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Abstract 

Regulation of inflammation is a crucial component of the immune system in response to 

injury and infection. In otherwise healthy individuals, an initial acute inflammatory response will 

subside once the injury or infection is eradicated. However, in certain disease states including 

autoimmune disease and persistent infection, miscommunication between cells of the immune 

system leads to a chronic inflammatory response, contributing to disease pathology and 

exacerbating symptoms. A major regulator of inflammation communication at the cellular level 

is transcription factor (TF) NF-κB. Under normal conditions, NF-κB is bound to an inhibitor in 

the cytoplasm. In a chronic disease state, NF-κB is overactive and found in the unbound form, 

resulting in increased production of inflammatory signals.  

 Transcription factor decoys (TFD) are small nucleic acid sequences (~20 base pairs) that 

mimic the binding site for the TF on the native DNA, but do not encode for any proteins. By 

binding to the TF in the cytoplasm, TFD have potential to limit excessive immune signaling and 

inflammatory protein production. Unfortunately, clinical success of TFD has been hampered by a 

lack of an effective delivery method. Lack of stability and ease of degradation of the TFD 

require a protective carrier for delivery; however many synthetic carrier systems induce toxicity 

or an enhanced inflammatory response. In disease states characterized by excessive 

inflammation, treatment-induced toxicity or immune response is highly undesirable.  

 The Bader lab has previously reported a nanoparticle carrier system based on natural 

polysaccharides, designed specifically for the treatment of rheumatoid arthritis. The materials 

used in this system have properties that can be exploited for the additional application of DNA 

delivery. This thesis will detail the adaptation of polysialic acid-N-trimethyl chitosan 



nanoparticles to be used as delivery vehicles for an NF-κB TFD treatment in in vitro models of 

rheumatoid arthritis and cystic fibrosis.  
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1. Introduction 

Nucleic acid based drug constructs are promising therapeutic candidates and have garnered a 

great deal of interest in recent years. These constructs, including DNA plasmids, DNA 

oligonucleotides, and RNA oligonucleotides, have the potential to target a variety of diseases 

through the control of genetic material. Plasmid therapy, for example, is based on the 

replacement of a defective gene with a new intact one via plasmid integration. RNA 

oligonucleotides (siRNA, miRNA) are naturally occurring, but can also be exogenously 

supplemented, and are essential for controlling certain aspects of gene expression. Finally, DNA 

oligomers have emerged as antisense oligonucleotides and transcription factor decoys, which 

bind to specific DNA sequences or transcription factors, respectively. The following work will 

describe the use of a transcription factor decoy against NF-kB.  

Despite the interest in and potential of nucleic acid drugs, the primary barrier to clinical use 

of these materials is a safe and effective method of delivery. Nucleic acids are very unstable in 

vitro, as well as in vivo, and are subject to degradation by nucleases and other enzymes. In 

addition, charge interactions between the negatively charged nucleic acid backbones inhibit entry 

into negatively charged cell membranes. In vivo, nucleic acids undergo rapid clearance via 

glomerular filtration, or recognition and intracellular degradation. In sum, the two major barriers 

to nucleic acids being effective therapeutics are the negative charge which prevents cellular 

uptake and the short nucleic acid molecules lack of stability and susceptibility to nuclease 

activity [1]. To overcome stability problems, chemical modifications such as phosphorothioate or 

methyl phosphonate are often applied to the nucleotide backbones [2]. While these modifications 

enhance stability, they do not necessarily lead to increased delivery efficiency, resulting in the 

need for a high dose and frequently repeated delivery. This is not a sustainable method for 
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delivery, as phosphorothioate nucleic acids have been shown to have a concentration dependent 

toxicity [3, 4]. 

Methods that do not involve directly modifying the nucleic acid therapeutic itself, such as 

viral vectors, cationic lipid formulations and more recently, cationic polymer formulations, exist 

to overcome the barriers to nucleic acid delivery. The advantages and disadvantages of these 

different methods will be discussed in chapters two and three. In general, drug delivery systems 

for nucleic acids must have the following attributes: biocompatibility and biodegradability, 

reticuloendothelial system avoidance, non-immunogenicity, cellular uptake capability, and cell 

or tissue specificity [5]. Recently, polysaccharides have attracted interest as materials for drug 

delivery systems due to an inherent lack of toxicity, a propensity for degradation with existing 

enzymes, and in some instances, innate bioactivity[6]. This dissertation describes the use of a 

polysaccharide based polysialic acid-N-trimethyl chitosan (PSA-TMC) nanoparticle system as a 

non-immunogenic, non-toxic, biodegradable delivery system for small nucleic acids. Although 

chitosan-nucleic acid polyplex systems have been reported previously, this system is 

distinguished by the addition of polysialic acid, a polymer that has been shown to impart stealth 

properties on  nanosystems [7]. In addition, when compared to other chitosan based NA delivery 

systems, PSA-TMC nanoparticles have smaller sizes and lower polydispersities, making them 

more suitable to drug delivery applications [8].  

A transcription factor decoy ODN is a short nucleic acid sequence that mimics the nuclear 

binding site associated with specific transcription factors, but does not contain any genetic 

coding sequences, effectively preventing transcription factor activity beyond initial binding. To 

demonstrate anti-inflammatory activity, the NF-κB decoy ODN-coated PSA-TMC nanoparticles 

were administered to several in vitro models, including CF via interleukin-1β (IL-1β) or 
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Pseudomonas aeruginosa lipopolysaccharide (LPS) stimulation of IB3-1 bronchial epithelial 

cells, CF via co-culture with  P. aeruginosa bacteria, and RA via SW982 synovial sarcoma cells 

stimulated with interleukin-1β, as well as synoviocytes isolated from RA joint tissue. Using these 

models, we show that free ODN and PSA-TMC nanoparticles coated with scrambled ODNs do 

not have substantial impacts on the inflammatory response; however, decoy ODN-coated PSA-

TMC nanoparticles were able to reduce the secretion of interleukin-6 and interleukin-8, as well 

as expression of granulocyte-macrophage colony stimulating factor.  

In sum, PSA-TMC is a non-toxic, non-immunogenic, biodegradable nanoparticle system 

expected to effectively incorporate and safely deliver small nucleic acids. This claim has been 

investigated using an NF-κB inhibiting oligonucleotide in several in vitro models, as described in 

the following sections. 

The thesis is constructed as follows: general background information regarding drug delivery 

system design challenges (chapter two), followed by specific background information regarding 

inflammation in RA and CF, concluding with the goals to be achieved and hypotheses tested by 

this work (chapter three). Chapter four will be devoted to adaptation of PSA-TMC nanoparticles 

to be DNA carriers, while chapters five-seven will focus on detailed description of development 

and testing on in vitro models, and chapter eight will summarize the work described and discuss 

potential future directions of this project.  
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2. Challenges of drug delivery 

This chapter was adapted from a textbook chapter written by P.R. Wardwell and R.A. 

Bader published in Engineering Polymer Systems for Improved Drug Delivery, and provides an 

overview of the challenges provided by the environment of the human body and the chemical 

and physical characteristics of therapeutics themselves for drug delivery applications. Although 

not everything discussed in this chapter is relevant to the specific work subsequently described in 

the thesis, the information presented here is vital to understand the complexity of drug delivery, 

and the degree of thought, planning, and experimentation that must go into designing new drug 

delivery methods.  

Abstract 

Recent advances in drug development have led to the discovery and production of a 

variety of therapeutic molecules, with the potential to target and treat many diseases [9]. Their 

use is somewhat limited, however, by the drug delivery methods available today, and the 

obstacles put in place by the human body. The body is essentially a complex network of 

compartments within which the desired sites of action lie. In 

order to reach these targets, the drug molecules have to cross a 

variety of boundaries, usually in the form of epithelial 

membranes or mucosal barriers, as well as face exposure to a 

harsh environment of degrading enzymes and varying pH levels 

[10]. Therapeutic characteristics including hydrodynamic radius, 

charge, hydrophilicity, and permeability can affect movement [11]. The impact of these obstacles 

on bioavailability differs among users, resulting in variable therapeutic efficacy [12].  

Fig. 1: Several intertwined 

factors affect the design of a 

drug delivery system. 
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In general, the ability of the drug molecule to reach its target organ and have the desired 

effect is hindered by obstacles that can be broken into three interrelated categories as follows: (1) 

in vivo drug solubility, (2) in vivo drug stability and (3) physical barriers to absorption (Fig. 2-1) 

[13, 14]. In order to travel to the site of action and have maximum efficacy, the drug must be 

soluble and stable within the aqueous environment of the body.  Furthermore, soluble and stable 

therapeutic agents are associated with increased ability to permeate the physical barriers that 

hinder absorption. Based on the obstacles introduced above, development and enhancement of 

methods for improving delivery of therapeutic molecules that lack stability and solubility is 

imperative. Many methods for improved delivery rely on polymer based compounds in the form 

of (1) implantable networks for controlled release; (2) carrier systems including nanoparticles, 

liposomes, and micelles for therapeutic encapsulation; and (3) polymer-drug conjugates.   

This chapter will provide an overview of the various physical and chemical challenges 

encountered in the physiological environment that prevent therapeutics from reaching the site of 

action. Additionally, the concept of dosing maintenance and the therapeutic window will be 

explored. Finally, a brief introduction will be given on how polymer based carrier systems and 

polymer conjugates can be used to overcome these barriers 

2.1. History of challenges in drug delivery 

As science has advanced, the discovery of potential drug molecules has increased.  

However, due to complexity of the human body and the drug molecules themselves, application 

of new therapeutics is somewhat limited. Thus, as new drug discoveries were made, advances in 

delivery mechanisms became increasingly necessary [15]. To optimize efficacy and minimize 

negative effects, a high concentration of non-metabolised drug must reach the site of action 

preferentially over non target tissues [16]. 
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In the mid 1900s, progess in the developent of new drug delivery systems was initiated. 

Until this time, the majority of drugs were delivered through conventional methods such as 

injections (parenteral, intramuscular, subcutaneous.), oral delivery (solutions, tablets) or 

transdermally, in the form of cream or ointment [17]. These methods, although effective at the 

time, each come with disadvantages.  The injection route is painful, invasive, and often times 

requires administration by a trained clinician; thus patient compliance is low, resulting in a 

reduced therapeutic efficacy [18]. Additionally, since the drug is often times injected directly 

into the blood stream, the effect is somewhat short lived, and then the potential for sustained 

effect is diminished.  Oral delivery methods are associcated with high patient compliance, 

however many drug molecules can not survive the harsh environment of the gut or be absorbed 

through the intestinlal epithelial barrier [19, 20]. Topical delivery again generally improves 

patient compliance, however this method is limited to local delivery, as many therapeutics 

cannot diffuse thorugh the protective layers of the epidermis [21]. Drug delivery systems aim to 

mitigate the limitations of these conventional delivery methods.   

In the 1950’s a break through in oral drug delivery systems was made with an 

encapsulation methods known as the Wurster process [22]. This in turn led to the development of 

other microencapsulation methods. In the late 1960’s, Alejandro Zaffaroni, a pioneer in drug 

delivery research, designed the first controlled release drug delivery system in the form of a 

transdermal patch [23]. His research is conisdered by many to form the foundation of all 

subsequent drug delivery research. 

Liposomal systems were also developed in the 1960’s for controlled release. A liposome 

is an artificial vesicle made from two lipid bilayers, resulting in a hydrophilic outer shell and 

inner core, with a hydrophobic layer between the two. The dual natured attitude toward water 
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allows for encapsulation of both hydrophobic and hydrophilic drug molecules within the carrier 

system. Current liposomal systems incoroporate poly(ethylene glycol) to reduce undesired 

uptake by the reticuloendothelial systems. Liposomes are beyond the scope of this project, but 

are covered in depth in many references[24-28].  

Polymer-drug conjugates, also referred to as polymeric pro-drugs, have been explored as 

drug delivery systems. Through conjugation, the drug molecule can be held in an inactive form 

until release at the site of action, thereby reducing non-specific toxicity and enhancing 

therapeutic efficacy. Conjugation can increase therapeutic stability and solubility. Drug delivery 

systems, particularly those based upon polymers, have allowed scientists to surpass the barriers 

frequently encountered in vivo.   

2.2.  Physical barriers 

In order to reach the systemic circulation 

and/or the site of action, all molecules must cross a 

series of physiological barriers, particularly epithelial, 

mucosal, and endothelial membranes. These 

membranes exist throughout the body, with varying 

complexity, thickness,  and permeability [29]. 

Membrane properties allow some molecules to cross 

easily, while others are not able to cross at all. The 

barriers to drug delivery, and their associated 

properties will  be discussed in detail in this section.    

2.2.1.  Epithelial membranes 

Fig. 2: Epithelial cells can be classified 

by morphology and alignment.   
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Epithelial membranes line the interior and exterior of numerous organs. As individual 

organs serve distinct purposes and functions, epithelial membranes differing in cellular  

morphology and arrangement are utilized. The epithelium functions mainly in protection and 

transport, but also assists in the regulation of secretion, absorption, excretion, filtration, and 

diffusion of molecules, such as nutrients, waste, and drugs [30, 31]. As shown in Fig. 2, 

epithelial cell shape can be categorized as squamous, cuboidal, or columnar [32]. These cells can 

be arranged into layers by a process known as stratification. Squamous cells are generally flat 

and wide, as illustrated in Fig. 2 (A,B).  Consequently, these cells are typically found in areas 

with a high amount of material exchange. The lungs, for example, utilize a simple squamous 

epithelium [Fig. 2 (A)] to allow for rapid exhange of 

gases, as thinner membranes are easier to cross. Cuboidal 

cells, as shown in Fig. 2 (C,D), are most commonly 

found in the epidermis and mainly function as structural 

maintenance cells.  Like the simple squamous cells of the 

lungs, columnar epithelial cells [Fig. 2 (E)] are also 

found in areas that require a large surface area for 

material exchange; however, this morphology facilitates 

greater regulation of the exchange. As columnar cells are 

more elongated than squamous cells, they allow for an 

increased number of lateral cell junctions that regulate 

the connectivity of the membrane. For example, a simple 

columnar epithelium is found in the small intestine to allow for the absorption of ingested 

nutrients.  Columnar epithelia cells can be specialized with cilia that sweep unwanted particles 

Fig. 3: Tight junctions, adherens 

junctions, desmosomes, and gap 

junctions serve as connections 

between epithelial cells and act to 

reduce the membrane permeability of 

molecules.   
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away from the area, enhancing the protective nature of the the membrane. Ciliated columnar 

cells are found in other areas aside from the small intestine, including the respiratory passages. 

Additionally, specialized cells known as goblet cells are often scattered among other columanr 

epithelial cells. As will be discussed further below, goblet cells secrete mucus that protects the 

body from potential pathogens and provides a medium for transport. As a general rule, as the 

complexity of an epithelial membrane increases, the permeability of molecules, including drugs, 

decreases.   

Contact between neighboring epithelial cells is provided by several types of cell 

junctions, which can reduce permeability of the membrane to select molecules. These junctions 

include tight junctions, adherens junctions, desmosomes, and gap junctions (Fig. 3). Tight 

junctions are paracellular connections often found towards the apical surface, that seal off the 

pathway between cells, preventing harmful substances as well as therapeutic molecules from 

traveling through the membrane [33]. Tight junctions are composed of transmembrane proteins 

with adhesive properties including occludins, claudins, and recently discovered tricellulin [33]. 

Adherens junctions are tyically located below the tight junctions. The primary compenents of 

these cells are cadherins, which are adhering proteins requiring the presence of calcium to 

maintain adhesiveness. These junctions include actin and myosin filaments on the intracellular 

side of the membrane, resulting in an ability to generate contractile force, which in turn acts to 

control and maintain the cells proper shape and tension. The combination of tight and adherens 

junctions is referred to as the junctional complex [33]. Desmosomes are the next type of junction 

found moving away from the apical surface. Desmosomes are also composed of calcium 

dependent adhesive molecules; however, they are specifically called desmosomal cadherins. 

Desmosomes primary job is to connect epithelial cells to each other on the lateral surface, giving 
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the membrane strength and durability. They differ from tight junctions in their level of 

permeability. As desmosomes primary function is not to create a seal between two 

compartments, the level of permeability is much higher. Unlike the other junctions discussed in 

this section, gap junctions allow for transport between cells and  do not have a significant role in 

strengthening cell-cell structural connections. They can be thought of as small, water-filled 

channels spanning the intracellular space between two adjacent cells. The channels themselves 

are composed of proteins called connexins, which assemble to form a ring  structure and are able 

to span the intracellular space.   

The major limiting factor to absorption of orally administered drugs is the low 

permeability of the gastrointestinal epithelial membrane [34]. Within the gastrointestinal tract, 

drug absorption occurs primarily in the lower portions of the small intestine where the tight 

junctions, and consequently the epithelium, are most permeable [35]. This leakiness of tight 

junctions is associated with a decreased transepithelial electrical resistance (TEER). The 

realization of the importance of tight junctions and TEER in trans-epithelial movement has led to 

the development of several methods to enhance permeability. For example, several investigators 

have found methods to target occludins and claudins, the primary proteins involved in tight 

junctions  [36, 37]. While useful for drug delivery applications, the disruption of tight junctions 

also reduces the protective function of the epithelial membrane; so application of tight junction 

modulation must be highly specific and easily reversible.   

  Rather than targeting intercellular delivery through the tight junctions, other 

investigators in the realm of drug delivery have focused on enhancing absorption through the 

primary columnar epithelial cells of the intensitine, the enterocytes. Enterocytes posess villi and 

microvilli on the apical surface that increase the surface area for absorption [38]. Among 



11 

 

enterocytes are specialized cells known as M cells, or membranous cells. They typically are 

found covering sections of lymphoid tissue known as Peyers Patches.  M cells present antigens 

that can be targeted to enhance the efficiency of the transcytosis of macromolecules and non-

bioactive molecules relative to enterocytes [39]. Enterocytes produce the glycoprotein enzymes 

necessary for transporting materials across the epithelia. Recently, enterocytes were found to 

express many of the same drug metabolising enzymes originally thought to only be found in the 

liver [40]. Actions such as co-administration of enzyme competitor molecules to decrease the 

catalytic activity of enzymes (belonging to the Cytochrome P450 family, see Section 2.3.1) on 

the primary administered drug can be taken to enhance absorption and efficacy. Absorption can 

be further hindered by other columnal epithelial cells, goblet cells and ciliated epithelial cells 

[41].  Goblet cells secrete mucus that forms the basis of the mucosal membrane, as discussed 

below. Ciliated cells hinder absorption through the enterocytes by creating drug molecule 

movement [41].   

Transdermal drug delivery is another favored non-invasive route of administration 

hindered by the relative impermeability of the epithelial membrane. The major limiting factor of 

transdermal delivery is the outermost layer of skin known as the stratum corneum. This layer is 

between 10 and 20 um thick and can be thought of as a brick and mortar type of system; where 

the bricks are the cells, composed mainly of cross linked keratin, while the mortar is a dense 

mass of extracellular matrix proteins and lipids. This architecture requires drug transport to take 

a tortuous path of diffusion through the intercellular lipid mass. Thus, only a limited number of 

molecules, specifically those that are lipophilic, have a low effective dosing requirement, and 

possess a  molecule weight of <500 daltons, can travel this route [42]. Below the stratum 

corneum is the avascular epidermis, composed primarily of squamus epithelial cells near the 



12 

 

stratum corneum and cuboidal epithelial cells approaching the demis [43]. The epidermis 

provides another non-vascularized barrier that must be traversed by the drug before reaching the 

dermis, the desired destination of most transdermally administered drugs.  This is the inner most 

layer of the skin epithelium where blood vessels and nerve endings are contained [42].    

2.2.2.  Endothelial membranes 

Drugs that enter and exit systemic circulation must cross the endothelial barrier provided 

by the blood vessels. The anatomy of blood vessels varies with the type; however, each artery, 

vein, and capillary consists of a thin, inner membrane of squamous endothelial cells, which 

provides the main barrier to drug absorption [44]. In most healthy systemic vessels, this 

endothelial sheet is continuous with cells, connected by impermeable tight junctions and 

adherens junctions.  

Capillaries, consisting of a single endothelial membrane and a small amount of 

connective tissue, are the most common type of blood vessel and the site of blood/tissue-material 

exchange. Therefore, capillaries are of interest in many drug delivery applications. The capillary 

endothelium can be targeted using ligands specific to receptors expressed by endothelial cells. 

Angiogenic vessels associated with tumors and inflamed tissue provide several examples of the 

specific targeting mechanism.  For instance, the endothelium of newly formed vessels often 

overexpress key proteins and molecules, including vascular endothelial growth factor (VEGF), 

adhesion molecules such as vascular adhesion molecule (VCAM) and e-selectin [45]. 

Atherosclerosis, a disease characterized by vascular inflammation, stiffening, and plaque 

buildup, also is characterized by upregulated adhesion molecules (VCAM-1, ICAM-1, and 

selectins).  Potential plaque rupture provides further prospective targets, as proteins such as 

fibrin are released into the vessel near the plaque [46]. Additionally, endothelial cells contain 
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vesicles specifically designed to transport materials across the cytoplasm [47]. In highly 

angiogenic states, as often associated with pathologies such as tumor growth and inflammation, 

the capillary endothelium becomes increasingly discontinuous. This discontinuity that results 

from the rapid and somewhat disorganized assembly of vessels can be used to facilitate enhanced 

permeation and retention (EPR) of drug molecules, as will be discussed in subsequent sections 

[47].    

2.2.3.  Mucosal membranes 

Many epithelial layers, particularly the gastrointestinal tract membrane, are accompanied 

by another barrier membrane known as the mucosal membrane. The mucosal membrane contains 

a viscoelastic, gel-like substance, mucus, comprised of the glycoprotein mucin. The mucosal 

membrane has several physical and chemical properties that affect the absorption and 

bioavailability of therapeutics [48]. For example, the diffusion coefficients of various 

macromolecular compounds in mucus is typically 30-50% of the diffusion coefficient of the 

same compounds in an aqueous environment, indicating much slower movement [49, 50]. 

Furthermore, mucosal membranes can serve as physical barriers to absorption.  The viscoelastic 

properties of mucus result in entrapment of compounds and agglomeration of particles. This 

agglomeration effectively increases the size of compounds and, thus, contributes to the reduction 

in the diffusion coefficients [50].   

 

2.2.4.  Routes of transport  

There are several classifications regarding how a molecule moves across biological 

berriers. Active transport (requiring an energy input) and passive transport (not requiring an 

energy input) transport are the two main categories of movement, with passive transport having 
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numerous sub categories.  Transport mechanisms can also be divided into paracellular (between 

cells) and transcellular (through cells) routes. Fig. 4 provides a pictoral representation of the 

different transport routes. 

The structure of the cell 

membrane plays a significant role in 

drug transport.  Cell membranes are 

composed of phospholipid bilayers, 

with hydrophilic head groups on the 

edgesand hydrophobic tails 

composing the core. This structure 

imposes the following limitations on 

types of drugs which can cross the 

membrane by transcellular passive 

diffusion: (1) the drug must be lipid 

soluble, (2) the drug must possess a 

low molecular weight,  and (3) the 

drug must be in a position to travel 

from an area of high concentration to 

an area of low concentration.  Drugs can also cross a membrane by passive diffusion 

paracellularly. This type of transport requires the drug molecule be water soluble, of low 

molecular weight, and be traveling along a concentration gradient.  In both paracellular and 

transcellular passive diffusion, the driving force is the concentration gradient. The concentration 

gradient is the fundamental idea behind all types of diffusion, and modeled by Ficks Law.  

