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1.0   Tetanus  

 1.1   Disease 

 Tetanus is one the most preventable causes of death worldwide.  Caused 

by Clostridium tetani, bacteria found in soil everywhere, the spores enter the body 

most often through puncture wounds or unsterile tools or care of umbilical cords.  

Though patients can survive a tetanus infection, tetanus has a 20-75% mortality 

rate depending on the quality of medical care and severity at time of diagnosis.  

The only reliable way to decrease the incidence of the disease is through 

vaccination of each individual in the whole population.  Since it is not a readily 

communicable disease, herd immunity cannot be attained and thus, even in 

developed countries, vaccination must continue at 100%.  Additionally, prior 

infection does not confer immunity to an individual.  The current vaccine 

recommendation is a minimum of three doses and if possible, a booster every 10 

years.1 

 Tetanus is a major element of any national health initiative, as it is 

responsible for 13% of vaccine-preventable causes of death in children under 5 

(along with measles, influenza, and pertussis).2  Because the fourth Millennium 

Development Goal aims to reduce maternal and infant mortality by 75% between 

the years of 1990 and 2015, much more data is now being collected on 

vaccination in developing countries.  Even with this initiative, 59,000 cases of 

neonatal tetanus and 2,000 cases of adult tetanus are documented each year.  Also, 
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the world vaccination rate is rising, now at 82% from 20% in 1980, but the cost of 

such a program is also rising.3   

1.2   Vaccines 

The tetanus vaccine was invented in 1924 by Descombey4 and is used still 

today.  The tetanus toxin (tetanospasmin) is the most potent toxin known, with a 

lethal dose LD50 of 2.5 ng/kg.4  This toxin is the basis for the vaccine, where the 

toxin is isolated and heated in formaldehyde and lysine at 80ºC to create linkages 

either within the protein itself or to the lysine.  This new form, called tetanus 

toxoid, retains the same general 3D structure as the toxin but has lost functionality 

due to the cross-linking and is administered through intramuscular injection.  The 

immune system gains enough points of recognition from this locked conformation 

of the protein and confers immunity to the individual, but this must be repeated 

every 10 years in order to maintain a strong immune response. 

There are two easily identifiable problems with administration of and 

access to the current vaccine.  The first is patient compliance.  Because some 

patients have a fear of needles and because the shot itself is uncomfortable, 

patients are much less likely to keep their vaccinations up to date because of the 

discomfort associated with getting them.   

The second is that it requires many tools in order to be administered: 

refrigerated transport and storage, trained nurses to give the shot, sterile needles 

for administration, and biohazard disposal for the used needles.  Because of these 

requirements, the price of administering the vaccine rises and the ability of the 
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world's poor to obtain the vaccine decreases.  The 61,000 deaths that occur every 

year due to tetanus are absolutely preventable, but only by increasing the access 

of the world's poor to the vaccine.1 

An oral vaccine would address both the patient compliance and price 

concerns.  With no need for trained nurses or needles, the price and logistic 

difficulty for administering the vaccine are directly erased.  The difficulty of 

taking an intramuscular vaccine and making it oral is how to get it through the 

stomach without being degraded beyond immune recognition and also how to 

initiate uptake across the intestinal cell membrane.  After that, there is further 

difficulty in that, once in the bloodstream, the immune system has to still be able 

to recognize it in its new (oral) form.   

1.2   Biochemistry 

The tetanus bacterium, Clostridium tetani, is an anaerobic bacterium 

whose spores are found ubiquitously in the soil and in the intestines and feces of 

horses, sheep, cattle, dogs, cats, rats, guinea pigs, and chickens.  When the spores 

enter the anaerobic environment of the body, usually through a puncture wound, 

they circulate the body through the blood and lymphatics.  During growth, C. 

tetani produces the ectotoxin tetanospasmin which targets neurons, mostly in the 

central nervous system.4 

The clinical manifestation of tetanus is unopposed muscle contraction and 

spasm, which often leads to death through pulmonary or cardiac failure.  The 

incubation time is 3-21 days, usually 8.  Muscle spasms last about 3-4 weeks, but 
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a patient can take months to recover.  This muscle rigor is caused by the action of 

the tetanospasmin within the central nervous system.   

