussion and conclusions are given in Sec. VIII.

II. BRIEF REVIEW OF MODEL

The fields of our “toy” model consist of a 3 × 3 matrix chiral nonet field, M which represents qq̄ type states as well
as a 3 × 3 matrix chiral nonet field, M ′ which represents qqq̄q̄ type states. They have the decompositions into scalar
and pseudoscalar pieces:

M = S + iφ,

M ′ = S′ + iφ′. (1)

They behave under “left handed” and “right handed” unitary unimodular (ie SU(3)L× SU(3)R) transformations as

M → ULMU †
R,

M ′ → ULM
′U †

R. (2)

However, under the U(1)A transformation which acts at the quark level as qaL → eiνqaL, qaR → e−iνqaR, the two
fields behave differently:

M → e2iνM,

M ′ → e−4iνM ′. (3)

We will be interested in the situation where non-zero vacuum values of the diagonal components of S and S′ may
exist. These will be denoted by,

〈

Sb
a

〉

= αaδ
b
a,

〈

S′b
a

〉

= βaδ
b
a. (4)

In the iso-spin invariant limit, α1 = α2 and β1 = β2 while in the SU(3) invariant limit, α1 = α2 = α3 and β1 = β2 = β3.
The general Lagrangian density which defines our model is

L = −1

2
Tr
(

∂µM∂µM
†)− 1

2
Tr
(

∂µM
′∂µM

′†)− V0 (M,M ′) − VSB, (5)

where V0(M,M ′) stands for a general function made from SU(3)L× SU(3)R (but not necessarily U(1)A) invariants
formed out of M and M ′. The last term, VSB , stands for chiral symmetry breaking terms which transform in the same
way as the quark mass terms in the fundamental QCD Lagrangian. In the present paper we shall, in later sections,
specialize to the zero quark mass limit by taking VSB = 0. Not only does this make the formalism much simpler but
it is well known that, due to the spontaneous breakdown of chiral symmetry, the main mechanism of physical hadron
mass generation is already accounted for. This is convenient for disentangling the general properties of each multiplet
from the uncertainty as to which of the many possible mass type terms in the efffective Lagrangian to include. We
record the behaviors of the fields under infinitesimal transformations. Let us write the infinitesimal vector (L+R) and
axial vector (L-R) transformations of φ and S as,

δV φ = [EV , φ], δAφ = −i[EA, S]+,

δV S = [EV , S], δAS = i[EA, φ]+. (6)

Here, unitarity demands that the infinitesimal matrices obey,

E†
V = −EV , E†

A = −EA. (7)
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If we demand that the transformations be unimodular, so that the U(1)A transformation is not included (the U(1)V
transformation is trivial for mesons), we should also impose Tr(EA) = 0. However we will not do this so the effects
of U(1)A will also be included. The transformation properties of the qqq̄q̄ type fields are:

δV φ
′ = [EV , φ

′], δAφ
′ = −i[EA, S

′]+ + 2iS′Tr(EA),

δV S
′ = [EV , S

′], δAS
′ = i[EA, φ

′]+ − 2iφ′Tr(EA). (8)

The extra terms for the axial transformations reflect the different U(1)A transformation properties of M and M ′.
We will employ two complementary approaches to make predictions. One approach will be to study generating

equations for tree level vertices. These are like Ward identities and follow for any choice of V0(M,M ′) in Eq. (5).
These predictions are consistent with but will not give all possible predictions which would arise if one considered, as
a second approach, making a specific choice of terms in V0(M,M ′).

The method of treatment, as used earlier [46] to discuss the model containing only the field M , is based on two
generating equations which reflect the invariance of V0 under vector and axial vector transformations. Differentiating
them once, relates two point vertices (masses) with one point vertices. Differentiating them twice relates three point
vertices (trilinear couplings) with masses and so on. Under the infinitesimal vector and axial vector transformations
we have,

δV V0 = Tr

(

∂V0

∂φ
δV φ+

∂V0

∂S
δV S

)

+ (φ, S) → (φ′, S′) = 0,

δAV0 = Tr

(

∂V0

∂φ
δAφ+

∂V0

∂S
δAS

)

+ (φ, S) → (φ′, S′) = −Lη, (9)

wherein the non-zero value of the axial variation equation reflects the presence in V0 of any terms which are not
invariant under U(1)A; these terms will provide mass to the η′(958) meson. In [46], terms of this type were represented
by any function of the chiral SU(3), but not U(1)A, invariant det(M) plus its hermitian conjugate. After QCD, ’t
Hooft found [47] that such a form would arise from instanton effects. If one wishes to model the U(1)A anomaly
equation of QCD in the single M model the suggested form [48] is:

Lη = −c3
[

ln

(

detM

detM †

)]2

, (10)

where c3 is a numerical parameter. In the present M −M ′ model this form is not unique and the most plausible
modification [49] is to replace ln( detM

detM† ) by

γ1 ln

(

det(M)

det(M †)

)

+ (1 − γ1) ln

(

Tr(MM ′†)

Tr(M ′M †)

)

, (11)

where γ1 is a dimensionless parameter. Using Eqs. (6) and (8) as well as the arbitrariness of the variations EV and
EA yields the matrix generating equations,

[

φ,
∂V0

∂φ

]

+

[

S,
∂V0

∂S

]

+ (φ, S) → (φ′, S′) = 0,

[

φ,
∂V0

∂S

]

+

−
[

S,
∂V0

∂φ

]

+

+ (φ, S) → (φ′, S′) = 1

[

2Tr

(

φ′
∂V0

∂S′ − S′ ∂V0

∂φ′

)

− 8c3iln

(

detM

detM †

)]

, (12)

where the form of Eq. (10) was used. In addition, the replacement, Eq.(11) should be borne in mind. To get
constraints on the particle masses we will differentiate these equations once with respect to each of the four matrix
fields: φ, φ′, S, S′ and evaluate the equations in the ground state. Thus we also need the “minimum” condition,

〈

∂V0

∂S

〉

+

〈

∂VSB

∂S

〉

= 0,

〈

∂V0

∂S′

〉

+

〈

∂VSB

∂S′

〉

= 0. (13)

In ref [44] we considered the canonical term, VSB = −2Tr(AS) as an effective representation of the fundamental quark
mass terms; A is a diagonal matrix with entries proportional to the three quark masses. Next, let us differentiate
successively the axial vector generating equation with respect to φ and to φ′. It is neater to write the results first for
the case when fields with different upper and lower tensor indices are involved:



5

(αa + αb)

〈

∂2V0

∂φa
b∂φ

b
a

〉

+ (βa + βb)

〈

∂2V0

∂φ′ab∂φ
b
a

〉

= 2(Aa +Ab),

(αa + αb)

〈

∂2V0

∂φ′ab∂φ
b
a

〉

+ (βa + βb)

〈

∂2V0

∂φ′ab∂φ
′b
a

〉

= 0 (14)

Next, let us write the corresponding equations for the case when the upper and lower tensor indices on each field
are the same.