Fig. 4: The general paths a drug molecule can use to 

cross a membrane.  Typically, small, polar molecules 

(purple dots) can passively diffuse across an epithelial 

membrane by passing between the cells. This is 

particularly prevalent in the lower portions of the small 

intestine,. Lipid soluble molecules have the ability to 

diffuse accross a membrane, but not between cells (green 

dots). 
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Depending on the cellular architecture of the barrier, the drug molecule may have to diffuse 

through or between more than one layer of cells. Under these circumstances, each different layer 

must be accounted for, resulting in an effective barrier to drug absorption. For a given drug 

molecule undergoing passive diffusion, the rate of absorption will be linear with respect to the 

concentration [51].   

  A variation on passive diffusion is a process known as facilitated diffusion.  This 

process still relies on the concetration gradient as the driving force and requires no energy input, 

however membrane-embedded proteins are required for entry to the cell. Facilitated diffusion 

can be thought of as two different categories as well: carrier mediated transport and channel 

mediated transport. Carrier mediated transport requires transport proteins, which function by 

binding to the molecule to be transported, moving across the membrane, and releasing it on the 

other side. No direct change is made to the transport protein in this process. These proteins are 

structurally selective for the drugs that they transport  and are saturable. Thus, the maximum rate 

of absorption will dependent on the concentration of receptor, not the concentration of drug [52]. 

Channel mediated diffusion requires continuous, aqueous pores spanning a lipid bilayer 

membrane.  Charged or polar drugs are typically able to travel through these channels faster than 

passive diffusion through the membrane; therefore, their rate of absorption is increased [52]. 

The transport mechanisms discussed above have relied on the concentration gradient for 

the driving force and therefore have not required any outside input of energy. In constrast, active 

transport most often refers to the the movement of solute against a concentration gradient and 

does require an energy input. In drug delivery applications, active transport typically refers to 

transmembrane pumps that use ATP to transport drug molecules from areas of low concentration 

to high concentration.  Protein pumps can move molecules either into or out of a cell and are also 
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crucial in maintaining ion balances across membranes.  Some examples of transmembrane 

protein pumps include the sodium potassium pump (Na+/K+), the sodium hydrogen pump in the 

gastrointestinal tract, and the calcium ion pump [52, 53].    

2.2.5.  The blood brain barrier 

The blood brain barrier (BBB) is a general term for the system of membranes acting in a 

protective manner to keep the central nervous system (CNS) impermeable to molecules from the 

systemic circulation. The CNS is the most convenient route of delivery for therapeutics capable 

of treating nervous system disorders, including 

medications for the treatment of stroke, many 

types of cancer, Alzheimer’s disease, and human 

immunodeficiency virus (HIV) [54].  

Unfortunately, the physiology of the BBB 

makes transport into the CNS from systemic 

circulation difficult. The BBB is comprised 

mainly of cerebral microvascular endothelial 

cells, which give rise to structural differences in 

brain capillaries compared to other systemic 

capillaries. As shown in Fig. 5, endothelial cells lining the brain capillaries contain tight 

junctions, creating a less permeable barrier between the blood and the CNS [55]. Non brain 

capillaries contain endothelial cells as well, but the spaces between them generally contain more, 

as well as larger, openings than brain capillaries. As a result, molecules <500 Da can passively 

diffuse through the openings and pass into the tissues. In contrast, the tight junction regulated 

brain capillaries do not allow for diffusion between cells, leaving only membrane diffusion as a 

Fig.5: A representative cross sectional view 

of the blood brain barrier. The BBB is 

comprised of the endothelial cells of brain 

capillaries connected by nearly 

impermeable tight junctions.  Additionally, 

the astrocytes, pericytes, and neurons lining 

the capillaries further hinder transport of 

drugs into the CNS.  
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means of transport into the brain [56].  Small (<500 Da), lipophilic drug molecules have the best 

chance of achieving transport with this process[56]. This requires solutes to diffuse through two 

membranes; the lumenal and ablumenal membranes of the endothelium. Furthermore, 

surrounding the ablumenal membrane of the capillary are astrocytes, pericytes, and neurons, 

which provide additional membrane barriers between the systemic and brain blood flows [57].   

A number of transmembrane transport systems are present in the endothelial cells of the 

BBB.  These transporters are generally facilitative, with the main function being to allow for the 

uptake of nutrient materials [58]. These transport systems can be exploited in applications to 

improve delivery to the BBB. In addition to facilitative transport systems, transmembrane 

transport systems exist within the endothelial cell layer that function to keep molecules out.  

These transmembrane transport systems, known as efflux pumps, are also present in the 

intestinal track and liver.  Many efflux transport pumps employ ATP hydrolysis as energy to 

power the pump, and thus are termed ATP Binding Cassette family proteins, (ABC) transporters.  

This class of proteins is very large and structurally diverse, giving rise to individual ABC pump 

subfamilies.  The subfamilies are denoted with letters A-G, and are distinguished from each other 

by the types of drugs they transport. In general, ABC substrates are typically hydrophobic or 

amphipathic, and the differences that distinguish the substrates for each subfamily are subtle. For 

example, lipids, bile salts, and peptides are all transported by subfamilies A, B, and G.  

Additionally, organic anions, as well as conjugates with anionic residues such as glutathione, 

sulfate, or glucoronyl have receptor specificity for ABCC [59, 60].  

P-glycoprotein (P-gp) is a well characterized efflux pump present in the BBB. This 

protein associated with the expression of the multi-drug resistant gene family (MDR family). A 

variety of lipophilic drugs have been identified as substrates for P-gp.  For example, cyclosporine 
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A (CysA), an immunosuppressive agent, has been shown to be hindered by P-gp when crossing 

the BBB. However, in the presence of agents shown to suppress the MDR genes, including 

chlorpromazine and various steroid hormones, uptake of CysA can be significantly improved 

[61]. P-gp is a transporter present in many other tissues, including the liver, intestines, and 

kidneys, and will be further discussed in Section 2.4.1. 

2.3.  Metabolic and chemical concerns 

The mechanism of transport of drug in the body depends on several chemical and 

physical properties, including molecular weight, hydrodynamic radius, lipid solubility, partition 

coefficient, and polarity  [62]. To affect the target tissue, a drug must enter the cells in an active 

form.  In general, drugs are metabolized, resulting in either a decrease in the usable concentration 

of drug molecules or an increase in the  amount of metabolite concentration that will have an 

undesirable effect on the target tissue. Knownledge of physiochemical properties of drug 

molecules in vivo is essential for predicting therapeutic efficacy. This section will discuss the 

effects of drug metabolism on drug absorption, including the use of transport proteins and 

enzymes to hinder or aid absorption.   

2.3.1.  The first pass effect 

First pass metabolism (first pass effect) occurs mostly in oral delivery applications when 

the concentration of administered therapeutic is reduced by metabolic efforts of the body before 

reaching systemic circulation.  The principle organs involved in first pass metabolism are the 

small intestine and the liver [63].   

2.3.1.1. Enzymatic hepatic metabolism 

Despite the many barriers to absorption in the intestine, many drugs are able to cross the 

epithelium and enter systemic circulation.  However, they are not yet in the clear to travel to the 
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site of action and effect a response. All drugs absorbed through the intestinal epithelium are 

carried to the liver via the hepatic portal vein. The liver is responsible for breakdown and 

metabolism of a variety of substances, including steroids, sterols, bile acids, and ecosinoids. 

Though vital for normal function, the liver provides an undeniable barrier to drug delivery.  Drug 

molecules with structural or chemical properties similar to those of the natural liver substrates 

will be metabolized in the liver via the same metabolic pathways. Some drugs (for example the 

glyceryl trinitrate, used to treat angina, and lidocaine, an analgesic) are rendered useless when 

delivered orally due to extensive metabolism by the liver [64].  

The Cytochrome P450 (CYP) enzyme family is the major source of enzyme activity 

involved in hepatic metabolism. The CYP450 family is a large gene family composed of 57 

different members.  The majority (70-80%) of phase one drug metabolism is carried out by about 

15 of these, belonging to classes designated CYP1 and CYP3.  Phase one metabolism refers to 

modifications of the basic structure of a drug molecule. CYP enzymes can catalyze 

modifications, including hydroxylations; O, S, and N dealkylation, oxidation, demethylation, and 

deamination.  The result of these modifications is structurally changed metabolites, which are 

either eliminated immediately, used as substrates for phase two metabolism, or retain the ability 

to be therapeutically active. Codeine, for example, typically undergoes an O-demethylation 

catalyzed by CYP2D6, resulting in a structural change to morphine, a drug with an increased 

activity level [64]. Although the goal of phase one metabolism is generally to detoxify 

compounds transported in the bloodstream, the opposite effect can sometimes occur, resulting in 

a secondary metabolite that is more toxic than the original drug molecule.  For instance, phase 

one metabolism of chemotherapeutic Tamoxifin results in a metabolite with genotoxic 

hepatocarncinogenic properties. In instances such as this, phase two metabolism is extremely 
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important in preventing the toxic molecule from not only damaging the liver, but also from 

entering systemic circulation once again [65].  

Phase two metabolism is carried out by a class of enzymes known as transferases.  As the 

name might imply, transferases catalyze the transfer of material.  In the case of drug metabolism, 

the transferase catalyzes the transfer of a hydrophilic moiety from a donor molecule to the 

metabolite molecule, typically reducing the toxicity or allowing for neutralization reactions to 

occur.  Like CYP enzymes, transferases are also typically thought of as gene superfamilies.  

Some of the major transferase families include glutathione-S transferase (GST), 

sultphotransferase (SULT), N-acetyltransferase (NAT), and UDP-glucuronosyltransferase 

(UGT). GST catalyzes reactions with non-polar compounds, SULT results in sulphation of 

steroid hormones and bile acids, NAT results in acetylation of amine groups, and UGT leads to 

glucuronidation of molecules, such as the hepatic product bilirubin, pain reliever acetaminophen 

(toxic in instances of overdose), pain reliever morphine, and other non-steroidal anti-

inflammatory drugs (NSAIDs) [64]. Toxicity of a phase one metabolism by product is highly 

dependent on its rate of production in relation to its rate of reaction with phase two metabolizing 

transferases.    

2.3.1.2. Enzymatic intestinal metabolism  

In addition to physical barriers preventing absorption, metabolic enzymes, including 

lipases, proteases, and glycosidases are present in the gastrointestinal tract to breakdown ingested 

food and release energy and nutrients [66]. While highly efficient at providing energy and 

nutrients, these enzymes are also responsible for the degradation of drug products, preventing 

absorption and/or resulting in a loss of function. Two major proteins responsible for 

metabolizing drugs in the gastrointestinal tract are CYP3A and the P-glycoprotein efflux pump 
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[67]. These complexes are found in several locations, including the intestine and liver. In the 

intestinal tract, they are often found within the membrane of individual enterocyte cells, the 

primary cells for drug absorption.  Methods to circumvent CYP metabolism of drugs in the 

intestine include co-administration of a CYP inhibitor or inducer. A simple method of inhibition 

is co-administration of a secondary drug which competes with the primary drug for access to the 

active site of a CYP enzyme. Drugs with a high affinity for CYP450 that can be used as 

secondary drugs for competition include cimetidine, (used to treat ulcers), ketoconazole (used to 

treat fungal infections) and Indinavir, a protease inhibitor used to treat viral infections [64]. 

Additionally, a metabolite of the primary administered drug may sometimes form an inactive 

complex with the catalytic site of the CYP enzyme. This method of inhibition is often known as 

mechanism based P450 inhibition [68]. CYP inhibitors decrease the effect of the enzyme, 

allowing for increased absorption of drugs including sirolimus, cyclosporine, and tacrolimus 

[67].   

The most prevalent and arguably most important enzyme of the CYP family in intestinal 

metabolism of drug molecules is CYP3A4. Found in large quantities in the liver, CYP3A4 is also 

present in the jejunum portion of the small intestine, primarily located on the villi[38]. Studies 

have shown the enzyme activity and concentration of jejunum CYP3A4 to be equal to that of the 

microsomes of the liver [69]. CYP3A4 has a broad range of structurally diverse substrates, with 

an equally broad range of therapeutic function; however, hydrophobicity is a commonality across 

substrates. Biotransformation reactions of drug molecules by CYP enzymes are typically 

considered to be phase one, referring to a basic structural change of the molecule [38].  

2.3.2. Efflux systems  
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Efflux systems are energy dependent transport systems whose function is to protect the 

body by preventing harmful substances from traversing membranes and entering other body 

compartments [66].  They are present in many different areas of absorption, but play the most 

significant role in the gastrointestinal tract and the blood brain barrier.  The most well-known 

and well classified efflux pumps are members of the P-gp family, as mentioned in brief above.  

P-gp was first characterized as the transport system behind tumor resistance to 

chemotherapeutics; as it was able to transport the therapeutic agents out of the cell.  This efflux 

pump is transcribed as a result 

of the multi-drug resistant gene, 

MDR-1 [38]. P-gp has a large 

variety of substrates, similar to 

CYP3A, many of which are 

large and amphipathic [67].  

Additionally, in the intestine, 

expression of P-gp increases 

longitudinally throughout the 

tract, in contrast to the levels of 

CYP3A expression. This results 

in a constant source of 

molecular absorption prevention throughout the gastrointestinal tract, as P-gp’s main effect is to 

pump drug molecules back into the lumen [19].  

In sum, the mechanism of membrane crossing for solutes traveling into the brain is 

usually by receptor mediated transport or diffusion. Properties of the drug molecules can be 

Fig. 6: For drugs with a molecular weight of 500+/- 100 Da, the 

permeability of the BBB has been shown to increase linearly 

with the partition coefficient relative to the square root of the 

molecule weight.   P-gp efflux pump has been shown to account 

for discrepancies, as the outlier drugs in the graph are known to 

be P-gp substrates. 
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tailored to make crossing the BBB more feasible and efficient. If the molecular weight of the 

molecule in question falls at 500 ±100 Da, the permeability of said molecule increases linearly 

with the partition coefficient of the molecule. This relationship can be shown graphically by 

constructing a plot of the log of permeability vs. log of the partition coefficient divided by the 

square root of the molecular weight, as described by Tsugi and Tamai, and shown in Fig. 6. [61]. 

An alternative to the molecular weight explanation of decreased permeability is the presence of 

the P-gp efflux system.  This system, also present in the gut, serves to restrict transcellular flux 

of drug molecules, thus decreasing permeability.  

2.4.  Physical properties of therapeutics 

Several factors are involved in both the amount of and the extent to which a drug 

molecule will affect the target tissue. In addition to the physiological and chemical properties 

discussed previously, the route of administration and delivery method, dose and release profile, 

as well as physiology changes due to pathology play a role in determining the biological effect of 

a drug molecule.   

2.4.1.  Bioavailability 

Bioavailability is defined as the amount of drug reaching the systemic circulation out of 

the amount of drug that was administered [70]. Careful dosing and administration is a necessity 

for efficacious treatment. The amount of drug available at the desired site of action must fall 

within the therapeutic window [12].   

Achieving reproducible oral bioavailability is particularly difficult because there are 

several factors which must be considered based on the path the drug must travel before reaching 

systemic circulation. In this case, the overall bioavailability (F) is the product of the portion of 
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drug absorbed (Fa), i.e. the fraction that passes into the hepatic portal blood unaffected by the 

enzymes of the gut and intestine, and the fraction of drug that escapes metabolism by the liver 

(Fh) [38, 70]. This value will vary between drugs due to the differential effects of enzymes, 

including CYP and P-gp, on individual drugs.   

In addition to the effect of the body’s metabolism, properties of the drug molecule itself 

have a large impact. Solubility, for example, is one of the leading factors hindering oral 

absorption and reducing bioavailability, and a great deal of effort is being put forth to determine 

methods to increase solubility of therapeutics in aqueous environments [71]. For example, 

chemical modifications to the drug molecules to generate prodrugs with an increased aqueous 

solubility are being explored, as are methods of solid dispersion. Solid dispersions typically 

consist of a hydrophilic matrix material with hydrophobic drug dispersed throughout. The result 

is an increased dissolution rate and higher bioavailability of hydrophobic drugs. The degree of 

therapeutic solubility (or dissolution rate) is dependent on the diffusion coefficient of the drug, 

the concentration of the drug within the dissolution medium, and the solubility of the drug within 

the dissolution medium. Additionally, physical factors, including the surface area of the 

formulation available for dissolution and the thickness of the diffusion boundary the drug must 

travel through, must be accounted for [72].   

2.4.2.  Release profiles 

The amount of drug released into the bloodstream over time is known as the release 

profile. Release profiles typically depend on the dosage form of the drug, the method of release, 

and the properties of the carrier system. These release profiles are often categorized as controlled 

release, pulsatile release, and burst release, as shown in Fig. 7. Controlled release is 

characterized by a gradual increase in the plasma concentration with time until a maintenance 
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concentration is reached. This is often the desired treatment method, although somewhat more 

difficult to attain. Pulsatile release similarly begins with an increase in plasma concentration to a 

desired level, followed by decreases in concentration, which are counteracted with additional 

dosing, maintaining a concentration within the therapeutic window.  Burst release consists of an 

initial dose generating a steep rise in plasma concentration. However, the initial drug release is 

not supplemented with additional doses, resulting in a short time period when the plasma 

concentration is within the designated therapeutic window [73].   

Of particular importance is the carrier system properties, which modulate how the drug 

molecules are released. Diffusion always plays a role in drug release, however depending on the 

properties of the source (i.e. the carrier system), the concentration profile will differ. The two 

primary methods of degradation are bulk and surface erosion (Fig. 8). Surface erosion results in a 

reduction of the overall 

volume of the carrier system 

as degradation occurs at the 

surface of the material. This 

also results in a turnover of 

the surface; a new layer of 

the material is constantly 

being exposed to the 

environment. In contrast, 

bulk erosion does not result 

in a volume reduction; rather, the material is lost uniformly throughout the entire volume of the 

carrier system [74].   

Fig. 7: Three release profiles are commonly observed for drug 

carrier systems. Sustained/controlled release is characterized by 

an increase in plasma concentration until a desired maintenance 

concentration is reached. Pulsatile release is characterized by a 

cyclic fluctuation in plasma concentration. Burst release is 

characterized by a large initial increase in plasma concentration, 

followed by a sharp decline.   
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Different applications require different release profiles, but, as mentioned above, a 

sustained plasma concentration is generally most desirable. For example, release of drugs 

dispersed within polymer constructs, as will be covered in subsequent sections, is dependent on 

the rate of degradation of the polymer substrate, as well as the diffusion rate of the drug.  If the 

degradation rate is slower than the diffusion rate, the release will follow the pattern of bulk 

erosion method. If polymer degradation is faster than 

the diffusion rate, the release will follow the pattern of 

surface erosion [75].  

2.5.  Polymer carriers as a solution to 

challenges 

The term ‘polymer’ refers to a long chain 

molecule composed of many repeating molecules. 

Polymer encapsulation of and/or modification to drug 

molecules increases circulation time of the drugs in the 

body by increasing their size, thereby decreasing the 

amount of filtration by the kidneys [76]. Additionally, 

targeting of drugs to specific sites of pathology can be 

improved by the increase in size due to a phenomenon 

referred to as enhanced permeation and retention 

(EPR) [77]. For example, cancer tumors and sites of 

inflammation show increased angiogenesis and a characteristic “leaky” vessel endothelium (Fig. 

9). The leaky vasculature is caused by rapid and disorganized vessel formation, which results in 

Fig. 8: Surface and bulk erosion are 

two methods for degradation of 

carrier systems.  Surface erosion 

results in a decrease in overall 

volume, shown here by a reduction 

in size. Bulk erosion results in a 

decrease in the amount of material 

within the matrix. 
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larger pore spaces between endothelial cells. Polymeric drug delivery systems may be taken into 

the tissue by transcellular transport, but 

this is a time dependent process and 

generally not efficient. In diseased tissue, 

however, the larger gaps between vascular 

endothelial cells allows for relatively easy 

uptake of the drug carriers [77].   

 In general, polymer carrier 

systems should have several common 

characteristics.  These characteristics 

include (1) an ability to be produced 

easily and on a large scale, (2) applicability to a wide range of drugs, (3) physiological stability, 

(4) biocompatibility, and (5) acceptability by regulatory committees, such as the FDA [78].       

2.5.1.  Colloidal polymer carrier systems 

Several kinds of polymer carrier systems can 

be utilized for drug delivery applications to help 

avoid some of the previously discussed challenges.  

In general, colloidal polymer carrier systems are 

small spherical particles with varying layers and 

thicknesses [76]. The spherical particle shape of 

these formulations increases the surface area of the system, allowing for increased absorption.  

Different particle carrier systems include micelles, liposomes, and nanoparticles [79]. Simplified 

A                                  B                                   C

Hydrophobic Drug

Hydrophilic Drug

Fig. 10: Colloidal polymer carrier 

systems include (A) liposomes, (B) 

nanoparticles, and (C) micelles.     

Fig. 1: EPR facilitates for passive targeting of drug 

delivery systems. (A) Vessels within healthy tissue 

have narrow gaps between endothelial cells, while 

(B) vessels within diseased tissue have larger 

(“leaky”) gaps.  

 

A                                 B 
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versions of these carrier systems are depicted in Fig. 10 and discussed in depth in subsequent 

section.   

Micelles are small, soluble particles that can self-assemble by means of 

hydrophilic/hydrophobic segregation. In addition to hydrophobic interactions, electrostatic 

interactions, metal complexation, and hydrogen bonding of the contribute to micelle formation 

[77]. A block copolymer with separate hydrophobic and hydrophilic segments will have the 

ability to assemble in an aqueous environment such that the hydrophobic segments compose a 

core in the center, while the hydrophilic segments compose a shell surrounding the core, thus 

greatly increasing the aqueous solubility of hydrophobic therapeutics. A popular choice for 

hydrophilic block copolymer sections is poly (ethylene glycol) (PEG), a widely used polymer in 

drug delivery applications, and the gold standard for ‘stealth cloaking’ of carrier systems.  

Stealth cloaking is a means of avoiding non-specific uptake once administered and functions by 

creating an aqueous layer around the particle to avoid detection by the immune system [80]. 

Non-specific uptake by the reticuloendothelial system (RES) is a major obstacle to micelles and 

other small colloidal carrier systems.  The RES is part of the body’s defence mechanism and 

includes cells such as macrophages and monocytes.  These cells are phagocytic in nature, and 

function by engulfing potential threatening substances, eventually accumulating in the liver and 

spleen for degradation and elimination [81]. This poses a problem for drug carrier systems 

because uptake by these cells will reduce the amount of therapeutic in the systemic circulation 

[81].  

Poly-L-amino acids, such as poly (D, L-lactic acid) (PDLLA), are frequently used as the 

hydrophobic portion of micellar block copolymers. For example, Genexol PM, a PEG-PDLLA 

copolymer micelle loaded with the chemotherapeutic paclitaxel, is currently approved for the 
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treatment of breast cancer and is undergoing clinical trials in the US for use in pancreatic cancer 

treatment [82].  Micelle formation is influenced by factors such as the molecular weight of the 

copolymer, the ratio of copolymer blocks to each other, and the amount of polymer involved. 

The minimal amount of polymer necessary to form a micelle is referred to as the critical micelle 

concentration (CMC) [83]. Above this concentration, all additional polymer molecules will be 

formed into micelles.   