Tetanospasmin is a 150 kDa protein consisting of two chains, the heavy 

chain (~100 kDa) and the light chain (~50 kDa), which are connected through a 

disulfide bond.  The heavy chain has two (~50 kDa) subsections, the carboxyl-

terminal and the amino-terminal.  The function of the heavy chain is to target the 

inhibitory neurons in the central nervous system and to trigger endocytosis into 

these cells. 5  The reducing environment inside the cell breaks the disulfide bond 6 

and the light chain is freed to cleave one protein, synaptobrevin,7 a vesicle-

associated membrane protein (VAMP) which disrupts vesicle-membrane fusion.8  

With this process blocked, the neurotransmitters cannot be released into the 

synapse in order to inhibit muscle contraction. 

2.0   Targeted drug delivery 

 Novel drug delivery systems struggle both with getting the drug across 

barriers, but also with obtaining the correct concentration at the necessary location 

in the body.  This biodistribution problem has led to an increase in targeted drug 

delivery systems, where a molecule of known biodistribution is complexed with a 

drug, usually through direct conjugation or through a ligand linking the two.  In 

these systems, the targeting molecule either facilitates crossing of physiological 

barriers or delivery of the therapeutic molecule to a specific site.  This means that 

scientists are searching not only for new therapeutic molecules, but also new 
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delivery molecules to advance the field.  Current examples under research are the 

B vitamin family, peptides, antibodies, organic ligands, and polymers. 

3.0   Vitamin B12 

3.1   Structure and Function 

 Vitamin B12, also called cobalamin, is a highly water-soluble vitamin 

(10.2 mg/mL) that is produced only by bacteria but is essential for mammalian 

cell growth and function. 10  As the only organometallic compound found in 

biology,11 B12 has a six-coordinate cobalt(III) center in a corrin ring, a 

dimethlybenzimidazole ribonucleotide in the α-axial position, and a variable 

ligand in the β-axial position.  On the ribose is a solvent-exposed hydroxyl 

group12 which is the targeted conjugation site in this experiment. 

 

Figure 1. The structure of B12 (cobalamin with R group).  The target conjugation 
site is the hydroxyl group at bottom of figure. 

OH 
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B12 is a single-carbon transferase essential for cellular function because of 

its involvement with DNA methylation, fatty acid synthesis, mitochondrial energy 

production, synthesis of red blood cells, and maintenance of the nervous system.  

Once in the system, the body modifies the R group to create different derivatives. 

The only way to obtain B12 is though diet – primarily the consumption of 

animals or animal products from ruminators.13  These are animals that are 

primarily grazers and that have a symbiotic relationship with bacteria that live in 

their gastrointestinal tract.  These bacteria help the host to break down its food 

and in the process, synthesize B12 for the host.  In this way, B12 is in meat 

(especially the liver, where it is stored) and milk products.  Because absorption 

from the diet is so essential, a selective system has developed in order to protect 

and shepherd B12 from the mouth to the bloodstream.  

3.2   Mechanics of the pathway 

 Upon ingestion, B12 binds to haptocorrin (HC), a binding protein in the 

mouth,14 and the HC- B12 complex moves through the stomach, the protein 

protecting the vitamin from the acidic environment (~pH=2).  Once through the 

stomach, HC releases B12 in the duodenum (~pH=6) where it is captured by the 

next binding protein, intrinsic factor (IF).  The IF- B12 complex makes its way 

through the intestine to the proximal ileum (~pH=7.5), where it associates with 

the cubilin receptor (anchored by the transmembrane protein, megalin) which 

triggers receptor-mediated endocytosis into the enterocyte.15  Once engulfed, the 

endosomal pH drops to 5.5, causing proteolytic breakdown of IF and releasing the 
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B12.  When it is released into the bloodstream the third transport protein, 