αb

〈

∂2V0

∂φa
a∂φ

b
b

〉

+ βb

〈

∂2V0

∂φa
a∂φ

′b
b

〉

=
∑

g

βg

〈

∂2V0

∂φa
a∂φ

′g
g

〉

− 8c3
αa

,

αb

〈

∂2V0

∂φ′aa∂φ
b
b

〉

+ βb

〈

∂2V0

∂φ′aa∂φ
′b
b

〉

=
∑

g

βg

〈

∂2V0

∂φ′aa∂φ
′g
g

〉

. (15)

Note that the axial generating equation provides information on the masses of all the pseudoscalars. Further differ-
entiations will relate a large number of trilinear and quadrilinear coupling constants to the meson masses and to the
quark mass coefficients, Aa.

To fully characterize the system we will also require some knowledge of the axial vector and vector currents [46]
obtained by Noether’s method:

(Jaxial
µ )b

a = (αa + αb)∂µφ
b
a + (βa + βb)∂µφ

′b
a + · · · ,

(Jvector
µ )b

a = i(αa − αb)∂µS
b
a + i(βa − βb)∂µS

′b
a + · · · , (16)

where the dots stand for terms bilinear in the fields.
It will be helpful to briefly review the treatment of the π-π′ system as given in section IV of ref. [44]. Introduce

the abbreviations

xπ =
2A1

α1
,

yπ =

〈

∂2V

∂φ′12∂φ
′2
1

〉

,

zπ =
β1

α1
. (17)

Here we have introduced the total potential V = V0 + VSB. Substituting a = 1, b = 2 into both of Eqs. (14) enables
us to write the (non-diagonal) matrix of squared π and π′ masses as:

(M2
π) =

[

xπ + z2
πyπ −zπyπ

−zπyπ yπ

]

. (18)

We see that xπ would be the squared pion mass in the single M model and yπ represents the squared mass of the
“bare” π′. The transformation between the diagonal fields (say π+ and π′+) and the original pion fields is defined as:

[

π+

π′+

]

= R−1
π

[

φ2
1

φ′
2
1

]

=

[

cos θπ − sin θπ

sin θπ cos θπ

] [

φ2
1

φ′
2
1

]

, (19)

which also defines the transformation matrix, R. The explicit diagonalization gives an expression for the mixing angle
θπ:

tan(2θπ) =
−2yπzπ

yπ(1 − z2
π) − xπ

. (20)

The mixing angle, θπ can be connected to the experimentally known value of the pion decay constant. Substituting

the expressions from Eq. (19) for φ2
1 and φ′

2
1 in terms of the physical fields π+ and π′+ into Eq. (16) yields,

(Jaxial
µ )21 = Fπ∂µπ

+ + Fπ′∂µπ
′+ + · · · ,

Fπ = (α1 + α2) cos θπ − (β1 + β2) sin θπ,

Fπ′ = (α1 + α2) sin θπ + (β1 + β2) cos θπ. (21)
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III. SIMPLIFICATION FOR ZERO QUARK MASSES

The zero quark mass limit is gotten by taking VSB = 0. We assume that the original SU(3)L× SU(3)R symmetry
is spontaneously broken to SU(3)V rather than some smaller subgroup. The vacuum expectation values of the scalar
fields simplify to:

α1 = α2 = α3 = α, β1 = β2 = β3 = β. (22)

The mass spectrum also simplifies a lot. When quark masses are included in the isotopic spin invariant approximation
there are 16 different masses. However in the zero quark mass limit there are only 8 different masses. These describe
the four systems of degenerate SU(3) octet or SU(3) singlet fields:

(φ̂, φ̂′), (φ0, φ
′
0),

(Ŝ, Ŝ′), (S0, S
′
0). (23)

Here the hat stands for the eight members of the appropriate octets. The fields of each system can mix with each
other but not with the fields of any other system. In addition to 8 different masses there will be four different mixing
angles describing four orthogonal 2×2 matrices. The conventions are the same as in Eq. (19) so that θπ now describes
the mixings of the two pseudoscalar octets. Note that if only isotopic spin invariance were present, the isotopic spin
zero fields of each parity would be characterized by a 4×4 mixing matrix with 6 angle parameters (See Eq.(64) of [44]
for example). Notice also that the π − π′, K −K ′ and η8 − η′8 mixings, for example, are all described by the same
mixing parameter θπ.

We next discuss the notations for resolving the nonets into SU(3) octets and singlets. Matrix notation is sometimes
convenient; we use the convention φb

a → φab. The properly normalized singlet states are:

φ0 =
1√
3
Tr(φ), φ′0 =

1√
3
Tr(φ′),

S0 =
1√
3
Tr(S), S′

0 =
1√
3
Tr(S′). (24)

Then we have the matrix decompositions:

φ = φ̂+
1√
3
φ01, φ′ = φ̂′ +

1√
3
φ′01,

S = Ŝ +
1√
3
S01, S′ = Ŝ′ +

1√
3
S′

01, (25)

wherein φ̂, φ̂′, Ŝ and Ŝ′ are all 3×3 traceless matrices. The singlet scalar fields may be further decomposed as:

S0 =
√

3α+ S̃0, S′
0 =

√
3β + S̃′

0. (26)

Here S̃0 and S̃′
0 are the fluctuation fields around the true ground state of the model.

Setting xπ = 0, corresponding to zero quark masses, simplifies Eq. (20) for the π-π′ mixing angle to:

tan2θπ =
−2zπ

1 − z2
π

≡ 2tanθπ

1 − tan2θπ

. (27)

This immediately yields:

tanθπ = −β
α
. (28)

Substituting this into Eq. (21) yields the simple results:

Fπ = 2
√

α2 + β2,

Fπ′ = 0. (29)

One may note, for comparison, from Table 4 in [45] that Fπ′ and also FK′ are not exactly zero in the presence of
non zero quark masses, although they are very heavily suppressed. This feature suggests the essential reliability of
the zero quark mass limit.
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Next consider the pseudoscalar octets, φ̂ and φ̂′ in the model. Because of SU(3) symmetry it is sufficient to give

just the two I = I3 = 1 fields, φ2
1 and φ′

2
1. Their mixing matrix, Eq. (18) becomes in the limit of zero quark masses:

(M2
π) = yπ

[

z2
π −zπ

−zπ 1

]

=

〈

∂2V0

∂φ′21∂φ
′1
2

〉[

β2/α2 −β/α
−β/α 1

]

(30)

It is easy to see that this matrix has zero determinant and to identify the usual (but zero mass) pseudoscalar pion as

π+ =
2

Fπ

(

αφ2
1 + βφ′

2
1

)

, (31)

where Fπ =131 MeV. The physical massive pion “excitation” is clearly π′+ = 2
Fπ

(−βφ2
1 + αφ′

2
1) and has a squared

mass, m2(π′) = yπ(1 + β2/α2). We notice that, just from our general treatment, the π − π′ system can be described
by the three parameters α, β and yπ. However, there are only two physical quantities, Fπ and m2(π′), to compare
with. Thus the mixing angle between the usual and the “excited” pseudoscalar octet states is not predicted in
general. In order to predict this interesting quantity we have to specify our choice of chiral invariant terms in the
potential, V . A similar situation will be seen to hold for trilinear and quadrilinear coupling constants involving the
physical pseudoscalars. There are many constraints just from chiral symmetry but a complete (though clearly model
dependent) description will depend on the particular choice of terms in the potential.