 Nanoparticle based drug delivery systems consist of sub-micron sized spherical particles, 

ranging from 10-1000 nm, although the desired size is often around 100 nm [75]. Nanoparticles 

are typically made of a biocompatible, degradable material and contain drugs either dispersed or 

dissolved within a core matrix. Two classes of nanoparticles have been identified based on the 

way the drug is incorporated.  Nanocapsules contain drug molecules confined to the interior of 

the polymeric shell of the particle, while with nanospheres the drug molecules are uniformly 

dispersed within the polymeric matrix system [84].  Once inside the body, drugs can be released 

from the particles by means of diffusion, degradation, swelling, or erosion. Efficacy of 

nanoparticle carrier systems is based on size, particle stability, the amount of drug that can be 

incorporated, the type of drug that can be incorporate (i.e. hydrophilic or hydrophobic drug 

molecules, siRNA’s or DNA for gene therapy, or proteins), and the potential for different routes 

of administration (i.e. oral delivery, inhalation, intravenous).  Nanoparticles have been shown to 

be more effective in intravenous delivery than microparticles; which have an increased potential 

of becoming trapped in the capillaries, some of which are only 5-6 um in diameter. In addition,  

in vitro studies with Caco2 intestinal cells demonstrated that 100 nm particles result in a 2.5 fold 

increase in uptake compared to 1 um diameter particles and a 6 fold increase in uptake compared 

to 10 um particles [85]. Furthermore, particles smaller than 200 nm have the ability to escape 
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processing of the liver and kidney for several circulation cycles, increasing their time in the 

systemic circulation and hence level of effectiveness[86]. However, a diameter larger than 200 

nm will increase the risk for RES uptake, reducing the circulation time and thus the efficacy.     

 As mentioned in brief above, materials used to generate the nanoparticle systems must be 

non-toxic, non-immunogenic, non-inflammatory, and non-thrombogenic (which all fall under the 

general category of biocompatibility).  Additionally, the nanoparticles must be stable, be able to 

avoid detection and uptake by the RES, and be able to be used as carrier systems for a broad 

array of drug types, including proteins, nucleic acids, and hydrophilic and hydrophobic drug 

molecules [81]. Some commonly used materials for generation of nanoparticle systems include 

poly(lactide) (PLA), poly(glycolide) (PGA), poly(lactide-co-glycolide) (PLGA), 

poly(cyanoacrylates), and poly(caprolactone) [75, 81]. Currently, there are no approved drug 

encapsulated nanoparticles or on-going human clinical trials in the US, although a great deal of 

research and development regarding nanoparticle formulations is on-going.  

 Liposomes are another form of small spherical drug carrier systems.  They consist of a 

lipid bilayer (similar to a cell membrane) surrounding an interior space. This morphology allows 

for the entrapment and delivery of both hydrophilic and hydrophobic drug molecules. 

Hydrophobic molecules can be entrapped within the bilayer, while hydrophilic molecules can be 

carried within the core.  The physiochemical properties of the liposomal constituents, including 

the membrane fluidity, permeability, charge density, and steric hindrance have influence on the 

types of interactions the liposomes will have with blood and tissue constituents [87].     

 There are several different types of liposomes. Long circulating liposome’s (LCL) can be 

formed by incorporating hydrophilic polymers into the lipid bilayer to create an aqueous coat on 

the surface, which prevents marking by immune system opsonins and thereby reduces uptake by 
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the RES. An example of this modification is called PEG-ylation, where chains of PEG are 

attached to the particle surface [88]. As discussed above, “stealth” PEG coating generates an 

aqueous layer. Additionally, LCL liposomes can be tailored with ligands to target specific cell 

types. For example, long-circulating liposomes prepared with a PEG coating and loaded with 

Doxorubicin, an anti-cancer chemotherapeutic, were FDA approved in 1995. The efficacy of this 

system has been further improved via linkage to mAb 2C5, a monoclonal antibody which 

specifically targets a variety of tumors [89].   

 Active cationic liposome’s have a high affinity for cell membranes and deliver materials 

to cells by fusing with cell membranes and depositing material into the cell [87]. Nucleic acids 

are the most common therapeutic form delivered with cationic liposomes. As nucleic acids are 

negatively charged, stability is increased when complexed with cationic liposomes for delivery.  

Phase 1 clinical trials were completed for liposomes containing pGT-1, a regulatory gene 

involved in cystic fibrosis, to the respiratory epithelium. These studies showed promising early 

results, however the regulatory gene expression was fairly low and relatively short lived [90].    

2.5.2.  Polymer-drug conjugates 

Another method of increasing targeting specificity of drug molecules and avoiding 

detection and subsequent elimination by the RES is to chemically conjugate polymers to drug 

molecules.  Polymer conjugation serves several purposes. Many chemotherapeutic drugs are very 

cytotoxic, as their efficacy is generally dependent on their ability to cause death of cancerous 

cells.  These same drugs are also often insoluble in aqueous environments, as found in the human 

body.  Covalent attachment of a water-soluble polymer to an insoluble drug molecule increases 

the amount of therapeutic in circulation after administration [91]. In many cases, these polymer-

drug conjugates undergo phase 1 metabolism to remove the inactive polymer and yield an active 
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drug. A current example of a drug-polymer conjugate is poly (L-glutamic acid) conjugated to 

.paclitaxel, yielding PG-TXL. Paclitaxel, a potent anticancer agent, is a molecule with poor 

aqueous solubility that fights cancer by attacking cellular components controlling processes such 

as mitosis, transport, and motility, decreasing growth [92]. While the actions of paclitaxel are 

ideal for attacking tumors, healthy cells are also susceptible to its actions.  Conjugation to PG 

can increase tumor selective uptake and reduce adverse side effects resultant from damage to 

healthy cells.  

Polymer conjugation functions to increase targeting specificity of a particular therapeutic 

to the desired tissue or region of disease.  In addition to polymer alone, receptor specific ligands 

can be grafted to either the conjugated polymer or the drug itself, which results in site specific 

accumulation of the therapeutic [93]. Known as active targeting, this is an effective method to 

reduce non-specific uptake and improve efficacy. 

2.5.3.  Implantable and transdermal drug delivery systems 

 Implantable and transdermal drug delivery devices present methods of prolonged 

administration with relatively stable dosing patterns. These techniques also benefit from the use 

of polymers, both degradable and non-degradable. Unlike the colloidal carrier systems discussed 

in section 2.6.1, these drug delivery devices have been in use for longer periods of time and are 

used more frequently. In general, these devices are used to regulate dosing and increase 

convenience, rather than improve solubility and stability of the drug molecule itself.    

 Implantable devices must be embedded in the body, typically subcutaneously. Therefore, 

there are several important factors that must be met when developing materials for this 

application.  Materials used to construct devices must be chemically inert, hypoallergenic (as to 
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not invoke an allergic reaction from the immune system), non-carcinogenic, and mechanically 

stable at the insertion site [94].   

2.6 Drug delivery systems for nucleic acids 

 Recent developments of nucleic acids as drug constructs present new options for 

treatment of diseases, including cancer, genetic, and inflammatory diseases [95]. However, 

nucleic acid based drugs represent a unique delivery challenge due to their high susceptibility to 

enzymatic degradation in a physiological environment, in addition to an intracellular or nuclear 

site of action.   

2.6.1 Viral vectors as nucleic acid carriers 

 Viral vectors are typically thought of as the most efficient method of gene delivery, in 

terms of getting the genetic material into a cell. Viruses have naturally evolved throughout 

history to transfer foreign genetic material into host cells, making them a strong potential vector 

for nucleic acid delivery [96]. Viral vectors can infect a wide variety of cell types, which is 

advantageous in terms of number of applications, but a drawback in terms of a lack of control. 

Despite attempts to target specific tissues with viruses, success has been limited, and continues to 

present a safety concern. Other problems with viral vectors include potential toxicity, 

immunogenicity, unpredictability of gene insertion site within the host genome, and potential for 

gene inactivation by recombination [97].  

 Several types of viral vectors, including retrovirus, lentivirus, adenovirus, adeno-

associated virus, and herpes simplex virus have been reported in studies involving viruses for 

nucleic acid delivery. Key advantages and disadvantages are summarized in table one [98]. 

Retroviruses function as gene delivery vehicles through retro-transcribing the viral RNA genome 

into DNA, and integrating into the host chromatin. These viruses have been shown to have the 
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ability to attain chronic infection translating to long term gene expression, but are also associated 

with generation of immunodeficiency, or other malignancies [97]. Lentiviruses are similar to 

retroviruses in that they both use RNA. The adenovirus consists of a large family of over 50 

serotypes, isolated from multiple organs and tissues, resulting in the ability to infect many 

different cell types [99]. Despite the wide range of potential targets, adenovirus applications 

remain limited as infection results in an immune response against adenoviral proteins. Adeno 

associated viruses (AAV) are not directly associated with any human disease, and also normally 

require co- 

Vector Advantages Disadvantages 

Adenovirus High transfection efficiency 

Transfects many cell types 

Transfects proliferating/non-

proliferating cells 

Easy to produce 

Remains episomal, transient 

transfection 

Immunogenic with repeated 

administration 

Potential for replication 

competence 

Lack of targeting 

Adeno-associated 

virus 

Ability to establish latent infection, 

prolonged expression 

Cell division not required 

No viral genes in genome 

No targeting 

Potential for mutagenesis 

Difficult to produce 

 

Table 1: A summary of various viral vectors currently in use and being researched for DNA 

delivery applications 
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Herpes simplex 

virus 

Latent expression 

High in vivo efficiency 

 

Cytotoxic 

Lack of targeting 

Requires packaging cell line 

Does not integrate into genome; 

transient expression 

Lentivirus Transfects proliferating/non-

proliferating cells 

Prolonged expression 

Difficult to manufacture and store 

Safety concerns 

Limited clinical data 

Retrovirus Integration into host cell genome 

Prolonged expression 

 

Inefficient transfection 

Mutagenesis 

Requires cell division for 

transfection 

Lack of targeting 

administration of a helper virus to achieve infection. In addition to requiring an additional  virus 

for infection, AAV stimulate the production of neutralizing antibodies after administration, 

limiting their potential for repeated administration [97]. As such, clinical trials using AAV have 

been discontinued due to increased immunogenicity and toxicity [100, 101]. In addition, AAV 

are difficult to store long term and are problematic for Good Manufacturing Practice (GMP) 

standards [102].   

2.6.2 Cationic lipids for gene delivery  

An alternative gene delivery method to viral vectors are cationic lipid based vehicles. 

Cationic lipids used in gene delivery are amphipathic molecules with polar cationic heads and 

long hydrophobic tails. In aqueous environments, these lipids will self-assemble into colloidal 
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structures, or liposomes, with the ability to complex with negatively charged nucleic acids in the 

form of lipoplexes [102]. Lipoplexes are presumed to enter the cell through endocytosis, making 

the size of the particle, as well as the charge, important factors in lipoplex design [103]. Ideally, 

the surface charge of the lipoplex should remain positive to facilitate interaction with the cell 

membranes. This has an impact on the amount of negatively charged nucleic acids that can be 

incorporated into the lipoplex [103]. Many commercially available transfection reagents are 

currently on the market. Of these, Lipofectamine reagents, marketed by Life Technologies, have 

become the most referenced transfection reagent, with the claim of increased efficiency over 

other available reagents. However, these compounds do often exhibit cytotoxicity and are prone 

to accumulation within the liver in vivo, leading to significant nucleic acid payload degradation 

[104, 105].  

2.6.3 Synthetic cationic polymers for gene delivery 

Recognizing the limitations of immunogenic viral vectors and toxic lipoplexes, recent 

research has focused on the alternative use of cationic polymers for complexing with and 

delivering nucleic acids to cells. For example, poly(ethyleneimine) (PEI) is one of the most 

widely used cationic polymer for nucleic acid delivery [106]. However, PEI exhibits 

considerable toxicity toward a variety of mammalian cells [107]. The toxicity is twofold, with an 

initial response to the free PEI remaining in the delivery medium and a delayed response thought 

to be associated with the cellular processing of the PEI/DNA complexes, likely due to an 

increase in free PEI. Free PEI is known to interfere with normal cell processes and negatively 

impact cellular components [106].   
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Natural polymers present another category of potential materials for gene delivery, as 

alternatives to viral vectors, lipids, and synthetic polymers. Relevant carrier systems using 

natural polymers will be discussed in greater detail in chapter three. 

2.7 Conclusion 

As drug discovery research and development continues to advance, development of 

compounds with therapeutic potential is evolving. Many of these compounds cannot be fully 

effective when administered in a traditional manner, invoking the need for the development of 

novel drug delivery systems to complement the advances in drug development. The trifecta of 

issues to overcome when administering drugs to the body as summarized in section one include 

absorption of the drug into various body compartments, stability of the drug and/or carrier 

system in vivo, and finally, solubility of the drug either in vivo, or within the carrier system for 

controlled release applications. Additionally, a well-designed controlled release system with 

ability to provide a zero order release profile is highly desirable. The body contains many 

membranous boundaries which function as protective barriers including the epithelium, 

endothelium, mucosal membranes, and blood brain barrier. These membranes are the targets of 

several methods to increase permeation and enhance bioavailability of drug compounds. The 

stability of the drug and/or its carrier system is an important characteristic to be concerned with.  

If the system does not have adequate stability to be able to reach the site of action intact, its 

payload will likely be distributed elsewhere, resulting in undesirable effects. Once the drug is 

delivered to its site of action, adequate solubility is required for the molecule to enter the cell and 

effect a response.   

This chapter was included to demonstrate the intricacies of drug delivery, as the human 

body contains many barriers and mechanisms to keep substances out. Designing a drug delivery 
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system requires knowledge of these barriers and mechanisms as a means of exploitation, 

combined with an understanding of material properties to in order to design carriers with desired 

traits. 
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3. Background and Significance 

NF-κB decoy oligonucleotides have been proposed as treatment options for several diseases 

where inflammation plays a major role, including both CF and RA. However, clinical 

advancement of NF-κB decoy ODNs have been hindered by a lack of efficacy, due to a high 

degree of instability and a lack of efficient delivery mechanism. This chapter will discuss the 

specific role of NF-κB in RA and CF, provide an introduction to in vitro models of CF and RA, 

and finally provide detailed background of existing DNA delivery methods and their 

shortcomings.  

3.1 Nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) signaling pathway  

NF-κB is a transcription factor involved in the regulation of a variety of cellular 

processes, including cellular growth, apoptosis, and inflammatory and immune responses [108]. 

This transcription factor plays a major role in both 

innate and adaptive immunity and is implicated in a 

variety of human diseases, including autoimmune 

diseases, several types of cancer, and some genetic 

disorders [109].  

NF-κB consists of a family of proteins made up of five 

subunit members: p50, p52, p65, c-Rel, and RelB. The 

most common, and often referred to as “classic”, 

dimerization of these subunits is p50/p65 [110]. While 

other dimerizations have been studied, the p50/p65 

complex will be the focus of the work described here.  

  

Fig 11. Illustration of NF-kB   

activation through ligand-receptor 

interaction 
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Under normal (unstimulated and healthy) conditions, NF-κB is located in the cytoplasm, 

bound to an inhibitor known as IκB (inhibitor of κB). When a receptor involved in the NF-κB 

pathway is triggered by external signals, such as cytokines, growth factors, reactive oxygen 

species, mitogens, bacterial or viral products, activation of a signaling cascade occurs and 

initiates the inhibitor of κB Kinase (IκK) [109]. This kinase phosphorylates the inhibitor protein, 

causing dissociation and leaving the NF-κB dimer free to migrate into the nucleus and initiate 

transcription [111]. In diseases such as RA and CF, NF-κB over-activation is involved with a 

state of perpetual inflammation due to autoimmune factors or chronic bacterial infection. These 

diseases and the role of NF-κB are described in more detail in the following two sections. Fig. 11 

contains an illustration of the NF-kB pathway.  

3.1.1. Cystic fibrosis and NF-kB 

CF is an autosomal recessive genetic disorder caused by a mutation in the CF transmembrane 

conductance regulator protein (CFTR) [112]. CFTR is a transmembrane ion channel involved 

mainly in regulating chloride ions. While CFTR mutations manifest in pathology in multiple 

organ systems, chronic lung infection and inflammation is the greatest cause of morbidity and 

mortality associated with CF, and will be the focus of the work described here [113]. A lack of a 

functional protein leads to a decrease in chloride ion secretion in the CF airway. Combined with 

an increase in sodium absorption due to co-regulation of CFTR the sodium ion channel ENaC, 

defective CFTR results in dehydration in the lung epithelia, contributing to increased production 

of extremely viscous, hard to clear mucus [114]. Mucus buildup is associated with chronic 

bacterial infection, as microorganisms cannot be removed from the airway via normal 

mucocilliary clearance mechanisms.  
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Although chronic inflammation is known to be associated with bacterial infection, certain 

reports suggest that innate inflammation is a component of CF pathology as well. Despite a lack 

of complete understanding of the onset mechanisms, an inflammatory immune response is 

certainly present in CF airways. Elevated levels of transcription factor NF-κB have been shown 

in the CF lung epithelia, and many reports agree that this transcription factor is highly involved 

in excessive inflammation 

seen in the CF airway 

[115].  NF-κB is involved 

in transcriptional 

regulation of several pro-

inflammatory proteins 

directly involved in the 

immune response in CF, 

including granulocyte-

macrophage colony 

stimulating factor (GM-

CSF) interleukin-6 (IL-6) 

and interleukin-8 (IL-8) 

[116]. IL-8 is highly 

involved in neutrophil 

recruitment, and is present 

in elevated levels in the CF airway, while IL-6, also present in elevated levels, is involved in 

immune system activation via B cell stimulation [116, 117].  

Fig. 12: Illustration of a CF airway epithelial cell, and 

activation of the NF-κB signaling pathway. 
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Of the potential bacterial infections associated with CF, one of the most worrisome and 

difficult to treat is Pseudomonas aeruginosa. P. aeruginosa has the ability to genetically adapt to 

acclimate to the environment of the CF airway, allowing survival despite the onslaught of the 

host immune system [118]. P. aeruginosa has been shown to activate the NF-κB signaling 

pathway via the toll-like receptors (TLR); specifically, through TLR-4 by lipopolysaccharides 

(LPS) [113]. Pathway activation initiates a protein kinase targeted to the inhibitor of κB (IκB) 

complex, known as IκK. This kinase phosphorylates IκB, resulting in inhibitor/transcription 

factor complex dissociation, leaving the p50/p65 NF-κB complex free to undergo nuclear 

translocation [119]. This process is illustrated in Fig 12, depicting a typical airway epithelial cell 

response to TLR-4 NF-κB activation. 

TLR-4 plays a major role in inter-kingdom signaling within the CF airway, and the Bader 

Lab has recently been shown to interact and be associated with Pseudomonas Quinolone Signal, 

a quorum sensing molecule secreted from P. aeruginosa[120]. PQS, suggested initially to be 

anti-inflammatory, actually demonstrated increased inflammation in CF airway epithelial cells. 

An in depth investigation revealed that PQS likely binds to the TLR-4 receptor, indicating yet 

another role for this diverse membrane receptor.  

3.1.2. Rheumatoid arthritis and NF-kB 

 Rheumatoid arthritis (RA) is an autoimmune disease characterized most notably by 

chronic inflammation of the synovial membrane of joints. Over time, infiltration of 

inflammatory cells including lymphocytes, plasma cells, and macrophages to the synovial lining 

leads to hyperplasia, and formation of a tumor-like tissue known as pannus [121]. An excessive 

cellular immune response leads to a chronic inflammatory environment, which eventually leads 

to cartilage destruction and bone degradation [122]. In addition to the influx of immune cells, 
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native synovial fibroblasts undergo a phenotypic change, characteristic of immune sentinel 

cells, becoming cells known as activated synovial fibroblasts, or RASF’s [123]. The NF-κB 

pathway is known to be active in RASF’s, leading to production of cytokines, chemokines, and 

matrix metalloproteinase, which contribute to tissue destruction characteristic of RA [123]. 

 While the mechanisms behind RA pathogenesis are not completely understood, it is well 

accepted that an imbalance of pro-inflammatory and anti-inflammatory cytokines occurs, and 

plays a major role in joint destruction. Essentially, the levels of anti-inflammatory cytokines 

(IL-4, IL-10, IL-13) are too low to combat the increased levels of pro-inflammatory cytokines 

(IL-6, IL-8, TNF-α, etc.) released by the immune cells and RASFs of the pannus [124]. Pro-

inflammatory cytokines IL-6, IL-8, and TNF-α are known to be regulated by the NF-κB 

pathway, making this signaling pathway a potential target for lowering levels of inflammatory 

proteins [125].  

 As the cause of RA remains unknown, so does a cure. Current treatments focus on 

modulating symptoms and preventing further joint destruction. Although treatments have 

evolved over the years, researchers and physicians have yet to find a long-term sustainable 

treatment regimen. Disease modifying anti-rheumatic drugs (DMARDs) are typically used as 

the first line of treatment. This category of drugs includes immunosuppressants and 

chemotherapeutics, typically associated with severe side effects. For example, chemotherapeutic 

methotrexate is widely regarded as the gold standard of treatment, although its use is sometimes 

discontinued due to hepatic toxicity [126]. In addition to toxicity, this drug has an unpredictable 

efficacy profile, well tolerated and efficacious for certain patients, while ineffective for others.  

Recently, biologic agents aimed at interacting with specific cytokines have been introduced. 

These treatments are effective for some patients, but are associated with a drastically increased 
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risk of infection, requiring careful monitoring, and are known to have a high risk of infection in 

severe RA patients [127]. Furthermore, these therapies are extremely expensive, costing 

upwards of $30,000 annually.  

3.2. In vitro models for investigating CF and RA 

The first step in investigating efficacy of drug carrier systems is very often in vitro cell 

culture models. In vitro cell models allow for preliminary testing of a materials safety and 

efficacy without the extensive resources required for animal testing applications.  

Several options for RA in vitro models exist, including cell lines and primary cells isolated 

from tissue obtained from RA patients. Typically, cells used in the models are activated 

macrophages or fibroblasts, as these are the two cell types highly involved in regulating the 

pro/anti-inflammatory cytokine imbalance. While in vitro models are in general less predictive 

than in vivo models, they provide essential data regarding the effect of the compound in question 

on a simplified, more direct model of interest. Among in vitro models for RA, primary cells are 

generally considered more predictive than cell lines, and several studies have noted discrepancies 

in gene expression and protein secretion between cell lines and primary cells[128].  

 CF in vitro models are somewhat complicated, as this disease affects multiple organs and 

systems. For the work described here, a simple respiratory model was utilized. Specifically, 

airway epithelial monolayers with the CFTR mutation characteristic of CF airway cells was 

used throughout the CF in vitro experiments. Other airway in vitro models include use of sub-

mucosal gland (SMG) acini cells, and SMG acini/airway epithelial co-cultures. For the scope of 

the experiments presented, an airway epithelial model supplemented with a 

bacterial/mammalian co-culture was sufficient. This model will be discussed in depth in 

chapters six and seven. 
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3.3. Drug delivery systems for nucleic acids  

Viral vectors are typically thought of as the most efficient nucleic acid delivery agents due to 

a history of evolution aimed at maximal cell entry [129]. In addition to a high rate of infection, 

these vectors are able infect a wide variety of cell types. However, viral vectors are associated with 

major drawbacks, including viral induced immunogenicity, toxicity, mutation of the nucleic acid 

of interest with the viral DNA, and the potential for inactivation of the gene of interest due to 

recombination [97].  

Several successful colloidal nucleic acid delivery systems, particularly those formed from 

natural polymers are also being explored as alternative systems [130-132]. For instance, gelatin-

based nanoparticles were coated with DNA oligonucleotides with high loading efficiency [133]. 