It is also amusing to look at the φ0−φ′0 sector in the zero quark mass limit. There is a rather drastic simplification
since the introduction of quark masses results in additional mixing with the isoscalar members of the corresponding
octets. That requires a six parameter 4×4 transformation matrix rather than the single parameter 2×2 matrix we
now will get. Using the formula,

∂

∂φ0
=

1√
3

(

∂

∂φ1
1

+
∂

∂φ2
2

+
∂

∂φ3
3

)

, (32)

in both of Eqs. (15), we end up with the pre-diagonal φ0 − φ′0 mass squared matrix:

(M2
0 ) =

[

z2
0y0 −

8c3(2γ1+1)2

3α2 −z0y0 + 8c3(1−γ1)(2γ1+1)
3αβ

−z0y0 + 8c3(1−γ1)(2γ1+1)
3αβ

y0 − 8c3(1−γ1)
2

3β2

]

. (33)

Here z0 = −2β/α and

y0 =

〈

∂2V

∂φ′0∂φ
′
0

〉

. (34)

The mixing angle, θ0, is defined by the convention:

[

φ0p

φ′0p

]

= R−1
0

[

φ0

φ′0

]

=

[

cos θ0 − sin θ0
sin θ0 cos θ0

] [

φ0

φ′0

]

, (35)

In the limit where c3, defined in Eq. (10), vanishes it is seen that the determinant of the mass squared matrix in Eq.
(33) vanishes. This is understandable since c3 multiplies the terms which violate U(1)A symmetry and a zero mass
singlet pseudoscalar boson must exist since the symmetry is broken spontaneously. In this limit the mixing angle is
related to the pseudoscalar octet one by tan θ0 = −2 tan θπ. It should be remarked that the effect of non zero c3 is
actually quite large so the limit where it vanishes is mainly of academic interest.

Of course, the U(1)A transformation is relevant in setting up this model since, as seen from Eq. (3), it distinguishes
the two quark fields from the four quark fields. We shall consider here, models in which the terms multiplied by c3
are the only ones which violate U(1)A symmetry. In that case the divergence of the axial current in the model exactly
mocks up the QCD axial anomaly at tree level. Alternatively, a term like det(M) + h.c. could be used with similar
results; such a term does not however mock up the U(1)A anomaly equation.

We have seen that quite a lot of information about the pseudoscalar particle masses and mixings follows just from
the axial generating equations, reflecting the spontaneous breakdown of the octet axial symmetries. On the other
hand, Eq.(31) of ref.[44] shows that, in the case where spontaneous breakdown preserves the SU(3) invariance of the
vacuum, there will be no such model independent information about the masses and mixings of the scalars. To find
that information, one must make models with specific choices of the invariant terms. In preparation we give notations
for the scalar mass and transformation matrices, analogous to those we adopted for the pseudoscalars, in the case
where quark masses are absent and the vacuum is assumed to be SU(3)V invariant. The pre-diagonal 2 × 2 matrix
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for the I = I3 = 1 scalar meson squared masses is denoted (X2
a) and the mass diagonal fields, a+ and a′+ are related

to the non-diagonal ones by:

[

a+

a′+

]

= L−1
a

[

S2
1

S′2
1

]

=

[

cosψa − sinψa

sinψa cosψa

] [

S2
1

S′2
1

]

. (36)

This is sufficient to describe the mixing of all the scalar octet particles with corresponding SU(3) quantum numbers.
For the S0 −S′

0 mixing, we define the prediagonal squared mass matrix to be (X2
0 ) while the mass diagonal fields S0p

and S′
0p are defined by:

[

S0p

S′
0p

]

= L−1
0

[

S0

S′
0

]

=

[

cosψ0 − sinψ0

sinψ0 cosψ0

] [

S0

S′
0

]

, (37)

IV. MODEL FOR MASSES AND MIXINGS

As just discussed, it is necessary to make a specific choice of terms in the SU(3)L× SU(3)R invariant potential V0

in order to be able to predict all physical properties of the system. This is a non trivial issue since, for example, if we
restrict V0 to be renormalizable, there are twenty one terms [44] with this symmetry. We will adopt two criteria for
which terms to include. First we list the six SU(3)L× SU(3)R invariant terms which satisfy these criteria and seem
the most reasonable for an initial treatment:

V0 = − c2 Tr(MM †) + ca4 Tr(MM †MM †)

+ d2 Tr(M ′M ′†) + ea
3

(

ǫabcǫ
defMa

dM
b
eM

′c
f + h.c.

)

+ c3

[

γ1ln

(

detM

detM †

)

+ (1 − γ1)ln

(

Tr(MM ′†)

Tr(M ′M †)

)]2

. (38)

All the terms except the last two have been chosen to also possess the U(1)A invariance. Those terms are clearly
non-renormalizable and violate U(1)A invariance in a special way. They have, as previously discussed [see Eq.(11)], the
correct U(1)A property so that the resulting Lagrangian can exactly mock up the U(1)A anomaly of QCD. Of course,
we are using the effective Lagrangian at tree level and renormalizability is not an issue at this level. Renormalizable
terms of the instanton determinant type and the type Tr(MM ′†) + h.c. could be used instead with not much change
in the result. However, the role that the U(1)A transformation is playing in distinguishing “four quark” from “two
quark” effective fields suggests that we try to reproduce as much as possible of the behavior of QCD under axial
U(1)A. The ln terms chosen also have the convenient feature that they confine the U(1)A violating effects to the
SU(3) singlet pseudoscalar sector of the model. The first four terms were chosen from the twelve renormalizable
and U(1)A invariant ones in the formula, Eq. (A1) of [44] (please see also Appendix A of the present paper) by
imposing the criterion that effective vertices describing the smallest numbers of quarks plus antiquarks be retained.
This quantity, representing the total number of fermion lines at each effective vertex can be written as,

N = 2n+ 4n′, (39)

where n is the number of times M or M † appears in each term while n′ is the number of times M ′ or M ′† appears
in each term.. Thus, the c2 term has N=4 while the ca4 , d2 and ea

3 terms each have N=8. For simplicity, we have
neglected the N=8 term, cb4[Tr(MM †)]2 which is suppressed, in the single M model, by the quark line rule. It may be
noted that the quantities det(M) and Tr(MM ′†) which enter into those two terms which saturate the U(1)A anomaly
have N=6. On the other hand, the terms in

ea
4 Tr(MM †M ′M ′†) + eb

4 Tr(MM ′†M ′M †) (40)

each represent twelve quarks plus antiquarks at the same vertex and will not be included at the present stage. Similarly,
the term da

4Tr(M ′M ′†M ′M ′†) representing sixteen quarks and antiquarks will not be included. In the future, U(1)A
invariant terms with higher values of N may be used to systematically improve the approximation as well as U(1)A
violating operators with higher values of N which may be inserted into an obvious generalization of Eq.(11). The
minimum equations for this potential are:

〈

∂V0

∂Sa
a

〉

= 2α
(

−c2 + 2 ca4 α
2 + 4 ea

3 β
)

= 0, (41)
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〈

∂V0

∂S′a
a

〉

= 2
(

d2 β + 2 ea
3 α

2
)

= 0. (42)

Notice that α is an overall factor in Eq. (41) so that, in addition to the physical spontaneous breakdown solution
where α 6= 0 there is a solution with α = 0. On the other hand, β is not an overall factor of Eq. (42) and it is easy
to see that β is necessarily non-zero in the physical situation where α is non-zero. The minimum equations clearly
eliminate two parameters from the model.