Ionically cross-linked chitosan nanoparticles with the ability to entrap plasmid DNA were recently 

reported by Csaba et al. and were highly effective at transfecting cells in vitro and in vivo [134]. 

This supports literature claims stating that chitosan and chitosan-derivatives, such as quaternized 

chitosan, may be particularly advantageous in the delivery of nucleic acid-based therapeutics by 

providing biodegradable polymers with low cytotoxicity that reduces enzymatic degradation [8, 

131]. Although the cationic nature of chitosan, as well as other non-viral, polymeric vectors, 

facilitates binding of nucleic acids, the positive charge attracts anionic serum proteins. These 

proteins tag the carrier system for recognition by the reticuloendothelial system (RES) and lead to 

elimination from systemic circulation. This is a major problem, and must be addressed when 

designing drug carrier systems. Hydrophilic polymers such as poly (ethylene glycol) (PEG) are 

often introduced to avoid RES uptake through the formation a hydration layer that reduces 

extracellular interactions [135-137].  
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Despite wide usage in drug delivery applications, an increasing number of reports are 

suggesting that PEG, although widely regarded as non-immunogenic, is actually quite capable of 

inducing an immune response in both animal models and human patients particularly when 

administered repeatedly. For example, Semple et. al observed generation of PEG-reactive plasma 

immunoglobulin M (IgM) after dosing with PEG-liposomes in mice, as well as rapid clearance of 

the material from the animals circulation [138]. A recent study by Hamad and coworkers report 

concentration and molecular weight dependent activation of the complement system by PEG[139]. 

Complement activation is a cascade of proteins and signaling molecules that function in addition 

to antibodies to clear pathogenic material from the body. When combined with the antibody 

response, the complement system has potential substantially increase the immune response, 

especially in individuals who present PEG sensitivity. A recent study regarding the use of 

PEGylated liposomes for gene delivery showed although PEG modified carriers resulted in 

increased circulation time initially, after administration of a second dose, the ABC phenomenon 

was readily observed [140]. Therefore, it is suggested that the accelerated blood clearance (ABC) 

mechanism often seen in studies involving PEG and PEGylated materials can be attributed to an 

increased immune response[141].  

In addition to potential immunogenicity, it should be noted that PEG is a synthetic material, 

and therefore does not always exhibit good biodegradability.  To compensate for a lack of 

biodegradability, low molecule weight polymers are desired for use, as they may exhibit better 

urinary and/or hepatic clearance. However, low molecular weight PEG (<400 Da) is able to be 

metabolized by alcohol and aldehyde dehydrogenase, resulting in toxic by-products including 

diacid and hydroxyacid, which have been shown to lead to acidosis in human and animal 

studies[142].  
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Due to the lack of degradability and potential immunogenicity of PEG, in this study we use 

polysialic acid as an alternative [143, 144]. Preparation, drug loading, and characterization of 

polysialic acid-N-trimethyl chitosan (PSA-TMC) nanoparticles will be described in detail in 

chapter four.  

3.4. Goals and hypotheses 

   Based on the positive surface charge of the nanoparticles, nucleic acid oligonucleotides are 

hypothesized to have the ability to be incorporated with the nanoparticles for in vitro delivery. In 

addition to the ability to load negatively charged nucleic acids, the PSA-TMC delivery is 

advantageous over other polymeric drug delivery systems for applications in RA and CF 

treatment. These diseases are both characterized by inflammation and/or infection, as well as an 

overactive immune system. Therefore, a delivery system with a lack of cytotoxicity and 

immunogenicity is essential. Polysaccharides, such as PSA and chitosan are non-cytotoxic, non-

immunogenic, and can be degraded using mechanisms already in place in the human body, giving 

them several advantages over synthetic materials [6, 49]. The major hypotheses that have been 

investigated in this project are as follows: 

1. PSA-TMC nanoparticles are a non-immunogenic, biodegradable polysaccharide 

delivery system and can load oligonucleotides in a more safe and effective manner than 

existing transfection reagents.  

2. Using PSA-TMC to delivery an NF-κB decoy oligonucleotide will modulate the 

immune response and reduce inflammation in in vitro models of cystic fibrosis and 

rheumatoid arthritis, as listed below:  

i. IB3-1 epithelial cell cystic fibrosis 

ii. SW982 rheumatoid arthritis 
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iii. Primary synoviocyte rheumatoid arthritis 

iv. IB3-1/PA01 epithelial cell/bacterial co-culture 

These hypotheses were tested via a variety of characterization and in vitro cell culture 

experiments, as described in the following chapters.  
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4. Synthesis and characterization of PSA-TMC 

nanoparticles as a delivery system for ODN 

The polysaccharide based nanoparticle system PSA-TMC was initially developed in the 

Bader lab with the intention of loading DMARDs for the treatment of rheumatoid arthritis. In 

addition to showing DMARD loading capability, the particles proved to be non-cytotoxic, with 

components known to be biodegradable and non-immunogenic, resulting in a carrier system 

suitable for drug delivery applications in RA. The Bader lab has previously shown PSA-TMC 

loaded with DMARDs such as methotrexate and dexamethasone resulted in decreased 

inflammation in an RA in vitro model [145]. A brief collaboration resulted in the realization that 

aptamers, small nucleic acid sequences, could be effectively loaded into the particle matrix as 

well. This realization, combined with P.R.Wardwells weird fascination with NF-κB, led to the 

inception of the idea to use PSA-TMC nanoparticles loaded with transcription factor decoys 

against NF-κB in an attempt to modulate the immune response in diseases associated with 

inflammation. This chapter describes merits of PSA and TMC as nanocarrier components, as 

well as synthesis and characterization methods associated with production of the nanoparticles.  

4.1 Introduction 

To improve upon viral and cationic lipid transfection vectors, a number of investigators 

have begun to explore alternative carrier systems, including microspheres and nanoparticles, for 

delivery of nucleic acids [4, 130, 146-148]. These systems are often viewed as being less 

efficient in terms of nucleic acid cellular penetration, but this potential concern becomes 

secondary when considered in conjunction with the ease of production, high loading capacity, 

and a lack of immune response [133, 134]. 
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 Polysaccharides have emerged in recent years as highly desirable materials for 

incorporation into drug delivery systems. Characteristics including structural diversity, a high 

potential for modification due to many reactive groups, general aqueous solubility, as well as (in 

some cases) innate bioactivity contribute to the interest in polysaccharides in drug delivery 

systems. Polysialic acid (PSA) is a hydrophilic natural polymer which, similar to polyethylene 

glycol (PEG), facilitates formation of a water layer around colloidal particles. However, as 

discussed in chapter three, PEG has some serious drawbacks which make it a questionable choice 

for inclusion in drug carrier systems for diseases characterized by excessive inflammation. Unlike 

PEG, however, PSA has no known receptors in the human body, contributing to a lack of 

immunogenicity and toxicity, two factors of key importance in drug delivery applications aimed 

at immunomodulation. PSA was first described for drug delivery by Gregoradis as a means of 

enhancing circulatory stability and half-life of therapeutics through conjugation [137]. The Bader 

lab recently reported nanoparticles formed by ionic complexation of PSA and N-trimethyl 

Fig. 13: Synthesis scheme of ionic complexation of PSA-TMC nanoparticles coated with 

NF-κB Decoy ODN. TMC is positively charged, PSA is negatively charged, and the two 

polymers interact in the presence of a polyanionic cross-linker via ionic gelation to form 

nanoparticles. 
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chitosan (TMC) with a small size (~100 nm), positive surface charge, and a low degree of 

cytotoxicity[149].  

Chitosan has been a material of interest for nucleic acid delivery for some time now. The 

biocompatibility, lack of toxicity, relatively low cost and general cationic, easily modifiable nature 

make chitosan an attractive choice for gene delivery applications [150]. However, clinical success 

of initial chitosan/DNA based polyplexes was limited by low transfection efficiencies, and the high 

dependence of environmental factors (especially pH) on biological function [151]. These nucleic 

acid delivery systems are often associated with aggregation, and rapid clearance. Recently, many 

researchers have reported modifications of chitosan with polymers such as PEG or PEI, generating 

graft-copolymers for nucleic acid nanocarrier systems with the goal of increasing stability and 

transfection efficiency [151-154]. While moderate success was seen with these formulations, the 

use of potentially cytotoxic materials makes these alternatives an undesirable choice for 

applications aimed at treating excessive inflammation.  

An alternative to control the functionality of chitosan across pH ranges is to use TMC, a 

derivative of chitosan modified via methylation, to improve solubility and potentially transfection 

efficiency [155]. Incorporation of PSA, a negatively charged, highly hydrophilic material, yields 

particles with a smaller size and greater stability, improving upon particles made of chitosan or 

TMC and DNA alone. Zhang et al. recently reported that ionic complexation of PSA with TMC 

yields a non-cytotoxic nanoparticle carrier system with a size (~100 nm) and positive surface 

charge. A synthesis scheme depicting formation of particles via ionic complexation of PSA and 

TMC and subsequent ODN coating is shown in Fig. 13. Although this system was initially 

developed with the aim of improving RA treatment, the size, stability, and positive surface charge 

are amenable to ODN delivery [156]. PSA serves as a natural polymer for enhancing the 
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circulatory stability and facilitating passive accumulation of associated therapeutics within 

diseased tissue that is characterized by leaky vasculature, as occurs with RA. In the physiological 

environment, PSA reduces undesirable protein and cell interactions through the formation of a 

protective envelope of water molecules [135-137]. PSA thus provides a biodegradable, non-

immunogenic alternative to synthetic PEG.  

Although Gregoriadis et al. pioneered using PSA conjugation as a method of enhancing the 

circulatory stability of associated therapeutics [135-137], our group is the first to use PSA as the 

basis of nanocarrier systems [7, 156-158]. Relative to other anionic polysaccharides, electrostatic 

interaction of the positively charged ammonium groups of TMC with the negatively charged 

carboxylic acid groups along the highly flexible PSA backbone yields intermolecular complexes 

of a small size [159-161]. The cationic, quaternized chitosan also facilitates adhesion of negatively 

charged nucleic acids [162]. The PSA-TMC nanoparticles, therefore, have the potential to serve 

as ideal, biodegradable, non-immunogenic carrier systems for nucleic acid-based therapeutics.  

4.2 Materials and methods 

4.2.1 Materials 

Polysialic acid (colominic acid, PSA) was obtained from Nacalai USA, Inc. (San Diego, 

CA, USA). N-trimethyl chitosan (TMC) was produced via quaternization of chitosan (MW 100 

Da-300 Da) obtained from Acros Organics (New Jersey, USA), as described previously by 

Sieval et. Al[163]. Sodium tripolyphosphate (TPP) was purchased from Acros Organics, New 

Jersey, USA. An NF-κB decoy oligonucleotide (ODN) kit containing NF-κB decoy ODN (5’ 

CCT TGA AGG GAT TCC CTT CC 3’) and a scrambled ODN (5’ TTG CCG TAC CTG ACT 

TAG CC 3’) was purchased from CosmoBio (Tokyo, Japan). Methotrexate (MTX) was 

obtained from Enzo Life Sciences (New York, USA) 
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4.2.2 PSA-TMC-ODN preparation 

ODN coated PSA-TMC nanoparticles were prepared as previously described [145]. 

Briefly, 6.4 mg of TMC (55% quaternization) were dissolved in 3.0 ml of 0.3% acetic acid in a 

glass vial. Meanwhile, 3.2 mg of PSA and 1.0 mg of TPP were dissolved in 2.0 ml of DI H2O. 

When MTX was incorporated into the particles, 2.4 mg MTX was added to the PSA/TPP 

solution. The latter solution was sonicated for 10 minutes and then added drop-wise to the TMC 

solution with stirring. Stirring was continued at room temperature for 20 minutes. At this time, 

10 µg ODN were added to the nanoparticle suspension. Stirring was continued for an additional 

10 minutes to ensure uniform electrostatic adhesion of ODN to the nanoparticle surface, as well 

as complete dispersion. Upon completion of stirring, centrifugation at 3000 RPM for 15 minutes 

yielded a pellet of ODN-coated PSA-TMC nanoparticles.  

4.2.3 PSA-TMC-ODN characterization  

Nanoparticle size, zeta potential, and polydispersity index were determined using a 

Malvern Zetasizer NanoZS90 (Malvern Instruments, Malvern UK). Following particle formation 

and centrifugation, nanoparticles were resuspended at a concentration of 2 mg/ml in DI water 

and filtered through a 0.45 µM syringe filter. Samples were loaded into cuvettes or capillary cells 

for measurements of size or zeta potential, respectively, taken at 25 °C.  

4.2.4 Determination of ODN and MTX loading 

A rhodamine tagged ODN (5’ (TAMRA-X) (C6-NH) CCT TGA AGG GAT TTC CCT 

CC 3’) was used to assess ODN loading.  ODN-coated PSA-TMC nanoparticles were prepared; 

and, after centrifugation, the supernatant was collected for quantitative analysis of unbound 

ODN.  Supernatant fluorescence values were determined using a synergy 2 multimode plate 

reader (BioTek Instruments, Winooski VT). Total amount of ODN in the supernatant was 
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determined from the supernatant fluorescence readings compared to a standard curve of 

fluorescent ODN, and the following equations were used to determine loading efficiency (LE) 

and loading capacity (LC): 

                𝐿𝐸 = (
𝑀𝑂𝐷𝑁 𝑎𝑑𝑑𝑒𝑑−𝑀𝑂𝐷𝑁 𝑠𝑢𝑝𝑒𝑟𝑛𝑎𝑡𝑎𝑛𝑡

𝑀𝑂𝐷𝑁 𝑎𝑑𝑑𝑒𝑑
) 𝑥 100                                          (1)                                                                                                                                                                                                                                                                                                                              

                    𝐿𝐶 =
𝑀𝑂𝐷𝑁 𝑎𝑑𝑑𝑒𝑑−𝑀𝑂𝐷𝑁 𝑠𝑢𝑝𝑒𝑟𝑛𝑎𝑡𝑎𝑛𝑡

𝑀𝑛𝑎𝑛𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
                                                    (2) 

where MODN added is the mass of ODN added to the initial nanoparticle formulation, Msupernatant 

is the mass of ODN in the supernatant, as determined by fluorescence analysis, and Mnanoparticles is 

the mass of the nanoparticles used for ODN loading.   

HPLC was used to determine the amount of MTX loaded into ODN coated nanoparticles. 

After nanoparticles were pelleted via centrifugation, supernatant samples were saved and 

analyzed using a Prominence Ultrafast Liquid Chromatography System (UFLC, Shimadzu 

Instruments, Japan). Samples were run using a 93:7 (v/v) mixture of 50 mM ammonium acetate 

and acetonitrile mobile phase at a flow rate of 0.75 ml/min with a 100 µL injection volume. The 

detection wavelength used was 210 nm. To determine the amount of MTX present based on peak 

area, a calibration curve of 8 known concentrations (50 µg/ml to 0.39 µg/ml) of MTX was 

constructed. PeakFit 4.2 software was used to analyze peak area. 

4.2.5 Analysis of protective effect of PSA-TMC on ODN 

 PSA-TMC and DNA degradation was assessed using an adapted protocol from Mao et. al. 10 

mg PSA-TMC-ODN (equivalent of 1 µg ODN/mg PSA-TMC, designated NPODN) was 

prepared with ODN coated on the surface, and encapsulated (NPODNE). Bare PSA-TMC 

(designated NP) was also prepared. After centrifugation, all particles were resuspended in 0.5 ml 

Millipore H20 at a concentration of 2 mg PSA/TMC and 2 µg ODN per 100 µl. 3 100 µl aliquots 
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were prepared from each 500 µl nanoparticle suspensions. ODN, NP, NPODN, and NPODNE 

were incubated at 37 degrees C for 15 minutes with 0.0, 0.4 or 4.0 µg DNAse 1 for 15 minutes. 

The reaction was stopped by adding 100 µl of 10 mM iodoacetic acid for a final iodoacetic acid 

concentration of 5 mM. Digestion was then carried out with lysozyme and chitosanase. 

Lysozyme was added at a concentration of 40 U/100 µl, and chitosanase was added at a 

concentration of 0.1 U/100 µl to all samples digested previously with DNAse1. The control 

samples were not degraded with lysozyme or chitosanase. Digestion continued for 4 hours at 37 

°C. After 4 hours of enzymatic digestion, samples were removed from heat and placed on ice 

immediately to stop activity. Samples were either frozen or run on a 20% Polyacrylamide gel. 

All gels were run at 200 mV for 40-50 minutes. The fastest running band on the loading buffer is 

said to be equivalent of about a 20 bp DNA sequence. 

4.3 Results and discussion 

4.3.1 Nanoparticle characterization 

As expected based on these prior studies, NP possessed a size of close to 100 nm (115 

nm) and a positive zeta potential (37 mV), while NP-ODN nanoparticles possessed a 

significantly larger size with a diameter of 159 ± 15 nm and decrease in surface charge to 23 mV 

[145, 152]. Furthermore, NP-ODN loaded with MTX led to another slight size increase, 

insignificantly larger than NP-ODN alone, with a diameter of 184 ± 5.6 nm while maintaining a  

 Size (nm) Zeta Potential (mV) Polydispersity index 

NP 115 ± 5.6 37 ± 6.3 0.10 

NP-ODN 166 ± 4 23 ± 6.5 0.09 

NP-ODN-MTX 184 ± 5 33 ± 6.5 0.09 

Table 2: Characterization data associated with PSA-TMC NP formulations 
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positive zeta potential of approximately 33 ± 6.5 mV. All nanoparticle formulations possessed 

size between 100 and 200 nm, favorable for evading the reticulondothelial system (RES) in 

applications for drug delivery [156]. Size, zeta potential, and polydispersity index of the three 

different nanoparticle formulations are portrayed in table 4.1. 

 Systematic analysis of nanoparticle formation via ionic complexation has been 

investigated previously [164, 165]. Consensus of these studies suggest that initiation of particle 

formation as well as particle size is highly influenced by charge ratio. A charge ratio of 

approximately 1:1 (+ :-) is essential for initiation of particle formation, regardless of charge 

strength. Dragan et. al illustrates this charge dependent phenomenon by varying charge ratios 

and measuring suspension turbidity. At a ratio of 1:1, a shift in turbidity occurs, indicating 

particle formation [164]. The PSA-TMC nanoparticle generation described above contains 

polymer amounts with the exact charge ratios recommended for complex formation. Chitosan to 

TMC modification results in polymer with approximately 55% modification, or a 55% positive 

charge. Using a TMC:PSA ratio of 2:1 results in a charge ratio of approximately 1:1. The ideal 

charge ratio combined with the flexibility of PSA, as described in section 4.1 results in 

generation of stable, reproducible particles with sizes ranging from ~100 nm (unloaded) to ~200 

nm (loaded with MTX and ODN).   

4.3.2 ODN and MTX loading 

The PSA-TMC nanoparticles were successfully coated with ODN with a loading 

efficiency and loading capacity of 76.6 ± 8.6% and 0.77 ± 0.09 µg/mg nanoparticles, 

respectively. HPLC was performed to determine the amount of MTX loaded within the NP-

ODN-MTX nanoparticles. Loading capacity and loading efficiency values of .20 mg MTX/mg 

nanoparticle and 86.7 %, respectively were obtained. 
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4.3.3 Protective effect of PSA-TMC on ODN 

Enzymatic degradation of ODN coated PSA-TMC, ODN encapsulated PSA-TMC, and 

TMC alone was performed. Based on enzymes present in vivo, DNAse1, lysozyme, and 

chitosanase enzymes were used to test stability. Despite several attempts, and a very high gel 

percentage, DNA fragments were not detectable. In addition, different post-run stains, including 

silver stain, methylene blue, and ethidium bromide were used in an effort to detect bands of 

DNA. A summary of different staining methods can be found in table 4-2.  

Attempt, 20% Gel Stain Result 

1 Silver Quest (silver stain) No band visualization, not even the 

ladder. This was not an appropriate 

stain to use. 

2 Methylene Blue Ladder visualization, no bands from 

any of the samples 

3 Ethidium Bromide No ladder visualization, saw bands 

from the ODN samples after 15 

minute stain incubation, but after 2.5 

hour stain incubation, saw nothing. 

 Potential alternatives to detecting DNA post-degradation include PCR amplification prior 

to running the gel. However, without knowing the exact degradation pattern, this would require 

multiple primers, and in general turn into a larger scale study than originally anticipated. This 

will be a continued investigation, as it provides an excellent introduction to continuing the 

project for a potential new student.   

4.4 Conclusions 

Initial preparation of ODN loaded PSA-TMC was performed by incorporating the nucleic 

acids directly into the polymer network. While this resulted in nanoparticles of desired size and 

Table 3: A summary of gel staining attempts to visualize enzymatically digested ODN, and 

the results 
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zeta potentials, the addition of negatively charged materials to the polymer matrix appears to 

have increased the particle stability beyond what was desired. Therefore, the nucleic acid release 

from the nanoparticles was extremely slow, and not conducive to the applications being 

investigated here. To rectify this, nucleic acids were instead coated on the surface of the 

nanoparticle, as the positively charged particle surface will attract and adhere the ODN’s due to 

electrostatic interactions. As expected, coating the surface with ODN led to acceptable loading 

levels, with sufficient payload release. 

PSA-TMC nanoparticles showed high loading capability of MTX, as expected based on 

previous studies, and ODN. Upon determination of successful synthesis and loading of PSA-

TMC nanoparticles, in vitro studies were carried out to determine potential applications of these 

materials. Previous studies as well as the innate properties of the materials used to develop the 

nanoparticles have confirmed a lack of toxicity toward rheumatoid arthritis cell line, however 

toxicity was investigated for other cell lines used in the studies. These cytotoxicity and efficacy 

in vitro studies are described extensively in the following chapters.  
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5. Modulation of the immune response via NF-kB decoy 

ODN coated nanoparticles in in vitro models of rheumatoid 

arthritis 

Abstract 

The transcription factor nuclear factor-kappa B (NF-κB) is highly involved in regulation of a 

number of cellular processes, including production of inflammatory mediators. Thus, this 

transcription factor plays a role in pathology of many diseases, including rheumatoid arthritis, an 

autoimmune disease hallmarked by an imbalance of pro and anti-inflammatory cytokines. Small 

nucleic acids with sequences that mimic the native binding site of NF-κB have been proposed as 

treatment options for RA; however due to low cellular penetration and a high degree of 

instability, clinical applications of these therapeutics have been limited. Here, we describe the 

use of N-trimethyl chitosan-polysialic acid (PSA-TMC) nanoparticles coated with NF-κB decoy 

ODNs (PSA-TMC-ODN) as a method to enhance the stability of the nucleic acids and facilitate 

increased cellular penetration. In addition to decoy ODN, PSA-TMC nanoparticles were loaded 

with RA therapeutic methotrexate (MTX), to assess the anti-inflammatory efficacy of a 

combination therapy approach. Two difference in vitro models, a cell line based model as well as 

a primary RA cell model were used to investigate anti-inflammatory activity. One way ANOVA 

followed by Holm-Sidak stepdown comparisons was used to determine statistical significance. In 

general, free ODN did not significantly affect secretion of pro-inflammatory cytokines 

interleukin-6 (IL-6) and interleukin-8, (IL-8) while free MTX had variable efficacy. However, 

PSA-TMC-ODN and PSA-TMC-ODN-MTX resulted in significant decreases in the 
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inflammatory mediators IL-6 and IL-8 in both cell models. In addition, PSA-TMC exhibited 

sufficient cellular uptake, as observed through fluorescence microscopy.  