Next, we shall give the matrix elements of the four squared mass mixing matrices based on the use of the specific
potential of Eq.(38). First consider the matrix describing any of the eight degenerate 0− quark-antiquark fields mixing
with their corresponding four quark partners. Without using the minimum equations, one obtains:

(M2
π) =

[

2
(

−c2 + 2 ca4 α
2 + 2 ea

3 β
)

4 ea
3 α

4 ea
3 α 2d2

]

(43)

This corresponds to the general form given in Eq.(30) when we identify, yπ = 2d2 and zπ = −2αea
3/d2. Note that

zπ ≡ β/α.
The matrix describing the mixing of the two pseudoscalar singlets is similarly written as:

(M2
0 ) =

[

−2
(

c2 − 2 ca4 α
2 + 4 ea

3 β
)

− 8c3(2γ1+1)2

3α2 −8 ea
3 α+ 8c3(1−γ1)(2γ1+1)

3αβ

−8 ea
3 α+ 8c3(1−γ1)(2γ1+1)

3αβ
2d2 − 8c3(1−γ1)2

3β2

]

(44)

This corrsponds to the general form given in Eq.(30) when we identify, y0 = 2d2 and z0 = −2β/α = 4ea
3α/d2.

For the mixing matrix of the octet scalars, the specific potential of Eq.(38) directly gives:

(X2
a) =

[

2
(

−c2 + 6 ca4 α
2 − 2 ea

3 β
)

−4αea
3

−4αea
3 2d2

]

. (45)

Finally the squared mass mixing matrix for the singlet scalars is similarly obtained as:

(X2
0 ) =

[

2
(

−c2 + 6 ca4 α
2 + 4 ea

3 β
)

8αea
3

8αea
3 2d2

]

. (46)

Now let us consider the comparison of this model with experiment. To start with there are 8 parameters (α, β, c2,
d2, c

a
4 , e

a
3 , c3 and γ1). These can be reduced to six by use of the two minimum equations just given. We note that

the parameters c3 and γ1), associated with modeling the U(1)A anomaly, do not contribute to either the minimum
equations or to the mass matrices of the particles which are not 0− singlets. Thus it is convenient to first determine
the other four independent parameters. As the corresponding four experimental inputs [1] we take the non-strange
quantities:

m(0+octet) = m[a0(980)] = 984.7± 1.2 MeV

m(0+octet′) = m[a0(1450)] = 1474 ± 19 MeV

m(0−octet′) = m[π(1300)] = 1300± 100 MeV

Fπ = 131 MeV (47)

Evidently, a large experimental uncertainty appears in the mass of π(1300); we shall initially take the other masses
as fixed at their central values and vary this mass in the indicated range. As shown in Eq.(B1) in Appendix B, it
is straightforward to determine the four independent parameters in terms of these masses. There is a complication
which must be taken into account; from studying the predicted masses of the 0+ SU(3) singlet states one finds that
the positivity of the eigenvalues of their squared mass matrix, Eq.(46) is only satisfied when,

m[π(1300)] < 1302 MeV. (48)

Further restrictions on the allowed range of m[π(1300)] will arise when we calculate the masses of the 0− SU(3) singlet
states. Before that we mention the two predicted masses for the 0+ SU(3) singlet states; as m[π(1300)] varies from
1200 to 1300 MeV,

m(0+singlet) = 510 → 28 (410) MeV,

m(0+singlet′) = 1506 → 1555 (1520) MeV. (49)
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FIG. 1: The predictions for the masses of the two SU(3) singlet scalars vs. m[π(1300)]. The error bars give the effect of the
uncertainty in the a0(1450) mass.

The predictions in parentheses correspond to the likely additional constraints from the positivity of the 0− SU(3)
singlet states. Plots are shown in Fig. 1.

Clearly, the most dramatic feature is the very low mass of the lighter SU(3) singlet scalar meson. Of course, one
expects the addition of quark mass type terms to modify the details somewhat. On the other hand, there are a number
of allowed different quark mass terms so it is notable that the characteristic very light mass scalar exists apart from
the ambiguity in choice of the quark mass terms.

The four independent parameters which appear in the Lagrangian (c2, d2, c
a
4 , ea

3) are shown, as functions of
m[π(1300)], in Fig. 2. The vacuum expectation values α and β of the two and four quark scalar fields are similarly
shown in Fig. 3. It is seen that β and α are each insensitive to varying m[π(1300)] and their ratio is about 0.40.

To calculate the masses of the SU(3) singlet pseudoscalars we must diagonalize Eq.(33) with the specific choices of
parameters y0 = 2d2 and z0 = 4ea

3α/d2 corresponding to the potential of Eq.(38). This enables us to fit in principle,
for any choice of m[π(1300)], the two parameters c3 and γ1 in terms of the experimental masses of η(958) and one
of the candidates η(1295), η(1405), η(1475) and η(1760). The specific formulas are given as Eqs. (B2) and (B3) in
Appendix B. However, as mentioned above, the positivity of the eigenvalues of the matrix (M2

0 ) imposes additional
constraints on the choice of m[π(1300)] in Eq.(48). This appears in solving for γ1 using the quadratic equation (B2)
and requiring its discriminant to be positive. In Fig. 4, the discriminants are shown as functions of m[π(1300)] for
each of the four possible candidates for the heavier 0− SU(3) singlet. This clearly shows that the two lowest mass
candidates have negative discriminants and can be ruled out according to our criterion. The perhaps most likely
candidate η(1475) [this case will be denoted scenario 1] has a positive discriminant for m[π(1300)] less than about
1.23 GeV. This leads to the modified allowed ranges for the 0+ singlet states, shown in parentheses in Eq.(49). There
is no restriction on the heaviest candidate, η(1760) [this case will be denoted scenario 2].

Since Eq.(B2) is a quadratic equation for γ1, one expects that there may be two physical solutions for γ1. This
turns out to be the case. In Fig.5 we show plots of γ1 as a function of m[π(1300)] for each of the scenarios mentioned
above. The quantity c3 is given in Eq.(B3) and is seen in Fig.6 to be single valued in its dependence on m[π(1300)].

It is very interesting to see what the model has to say about the four quark percentages of the particles it describes.
The percentages for the pion, the lighter 0+ singlet and the a0(980) are displayed in Fig.7 as functions of the precise
value of the input parameter m[π(1300)]. The pion four quark content (equal to 100 sin2θπ) is seen to be about 17
percent. Of course the heavier pion would have about an 83 percent four quark content. On the other hand, the octet
scalar states present a reversed picture: the a0(980) has a large four quark content while the a0(1450) has a smaller
four quark content. The very light and the rather heavy 0+ singlets are about maximally mixed, having roughly equal
contributions from the 4 quark and 2 quark components.

In Fig.8 the four quark percentages of the 0− SU(3) singlets are shown for both scenarios. The perhaps more
plausible scenario takes η(1475) as the heavy 0− singlet state. In this case we see that for the solution with smaller
γ1, the four quark content of the familiar η(958) is about 25 percent while for the solution with larger γ1, the four
quark content of η(958) is about 55 percent. Thus the smaller γ1 solution seems more plausible physically. In the
case where the η(1760) is identified as the heavier partner of the η(958) the smaller γ1 solution yields an η(958) with
a four quark content of about 7 percent while the larger γ1 solution yields an η(958) with a four quark content of
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FIG. 2: Starting from the upper left and proceeding clockwise: c2 vs. m[π(1300)], d2 vs. m[π(1300)], ea
3 vs. m[π(1300)] and ca

4

vs. m[π(1300)]. The range of m[π(1300)] corresponds to the restrictions imposed by the positivity of the scalar SU(3) singlet
masses. The error bars give the effect of the uncertainty in the a0(1450) mass.

about 82 percent.
Values of all the model parameters as well as numerical values of the mixing matrices, for a typical choice of

m[π(1300)], are listed at the end of Appendix B.

V. THREE POINT VERTICES

The three point vertices are useful for calculating the widths of the various mesons and also for the calculation of
meson-meson scattering. These can be calculated for a specific model, like the one with the choice of terms given in the
previous section, by straightforward differentiation. However, one may also obtain model independent (in the sense
of being independent of the choice of invariant terms in V0) information about these from the generating equation.
We shall do that here, specializing to the scalar-pseudoscalar-pseudoscalar vertices needed for pion pion scattering.
These are obtained by succesively differentiating the two equations in Eq.(12) with respect to one scalar field and one
pseudoscalar field. First we introduce the notations:

r1 =

〈

∂3V0

∂φ1
2∂φ

2
1∂S0

〉

q1 =

〈

∂3V0

∂φ1
2∂φ

2
1∂S8

〉

r2 =

〈

∂3V0

∂φ1
2∂φ

2
1∂S

′
0

〉

q2 =

〈

∂3V0

∂φ1
2∂φ

2
1∂S

′
8

〉

r3 =

〈

∂3V0

∂φ1
2∂φ

′
1
2∂S0

〉

q3 =

〈

∂3V0

∂φ1
2∂φ

′2
1∂S8

〉
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FIG. 3: Dependences of the two quark vacuum value α (left) and the four quark vacuum value β (right) on the choice of
m[π(1300)]. The error bars give the effect of the uncertainty in the a0(1450) mass.

1.2 1.22 1.24 1.26 1.28 1.3
m [π(1300)] (GeV)

-20000

-10000

0

10000

20000

∆

FIG. 4: The discriminant for Eq.(B2) vs. m[π(1300)]. The curves from bottom to top respectively represent the choices for
the heavier 0− SU(3) singlet to be η(1295), η(1405), η(1475) and η(1760). The error bars give the effect of the uncertainty in
the a0(1450) mass.

r4 =

〈

∂3V0

∂φ1
2∂φ

′2
1∂S

′
0

〉

q4 =

〈

∂3V0

∂φ1
2∂φ

′2
1∂S

′
8

〉

r5 =

〈

∂3V0

∂φ′12∂φ
′2
1∂S0

〉

q5 =

〈

∂3V0

∂φ′12∂φ
′2
1∂S8

〉

r6 =

〈

∂3V0

∂φ′12∂φ
′2
1∂S

′
0

〉

q6 =

〈

∂3V0

∂φ′12∂φ
′2
1∂S

′
8

〉

(50)

Note that S0 was defined in Eq.(24) while S8, for example, is the isoscalar member of the SU(3) octet defined as:

S8 =
1√
6
(S1

1 + S2
2 − 2S3

3). (51)

Now using the generating equations as just discussed, we obtain the following relations connecting the trilinear
coupling constants ri with corresponding mass squared matrices for the S0-S

′
0 and the π-π′ systems.

αr1 + βr3 =
1√
3

〈

∂2V0

∂S2
0

〉

− 1√
3

〈

∂2V0

∂φ1
2∂φ

2
1

〉
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FIG. 5: γ1 vs. m[π(1300)]. The top and bottom curves correspond to choosing the η(1760) as the heavier 0− SU(3) singlet
while the middle two curves correspond to choosing the η(1475) as the heavier 0− SU(3) singlet. Note that for each scenario,
the two curves are associated with different solutions of the quadratic equation B2 for γ1. The error bars give the effect of the
uncertainty in the a0(1450) mass.
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FIG. 6: c3 in units of GeV4 vs. m[π(1300)]. The upper curve corresponds to the scenario where the heavier 0− SU(3) singlet
is identified with the η(1475) while the lower curve corresponds to η(1760) as the heavier 0− SU(3) singlet.

αr2 + βr4 =
1√
3

〈

∂2V0

∂S0∂S′
0

〉

− 1√
3

〈

∂2V0

∂φ1
2∂φ

′2
1

〉

αr3 + βr5 =
1√
3

〈

∂2V0

∂S0∂S′
0

〉

− 1√
3

〈

∂2V0

∂φ1
2∂φ

′2
1

〉

αr4 + βr6 =
1√
3

〈

∂2V0

∂S′2
0

〉

− 1√
3

〈

∂2V0

∂φ′12∂φ
′2
1

〉

(52)

Similar equations are obtained for the qi trilinear couplings and the mass squared matrices for the S8-S
′
8 systems:

αq1 + βq3 =
1√
6

〈

∂2V0

∂S2
8

〉

− 1√
6

〈

∂2V0

∂φ1
2∂φ

2
1

〉

αq2 + βq4 =
1√
6

〈

∂2V0

∂S8∂S′
8

〉

− 1√
6

〈

∂2V0

∂φ1
2∂φ

′2
1

〉

αq3 + βq5 =
1√
6

〈

∂2V0

∂S8∂S′
8

〉

− 1√
6

〈

∂2V0

∂φ1
2∂φ

′2
1

〉
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FIG. 7: Plot of the four quark percentages of various particles in the model as functions of the undetermined input parameter,
m[π(1300)]. Starting from the bottom and going up, the curves respectively show the four quark percentages of the pion, the
0+ singlet, and the a0(980). The error bars give the effect of the uncertainty in the a0(1450) mass.
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FIG. 8: Plot of the four quark percentages of the η(958) as functions of the undetermined input parameter, m[π(1300)] for two
scenarios. The top and bottom curves correspond to choosing the η(1760) as the heavier 0− SU(3) singlet while the middle
two curves correspond to choosing the η(1475) as the heavier 0− SU(3) singlet. Note that for each scenario, the two curves are
associated with different solutions of the quadratic equation B2 for γ1. The error bars give the effect of the uncertainty in the
a0(1450) mass.