These results support our previous findings that PSA-TMC nanoparticles are an effective 

delivery vehicle for small nucleic acids, and effectively alter the pro-inflammatory state 

characteristic of RA.  

*This chapter has been adapted from an original manuscript by P.R. Wardwell submitted to the 

journal Arthritis Research and Therapy 

 

5.1 Introduction 

Rheumatoid arthritis is an autoimmune disease characterized by inflammation of the synovial 

tissue of joints. Over time, the infiltration of immune cells to the synovial lining leads to 

hyperplasia, increased vascular growth, and formation of a tumor like tissue known as the 

pannus [166]. The physiology of a chronic inflammatory state eventually results in cartilage 

degradation and bone resorption. An imbalance of pro- and anti-inflammatory cytokines 

contribute to the state of chronic inflammation. Briefly, the levels of anti-inflammatory 

cytokines (Interleukin (IL)-4, IL-10, and IL-13) present in the synovium are too low to combat 

the effects of pro-inflammatory cytokines (tissue necrosis factor-α (TNF-α), IL-1, IL-6, and IL-

8) [124].  Of the cells present in the RA synovial lining, ‘macrophage-like’ cells and activated 

synovial fibroblasts are accepted as the primary mediators of the pro/anti-inflammatory 

imbalance [167, 168].  
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NF-κB is a transcription factor involved in the regulation of a variety of cellular processes, 

including growth, apoptosis, and inflammatory and immune responses [108]. NF-κB dependent 

gene expression is known to play a critical role in the observed cytokine imbalance, as well as 

contribute to increased 

inflammation in rheumatoid 

arthritis [110, 169]. Under 

normal conditions, NF-κB is 

sequestered in the cytoplasm 

by means of a bound inhibitor 

known as IkB (inhibitor of κB). 

External stimulation from 

inflammatory mediators, 

including IL-1β, leads to a 

signaling cascade that results in 

phosphorylation of the 

inhibitor, followed by 

dissociation of the NF-κB/IκB 

complex and subsequent 

nuclear translocation of NF-

kB. Once inside the nucleus, NF-kB initiates transcription of pro-inflammatory cytokines, 

including IL-6 and IL-8, two cytokines highly involved in regulating inflammation in RA. IL-6 

and IL-8 both possess NF-κB binding sites on their promotor regions, indicating they are highly 

regulated by NF-κB [170]. Transcription factor decoy oligonucleotides (ODNs) have the 

Fig. 14. An illustration of the NF-κβ pathway activation in 

a RA synovial fibroblast cell. Pro-inflammatory cytokines, 

including IL-1β activate the cell signaling pathway 

associated with NF-κβ, including activation of IκK, 

phosphorylation and inactivation of Iκβ, and translocation 

of NF-κβ to the nucleus. NF-κβ decoy ODN’s can prevent 

translocation of the transcription factor, as well as 

subsequent transcription of NF-κβ dependent genes. 
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potential to reduce inflammation in RA by binding to NF-kB in the cytoplasm, preventing 

nuclear translocation, and inhibiting NF-κB mediated transcription of pro-inflammatory 

proteins. The mechanism of decoy ODN is illustrated in Fig. 14.  

Transcription factor decoy ODNs mimic the native DNA binding site of the transcription 

factor, but are only ~ 20 base pairs long, and do not encode any genes. NF-kB decoy ODNs 

have been proposed as treatment for RA previously [171]. However, despite promising potential 

for treatment, applications have been limited by low cellular penetration and a lack of stability 

of the nucleotides, which combined result in low overall bioavailability [172, 173]. As 

mentioned in the introduction section, methyl phosphonate or phosphorothioate chemical 

modifications are often applied to the nucleotide backbones as a means to overcome stability 

problems; however although  these modifications enhance stability, they do not necessarily lead 

to increased delivery efficiency, resulting in the need for a high dose and frequently repeated 

delivery [2]. Nucleic acids containing these modifications have been shown to have a 

concentration dependent toxicity toward mammalian cells, therefore this is not a sustainable 

method for delivery[3, 4]. 

As discussed in chapter two, methods such as viral vectors, cationic lipid formulations and 

more recently, cationic polymer formulations, exist to overcome the barriers to nucleic acid 

delivery. To reiterate nucleic acid drug delivery system requirements as initially stated in 

chapter one, drug delivery systems for nucleic acids must have attributes including 

biocompatibility and biodegradability, reticuloendothelial system (RES) avoidance, non-

immunogenicity, cellular uptake capability, and cell or tissue specificity [5]. In terms of these 

attributes, viral vectors are associated with major drawbacks, including viral induced 

immunogenicity, toxicity, mutation of the nucleic acid of interest with the viral DNA, and the 
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potential for inactivation of the gene of interest due to recombination [97]. Cationic lipid based 

Lipofectamine reagents, marketed by Life Technologies®, claim of increased efficiency over 

other available reagents and have become the most referenced lipid based transfection reagent. 

However, in addition to marked toxicity exhibited by these reagents in cell lines, these 

compounds are associated with metabolism by the liver in vivo, resulting in degradation of the 

nucleic acid payload [104, 105].  

Due to the drawbacks of viral vectors and cationic lipid delivery methods, cationic polymers 

have been the focus of recent research as an alternative for nucleic acid delivery. One of the 

most widely used polymers in nucleic acid delivery is poly (ethyleneimine) (PEI). However, 

PEI exhibits considerable toxicity toward a variety of mammalian cells [106] [107]. Delivery 

systems for RA, where the ultimate goal is to reduce inflammation, require materials that do not 

contribute to inflammation or the immune response and that exhibit low levels of toxicity. 

Therefore, an alternative delivery method to viral vectors, cationic lipids and synthetic cationic 

polymers is needed. 

A polysaccharide based system containing two natural polymers, N-trimethyl chitosan 

(TMC) and polysialic acid (PSA) has previously been described. This nanoparticle system is 

non-cytotoxic, non-immunogenic, and has been shown to effectively deliver encapsulated 

disease modifying anti-rheumatic drugs (DMARDs) and surface-coated with NF-kB decoy 

ODNs when applied to in vitro models of rheumatoid arthritis and cystic fibrosis, respectively 

[145, 174]. In this chapter, the use of PSA-TMC nanoparticles as a delivery system to combine 

treatment of a DMARD, methotrexate, and NF-κB decoy ODN is reported. While combination 

therapies have been reported before, particularly NF-κB inhibitors, to the best of the author’s 
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knowledge, this is the first report of combining DMARD methotrexate with a transcription 

factor decoy NF-κB inhibitor. 

5.2 Materials and Methods 

5.2.1 Materials 

Polysialic acid (colominic acid, PSA) was obtained from Nacalai USA, Inc. (San Diego, CA, 

USA). N-trimethyl chitosan (TMC) was produced via quaternization of chitosan (MW 100 Da-

300 Da) obtained from Acros Organics (New Jersey, USA), as described previously by Sieval et. 

Al[163]. Sodium tripolyphosphate (TPP) was purchased from Acros Organics, New Jersey, 

USA. An NF-κB decoy oligonucleotide (ODN) kit containing NF-κB decoy ODN (5’ CCT TGA 

AGG GAT TCC CTT CC 3’) and a scrambled ODN (5’ TTG CCG TAC CTG ACT TAG CC 3’) 

was purchased from CosmoBio (Tokyo, Japan). Recombinant human interleukin-1β was 

obtained from R and D systems (Minneapolis, MN). Methotrexate (MTX) was purchased from 

Enzo Life Sciences (Rochester, NY). Alexa Fluor 488 succinimidyl ester was purchased from 

Invitrogen/Life Technologies (Grand Island, NY). 

5.2.2 Cell culture 

SW982 cells were obtained from ATCC (Manassas, VA, USA) and grown in Dulbecco’s 

Modified Eagles Medium (DMEM, Fisher Scientific, USA) supplemented with 10% Fetal 

Bovine Serum (FBS, Atlanta Biologicals, Atlanta, GA) until confluent.  Primary RA cells were 

isolated from synovial tissue obtained from two Caucasian RA patients, both women between the 

ages of 50 and 59. The tissue samples were obtained by Dr. Timothy Damron at Community 

General Hospital (Syracuse, NY) following written and informed consent by each patient, as 

required by an Institutional Review Board–approved protocol. Tissue was isolated following a 

protocol outlined by Zimmerman [175]. Briefly, the synovial tissue was minced finely and 
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incubated at 37° with 0.1% Trypsin (Invitrogen, Carlsbad, CA) in PBS for 30 minutes. Tissue 

was then digested for two hours in DMEM with 0.1% Collagenase P. After digestion, tissue was 

filtered through a 100 µM filter. The resultant solution was centrifuged, and the pelleted cells 

were resuspended in DMEM with 10% FBS, placed in a T-75 flask, and cultured at 37°C with 

5% CO2. After three passages, the cells were stained with CD44-FITCmAB (Santa Cruz 

Biotechnology, Santa Cruz CA) to confirm fibroblast cells. To supplement the two sets of 

primary cells obtained through synovial tissue isolation, Human Fibroblast Like Synoviocytes 

(HFLS, lot numbers 2884 and 2956, female Caucasian) were obtained from Cell Applications 

(CA, USA) and cultured in DMEM with 10% FBS at 37°C with 5% CO2. 

5.2.3 Nanoparticle preparation and characterization 

ODN coated PSA-TMC nanoparticles were prepared as previously described and detailed in 

chapter four [145]. Nanoparticle size, zeta potential, and polydispersity index were determined 

using a Malvern Zetasizer NanoZS90 (Malvern Instruments, Malvern UK). Following 

centrifugation, nanoparticles were resuspended at a concentration of 2 mg/ml in DI water and 

filtered through a 0.45 µM syringe filter. Samples were loaded into cuvettes or capillary cells for 

measurements at 25 °C.  

5.2.4 In vitro efficacy of ODN-coated PSA-TMC nanoparticles 

SW982 cells or primary RASF cells were plated on 24 well plates at a density of 20,000 

cells/well. In addition to ODN coated nanoparticles (NP-ODN), bare nanoparticles (NP), MTX 

loaded nanoparticles (NP-MTX), ODN coated MTX loaded nanoparticles (NP-MTX-ODN) and 

nanoparticles coated with a scrambled oligonucleotide (NP-SCO) were prepared. As a control, 

MTX alone was prepared at a concentration of 1.0 mg/ml DMEM media. After centrifugation, 

all nanoparticles were resuspended in serum free DMEM at a concentration of 1.0 mg/ml. 500 µl 
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of each treatment group was added to the 24 well plate in duplicate as follows: 1. Media alone 

(control), 2. ODN alone, 3. NP-ODN, 4. NP, 5. NP-SCO, 6. NP-MTX, 7. NP-ODN-MTX, and 8. 

MTX alone.  The complexes were removed and media supplemented with FBS was replaced 

after 4 hours to allow for normal growth conditions. 24 hours after initial complex addition, 

inflammation was induced with the addition of 1.0 ng/ml of interleukin 1β (IL-1β). This 

concentration has been shown to increase levels of IL-6 and IL-8 when administered to SW982 

cells [176].After incubation at 37°C for an additional 24 or 48 hours,, supernatant samples were 

collected and stored at -80°C for analysis of IL-6 and IL-8.  

5.2.5 Quantitative analysis of inflammatory cytokines 

ELISA kits for IL-6 and IL-8 were purchased from Peprotech (Rocky Hill, NJ) and run 

according for manufacturer instructions. Samples were run in duplicate, and each experiment 

was repeated independently at least 3 times. 

5.2.6 In vitro cellular uptake 

To examine internalization of the nanoparticles, cellular uptake experiments were performed. 

Prior to nanoparticle synthesis, TMC was tagged with Alexa-Fluor 488® carboxylic acid, 

succinimidyl ester, mixed isomers in DMSO (1 mg/mL), (Invitrogen, Grand Island, NY). 25 mg 

of TMC were dissolved in 4 ml of 0.1 M sodium bicarbonate buffer (pH 8.3). 500 µl of AF 488 

dye were added, and the solution was stirred for 1 hour at room temperature. Upon completion of 

stirring, the resultant material was dialyzed for 48 hours against water to ensure removal of un-

reacted dye. In addition, the amount of TMC used has an excess of reactive amine groups 

relative to amount of Alexa Fluor 488, therefore the amount of unreacted dye was expected to be 

negligible. H1 NMR confirmed dye conjugation. Cells were plated on lysine coated glass bottom 

dishes (Mattek Corp, Ashland, MA) at a density of 100,000 cells per dish two days prior to 
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scheduled imaging to allow for adherence and confluence. On the day of imaging, sterile filtered 

NP were administered to the plated cells at a concentration of 1 mg/ml. Complexes were 

incubated with the cells for 45 minutes at 37°C prior to removal. The cells were washed three 

times with 1X PBS immediately prior to imaging, and imaged using a Nikon Eclipse Ti inverted 

microscope.  

5.2.7 Statistical analysis 

IL-6 and IL-8 protein levels were expressed relative to an untreated, stimulated control group, 

with all data presented as mean ± standard deviation for all groups (N≥3). One-way ANOVA 

followed by Holm-Sidak testing for multiple comparisons was performed to compare IL-6 and 

IL-8 protein secretion following treatment and inflammatory stimulation. All statistical tests 

were conducted with an alpha value of 0.05. 

5.3 Results 

5.3.1 Effect of ODN and MTX loaded NP on IL-6 and IL-8 secretion in RA in vitro models 

To initially determine efficacy of NF-κB decoy ODN and MTX loaded NP, the SW982 cell 

line was used as a model of RA. The SW982 cell line has been shown to mimic activated RA 

synovial fibroblast cells in regards to the expression of inflammatory mediators, particularly 

when stimulated in 1 ng/ml IL-1β[177]. We have previously conducted cytotoxicity studies of 

PSA-TMC NP formulations and concluded NP, as well as NP-ODN, NP-MTX, and MTX alone 

do not impact cellular proliferation at low concentrations and are, therefore, appropriate for this 

study [145, 174].  

To assess the bioactivity of PSA-TMC NP coated with the NF-κB decoy ODN and/or loaded 

with MTX, the secretion of two potent inflammatory mediators, IL-6 and IL-8, by SW982 cells 

were investigated. Both of these pro-inflammatory mediators are directly influenced by NF-κB 
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and play a major role in the inflammatory response in RA. IL-6 is a multifunctional cytokine, 

with the ability to regulate the immune response, inflammation, and hematopoiesis and plays a 

crucial role in RA pathogenesis[178]. IL-8 was chosen as a representative chemokine and is 

responsible for recruiting immune cells to the synovium and contributing to the tumor-like 

pannus tissue. In addition, IL-8 is involved in up-regulation of inflammation via paracrine 

signaling mechanisms in the RA synovium [179].  The mechanism of action of MTX in RA 

treatment and inflammatory activity is currently unresolved; however, the drug is believed to 

interfere with cell folate metabolism. Furthermore, several reports suggest MTX acts on NF-κB 

as an inhibitor[180]. We explored co-administration of NF-κB decoy ODN and MTX to observe 

any potential synergistic activity. IL-6 and IL-8 levels were examined in response to treatment 

with NP-ODN, NP-MTX, NP-ODN-MTX, ODN alone, and MTX alone using immunoassays. 
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The IL-6 secretion profile in response to different treatment groups is shown in Fig. 15 In 

general, we were interested in the IL-6 response of cells subjected to the different treatment 

groups in comparison to untreated control cells and in comparison to cells treated with ODN 

alone. At 24 hours (Fig. 15A), cells treated with NP-ODN-MTX displayed a significant 

reduction of IL-6 relative to untreated control cells. A decrease in IL-6 levels in comparison to 

untreated control cells was also observed following treatment with NP-ODN; however, this 

reduction was not great enough to be significant. At 48 hours (Fig. 15B), a significant decrease 

relative to both untreated control cells and cells administered ODN alone was observed 

following treatment with NP-MTX and NP-ODN-MTX. NP-ODN displayed trends at 48 hours 

similar to those at 24. This treatment resulted in a decrease in IL-6 levels in comparison to both 

Fig. 15. ELISA was performed to determine levels of IL-6 secretion by SW982 cell line RA 

model cells, after treatment with ODN alone (ODN), NP coated with ODN (NP-ODN), NP 

loaded with methotrexate (NP-MTX), NP loaded with methotrexate and ODN (NP-ODN-

MTX), and MTX alone (MTX) and stimulation with IL-1B at 24 (A) and 48 (B) hours. Results 

are expressed as fold changes of IL-6 levels relative to an untreated control, shown as a solid 

line at 1. One way ANOVA followed by Holm-Sidak multiple comparisons testing was used to 

determine the impact of treatment on IL-6 secretion. * Represents a significant difference from 

the control, while † represents significant difference from ODN alone. All data is presented as 

mean ± SD (N=3). 
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untreated control cells and ODN alone; however, the decrease was not great enough to be 

significantly different.  

The IL-8 secretion profile from SW982 cells in response to treatment with different 

nanoparticle formulations is portrayed in Fig. 16. After 24 hours (Fig. 16A), NP-ODN-MTX 

resulted in a significant decrease in IL-8 levels compared to ODN administered alone. While the 

level of IL-8 in response to NP-ODN-MTX treatment was lower than the untreated control, the 

difference was not significant. At 48 hours, (Fig. 16B) multiple significant decreases in IL-8 

levels were observed. Cells treated with NP-ODN, NP-MTX, NP-ODN-MTX, and MTX alone 

all had IL-8 levels significantly lower than the untreated control cells and cells treated with ODN 

alone.  

Fig. 16. ELISA was performed to determine levels of IL-8 secretion by SW982 cell line RA 

model cells, after treatment with ODN alone (ODN), NP coated with ODN (NP-ODN), NP 

loaded with methotrexate (NP-MTX), NP loaded with methotrexate and ODN (NP-ODN-

MTX), and MTX alone (MTX) and stimulation with IL-1B at 24 (A) and 48 (B) hours. 

Results are expressed as fold changes of IL-8 levels relative to an untreated control, shown 

as a solid line at 1. One way ANOVA followed by Holm-Sidak multiple comparisons testing 

was used to determine the impact of treatment on IL-8 secretion. * represents a significant 

difference from the control, while † represents significant difference from ODN alone. All 

data is presented as mean ± SD (N=3). 
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These results suggest that PSA-TMC NP can be used to deliver decoy ODN and MTX, alone 

and simultaneously, to activated RA synovial fibroblasts. To further validate the ability of PSA-

TMC nanoparticles to serve as an effective treatment strategy for RA, in vitro experiments were 

also conducted with primary cells. Previous reports have noted discrepancies in cytokine 

production between cell line models and primary RASF cells [128]. Furthermore, a literature 

search revealed that immortalized cells, such as SW982, constitutively express the NF-κB 

pathway, indicating that they may be more susceptible to NF-κB interference than primary RASF 

cells [181].  

Primary RASF cell cytokine secretion was investigated following treatment with ODN, NP-

ODN, NP-MTX, NP-ODN-MTX and MTX. At 24 hours (Fig. 17A), a significant reduction in 

Fig. 17. ELISA was performed to determine levels of IL-6 secretion by primary RA synovial 

fibroblast cells, after treatment with ODN alone (ODN), NP coated with ODN (NP-ODN), 

NP loaded with methotrexate (NP-MTX), NP loaded with methotrexate and ODN (NP-ODN-

MTX), and MTX alone (MTX) and stimulation with IL-1B at 24 (A) and 48 (B) hours. 

Results are expressed as fold changes of IL-6 levels relative to an untreated control, shown as 

a solid line at 1. One way ANOVA followed by Holm-Sidak multiple comparisons testing 

was used to determine the impact of treatment on IL-6 secretion. * represents a significant 

difference from the control, while † represents significant difference from ODN alone. All 

data is presented as mean ± SD (N=4). 
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IL-6 secretion by the primary cells was observed in response to NP-ODN and NP-ODN-MTX in 

comparison to untreated control cells, as well as cells administered ODN  alone. While cells 

treated with NP-MTX and MTX alone experienced a decrease in levels of IL-6, the decrease was 

not great enough to be considered significant. A lack of significant reduction of IL-6 secretion in 

response the NP-MTX and MTX alone is in accordance with several reports, described in further 

detail in the discussion, stating that MTX does not have a direct effect on IL-6 levels in primary 

RASF cells. At 48 hours, (Fig. 17B) although trends similar to 24 hours are seen with reductions 

in IL-6 levels in response to NP-ODN, NP-MTX and NP-ODN-MTX, significant reductions 

were not observed in response to any NP treatment.  
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The IL-8 secretion response of primary RA cells to NP treatments is depicted in Fig. 18. At 

24 hours (Fig. 18A), despite similar reduction trends as observed for primary IL-6 secretion and 

SW982 IL-8 secretion, the differences were not significant. At 48 hours, (Fig. 18B) NP-ODN, 

NP-MTX, NP-ODN-MTX, and MTX alone all resulted in significant decreases in IL-8 secretion 

when compared to the untreated control. Furthermore, NP-ODN-MTX treatment resulted in a 

significant decrease when compared to ODN alone. 

5.3.2 Cellular uptake of NP-ODN 

Fig. 18. ELISA was performed to determine levels of IL-8 secretion by primary RA synovial 

fibroblast cells, after treatment with ODN alone (ODN), NP coated with ODN (NP-ODN), NP 

loaded with methotrexate (NP-MTX), NP loaded with methotrexate and ODN (NP-ODN-

MTX), and MTX alone (MTX) and stimulation with IL-1B at 24 (A) and 48 (B) hours. Results 

are expressed as fold changes of IL-8 levels relative to an untreated control, shown as a solid 

line at 1. One way ANOVA followed by Holm-Sidak multiple comparisons testing was used 

to determine the impact of treatment on IL-8 secretion. * represents a significant difference 

from the control, while † represents significant difference from ODN alone. All data is 

presented as mean ± SD (N=4). 
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To facilitate visualization of carrier uptake and localization of NP in vitro, TMC was 

modified with green (Alexa Fluor 488) fluorescent tag. Tagged NP were incubated with SW982 

cells at 37°C for 45 minutes, and visualized. A composite image from the uptake experiments is 

shown in Fig. 19. The nanoparticles demonstrated sufficient cellular uptake within a short time 

period. 

5.4 Discussion 

A major barrier in the advancement of nucleic acid therapies to achieving clinical relevance 

is a general lack of ability of the negatively charged nucleic acid to enter the negatively charged 

cell membrane. A number of positively charged carrier systems and transfection reagents have 

Fig. 19. Cellular uptake visualization of Alexa Fluor 488® tagged PSA-TMC in 

SW982 synovial sarcoma cells. Cells were incubated with tagged particles for 45 

minutes at 37°C, then imaged using an inverted fluorescent microscope.  
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been explored to overcome this barrier; however, many of these are associated with toxicity, 

immunogenicity, and/or are highly variable based on cell type [182]. The carrier system 

presented here, PSA-TMC nanoparticles, has been found to be non-cytotoxic, while maintaining 

a positive surface charge [145, 156, 174]. The positive surface charge of the particles due to 

TMC is expected to facilitate interaction with negatively charged cell membranes, increasing 

ODN cellular uptake. Meanwhile, PSA has no known receptors in the body, making it an optimal 

choice for a component, as this will likely allow for RES evasion and reduce the likelihood of 

inducing an immune response. Further, PSA has properties similar to polyethylene glycol (PEG), 

a polymer commonly used to extend circulation time via incorporation into nanocarrier systems 

or protein conjugates [7, 145, 149, 158]. In sum, a nanoparticle system based on natural 

polysaccharides, anticipated to exhibit reduced immunogenicity and enhanced hydrophilicity in 

comparison to other cationic polymer based nanocarrier systems is reported in this chapter. An 

NF-kB decoy ODN was chosen as the NA drug of choice for this study due to the known activity 

of NF-kB in RA pathology.  