αq4 + βq6 =
1√
6

〈

∂2V0

∂S′2
8

〉

− 1√
6

〈

∂2V0

∂φ′12∂φ
′2
1

〉

(53)

Eq.(52) and Eq.(53) relate eight different linear combinations of the three point vertices to two point vertices for
the fields of pure qq̄ and pure qqq̄q̄ types. Since there are twelve a priori unknown three point vertices according to
Eq.(50), it is clear that there is, in general, not enough information available to determine all the three point vertices
in terms of the two point ones. However, we will see that the available relations are sufficient to prove the desired
low energy theorem. To relate the quantities in Eqs.(52) and (53) to quantities pertaining to mass eigenstates we
introduce an index notation to distinguish unprimed from primed fields; for example:

φ2
1 = (φ2

1)1, φ′
2
1 = (φ2

1)2. (54)

With this notation, which we apply to all fields of the model, the coupling constant of the Goldstone boson pions to
the mass diagonal SU(3) singlet scalars may be compactly written as:

g0D =

〈

∂3V

∂π+∂π−∂(S0p)D

〉

=
∑

A,B,C

(Rπ)A1(Rπ)B1(L0)CD

〈

∂3V

∂(φ2
1)A∂(φ1

2)B∂(S0)C

〉

. (55)
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The transformation matrix elements, (Rπ)AB and (L0)AB may be read from Eq.(19) and Eq.(37). Note that the
capital Latin subscripts take on the values 1 and 2 as in Eq.(54) above. There is a similar equation involving the
S8-S

′
8 scalars which yields the physical coupling constant of two Goldstone pions with S8, g8D:

g8D =

〈

∂3V

∂π+∂π−∂(S8p)D

〉

=
∑

A,B,C

(Rπ)A1(Rπ)B1(La)CD

〈

∂3V

∂(φ2
1)A∂(φ1

2)B∂(S8)C

〉

. (56)

Here, L is the transformation matrix defined in Eq.(36). Using the compact form of Eq.(55), one may compactly
express the comparison of Eq.(52) with Eq.(50) as:

√
3Fπ

2

∑

B

(R−1
π )1B

〈

∂3V0

∂(φ2
1)A∂(φ1

2)B∂(S0)H

〉

= (X2
0 )AH − (M2

π)AH . (57)

(M2
π) is given in Eq.(30) and (X2

0 ) is the model independent version of Eq.(46). Similarly,
√

6Fπ

2

∑

B

(R−1
π )1B

〈

∂3V0

∂(φ2
1)A∂(φ1

2)B∂(S8)H

〉

= (X2
a)AH − (M2

π)AH . (58)

Here (X2
a) is the model independent version of Eq.(45). Note that according to our conventions the nondiagonal and

diagonal (hatted) squared mass matrices are related as:
∑

B,C

(R−1
π )AB(M2

π)BC(Rπ)CD = (M̂2
π)AD,

∑

B,C

(R−1
0 )AB(M2

0 )BC(R0)CD = (M̂2
0 )AD,

∑

B,C

(L−1
a )AB(X2

a)BC(La)CD = (X̂2
a)AD,

∑

B,C

(L−1
0 )AB(X2

0 )BC(L0)CD = (X̂2
0 )AD, (59)

VI. LOW ENERGY PION SCATTERING

There are two reasons for next discussing the pi-pi scattering in this model. First, since the iso-singlet scalar
resonances above are being considered at tree level, one expects, as can be seen in the single M model also discussed
in [31] and at the two flavor level in [6], that unitarity corrections for the scattering amplitudes will alter their masses
and widths. Second, since the pion looks unconventional in this model (having a non-neglegible four quark component)
one might worry that the fairly precise “current algebra” formula for the near to threshold scattering amplitude might
acquire unacceptably large corrections.

Of course, for computing the near threshold pion pion scattering, it is well known that the use of a nonlinear sigma
model is more convenient. However, we are also interested in unitarizing the model in the resonance region where the
nonlinear model, which can be obtained by integrating out the resonances, is clearly not applicable.

The invariant pion pion scattering amplitude for πi(p1)+πj(p2)→ πk(p3)+πl(p4) is decomposed as:

δijδklA(s, t, u) + δikδjlA(t, s, u) + δilδjkA(u, t, s), (60)

where s, t and u are the usual Mandelstam variables. Note that the phase of the above amplitude simply corresponds
to taking the matrix element of the Lagrangian density for a four pion contact interaction. The I = 0, I = 1 and
I = 2 amplitudes correspond to the projections:

T 0(s, t, u) = 3A(s, t, u) +A(t, s, u) + A(u, t, s),

T 1(s, t, u) = A(t, s, u) −A(u, t, s),

T 2(s, t, u) = A(t, s, u) +A(u, t, s). (61)

It is straightforward to calculate A(s, t, u) using the three point vertices for two massless pions coupling to a physical
scalar (See Eqs. (55) and (56)) as well as the four point coupling constant, g for four massless pions:

g =

〈

∂4V0

∂π+∂π−∂π+∂π−

〉

(62)

The result is simply:

A(s, t, u) = −g
2

+
∑

D

(

g2
8D

(X̂2
a)DD − s

+
g2
0D

(X̂2
0 )DD − s

)

. (63)
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Note that the sum goes over the two SU(3) singlet scalars as well as the two iso-singlet scalars belonging to SU(3)
octets. We are presently interested in the threshold region (near s=0 for massless pions) so we expand this formula
to first order in s:

A(s, t, u) ≈ −g
2

+

(

g2
8D

(X̂2
a)DD

+
g2
0D

(X̂2
0 )DD

)

+ s

(

g2
8D

[(X̂2
a)DD]2

+
g2
0D

[(X̂2
0 )DD]2

)

. (64)

In this equation the summation over D has not been explicitly written and the summation over repeated indices is
to be assumed; note that the quantity (X̂2

a)DD, for example, is a single number indexed by D. Observe that the four
point vertex does not contribute to the terms linear in s. Let us then evaluate the s term first. Begin by substituting
Eq.(57) into Eq.(55) and noticing that the term (M2

π)AH makes zero contribution since that piece can be manipulated,
using Eq.(59), to be proportional to the zero masses of the physical Goldstone bosons. The physical trilinear coupling
constant is next obtained as g0D = 2√

3Fπ

(Rπ)A1(X
2
0 )AH(L0)HD. Then the quantity appearing in Eq.(64) can be

evaluated as:

g2
0D

[(X̂2
0 )DD]2

=
4

3F 2
π

(Rπ)A1(X
2
0 )AH(L0)HD

1

[(X̂2
0 )DD]2

(Rπ)C1(X
2
0 )CK(L0)KD

=
4

3F 2
π

(R−1
π )1G(L0)GE(L−1

0 )EA(X2
0 )AH(L0)HD

1

[(X̂2
0 )DD]2

(L−1
0 )DK(X2

0 )KC(L0)CF (L−1
0 )FJ (Rπ)J1

=
4

3F 2
π

(R−1
π )1G(L0)GE(X̂2

0 )ED

1

[(X̂2
0 )DD]2

(X̂2
0 )DF (L−1

0 )FJ(Rπ)J1 =
4

3F 2
π

. (65)

Similarly,

g2
8D

[(X̂2
a)DD]2

=
4

6F 2
π

(66)

The s dependent part of the scattering amplitude near threshold finally takes the simple form:

A(s, t, u) =
2s

F 2
π

. (67)

This may be recognized as the usual current algebra formula [50] in the case where the pion mass is set to zero.
We will complete its derivation in the next section, where it will be shown that the s independent terms in Eq.(64)
cancel each other. It should be remarked that the present derivation holds for any choice of chiral invariant terms in
V0, not necessarily just for the leading terms in Eq.(38).