Under normal conditions, NF-κB is bound to an inhibitor in the cytoplasm. However, in 

response to an inflammatory stimulus, the inhibitor undergoes phosphorylation, leading to 

dissociation of the NF-κB/inhibitor complex and subsequent nuclear translocation of the 

transcription factor. For this study, IL-6 and IL-8 were chosen as the representative cytokine and 

chemokine, respectively for quantitative analysis. In addition to other roles in the inflammatory 

response, IL-6 and IL-8 play a role in stimulation of VEGF, a growth factor linked to production 

of blood vessels [125]. The newly and, hence, typically rapidly formed blood vessels have larger 

pore sizes between the endothelial barrier than normal blood vessels, which can be exploited for 

drug delivery via the enhanced permeation and retention (EPR) effect [183]. Colloidal carrier 
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systems between 100-200 nm can passively accumulate in areas associated with blood vessels 

with larger, leaky pores in the endothelial barrier, thus, the EPR effect is a means of passive 

targeting [184]. While RA pathology doesn’t exhibit the retention aspect of this phenomenon, the 

enhanced permeation appears to be great enough to act as a passive targeting mechanism [185, 

186]. 

As NF-κB has a well-established involvement in RA, the transcription factor is an enticing 

target for drug candidates. However, as demonstrated here and in previous studies, 

administration of decoy ODN’s alone results in low efficacy and delivery with many available 

reagents results in high degrees of cytotoxicity  [174]. In the current study, decoy ODN efficacy 

was increased when administered via PSA-TMC to primary and cell line in vitro models of RA. 

SW982 cells yielded significantly decreased levels of IL-6 in response to treatment with 

NPODNMTX at 24 and 48 hours and in response to NPMTX at 48 hours only. As primary cells 

are isolated from different individuals, it is not unexpected to observe increased variability 

among cytokine expression and secretion when compared to cell line groups, as seen here [187].  

In regards to the effect of MTX on cytokine modulation, conflicting results have been 

reported. Early research by Loetscher et al. claimed that MTX is ineffective at mediating IL-8 

production in RA [188], while Kraan et al. reported decreased IL-8 in synovial fluid after MTX 

treatment [189]. Similarly, Nishina et al. recently reported MTX effectively reduced IL-6 plasma 

levels in RA patients [190], while Inoue et al. claimed MTX did not have an inhibitory effect on 

IL-6 production by RA synovial cells [191]. Previous studies conducted by our group found 

MTX delivery alone to be inconsistent, providing further evidence that the therapeutic effects of 

MTX may not be manifested in changes in the cytokine milieu [145].  
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The cytokine results portrayed in Figs. 15 through 18 in response to MTX alone are reflective 

of the variable response observed among RA patients. In addition to unpredictable efficacy, 

MTX is associated with a number of severe, dose dependent side effects, limiting the tolerable 

dosage level. Several reports advocate for combination therapy of DMARDs, particularly MTX, 

with biologic therapies. For example, a report by Goekoop-Ruiterman et al claimed increased 

clinical improvement in early stages of diseases progression with combination therapies [192]. 

Likewise, claims of increased efficacy of low dose of MTX combined with alternative therapies, 

such as phosphodiesterase type three inhibitor cilostazol have also been reported [193]. Indeed, 

primary RASF cells showed a significant response in IL-6 levels to treatment with NP-ODN-

MTX and NP-ODN, but not NP-MTX or MTX alone. The primary cell model also resulted in a 

significant reduction of IL-8 in response to NP-ODN, NP-MTX, NP-ODN-MTX and MTX in 

comparison to an untreated control, however only NP-ODN-MTX resulted  in a significant 

decrease in comparison to just ODN delivery alone. These results suggest that decoy ODN has 

the ability to act alone, as well as enhance efficacy of DMARD MTX when delivered in 

combination. PSA-TMC NP provide a delivery vehicle to safely enhance cellular uptake of 

ODN, as well as encapsulate and carry MTX to the required site of action.  

5.5 Conclusion 

In this study, evidence furthering the claim that PSA-TMC nanoparticles can be used to 

effectively deliver nucleic acid based drugs was obtained. Furthermore, the combination of NF-

κB decoy ODN and DMARD MTX was shown to result in an increased reduction in 

inflammatory cytokines in both a cell line and primary RASF model of RA. To our knowledge, 

this is the first report of investigating combination therapy of MTX with a decoy ODN. While 

PSA-TMC nanoparticles have been used to administer both MTX and ODN separately in 
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previous studies, this is the first time we have attempted to combine these two therapies and 

report successful modulation of inflammatory proteins in RA in vitro models [145, 174]. 

Incorporating in vivo testing is necessary to determine both safety and efficacy of PSA-TMC 

loaded with ODN and MTX, however this preliminary in vitro investigation provides strong 

evidence to support future studies. 
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6. Immunomodulation of Cystic Fibrosis Epithelial Cells 

via NF-κB Decoy Oligonucleotide Coated Polysaccharide 

Nanoparticles 

Activation of the transcription factor nuclear factor-kappa B (NF-κB) signaling pathway 

is associated with enhanced secretion of proinflammatory mediators and is thought to play a 

critical role in diseases hallmarked by inflammation, including cystic fibrosis (CF). Small nucleic 

acids that interfere with gene expression have been proposed as promising therapeutics for a 

number of diseases. However, applications have been limited by low cellular penetration and a 

lack of stability. Nano-sized carrier systems have been suggested as a means of improving the 

effectiveness of nucleic-acid based treatments. Polysialic acid-N-trimethyl chitosan (PSA-TMC) 

nanoparticles were successfully coated with NF-κB decoy oligonucleotides (ODNs). To 

demonstrate anti-inflammatory activity, this chapter describes use of a simple in vitro model of 

CF generated via interleukin-1β or P. aeruginosa lipopolysaccharides stimulation of IB3-1 

bronchial epithelial cells. While free ODN and PSA-TMC nanoparticles coated with scrambled 

oligonucleotides did not have substantial impacts on the inflammatory response, the decoy ODN-

coated PSA-TMC nanoparticles were able to reduce the secretion of interleukin-6 and 

interleukin-8, proinflammatory mediators of CF, by the epithelial cells, particularly at longer 

time points. In general, the results suggest that NF-κB decoy ODN-coated TMC-PSA 

nanoparticles may serve as an effective method of altering the proinflammatory environment 

associated with CF. 
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6.1 Introduction 

Cystic fibrosis (CF) is an autosomal recessive genetic disorder characterized by mutations in 

the gene encoding the cystic fibrosis transmembrane conductance regulator protein (CFTR) that 

controls chloride ion transport in epithelial surfaces [194]. Disruption of ion transport leads to 

excessive mucus buildup, affecting many organs; however, chronic lung disease due to persistent 

infection and inflammation presents the highest morbidity risk [195, 196]. Although the 

mechanisms behind the onset and perpetuation of inflammation are not fully understood, many 

reports agree that elevated levels of transcription factor nuclear factor-kappa light chain enhancer 

of activated B cells (NF-κB) within the lung epithelia are associated with the inflammatory 

immune response. NF-κB is known to transcriptionally regulate the production of a variety of 

inflammatory mediators, including interleukin-8 (IL-8) and interleukin-6 (IL-6), cytokines 

directly involved in the immune response [197]. IL-6 stimulates B cells, leading to increased 

antibody production, while IL-8 recruits neutrophils to the infected area [198-200]. In contrast to 

CF bronchial epithelial cells that show significantly elevated levels of IL-6 and IL-8, healthy 

cells yield levels of these cytokines that are not readily detectable [200]. 

Pseudomonas aeruginosa, a pathogen commonly found in CF lung infections, is known to 

activate the NF-κB signaling pathway via interactions with the toll-like receptors (TLR). 

Notably, P. aeruginosa lipopolysaccharides (pLPS) interact with the NF-κB pathway through 

TLR-4 [201]. As illustrated in Fig. 20, under normal circumstances, NF-κB is sequestered in the 

cytoplasm by a protein known as inhibitor of κB (IκB). In the event of inflammatory stimuli 

receptor binding, such as binding of pLPS to TLR 4, IκB kinase (IκK) is activated, which 

phosphorylates and inactivates IκB. Dissociation of NF-κB then occurs, followed by 

translocation to the nucleus and initiation of transcription [119]. Blocking NF-κB nuclear 
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translocation and/or DNA binding with a transcription factor decoy oligonucleotide (ODN) 

therefore has the potential to reduce inflammation in CF airways (Fig. 20) [202].  

NF-κB transcription factor decoy ODNs have previously been explored as anti-inflammatory 

treatments for several conditions, including CF. A review by De Stefano highlights some of the 

recent applications of NF-κB transcription factor decoy ODN’s in the treatment of inflammatory 

diseases [203], and several groups have reported suppression of inflammatory cytokines in 

response to an NF-κB decoy ODN in in vitro and in vivo disease models [4, 204-207]. For 

example, NF-κB decoy ODNs complexed with cationic liposomes were shown to reduce the 

expression of IL-8 by IB3-1 bronchial epithelial cells infected with P. aeruginosa[4]. However, 

Fig. 20 An illustration of NF-κB pathway activation in a CF airway epithelial cell. P. 

aeruginosa bacterial components bind to the toll-like receptors, leading to activation of IκK, 

phosphorylation and inactivation of IκB, and eventual translocation of NF-κB to the 

nucleus.NF-κB decoy ODNs prevent translocation and transcription of NF-κB dependent 

genes. 
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use of decoy ODNs as therapeutic agents, particularly for diseases that necessitate systemic 

administration, has hampered by two major drawbacks: (1) the negative charge prevents cellular 

uptake and (2) the short nucleic acid molecules are unstable and susceptible to nuclease activity 

[119]. Reflecting this potential limitation in activity, one clinical trial has been conducted with 

local administration of NF-κB decoy oligonucleotides using a non-viral vector, but the study was 

closed due to a lack of demonstrated efficacy, presumably as a result of rapid enzymatic 

digestion [101]. As detailed in previous chapters, viral vectors and cationic lipid reagents, the 

current options for nucleic acid delivery are often associated with immunogenicity and 

cytotoxicity, rendering them inappropriate for use in applications where control of inflammation 

is the desired outcome [100, 101] [105]. 

 Here, the PSA-TMC nanoparticles, described in detail in chapter four, were coated with 

NF-κB decoy ODN, and the ability of the ODN-coated nanoparticles to reduce the inflammatory 

response associated with CF was demonstrated using an in vitro model based upon the IB3-1 cell 

line. Although several immortalized cell lines derived from bronchial epithelial cells exist for 

therapeutic screening, the IB3-1 CF cell line, which express the mutated CFTR protein, was used 

for the research presented herein based upon prior use of these cells for gene therapy [4], in 

conjunction with evidence of a strong pro-inflammatory response to stimuli derived from P. 

aeruginosa [4, 208, 209]. Prior to conducting anti-inflammatory efficacy studies, toxicity of the 

nanoparticles toward the IB3-1 cell line was assessed. Anti-inflammatory activity was assessed 

by determining changes in the secretion of IL-6 and IL-8 upon stimulation with either 

interleukin-1β (IL-1β) or pLPS after pre-treatment of the cells with of the decoy ODN-coated 

nanoparticles. Similar to other investigators, the direct impact of the decoy ODNs on the NF-κB 

signaling pathway was evaluated with a luciferase reporter assay using HEK 293 cells.  
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6.2 Materials and methods  

6.2.1 Materials  

Polysialic acid (colominic acid, PSA) was obtained from Nacalai USA, Inc. (San Diego, 

CA, USA). N-trimethyl chitosan (TMC) was produced via quaternization of chitosan (MW 100 

Da – 300 kDa) obtained from Acros Organics (New Jersey, USA), as described by Sieval et al 

[163]. Sodium tripolyphosphate (pure, TPP) was procured from Acros Organics (New Jersey, 

USA). P.aeruginosa LPS (pLPS) was purchased from Sigma Aldrich (St. Louis, MO, USA). An 

NF-κB decoy oligonucleotide (ODN) kit containing NF-κB decoy ODN (5’ CCT TGA AGG 

GAT TCC CCT CC 3’), as well as scrambled ODN (5’ TTG CCG TAC CTG ACT TAG CC 3’), 

was acquired from CosmoBio (Tokyo, Japan). Recombinant human interleukin-1β was obtained 

from R and D systems (Minneapolis, MN).  A rhodamine tagged ODN (5’ (TAMRA-X) (C6-

NH) CCT TGA AGG GAT TTC CCT CC 3’) was purchased from TriLink Biotechnologies (San 

Diego, CA). Lipofectamine 2000 transfection reagent and 4', 6-Diamidino-2-Phenylindole, 

dilactate (DAPI stain) were procured from Invitrogen (Grand Island, NY).  

6.2.2 Cell culture 

IB3-1 bronchial epithelial cells with the CF CFTR gene mutations were obtained from 

the Johns Hopkins GCFR cell center and grown on rat tail collagen coated tissue culture flasks. 

To coat the flasks, rat tail collagen was dissolved in LHC-8 complete growth media (Invitrogen, 

Grand Island, NY) at a concentration of 30 ng/ml. LHC media has been optimized for the growth 

of bronchial epithelial cells. 1.5 ml of the coating solution was added to a 25 cm2 tissue culture 

flask and incubated at 37oC, 5% CO2 for 24-48 hours. Coating media was removed prior to 

placing cells in the flask, and cells were maintained in LHC-8 with 5% fetal bovine serum (FBS, 

Atlanta Biologicals, Atlanta GA) at 37oC, 5% CO2 until confluent. Human embryonic kidney 
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(HEK) 293 cells were obtained from ATCC (Manassas, VA) and cultured in Dulbecco’s 

Modified Eagles Medium (DMEM) with 10% FBS at 37°C, 5% CO2. 

6.2.3 Nanoparticle preparation and characterization 

  PSA-TMC nanoparticles (NP) were prepared as previously described, and detailed in 

chapter four [156]. A Malvern Zetasizer NanoZS90 (Malvern Instruments, Malvern UK) was 

used to determine nanoparticle size, polydispersity (PDI), and zeta potential.  

6.2.4 Cytotoxicity of PSA-TMC towards IB3-1 cells 

PSA-TMC cytotoxicity was assessed using a CCK-8 cell counting kit (Dojindo Molecular 

Technologies, Rockville Md.). IB3-1 cells were plated on a 96 well tissue culture plate (5000 

cells/well) and allowed 24 hours for complete adherence. PSA-TMC was prepared as described 

above, resuspended in LHC-8 + 5% FBS media after centrifugation, sterile filtered, and added at 

concentrations ranging from 10 mg/ml to 0 mg/ml to IB3-1 cells in duplicate. After incubation at 

37°C for 24 hours, changes in cellular metabolic activity were determined following the 

manufacturer’s instructions. Briefly, 10 µl of reagent and 100 µl of media were added to each 

well; and, after incubating at 37°C for 90 minutes, colorimetric absorbance at 450 nm was 

quantified using a BioTek Synergy 2 multimode plate reader (BioTek Instruments, Winooski, 

VT).  

6.2.5 In vitro efficacy of ODN-coated PSA-TMC nanoparticles 

IB3-1 cells were plated on collagen coated 24 well plates at a density of 20,000 cells per 

well. LHC-8 media supplemented with 5% FBS was added to bring the volume per well to 500 

µl, and 24 hours were allowed for cellular adherence. Decoy and scrambled ODN-coated PSA-

TMC nanoparticles (NP-ODN and NP-SCO, respectively), as well as bare PSA-TMC 

nanoparticles (NP), were prepared as described in chapter four. Immediately following 
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centrifugation, NP-ODN, NP-SCO, and NP were resuspended in LHC-8 (without FBS) at a 

concentration of 1 mg/ml and filtered through a sterile 0.45 micron filter. As a positive control, 

Lipofectamine 2000-Decoy ODN complexes (Lipo-ODN) were prepared as directed by the 

manufacturer. In two separate microcentrifuge tubes, 2.5 µl of Lipofectamine 2000 reagent and 

500 ng decoy ODN were added to 50 µl of serum free media. After equilibrating for 5 minutes, 

the reagent media was added to the ODN media, and the resultant solution was incubated for 15 

minutes to allow for complex formation. 500 µl of the following treatment groups were added to 

the prepared 24 well plate in duplicate: 1. media alone, 2. ODN alone, 3. NP-ODN, 4. NP, 5. 

Lipo-ODN, and 6. NP-SCO. After 4 hours, the treated media was removed and replaced with 

fresh media containing 5% FBS to allow for normal growth conditions.  

24 hours after media replacement, cells were stimulated with IL-1β (2.5 ng/ml) or pLPS (10 

µg/ml) to induce inflammation. The concentration of IL-1β used correlates to the concentration 

that yielded a 50% increase in the secretion of prostaglandin E2 (PGE2) upon administration to 

IB3-1 cells. Similarly, LPS has been reported to increase levels of IL-6 and IL-8 when 

introduced at a concentration of 10 µg/ml [202]. After incubation at 37°C for 24 or 48 hours, the 

supernatant was collected and stored at -80°C degrees until analysis. DAPI nuclear staining was 

conducted immediately after sample collection to determine cell count for normalization. Briefly, 

DAPI dye (5 mg/ml stock concentration) was diluted to 0.5 µg/ml with 1X PBS and 250 µl were 

added to each well. After 1 minute, the dye was removed and the cells were rinsed 3 times with 

PBS. Imaging was performed using an inverted fluorescence microscope (Leica Microsystems, 

IL, USA). Three representative images were obtained from each well. Each image was counted, 

and a mean cell number (MCN) was generated for each condition. Total cell number (TCN) was 

determined using the following equation: 
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                                              𝑇𝐶𝑁 = 𝑀𝐶𝑁 ∗ (
𝐴𝑤𝑒𝑙𝑙

𝐴𝑖𝑚𝑎𝑔𝑒
)                                                  (5) 

where Awell is the total area of the well, and Aimage  is the area of the image obtained by 

microscopy. 

6.2.6 Quantitative analysis of inflammatory cytokines  

IL-6 and IL-8 ELISA kits were purchased from Peprotech (Rocky Hill, NJ) and run 

according to manufacturer’s instructions to determine the levels of IL-6 and IL-8 in the collected 

supernatant. Samples were run in duplicate, and each experiment was repeated independently 

three times.  

6.2.7 Cellular response to TMC and PSA 

Based upon a recent literature report, TMC can have an anti-inflammatory impact on cells 

stimulated by LPS [210]. Therefore, 500 µl of TMC and PSA in LHC-media (without FBS) at 

concentrations of 1 mg/ml were added to IB3-1 cells cultured in a 24 well plate in duplicate. 

After 4 hours, the treated media was removed and replaced with fresh media containing 5% FBS 

to allow for normal growth conditions. 24 hours after media replacement, cells were stimulated 

with pLPS (10 µg/ml) to induce inflammation. After incubation at 37°C for 24 or 48 hours, the 

supernatant was collected and stored at -80°C degrees until analysis. DAPI nuclear staining was 

conducted immediately after sample collection to determine cell count for normalization, as 

described in Section 2.6. IL-6 ELISA (Section 2.7) was used to quantify the amount of IL-6 

within the collected supernatant. The experiment was repeated independently three times.   

6.2.8 Luciferase reporter assay 

HEK 293 cells were transfected with a pMetLuc Reporter Vector, part of a Ready-To-Glow 

Secreted Luciferase Reporter System acquired from Clontech (Mountain View, CA). For each 

transfection, 0.5 µg of the NF-κB dependent pMetLuc reporter, which leads to the production 
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and secretion of luciferase protein in response to NF-ƘB activation, or 0.5 µg of a control vector 

were prepared in Lipofectamine LTX reagent (Invitrogen, Grand Island, NY) according to the 

manufacturer’s instructions. After incubation with the reporter complexes for 4 hours, cells were 

treated with ODN-coated nanoparticles and controls, as described in Section 2.6 (media alone, 

ODN alone, NP-ODN, NP, Lipo-ODN and NP-SCO). Following incubation for an additional 4 

hours, the treatment media was replaced with DMEM supplemented with 10% FBS. 24 hours 

after media replacement, cells were stimulated with IL-1β (2.5 ng/ml) to induce inflammation. 

Supernatant samples were collected at 24 hours and assayed for luciferase activity using the 

luminescence assay included in the Clontech kit. Luciferase activity was normalized to the 

control vector, and each experiment was repeated independently 3 times. 

6.2.9  Cellular immunostaining 

Immunofluorescent staining of the NF-B subunit was used to qualitatively verify that the 

ODN-coated nanoparticles blocked nuclear translocation of NF-B following stimulation of IB3-

1 cells. The staining protocol was optimized based upon prior work by Nadjar et al [211].   100,000 

cells were plated onto collagen-coated confocal dishes (MatTeck Corporation, Ashland, MA) and 

allowed to adhere overnight. ODN-coated PSA-TMC nanoparticles were prepared as described 

above and added to a confocal dish at a concentration of 1 mg/ml. As controls, confocal dishes 

were prepared that contained either media or ODN (500 ng/ml) alone. After 4 hours, ODN and 

ODN-coated PSA-TMC nanoparticles were removed and replaced with LHC-8 media with 5% 

FBS. 24 hours later, the cells were stimulated with IL-1β at a concentration of 2.5 ng/ml to induce 

inflammation. After 48 hours, the cells were fixed in a 4% paraformaldehyde solution for 15 

minutes.  Subsequently, the cells were permeabilized with a 1.0% Tritonx-100 for 10 minutes after 

rinsing 2-3 times with 1X PBS.  After again rinsing with 1X PBS 2-3 times, a 3% BSA blocking 
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solution was added to the cells for 30 minutes to prevent nonspecific binding. Following an 

additional 2-3 rinses with 1X PBS, NF-kB (P65) NLS polyclonal antibody (primary) was added at 

a concentration of 2 µg/ml, and the cells were incubated overnight at 4oC.  The primary antibody 

was removed, and the cells were rinsed 4 times in 1x PBS.  FITC-Goat anti-rabbit IgG (secondary) 

was added at a concentration of 2 µg/ml and incubated for 2 hours at room temperature.  Secondary 

antibody was removed, and the cells were rinsed 4 times in 1x PBS. TO-PRO-3 nuclear stain 

(Invitrogen, Grand Island, NY) was added at a concentration of 5 μl/ml and incubated for 45 

minutes. Cells were rinsed and imaged with a Nikon Eclipse Ti inverted microscope. 

6.2.10  Statistical analysis 

Protein levels were normalized to cell number and expressed relative to the untreated, 

stimulated control group. Luciferase activity was normalized to the control vector. Data is 

presented as mean ± standard deviation for all groups (N=3). To compare protein secretion and 

luciferase activity following different treatments and IL-1β or LPS stimulation, one-way 

ANOVA, followed by a Holm-Sidak test for multiple comparisons [212, 213], was performed. 

The Student’s t-test was used to compare the sizes, zeta potentials, and PDI of ODN-coated 

nanoparticles to those of bare nanoparticles. The latter test was also used to compare IL-6 

secretion of cells treated with PSA or TMC and stimulated with LPS to untreated, LPS-

stimulated cells. All statistical tests were conducted with a significance level (alpha) of 0.05.  

6.3 Results  

6.3.1 In vitro anti-inflammatory efficacy 

Prior to testing of in vitro efficacy, the cytotoxicity of the PSA-TMC nanoparticles towards IB3-

1 cells was established (Fig. 21). As anticipated based upon prior testing with the  MH7A and 

SW-982 cell lines [145, 156], no changes in cellular proliferation were observed for IB3-1 cells 
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with addition of PSA-TMC concentrations up to 10 mg/ml [156]. Therefore, bare nanoparticles 

administered at a concentration of 1 mg/ml for in vitro testing (1 mg/ml) were expected to yield a 

minimal change in cellular inflammatory response.  

Fig 21: In vitro cytotoxicity of PSA-TMC toward IB3-1 cells. The particles were observed to 

be non-toxic up to the highest tested concentration, 10 mg.  



90 

 

IL-6 and IL-8 secretion levels were first examined in response to stimulation with IL-1β, a 

pro-inflammatory mediator secreted by mammalian cells. As shown in Fig. 22B, the ODN-

coated nanoparticles evoked a significant decrease in IL-8 secretion at 48 hours relative to 

stimulated control cells. Although not significant, a similar decrease was observed at 24 hours 

(Fig. 22A). As expected, ODN alone, bare nanoparticles, and nanoparticles coated with SCO did 

not result in any changes in IL-8 levels. At first glance, ODN delivered using Lipofectamine 

2000, a commercially available and commonly used transfection reagent, also appears to 

effectively lower IL-8 expression at 24 and 48 hours. However, Lipofectamine 2000 was highly 

cytotoxic to the IB3-1 cells, resulting in significant cell death and consequently lower levels of 

cytokine production due to low cell number. Additionally, cell counting for normalization was 

Fig. 22. ELISA was performed to determine levels of IL-8 secretion after treatment with bare 

nanoparticles (NP), ODN alone (ODN), NF-κB decoy ODN-coated nanoparticles (NP-ODN), 

scrambled ODN-coated nanoparticles (NP-SCO), or ODN complexed with Lipofectamine 

2000 (Lipo-ODN) and stimulation with IL-1β at 24 (A) and 48 (B) hours.  Results are 

normalized to cell number and expressed as fold changes of IL-8 levels relative to a non-

treated control, indicated by a solid line at 1. All data is presented as mean + SD (N=3).  One 

way ANOVA followed by a Holm-Sidak test for multiple comparisons was used to assess the 

impact of treatment on protein secretion. * indicates a significant difference (p < 0.05) 

between the treatment and the non-treated control. 
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difficult for this condition due to a general lack of cells.  Live-dead staining was used to further 

demonstrate the cell death that resulted from exposure to Lipofectamine 2000, and shown in Fig. 

23.  

Fig. 23. Live-dead staining was used to verify that Lipofectamine induced cell 

death in IB3-1 cells. As expected, ODN did not result in a change in cellular 

viability. (Scale bar = 200 µm) 
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IL-6 is a potent cytokine involved in general up-regulation of inflammation, whose 

production, like that of IL-8, is known to be enhanced through an IL-1β mediated increase in NF-

κB signaling [214]. Fig. 24 illustrates the response of IB3-1 cells to stimulation with IL-1β 

following ODN delivery treatments. Consistent with the observations for IL-8, the ODN-coated 

nanoparticles appeared to lower IL-6 vales compared to the untreated control at 24 (Fig. 24A) 

and 48 hours (Fig. 24B), with a slightly lower mean value at 48 hours than at 24. Likewise, ODN 

alone, bare nanoparticles, and SCO-coated nanoparticles did not result in a change in IL-6 

secretion.  

Fig. 24. ELISA was performed to determine levels of IL-6 secretion after treatment with 

bare nanoparticles (NP), ODN alone (ODN), NF- -coated nanoparticles 

(NP-ODN), scrambled ODN-coated nanoparticles (NP-SCO), or ODN complexed with 

Lipofectamine 2000 (Lipo-ODN) and stimulation with IL-1β for 24 (A) and 48 (B) hours.  

Results are normalized to cell number and expressed as fold changes of IL-6 levels relative 

to a non-treated control, indicated by a solid line at 1. All data is presented as mean ± SD 

(N=3).  One way ANOVA followed by a Holm-Sidak test for multiple comparisons was 

used to assess the impact of treatment on protein secretion. 
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IL-6 and IL-8 secretion were also investigated in response to stimulation with LPS isolated from 

P. aeruginosa, i.e. a pro-inflammatory mediator released by bacteria cells. LPS is a known 

activator of the NF-κB pathway via the toll-like receptor-4 (TLR-4) [215]. IL-8 secretion in 

response to LPS stimulation is shown in Fig 25. Similar to IL-8 levels in response to IL-1β, 

ODN-coated nanoparticles resulted in significantly lower levels of IL-8 at 48 hours (Fig. 25B). 

At 24 hours, a decrease in IL-8 when treated with ODN-coated nanoparticles was shown, 

although the difference was not significant (Fig. 25A). Furthermore, ODN alone, bare 

nanoparticles, and nanoparticles coated with SCO did not result in any significant changes in IL-

8 levels at either time point.  

Fig. 25. ELISA was performed to determine the level of IL-8 secretion after treatment 

with bare nanoparticles (NP), ODN alone (ODN), NF-κB decoy ODN-coated 

nanoparticles (NP-ODN), scrambled ODN-coated nanoparticles (NP-SCO), or ODN 

complexed with Lipofectamine 2000 (Lipo-ODN) and stimulation with pLPS for 24 (A) 

and 48 (B) hours.  Results are normalized to cell number and expressed as fold changes 

relative to a non-treated control, indicated by a solid line at 1. All data is presented as 

mean ± SD (N=3). One way ANOVA followed by a Holm-Sidak test for multiple 

comparisons was used to assess the impact of treatment on protein secretion. * indicates a 

significant difference (p < 0.05) between the treatment and the non-treated control.   
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For LPS induced IL-6 secretion, at 24 hours (Fig. 26A), ODN-coated nanoparticles resulted 

in a non-significant decrease in IL-6, similar to what was observed for stimulation via IL-1β. 

However, bare nanoparticles and nanoparticles coated with SCO also resulted in IL-6 decreases, 

Fig. 26 ELISA was performed to determine the level of IL-6 secretion after treatment with bare 

nanoparticles (NP), ODN alone (ODN), NF-κB decoy ODN-coated nanoparticles (NP-ODN), 

scrambled ODN-coated nanoparticles (NP-SCO), or ODN complexed with Lipofectamine 2000 

(Lipo-ODN) and stimulation with pLPS for 24 (A) and 48 (B) hours.  Results are normalized to 

cell number and expressed as fold changes relative to a non-treated control, indicated by a solid 

line at 1. All data is presented as mean ± SD (N=3). One way ANOVA followed by a Holm-

Sidak test for multiple comparisons was used to assess the impact of treatment on protein 

secretion. * indicates a significant difference (p < 0.05) between the treatment and the non-

treated control.   

Fig. 27. ELISA was performed to 

determine the level of IL-6 

secretion following treatment with 

the nanoparticle components, PSA 

and TMC, and stimulation with 

pLPS for 24 and 48 hours. Results 

are normalized to cell number and 

expressed as fold changes relative 

to a non-treated control, indicated 

by the solid line at 1.  
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although the change was not significant. Free ODN alone again did not yield a change in IL-6 

secretion. Similarly, at 48 hours (Fig. 26B), ODN-coated nanoparticles, as well as bare 

nanoparticles, resulted in significantly lower levels of IL-6 secretion than the untreated control. 

SCO coated nanoparticles resulted in slightly lower IL-6 levels as well, while ODN alone did not 

effect a change. To further investigate the significant reduction in IL-6 secretion observed at 48 

hours for the bare nanoparticles, LPS induced secretion of IL-6 was also assessed following 

treatment with TMC and PSA alone. As shown in Fig. 27, PSA alone did not result in a 

significant change in 

IL-6 secretion at 24 

or 48 hours; 

however, TMC alone 

resulted in 

significantly lower 

IL-6 levels at 48 

hours.    

    

6.3.2 Luciferase 

reporter assay 

The impact of the 

ODN-coated 

nanoparticles on NF-

κB dependent gene 

expression was 

Fig. 28: A luciferase reporter assay was used to examine the effect of 

the decoy ODN-coated nanoparticles on NF-κB dependent gene 

expression. HEK 293 cells were transfected with luciferase reporter 

plasmid, treated with the NF-κB decoy ODN-coated nanoparticles or 

controls, and stimulated with IL-1β (2.5 ng/ml). All data is presented 

as mean ± SD (N=3). One way ANOVA followed by a Holm-Sidak 

test for multiple comparisons was used to assess the impact of 

treatment on luciferase activity. * indicates a significant difference (p 

< 0.05) between the treatment and the non-treated control.   
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further examined using a luciferase reporter assay, whereby induction of NF-κB dependent genes 

results in the secretion of a reporter molecule into the supernatant. The HEK 293 cell line was 

used in lieu of the IB3-1 cell line based upon ease of transfection. As shown in Fig. 28, NF-κB 

decoy ODN-coated nanoparticles resulted in a significant reduction in the expression of NF-κB 

dependent genes, as indicated by a decrease in luciferase activity. In contrast, ODN alone, bare 

nanoparticles, and nanoparticles coated with SCO did not result in significant changes in the 

expression of NF-κB dependent genes. Luciferase activity for cells treated with Lipo-ODN could 

not be determined due to a lack of viable cells.  

6.3.3  Cellular immuno-staining 

Fluorescence microscopy was used to add credence to the notion that NF-B decoy 

ODN-coated nanoparticles trap NF-kB within the cytoplasm, 

thereby reducing nuclear translocation and subsequent proinflammatory signaling. IL-1 

stimulated cells were fixed and labelled with anti-NF-B p65 antibody following treatment with 

Fig. 29: Intracellular 

distribution of the NF-κB 

p65 subunit after 

treatment of IL-1β 

stimulated cells with 

ODN and NP-ODN. 

Cells were fixed and 

labelled with anti-NF-kB 

p65 antibody and nuclei 

were counterstained with 

TO-PRO-3. Treatment 

with ODN alone did not 

alter distribution of NF-

κB relative to the control, 

while NP-ODN 

sequestered much of the 

NF-κB in the cytoplasm. 
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ODN alone or ODN-based nanoparticles (Fig. 29).  Counterstaining with TO-PRO-3 nuclear dye 

allowed for enhanced distinction between cytoplasmic and nuclear NF-kB. As anticipated, ODN-

coated nanoparticles trapped NF-kB within the cytoplasm relative to untreated, stimulated cells, 

while administration of ODN alone did not lead to a distinguishable difference from the control.  

6.4 Discussion 

A limiting factor in the advancement of oligonucleotide applications in cellular 

environments is a general inability of the negatively charged nucleic acids to interact with and 

penetrate the negatively charged lipid bilayer membranes. As a way of circumventing this 

problem, a number of positively charged transfection reagents are commercially available. 

Although these reagents have been somewhat successful, many cationic transfection reagents are 

notorious for being cytotoxic, and their efficacy is highly variable based on cell type. For 

example, Lipofectamine 2000 yields an overall decrease in cellular protein content at the dose 

required for optimal transfection efficiency, indicating high cytotoxicity [216]. Additionally, 

strong uptake of Lipofectamine-based lipoplexes by the RES occurs in vivo [217]. As discussed 

within the Introduction, the positive zeta potential of the PSA-TMC nanoparticles imparted by 

the quaternized chitosan is expected to facilitate nucleic acid binding, as well as membrane 

adhesion and penetration, thereby achieving delivery of associated ODNs into the cell. The 

presence of PSA in the nanoparticles is presumed to reduce protein interactions and limit 

interactions with the RES [135-137]. Thus, PSA offers a natural, biodegradable, non-

immunogenic alternative to PEG for extending circulatory stability.  

Bioactivity of the NF-κB decoy ODN-coated PSA-TMC nanoparticles was established by 

assessing changes in the secretion of two proinflammatory mediators, IL-6 and IL-8, associated 

with the NF-κB pathway by activated IB3-1 cells. Under normal conditions, NF-κB transcription 
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factor is located in the cytoplasm, bound to IκB inhibitor. However, stimulation with various 

pro-inflammatory factors, including IL-1β and LPS, as used in the current study, leads to 

activation of a kinase responsible for phosphorylating IκB, causing dissociation and inactivation 

[218, 219]. Without sequestration by IκB in the cytoplasm, NF-κB is free to translocate to the 

nucleus, and transcription of various proteins, including IL-6 and IL-8, is initiated. A 

transcription factor decoy ODN introduced to the cytoplasm will intercept NF-κB, thereby 

preventing translocation to the nucleus and mitigating expression of genes linked to additional 

proinflammatory mediators (Fig. 21). 

  Using IB3-1 cells, IL-1β activation of NF-κB has been shown to be a major contributing 

factor to elevated IL-8 levels in the CF lung epithelium [220]. Nanoparticles coated with ODN 

effectively lowered IL-8 secretion levels in response to stimulation with IL-1β in this study. Of 

note, the PSA-TMC nanoparticles did not exhibit cellular toxicity, as indicated by a cellular 

proliferation assay and consistent with data obtained from other cell types [145, 156]. In contrast, 

Lipofectamine 2000 was associated with significant cellular toxicity, a highly undesirable 

characteristic when delivering anti-inflammatory therapeutics. The toxicity observed in this 

study is not limited to the IB3-1 cell type  [216]. While ODN-coated nanoparticles decreased IL-

6 secretion in the presence of IL-1β stimulation, the decrease was not great enough to be 

considered significant. A lack of significance here is likely attributable to IL-6 levels that were 

near the limit of detection, which resulted in higher variability. ODN delivery with 

Lipofectamine 2000 appeared to effectively lower IL-6 levels similar to IL-8 secretion. However, 

once again, the cytotoxicity of the transfection reagent resulted in high amounts of cell death, 

decreasing the number of cells available to produce and secrete IL-6. 
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When stimulated with LPS, both IL-8 and IL-6 secretion levels were reduced at 48 hours 

when treated with ODN coated nanoparticles. Interestingly, bare PSA-TMC nanoparticles appear 

to have an anti-inflammatory effect on the IB3-1 cells, significantly reducing levels of IL-6 

secreted at 48 hours, with a similar trend seen at 24 hours. These collective results suggest that, 

in the presence of LPS, the nanoparticles have an anti-inflammatory effect on IB3-1 cells that is 

independent of the NF-κB decoy ODN. Recently, several reports have indicated that chitosan 

and quaternized chitosan can interact with and modulate the inflammatory effects of LPS in a 

variety of cell types, however the exact mechanism of this effect is not yet known [221-223]. For 

example, Ji et al. reported suppression of inflammation by chitosan via modulation of cytokines 

locally produced in periodontal ligament cells [222]. The potential for quaternized chitosan to 

modulate inflammation was further validated by the present study.  

A luciferase reporter assay was used to demonstrate that the NF-κB decoy ODN 

nanoparticles directly interfered with the NF-κB signaling pathway. As anticipated, the assay 

verified that the NF-κB decoy reduced expression of NF-κB dependent genes. The results 

obtained from the reporter assay are consistent with previous investigators who have used either 

electrophoretic mobility shift assay or other luciferase reporter assays to demonstrate the 

bioactivity of the NF-κB decoy when used in conjunction with a carrier system [206, 224-226].  

6.5 Conclusion and future work 

In general, the results obtained in the current study suggest that NF-κB decoy ODN-coated 

nanoparticles can effectively mitigate the inflammatory response for sustained periods of time 

with minimal cytotoxicity. When applied to an in vitro model of CF based on IL-1β or LPS 

activated CF epithelial cells, ODN-coated nanoparticles were able to reduce IL-6 and IL-8 

secretion at 48 hours. Although most investigators have only observed decoy ODN effects over a 
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short time period [4, 204], the results obtained here are consistent with a recent study 

demonstrating a sustained suppression of inflammation by NF-κB decoy ODN-loaded PLGA 

nanoparticles [202]. Moving forward, the IB3-1 cells will be exposed to P. aeruginosa after 

treatment with the ODN-coated nanoparticles to obtain a more comprehensive understanding of 

the anti-inflammatory activity. Furthermore, in vivo testing is required to verify that the PSA-

TMC nanoparticles are a safe, effective means of delivering nucleic acid based therapeutics to 

patients afflicted with CF.    
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7.  Modulation of the immune response of Pseudomonas 

aeruginosa infected IB3-1 lung epithelial cells using NF-κB 

decoy ODN coated polysaccharide based nanoparticles 

Abstract 

The work reported in chapter six shows encouraging data supporting the efficacy of using PSA-

TMC as a carrier system for a decoy ODN aimed at reducing airway inflammation in CF. However, 

in reality, the CF airway is an extremely complicated environment, with signaling cross-talk 

between epithelial cells and infectious pathogens, such as Pseudomonas aeruginosa, one of the 

most difficult to treat infections associated with CF. Thus, to increase the accuracy of the in vitro 

model and build a stronger case for the use of PSA-TMC-ODN as a potential CF treatment, a 

bacterial/mammalian co-culture was successfully developed. Upon method development for co-

culture creation, the model was used to conduct similar efficacy experiments as described in the 

previous chapter. However, unlike the previous chapter, an in depth analysis of inflammatory 

cytokine gene expression as well as protein secretion is reported and discussed in this chapter, also 

using slightly different time points than previously investigated. In general, in a more complex, 

physiologically relevant model and early infection time points of one and four hours, PSA-TMC-

ODN significantly reduced IL-6 and IL-8 protein secretion, while ODN administered alone only 

led to non-significant decreases. This data, combined with previous studies provides a strong 

foundation for the use of PSA-TMC-ODN as a CF treatment, and provides a transition study from 

initial in vitro efficacy testing toward the next step, in vivo safety and efficacy testing.  
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7.1 Introduction 

 Cystic fibrosis (CF) is an inherited, autosomal recessive disorder hallmarked by a 

mutation in the gene encoding the cystic fibrosis transmembrane conductance regulatory protein 

(CFTR). The CFTR protein is involved in regulating chloride ion transport in epithelial 

membranes[227]. The defective protein affects many organs through production and buildup of 

heavy mucus; however, chronic lung disease as a response to chronic infection and inflammation 

presents the greatest risk of morbidity [195, 196]. In CF patients, chronic lung infections of 

opportunistic pathogens, including Pseudomonas aeruginosa, are a major contribution to 

increased morbidity and mortality. P. aeruginosa infections are difficult to treat, as this pathogen 

is associated with resistance to many antibiotic treatments, attributed in part to the ability of this 

organism to form biofilms, supplementing the viscous mucus already produced by the host [227].  

Currently, conflicting reports exist as to whether infection causes inflammation, or innate 

inflammation increases the opportunity for infection, as detailed in a recent review by Dhooghe 

[228]. Regardless of the cause, excessive inflammation in CF is an undisputed aspect of 

pathology, with chronic bacterial infection being the leading cause of a perpetuated 

inflammatory response. Typically, an increased immune response would serve to eradicate an 

infection; however, in the CF lung, the initial immune response is not adequate, resulting in a 

chronic inflammation response [228]. Persistent inflammation leads to tissue damage, 

complicating treatment and contributing to increased morbidity and mortality rates.  

 Transcription factor nuclear factor kappa B (NF-κB) is known to play a major role in a 

variety of cellular processes, including regulation of the immune response. NF-κB is known to 

transcriptionally regulate the production of a variety of inflammatory mediators, including 

interleukin-8 (IL-8), interleukin-6 (IL-6), and granulocyte-macrophage colony stimulating factor 
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(GMCSF), cytokines directly involved in the immune response in CF [197, 229]. IL-6 stimulates 

B cells, leading to increased antibody production, while IL-8 recruits neutrophils to the infected 

area [198-200]. GMCSF is a pleiotropic cytokine involved in activating granulocytes and 

monocytes, increasing the immune cell presence and enhancing cytokine production [230]. 

Interaction of P. aeruginosa components with host cells, particularly through binding of toll like 

receptor four (TLR-4), leads to activation of the NF-kB pathway and subsequent up-regulation of 

pro-inflammatory proteins [231]. Fig. 30 illustrates the complex signaling and physical 

interactions of P. aeruginosa and the CF lung epithelium. 

Fig. 30 -Image portraying the complexities of signaling between bacterial and 

mammalian cells. Specifically, we are interested in the p50/p65 complex of NF-κB. 
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 NF-κB transcription factor decoys (ODNs) have been proposed previously as a means to 

limit NF-κB activation in CF lung epithelia [203]. While several reports have shown promising 

in vitro and in vivo studies, limited clinical success has been seen when translating ODN 

therapeutics to clinical applications [4, 204-207]. ODN based therapeutics have two major 

drawbacks: (1) a negative charge that limits cellular penetrability and (2) an extreme 

susceptibility to enzymatic degradation in physiological environments [119]. To improve 

delivery and increase stability, a variety of methods have been proposed and tested. Viral vectors 

have been considered the gold standard for DNA delivery, however, these delivery vehicles are 

often associated with toxicity when administered repeatedly [100, 101]. Non-viral delivery 

systems, including lipoplexes, polyplexes, and hybrid lipid-polymer systems have been 

developed as alternatives [232]. However, these systems all have difficulty evading the RES 

system, and lipid based reagents especially have tendency to accumulate in the liver, leading to 

payload degradation and reduced efficacy [104, 232].  

 Zhang et. al reported a nanoparticle system based on complexation of polysialic acid 

(PSA) with N-trimethyl chitosan (TMC) as a means of drug delivery for treating rheumatoid 

arthritis [145, 149]. PSA and TMC are polysaccharides, attractive choices for drug delivery 

applications due to inherent biodegradability, non-toxicity, and ease of modification [6]. PSA 

acts similarly to PEG and was pioneered as a drug delivery material by Gregoradis et. al,  who 

developed drug-PSA conjugates with extended circulation times. However, unlike PEG, PSA has 

no known receptors in the body and does not induce an immune response.  

 Chitosan is a material commonly used in DNA-polymer polyplex formation, and has 

been the subject of several comprehensive review articles [140, 233]. However, the positive 

surface charge of these polyplexes leads to rapid detection and elimination. Incorporating PSA 
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with a quaternized derivative of chitosan is expected to help evade RES detection, while 

maintaining the positive surface charge required for electrostatic association with ODN.   

We have adapted the PSA-TMC nanoparticle system to be used as a carrier for small 

oligonucleotides. Previously, we demonstrated the anti-inflammatory efficacy of decoy ODN’s 

delivered via PSA-TMC in a CF in vitro model in which soluble inflammatory mediators were 

used to induce inflammation [174]. In this study, we develop a mammalian-bacterial co-culture 

model, using human CF airway epithelial cells, and P. aeruginosa bacteria to model the 

pathology of the CF lung. In this complex CF in vitro model, we further demonstrate the ability 

of NF-κB decoy ODN coated PSA-TMC nanoparticles to reduce inflammatory gene expression 

and inflammatory protein secretion.  

7.2 Materials and Methods 

7.2.1 Materials 

 Polysialic acid (Coliminic acid, PSA) was obtained from Nacalai, USA, Inc. (San Diego, 

CA, USA). N-trimethyl chitosan TMC was produced via quaternization of chitosan (MW 100 

kDa- 300 kDa) purchased from Acros Organics (New Jersey, USA), as described previously by 

Sieval et al [163]. Sodium tripolyphosphate (TPP) was also obtained from Acros Organics (New 

Jersey, USA).  Pseudomonas aeruginosa bacteria (PA01 strain) was provided by the lab of Dr. 