Of course, the current algebra result is just the first term in an expansion in powers of s. The higher terms will
have the structure of a geometric series:

A(s, t, u) = s

[

2

F 2
π

+ s
∑

i

g2
i

m6
i

+ s2
∑

i

g2
i

m8
i

+ · · ·
]

, (68)

wherein we have amalgmated all four scalars as the mi and their corresponding coupling constants to two pions as the
gi. It may be noted that the entire amplitude is proportional to s. The zero of the amplitude at s = 0 is referred to
as the Adler zero. Notice also that the higher terms involve the scalar masses and hence will vanish as the mi → ∞.
In the case of the linear-in-s current algebra term, the non zero result arose because the gi’s increase as m2

i . Taking
the scalar masses to infinity is the same as integrating them out of the Lagrangian which results, as pointed out in
the original paper [51] by Gell-Mann and Levy, in a nonlinear sigma model. The magic cancellations in that case are
very easy to see. Clearly they are more intricate in the present case.

From the starting equation (63) it is seen that the radius of convergence of the series in s is equal to the squared
mass of the lightest scalar meson. To go beyond this point, in principle one should calculate all loop diagrams. A
simple approximation is to identify the partial wave corresponding to the tree term with the K matrix amplitude. This
gives results for amplitudes spanning a considerable range in s in reasonable agreement with present experimental
indications. This was carried out for the SU(2) single M linear sigma model in [6] and for the SU(3) single M linear
sigma model in [31].
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VII. FOUR POINT VERTICES

We start by establishing the notations for the quadrilinear coupling constants involving the prediagonal fields:

p1 =

〈

∂4V0

∂φ1
2∂φ

2
1∂φ

1
2∂φ

2
1

〉

p2 =

〈

∂4V0

∂φ′12∂φ
2
1∂φ

1
2∂φ

2
1

〉

p31 =

〈

∂4V0

∂φ′12∂φ
′2
1∂φ

1
2∂φ

2
1

〉

p32 =

〈

∂4V0

∂φ′12∂φ
2
1∂φ

′1
2∂φ

2
1

〉

p4 =

〈

∂4V0

∂φ′12∂φ
′2
1∂φ

′1
2∂φ

2
1

〉

p5 =

〈

∂4V0

∂φ′12∂φ
′2
1∂φ

′1
2∂φ

′2
1

〉

(69)

We find the following equations relating these quadrilinear coupling constants to the trilinear coupling constants in
Eq.(50) by differentiating the second generating equation in (12) three times with respect to pseudoscalar fields :

p1 =
β2

α2
p31 −

β√
2α2

(

1√
3
q2 +

2√
6
r2 +

1√
3
q3 +

2√
6
r3

)

+

√
2

α

(

1√
3
q1 +

2√
6
r1

)

p2 = −β
α
p31 +

1√
2α

(

1√
3
q2 +

2√
6
r2 +

1√
3
q3 +

2√
6
r3

)

p32 = p31 +
1

β
√

2

(

1√
3
(q3 − q2) +

2√
6
(r3 − r2)

)

p4 = −α
β
p31 +

1√
2β

(

1√
3
q4 +

2√
6
r4 +

1√
3
q5 +

2√
6
r5

)

p5 =
α2

β2
p31 −

α√
2β2

(

1√
3
q2 +

2√
6
r2 +

1√
3
q3 +

2√
6
r3

)

+

√
2

β

(

1√
3
q6 +

2√
6
r6

)

(70)

Notice that the above equations were obtained by expressing five out of the six quantities in Eq.(69) in terms
of trilinear coupling constants as well as the sixth quadrilinear, p31. This shows that all the quadrilinear coupling
constants cannot be obtained in terms of the trilinear ones. Nevertheless, as we will now see, the physical quadrilinear
coupling constant, g can be completely expressed in terms of the bilinear coupling constants. Using the definition in
Eq.(62), we express the physical four point coupling constant in terms of the bare four point coupling constants as,

g = (Rπ)A1(Rπ)B1(Rπ)C1(Rπ)D1

〈

∂4V0

∂(φ2
1)A∂(φ1

2)B∂(φ2
1)C∂(φ1

2)D

〉

, (71)

which may be explicitly written as,

g = cos4θπp1 − 4cos3θπsinθπp2 + cos2θπsin2θπ(4p31 + 2p32) − 4cosθπsin3θπp4 + sin4θπp5. (72)

Substituting Eq.(70) into Eq.(72) and then using Eqs.(52) and (53) gives the formula for the quadrilinear coupling
constant:

g =
1

(α2 + β2)2

[

2

3
(α2(X2

0 )11 + 2αβ(X2
0 )12 + β2(X2

0 )22)

+
1

3
(α2(X2

a)11 + 2αβ
(

X2
a)12 + β2(X2

a)22
)

]

(73)

Noting α = (R−1
π )11Fπ/2 and β = (R−1

π )12Fπ/2 we rewrite Eq.(73) as,

g =
8

F 2
π

(

1

3
(R−1

π )1D(X2
0 )DJ(Rπ)J1 +

1

6
(R−1

π )1D(X2
0 )DJ (Rπ)J1

)

. (74)
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In order to verify the cancellation of the s independent terms in Eq.(64) we should subtract half of Eq.(74) from the
sum of the following two expressions:

g2
0D

(X̂2
0 )DD

=
4

3F 2
π

(Rπ)A1(X
2
0 )AH(L0)HG

1

(X̂2
0 )GG

(Rπ)C1(X
2
0 )CK(L0)KG

=
4

3F 2
π

(R−1
π )1D(L0)DE(L−1

0 )EA(X2
0 )AH(L0)HG

1

(X̂2
0 )GG

(L−1
0 )GK(X2

0 )KC(L0)CF (L−1
0 )FJ (Rπ)J1

=
4

3F 2
π

(R−1
π )1D(L0)DE(X̂2

0 )EG

1

(X̂2
0 )GG

(X̂2
0 )GF (L−1

0 )FJ (Rπ)J1 =
4

3F 2
π

(R−1
π )1D(X2

0 )DJ(Rπ)J1 (75)

g2
8D

(X̂2
a)DD

=
4

6F 2
π

(Rπ)A1(X
2
a)AH(L0)HG

1

(X̂2
a)GG

(Rπ)C1(X
2
a)CK(L0)KG

=
4

6F 2
π

(R−1
π )1D(L0)DE(L−1

0 )EA(X2
a)AH(L0)HG

1

(X̂2
a)GG

(L−1
0 )GK(X2

a)KC(L0)CF (L−1
0 )FJ (Rπ)J1

=
4

6F 2
π

(R−1
π )1D(L0)DE(X̂2

a)EG

1

(X̂2
a)GG

(X̂2
a)GF (L−1

0 )FJ (Rπ)J1 =
4

6F 2
π

(R−1
π )1D(X2

a)DJ(Rπ)J1 (76)

It has thus been shown that the simple formula Eq.(67) holds near threshold in the case of massless pions for an
arbitrary potential, V0.