Christopher Nomura (SUNY ESF, Syracuse, NY). A live/dead cell viability staining kit was 

purchased from Life Technologies (Grand Island, NY). An NF-κB decoy oligonucleotide (ODN) 

kit containing NF-κB decoy ODN (5’ CCT TGA AGG GAT TCC CTT CC 3’) and a scrambled 

ODN (5’ TTG CCG TAC CTG ACT TAG CC 3’) was purchased from CosmoBio (Tokyo, 

Japan). A QuantiGene mRNA expression level kit was purchased from Affymetrix (Santa Clara, 

CA) and ELISA kits were obtained from Peprotech (Rocky Hill, NJ). 
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7.2.3 Mammalian cell culture 

 The IB3-1 cell line consists cystic fibrosis lung epithelial cells, containing the CFTR 

mutation. IB3-1 cells were obtained from the GCFR at Johns Hopkins University. Cells were 

maintained in tissue culture treated flasks coated with collagen in LHC-8 media containing 5% 

FBS until confluent. Cells were grown in an incubator maintained at 37 °C and 5% CO2. 

7.2.4 Bacterial cell culture 

 Pseudomonas aeruginosa (PA01) strain was grown on LB media agar plates at 37°C for 

24 hours. At this time, 2-3 colonies were picked from the plate and grown for 24 hours in LHC-8 

media without gentamicin at 37°C with shaking at 200 RPM. Serial dilution plating was 

performed to determine bacterial concentration in CFU/mL after 24 hours of growth. 

7.2.5 Bacterial/mammalian co-culture development 

 IB3-1 cells were grown on collagen coated tissue culture plates in LHC-8 media with 5% 

FBS until confluent. To initiate a co-culture, IB3-1 cells were inoculated with PA01 at a 

concentration of approximately 105 CFU/ml in LHC-8 media without gentamicin or FBS. The 

co-culture was incubated for 1 hour at 37°C with 5% CO2. After 1 hour, the supernatant was 

removed and replaced with LHC-8 media without gentamicin, or LHC-8 media without 

gentamicin with 0.4% arginine and incubation continued for one or four hours. Arginine has 

been shown to facilitate bacterial adhesion while maintaining mammalian cell health [234]. At 

the indicated time points, live/dead staining was performed to assess mammalian cell health. 

7.2.6 Nanoparticle preparation and characterization 

 PSA-TMC nanoparticles (NP) coated with ODN (NP-ODN) were prepared as previously 

reported, detailed in chapter four. [145, 149, 174]. The supernatant was removed, and all 
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nanoparticles were resuspended in LHC-8 media to a concentration of 1 mg/ml prior to efficacy 

testing. 

 A Malvern Zetasizer NanoZS90 (Malvern Instruments, Malvern UK) was used to 

determine size, zeta potential, and polydispersity index of the nanoparticles. Samples were 

resuspended in 2.0 ml DI water, filtered through at 0.45 micron filter, and loaded into disposable 

cuvettes or capillary cells. All measurements were performed at 25°C. 

7.2.7  In vitro efficacy 

 IB3-1 cells were plated on collagen coated 24 well plates at a density of 50,000 cells per 

well. LHC-8 media containing 5% FBS was used to bring the well volume to 500 µl, and the 

cells were incubated for two days to allow generation of a confluent monolayer. Bare PSA-TMC 

nanoparticles (NP), ODN, and SCO coated nanoparticles (NPODN and NPSCO, respectively) 

were prepared as described in section 2.5. NP formulations were resuspended in LHC-8 media 

without FBS at a concentration of 1 mg/ml after centrifugation, and filtered through a 0.45 µm 

pore size filter. Lipofectamine 2000-ODN complexes were prepared according to manufacturer 

instructions. Briefly, 2.5µL Lipofectamine 2000 reagent and 500 ng decoy ODN were added to 

50 µL serum free LHC-8 media. After equilibration for 5 minutes, the components were then 

added together and incubated 15 minutes to allow for complex formation (Lipo-ODN). 500 µL 

of each of the following complexes were added to the prepared 24 well plates in duplicate: 1. 

Media alone, 2. ODN alone, 3. NPODN, 4. NP alone, 5. Lipo-ODN, 6. NPSCO, and 7. Media 

alone (unstimulated). Complexes were incubated with the cells for four hours/ After incubation, 

all complexes were removed, and replaced LHC-8 with media containing 5% FBS. 

 24 hours after initial treatment addition, a static co-culture was initiated. As described in 

section 7.2.4, PA01 bacteria was added to all wells except those corresponding to treatment 7 at 
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a concentration of 105 CFU/mL in gentamicin free LHC-8 media. After one hour incubation, 

supernatant was removed and immediately replaced with gentamicin free LHC-8 with 0.4% 

arginine. After incubation at 37°C, 5% CO2 for 1 or 4 hours, supernatant samples were collected 

and saved. Upon supernatant removal, as directed by manufacturer instructions, 500 µL of LHC-

8 media and 250 µL QuantiGene working lysis mixture was added to each well. The volume was 

mixed by pipetting up and down 10 times, and cells were incubated for 30 minutes at 55°C per 

manufacturer instructions to complete cell lysis. Upon completion of incubation, cell lysates 

were placed into microcentrifuge tubes and stored at -80°C.  

7.2.8 Quantitative analysis of inflammatory cytokine expression and secretion 

 A QuantiGene Plex 2.0 plex reagent system was used to amplify and quantify mRNA 

expression levels of GMCSF, IL-6, and IL-8. The kit was run on the Luminex 200 system, and 

all steps were carried out according to manufacturer instructions. Briefly, the reagent system 

employed the use of beads with varying degrees of fluorescence intensity, each different 

intensity representing a different analyte. The beads were coated with capture probes and 

hybridization extenders. mRNA is amplified, and labeled with a probe that binds streptavidin-

phycoerythrin (SAPE). The Luminex 200 system was then used to separate the different bead 

intensities, and quantify the amount of SAPE fluorescence associated with each bead. The SAPE 

fluorescence intensity allows for quantification of mRNA levels. Here, we looked a 5 different 

analytes, including cytokine IL-6, chemokine IL-8, and growth factor GMCSF, as well as two 

housekeeping genes, PPIB and ACTB. The housekeeping genes were used to normalized levels 

of IL-6, IL-8, and GMCSF in each sample. Samples were run in duplicate, and each experiment 

was repeated independently three times.   
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 IL-6, IL-8, and GMCSF ELISA kits were purchased from Peprotech (Rocky Hill, NJ) and 

run according to manufacturer’s instructions to quantify levels of the respective proteins in 

collected supernatant. Samples were run in duplicate, and each experiment was repeated 

independently three times. 

7.2.9 Statistical analysis 

 Protein and mRNA levels were expressed as fold changes relative to a control. The 

control was composed of pooled values to increase variance of the “divide by” control. Data are 

presented as mean ± standard deviation. To determine effect of exposure of IB31 cells to PA01 

bacteria, Students T test was used to compare inflammatory protein mRNA expression between 

groups treated with bacteria, and groups without exposure to PA01.  We have shown previously, 

unloaded NP and NP coated with a scrambled ODN sequence to not have a significant impact on 

inflammatory protein suppression[174]. To confirm, Student’s t test was performed between the 

NP and control, and NPSCO and control groups. NP and NPSCO were then combined with the 

control group to create the pooled control. Likewise, as we have shown Lipo-ODN induces 

cytotoxicity on this cell line, we elected not to include this group in statistical analysis. 

Therefore, groups of interest became the pooled control, ODN alone, and NPODN. One way 

ANOVA, followed by a Holm-Sidak test for multiple comparisons was performed to determine 

significance. All statistical testing was performed with an alpha value of 0.05. 

7.3 Results and Discussion 

7.3.1 Co-culture development 
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  A bacterial/mammalian co-culture model consisting of IB3-1 and PA01 was 

successfully generated, based on an adapted procedure reported initially by Anderson et. al 

[234].  An initial screening of a PA01 bacterial dilution series ranging from 106 CFU/mL to 102 

CFU/mL was performed. Live/dead staining showed IB3-1 cell health and the amount of bacteria 

adherence were not concentration dependent. Therefore, a bacterial concentration of 105 

CFU/mL was chosen for all subsequent co-culture testing. The impact of arginine on mammalian 

cell viability in the presence of bacteria was assessed by inoculating IB3-1 cells with PA01 for 1 

Fig. 31- After incubation with PA01 bacteria for one hour, live/dead staining was used to 

assess viability of IB3-1 cells. A, IB3-1 cells alone, -Arg, B., IB3-1 cells with PA01, - Arg, 

C., IB3-1 cells alone +Arg, D. IB3-1 cells with PA01 + Arg. 



111 

 

hour (Fig. 31) or 4 hours (Fig. 32) in gentamicin free LHC-8 media with or without 0.4% 

arginine. Arginine has been previously reported to facilitate bacterial attachment while 

maintaining mammalian cell health[234]. At one hour, the addition of arginine did not appear to 

have an effect on cell health, (Fig. 31); however, as shown in Fig. 32, the impact of arginine at 4 

hours was apparent. PAO1 exposure without arginine supplementation enhanced mammalian cell 

death and increased the characteristics associated dying cells, such as rounding.  

7.3.2 PA01 induction of cytokine expression in IB3-1 

Fig. 32- After incubation with PA01 bacteria for four hours, live/dead staining was used to 

assess viability of IB3-1 cells. A, IB3-1 cells alone, -Arg, B., IB3-1 cells with PA01, - Arg, 

C., IB3-1 cells alone +Arg, D. IB3-1 cells with PA01 + Arg. 
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 To validate the use of the PA01-IB3-1 co-culture as a mimic for the in vivo inflammatory 

environment, the induction of inflammation was confirmed by comparing levels of IL-6, IL-8, 

and GMCSF mRNA in groups of IB3-1 cells exposed to PA01 to un-infected control cells at one 

and four hours. As shown in Fig. 33, at one and four hours, levels of IL-6, IL-8, and GMCSF of 

unstimulated IB3-1 cell groups were significantly lower than those of stimulated IB3-1 cell 

groups, indicating the bacterial addition did indeed have a potent inflammatory effect on IB3-1 

cells.    

7.3.3 Preparation and characterization of ODN coated PSA-TMC nanoparticles 

 As reported previously, PSA-TMC nanoparticles alone exhibit a size of close to 100 nm 

(~115 nm) and a zeta potential of ~ 37 mV. When coated with 20 BP ODN, the size increases to 

approximately 165 nm diameter, while the zeta potential decreases to 23 mV. Although the zeta 

potential was reduced by the presence of the nucleic acids, the overall positive surface charge of 

Fig. 33- Confirmation of induction of cytokine expression by IB31 cells in response to 

incubation with PA01 at one hour (A) and four hours (B). Results are expressed as fold 

changes relative to a stimulated pooled control. * Represents significant difference (alpha 

value 0.05) between stimulated (with bacteria) and unstimulated groups, determined by 

Student’s T Test. 
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the nanoparticles is expected to facilitate increased interaction with the negatively charged cell 

membrane. Furthermore, positively charged chitosan is known to have mucoadhesive properties, 

allowing for increased retention time in the mucus of the CF lung epithelium [235].  

7.3.4 Efficacy of ODN coated PSA-TMC nanoparticles: mRNA expression 

 To further validate the use of PSA-TMC nanoparticles as ODN delivery vehicles, a co-

culture environment, established as described above, was used. The expression of three 

proinflammatory mediators by IB3-1 cells upon exposure to PA01 and administration of ODN or 

NP-ODN at 1 and 4 hour time points was assessed with a QuantiGene Assay. Relative to a 

pooled control group, a significant decrease in GMCSF was observed at one hour when the cells 

were pre-treated with NPODN, as shown in Fig. 34A. However, significant differences between 

groups were not observed at 4 hours (Fig. 34B). GMCSF has recently been shown to enhance IL-

6 production when in combination with interferon gamma (INF-γ) in CF lungs cells after P. 

aeruginosa infection [236]. In a healthy individual, this would likely serve to help eradicate the 

infection, increasing the functionality of macrophages and therefore phagocytic activity, however 

Fig. 34-Effect of ODN and NPODN treatment on GMCSF expression in IB3-1 cells in an 

IB3-1/PA01 co-culture model. mRNA levels are expressed relative to a pooled control, 

and all data are presented as mean ± standard deviation. * indicates a significant 

difference of p<0.05 relative -to the untreated control group.  
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in a CF lung, increased immune cell activity contributes to chronic inflammation and eventual 

tissue damage [237]. Thus, as observed with the ODN coated nanoparticles presented herein, 

agents that cause a reduction in GMCSF may serve as a viable treatment option for mitigation 

the long term destruction caused by inflammation.  

Fig. 35- Effect of ODN and NPODN treatment on IL-6 expression in IB3-1 cells in an IB3-

1/PA01 co-culture model. mRNA levels are expressed relative to a pooled control, and all 

data are presented as mean ± standard deviation. * indicates a significant difference of 

p<0.05 relative to the untreated control group. 
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 In contrast to GMCSF, non-significant decreases in the expression of IL-6 (Fig 35) and 

IL-8 (Fig. 36) at one hour were observed upon pre-treatment of cells with ODN-coated 

nanoparticles.  The results obtained for the expression levels of IL-6 and IL-8 were surprising, as 

we have previously seen significant decreases in these secretion of these proteins at longer time 

points.  A literature search revealed other reports of discrepancies between cytokine expression 

and secretion in in vitro models [238, 239]. These reports, combined with previously published 

data reporting significant decreases in protein secretion of IL-6 and IL-8 from IB3-1 cells when 

treated with NPODN at time points of 24 and 48 hours prompted further investigation of IL-6 

and IL-8 secretion [174].   

7.3.5 Efficacy of ODN coated PSA-TMC nanoparticles: protein secretion 

 Changes in the secretion of GMCSF, IL-6, and IL-8 byIB3-1 cells within the co-culture 

environment in response to ODN and NPODN treatment were investigated at time-points of one 

Fig. 36- Effect of ODN and NPODN treatment on IL-8 expression in IB3-1 cells in an IB3-

1/PA01 co-culture model. mRNA levels are expressed relative to a pooled control, and all 

data are presented as mean ± standard deviation. * indicates a significant difference of 

p<0.05 relative to the untreated control group. 
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and four hours. GMCSF protein levels were below the limit of detection, as expected based on 

low levels of mRNA observed, thus only the results for IL-6 and IL-8 are reported herein.  

 In regards to IL-6, at one hour, NPODN treatment significantly reduced protein secretion 

from IB3-1 cells, relative to a pooled control (Fig.37A). A similar trend was observed at 4 hours; 

however, the reduction was not significant. The observed differences between IL-6 expression 

and secretion are consistent with results reported previously for other CF models. For example, 

in a CF pancreatic model, an approximately double dose of inflammatory stimulus was required 

to induce an increase in IL-6 expression relative to what was required to induce enhanced IL-6 

secretion [239]. This suggests that secretion of inflammatory proteins, such as IL-6, may be more 

responsive to inhibitory treatments when compared to expression patterns of the same 

inflammatory proteins.  

 In regards to IL-8 secretion, at both one and four hours, protein levels were significantly 

reduced when treated with NPODN compared to both ODN alone and an untreated control (Fig. 

Fig. 37- Effect of ODN and NPODN treatment on IL-6 secretion in IB3-1 cells in an IB3-

1/PA01 co-culture model. Protein levels are expressed relative to a pooled control, and all 

data are presented as mean ± standard deviation. * indicates a significant difference of 

p<0.05 relative to the untreated control group. 
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38). Although a reduction in IL-8 secretion was observed upon treatment with ODN alone at 4 

hours, the difference was not significant. Recent work by Gambari et. al reported a decrease in 

IL-8 mRNA expression of about 25% in IB3-1 cells when treated with an anti NF-κB agent. 

However, IB3-1 cells that received the same dose of the treatment exhibited 50% decrease in 

cytokine secretion, relative to untreated controls [238]. Similar to IL-6, IL-8 secretion may be 

more easily manipulated than IL-8 expression.  

The levels of secreted IL-6 and IL-8 correspond well to previous studies showing 

reductions of these protein levels at 24 and 48 hours in response to treatment with decoy ODN 

delivered via PSA-TMC nanoparticles. We expect that the increase in decoy ODN efficacy is 

due to increased cellular uptake associated with the PSA-TMC carrier system.  

 Studies have shown that the inflammatory response in the CF lung is excessive, relative 

to levels of bacterial infection [240]. Excessive amounts of neutrophils recruited to the area by 

Fig. 38- Effect of ODN and NPODN treatment on IL-8 secretion in IB3-1 cells in an 

IB3-1/PA01 co-culture model. Protein levels are expressed relative to a pooled control, 

and all data are presented as mean ± standard deviation. * indicates a significant 

difference of p<0.05 relative to the untreated control group. †represents a significant 

difference of p<0.05 relative to the ODN treated group. 
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high IL-8 levels are so vast that they cannot be cleared by macrophages, leading to cell death and 

debris build-up. In CF lung epithelia, it has been shown that the death of neutrophils due to 

bacterial infection leads to the release of DNA, which further contributes to mucus viscosity and 

impaired mucociliary clearance [228, 240]. Therefore, the use of decoy ODN must be carefully 

regulated as to not introduce excess DNA to the environment and contribute to disease 

pathology. Due to these restrictions, the amount of ODN loaded onto the PSA-TMC 

nanoparticles was kept low. As previously reported, every one mg of PSA-TMC contains 

approximately 750 ng of ODN. This is considerably less DNA being applied in vitro than other 

researchers attempting to deliver decoy ODN’s in a CF model [241, 242]. The effective anti-

inflammatory activity by lower amounts of ODN than previously reported provide evidence that 

PSA-TMC is a safe and efficacious delivery system for nucleic acid based drugs. 

7.4 Conclusions and Future Work 

 In this study, a bacterial/mammalian co-culture in vitro model of CF was successful 

generated, and used to demonstrate that PSA-TMC can successfully deliver and enhance 

therapeutic efficacy of NF-kB decoy ODN’s in a complex CF model. Although gene expression 

was mainly unaffected at the time points examined here, IL-6 and IL-8 protein secretion proved 

to be significantly lower in groups treated with ODN coated PSA-TMC at both one and four hour 

time points. This reduction in protein secretion is in agreement with previous studies, and 

suggests that PSA-TMC nanoparticles are suitable carriers for small nucleic acid based 

therapeutics.   
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8. Summary and Future Work 

To conclude, this dissertation has featured an introduction detailing the need for an improved 

delivery system for nucleic acid based therapeutics (chapter one), followed by a chapter 

extensively describing challenges faced when designing drug delivery systems (chapter two). 

After introducing two pathologies chosen as a focus for experiments (chapter three), a 

polysaccharide based nanoparticle system with potential for carrying nucleic acid based drug was 

introduced (chapter four). Chapters  five, six, and seven contained experimental methods, results 

and conclusions of in vitro efficacy experiments using a non-cytotoxic, non-immunogenic, 

polysaccharide based nanocarrier system for delivery of nucleic acid based therapeutics; 

specifically a transcription factor decoy.  

The PSA-TMC nanoparticle system proved able to successfully incorporate transcription 

factor decoy oligonucleotides, likely via electrostatic interactions with the positively charged 

surface of the particles. Furthermore, the DMARD methotrexate was able to be incorporated into 

PSA-TMC nanoparticles as previously investigated, however this time with the addition of ODN 

coated on the surface. This illustrates potential for a dual treatment approach to controlling 

inflammation in RA patients. 

PSA-TMC nanoparticles were initially designed to enhance RA treatments, however 

preliminary studies showed a lack of efficacy and an excess of variability in cytokine secretion 

when MTX loaded PSA-TMC nanoparticles were introduced to an RA in vitro model. Based on 

studies claiming enhanced efficacy of chemotherapeutics when administered in combination with 

anti NF-κB agents, PSA-TMC loaded with MTX and decoy ODN were tested on RA in vitro 

models. Initially, a cell line model was investigated (chapter five). Upon seeing success in the 

cell line, a primary cell model was used to obtain more physiologically relevant results. While 
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the primary cells yielded slightly different cytokine secretion results than the cell line, in general, 

combining MTX therapy with a decoy ODN resulted in significant reduction of inflammatory 

cytokines in both RA models. 

Initial in vitro efficacy experiments using a simple CF model revealed using PSA-TMC as a 

delivery vehicle for an NF-κB decoy ODN resulted in significantly enhanced functionality of the 

decoy, as determined through reduction in cytokine secretion at both 24 and 48 hour time points 

(chapter six). Furthermore, the reduction in cytokine secretion was presumed to be due to a 

decrease in NF-κB activity, as determined via a luciferase reporter assay, confirming delivery 

and activity of the decoy ODN. To create a more accurate in vitro environment of a CF lung, a 

mammalian/bacterial co-culture model was generated, and also used to examine efficacy of PSA-

TMC mediated NF-κB decoy ODN delivery (chapter seven). While a co-culture model was 

successfully generated, due to cell viability constraints, the time points investigated using this 

model were shorter than the previous model where instead of bacterial infection, inflammation 

was induced using soluble inflammatory mediators. Therefore, to obtain a clear picture of what 

was happening in this model at these time points, gene expression as well as cytokine secretion 

was investigated. Unexpectedly, with the exception of GMCSF at one hour, which yielded 

significantly lower levels compared to an untreated control when treated with PSA-TMC-ODN a 

reduction in expression of inflammatory genes was not observed at one and four hours. On the 

other hand, cytokine secretion analysis revealed significant reductions of cytokine levels at both 

one and four hours in groups treated with PSA-TMC-ODN.  

In addition to providing a model for investigation of PSA-TMC-ODN efficacy in studies 

described in this thesis, the bacterial/mammalian co-culture model can be a useful tool for other 

in vitro studies. PA01 bacteria can produce different virulence factors based on different growth 
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conditions, allowing for a comprehensive study of bacterial/mammalian interactions under 

multiple bacterial phenotype conditions. In addition, future preliminary testing of drug 

candidates for CF can make use of the co-culture model.  

Future work involving the PSA-TMC-ODN in applications aimed at treating either RA, CF, 

or other inflammatory conditions first and foremost involves in vivo testing. Despite best efforts 

at mimicking disease conditions in vitro, in vivo pathologies can drastically differ from cell 

culture models. In vivo testing must be done do determine both safety and efficacy of this 

particle system. As a mouse model has been previously used by the Bader lab to investigate 

efficacy of another PSA based DMARD loaded nanocarrier system for RA treatment. The mice 

tolerated the dosing well, and showed signs of decreased disease progression after treatment with 

the DMARD loaded carriers (unpublished data). Therefore, this same type of model is a logical 

choice for further investigation of PSA-TMC loaded with both ODN and MTX. Drug delivery 

systems for nucleic therapies have been examined in CF in vivo models as well. Based on 

previous successes using the rat model, this is recommended for future studies involving PSA-

TMC-ODN and CF treatment efficacy. 

In addition to in vivo work, further studies regarding how PSA-TMC acts as a protective 

carrier for the ODN should also be conducted. A protocol for simulated enzymatic degradation 

has been established, however DNA detection was not achieved likely due to the small amounts 

and short base pair sequences attempted to be detected. Further studies will require extensive 

knowledge of DNA measuring techniques, such as advanced gel electrophoresis, PCR, and 

potentially mass spectroscopy.  

To conclude, the work described in this dissertation provides compelling evidence for the use 

of polysaccharide based nanoparticle system PSA-TMC as a nanocarrier delivery system for 
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small nucleic acids, demonstrated by the application of a transcription factor decoy ODN in 

several different in vitro models of inflammatory diseases.  
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