VIII. SUMMARY AND DISCUSSION

We have given a detailed treatment of a systematic approach to the study of a linear sigma model containing
one chiral nonet transforming under U(1)A as a quark-antiquark composite and another chiral nonet transforming
as a diquark-anti diquark composite (or, equivalently from a symmetry point of view, as a two meson molecule).
Some highlights of this work have been presented elsewhere [52]. The model provides an intuitive explanation of a
current puzzle in low energy QCD: Recent work has suggested the existence of a lighter than 1 GeV nonet of scalar
mesons which behave like four quark composites. On the other hand, the validity of a spontaneously broken chiral
symmetric description would suggest that these states be (perhaps somewhat distorted) chiral partners of the light
pseudoscalar mesons which are two quark composites. The model solves the problem by starting with the two chiral
nonets mentioned and allowing them to mix with each other. Working with the SU(3) invariant version of the model
it is seen that the four experimental inputs given in Eq.(47) (note that the lighter 0− nonet automatically has zero
mass in the limit in which we are working) enforce a mixing whereby the light scalars have a large four quark content
while the light pseudoscalars have a large two quark content. In addition, one light isosinglet scalar is exceptionally
light (see Eq.(49)).

Of the four experimental inputs just mentioned, there is a large uncertainty associated only with the mass of the
“heavy” pion, the π(1300). It turns out that there is in fact some sensitivity to the precise choice of m[π(1300)] so that
this quantity is really being considered as a free parameter within the range of the quoted rather large experimental
error. Thus the model parameters and predictions calculated in section IV are all displayed as functions ofm[π(1300)].
The effect of the not so large allowed variations in the mass of the a0(1450) are shown as error bars in these plots.

In our treatment there are two parameters, associated with the masses and mixings of the SU(3) singlet pseu-
doscalars, which describe the U(1)A anomaly in the effective Lagrangian. These parameters do not affect properties
of the other particles and may be traded for the masses of the η(958) and one of the heavier candidates η(1295),
η(1405), η(1475) or η(1760). The positivity of the eigenvalues allows only the last two candidates. For either of these
it is noted in section IV that there are two solutions for the two quark vs four quark content of the η(958). The
presumably favored solution results in η(958) with a mainly two quark content, while the less favored solution results
in a mainly four quark content for the η(958).

In sections V, VI and VII we gave a detailed proof that the low energy theorem for pion pion scattering holds in the
present model with massless pions, for any choice of chiral invariant potential. The proof made use of the “generating
equations”, stated in section II, to relate the four particle, three particle and two particle (ie mass term) vertices to
each other. We carried out this somewhat lengthy calculation for two reasons. First, since the pion in the model has a
non negligible, though small four quark content, one might wonder whether the theorem actually does hold. Second,
it is expected to be useful to calculate the scattering amplitude, Eq.(63) in the resonance region, rather than close to
threshold, as the theorem requires.
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Clearly, there are a number of other interesting directions for further work. We plan to add mass terms in the
same systematic scheme employed in section IV for selecting the most important chiral invariant terms. Mixing with
glueball states and possibly other chiral nonets is also an intriguing possibility. Of course, an important ingredient
to be taken into account would be the changes in the model parameters which result from unitarizing the tree level
scattering amplitudes and comparing with the unitarized amplitudes with experiment. This was carried out for the
2 flavor Gell Mann- Levy model in [6] and for the 3 flavor single M model in [31].
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APPENDIX A: SOME CORRECTIONS

We have found the following minor corrections to ref [44]:
1. In Eq.(A1) the fifth term on the right hand side should properly read, d2Tr(M ′M ′†).
2. In the sentence immediately following Eq.(A1), d2 should be added to the list of coefficients
which are U(1)A invariant.
3. In Eq.(19), the denominator of the argument of the “ln” in the first term should read detM †.
4. In the last line of Eq.(58) the left hand side should read β3.
5. In the last approximate equality in Eq.(60) the left hand side should read β3.

APPENDIX B: PARAMETER DETERMINATION

Given the inputs: the pion decay constant, Fπ; the mass of the a0(980), ma; the mass of the a0(1450), ma′ ; the
mass of the π(1300), mπ′ , the independent model parameters which don’t involve the U(1)A violating terms can be
successively determined (in the order given) by the equations:

2d2 =
m2

am
2
a′

m2
a +m2

a′ −m2
π′

(αea
3)2 =

1

64

(

(m2
a −m2

a′)2 − [4d2 − (m2
a +m2

a′)]2
)

4c2 = m2
a +m2

a′ − 2d2 −
56(αea

3)
2

d2

β

α
=

−2(αea
3)

d2

α2 =
1

4

F 2
π

1 + (β/α)2

ca4 =
1

2α2

(

c2 +
8(αea

3)
2

d2

)

(B1)

The first equation tells us that d2 is positive for the experimental input masses. We take α and β to be positive.
Then the fourth equation shows that ea

3 must be negative. Finally c2 and ca4 will be positive.
Once the above parameters are determined, the parameters γ1 and c3 of the U(1)A violating sector are obtained

in terms of the mass of the η(958), mη1 and the mass of a suitable heavier 0− isosinglet, mη2 as follows. First, γ1 is
found as a solution of the quadratic equation:

0 = Sγ2
1 + Tγ1 + U,

S = r(4 +
α2

β2
),

T = r(4 − 2
α2

β2
),
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U = r(1 +
α2

β2
) − 36,

r =
4m2

η1m
2
η2

y0[m2
η1 +m2

η2 − y0(1 + z2
0)]
. (B2)

In addition,

c3 = −
m2

η1m
2
η2α

2

24y0
(B3)

Next we give the numerical values of the parameters for the central values of all the listed input masses except for
m[π(1300)] which instead will take the typical value allowed by both the data and by the model, 1215 MeV. Table I
shows the results for the parameters which are not associated with the U(1)A violating part of the Lagrangian.

c2(GeV2) 9.64 ×10−2

d2(GeV2) 6.32 ×10−1

ea
3(GeV) −2.14

ca
4 42.1

α(GeV) 6.06 ×10−2

β(GeV) 2.49 ×10−2

TABLE I: Calculated Lagrangian parameters:c2, d2, ea
3 , ca

4 and vacuum values: α, β.

Table II shows the calculated Lagrangian parameters associated with the U(1)A violating terms. Two “scenarios”
associated with different identifications of the heavy η which is the partner of the η(958) are shown (I assumes η(1475)
to be chosen while II assumes η(1760) to be chosen.) For each scenario, the two solutions (labeled 1 and 2) are shown.

I1 I2 II1 II2

c3(GeV4) −2.42 × 10−4
−2.42 × 10−4

−3.44 × 10−4
−3.44 × 10−4

γ1 5.38 ×10−1 2.53 × 10−1 8.69 ×10−1
−7.76 × 10−2

TABLE II: Calculated parameters: c3 and γ1.

Using these parameters we next list the mixing matrices for, respectively, the two 0− octet states, the two 0+ octet
states and the two 0+ singlet states:

(R−1
π ) =

[

0.925 0.380

−0.380 0.925

]

, (L−1
a ) =

[

−0.496 0.869

0.869 0.496

]

, (L−1
0 ) =

[

0.711 0.703

−0.703 0.711

]

. (B4)

Similarly, the mixing matrices for the two solutions for scenario I of the 0− singlet states are:

I 1 : (R−1
0 ) =

[

−0.671 0.742

0.742 0.671

]

, I 2 : (R−1
0 ) =

[

0.858 −0.514

0.514 0.858

]

. (B5)

Finally, the mixing matrices for the two solutions for scenario II of the 0− singlet states are:

II 1 : (R−1
0 ) =

[

−0.413 0.910

0.910 0.413

]

, II 2 : (R−1
0 ) =

[

0.974 −0.228

0.228 0.074

]

. (B6)
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