transcobalamin II (TCII) binds to the B12 and escorts it through the bloodstream 

for cellular uptake.16 

3.3   Drug delivery with B12 

The B12 uptake pathway has been shown to facilitate the delivery of 

molecules through the stomach, across the intestinal membrane, into the 

bloodstream, and into cells.17, 18  Most notably this has been done in this same 

research group with insulin, a ~5.6 kDa protein.17 

Questions arise about whether or not a 150 kDa attachment is too large for 

B12 to bring into the cell, as it is three times larger than any other successful 

uptake, and whether the steric bulk of the protecting groups from the uptake 

pathway will prevent the immune system from reaching and recognizing the 

vaccine in the bloodstream.  So the experimental question is posed: if we attach 

TT to vitamin B12, will it be able to be absorbed through cell-mediated 

endocytosis and still be antigenic enough to confer immunity to the individual? 

4.0   Materials 

 1,1’-carbonyl-di-(1,2,4-triazol) (CDT), vitamin B12, sinapinic acid (SA), 

dialysis tubing, CypHer 5E, and Alexafluor 405 were purchased from Sigma 

Aldrich at reagent grade and were used with no additional preparations.  The 

tetanus toxoid (TT) was a gift from the Serum Institute in India, lot number 1170, 

at a concentration of 2400 Lf/ml.  The antibodies were purchased from Abcam in 

Cambridge, MA.  DMSO from Sigma Aldrich was dried using 4Å molecular 
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sieves (also from Sigma) under dry nitrogen.  Water was distilled and deionized to 

18.6 MΩ using a Barnstead Diamond RO Reverse Osmosis machine coupled to a 

Barnstead Nano Diamond ultrapurification machine.   

 All reverse-phase size exclusion chromatography was done with an 

Agilent 1200 HPLC, with a manual injection and an automated fraction collector, 

which was fitted with a Zorbax GF-450 analytical column (9.4 x 250 mm) in 

series with a Zorbax GF-250 analytical column (4.6 x 250mm). 

 Matrix-assisted Laser Desorption/Ionization – Time of Flight/Mass 

Spectroscopy (MALDI-TOF/MS) was done on an Applied Biosystems Voyager-

DE MALDI-TOF Mass Spectrometer at SUNY ESF, Syracuse, New York. 

The Quick Start Bradford Assay was purchased from Fischer and was 

preformed according to the manufacture’s instructions (BioRad).  

All in vitro cell experiments were done in an air-filtered, UV-irradiated Labconco 

Purifier I laminar flow hood. RPMI 1640 was purchased from the American Type 

Culture Collection (ATCC). Fetal Bovine Serum and cell stripper were purchased 

from Mediatech in Manassas, Va. Penicillin-Streptomycin solution with 10,000 

units of penicillin and 10 mg per mL streptomycin in 0.9% NaCl was purchased 

from Sigma.  The BeWo choriocarcinoma human cell line (ATCC code CCL-98) 

was obtained from the American Type Culture Collection (ATCC). 

 Confocal microscopy experiments were conducted with a Zeiss LSM 4 

Pascal Confocal Microscope and Image Analysis and Zeiss LSM 700 Pascal 
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confocal microscope with Image Analysis software equipped with Ar and HeNe 

lasers. 

5.0   Methods 

5.1   Synthesis 

5.1.1   B12-Tetanus Toxoid CDT Coupling reaction: 

 B12 was activated with CDT in a 1:1 molecular ratio by placing both to 

spin in a round-bottomed flask in dimethylsulfoxide (DMSO) at 45°C for one 

hour or more.  The most common scale was to do this reaction with 40mg B12, 

5mg CDT, and 3mL of DMSO.  One mL of HEPES buffer at pH 8 and 200µL of 

TT solution were put to stir in another round-bottomed flask.  Depending on the 

desired B12 to TT mole ratio, different amounts of the activated B12were added.  

The reaction was left to stir for 12-24 hours.   

 The reaction was dialyzed in 50,000 molecular weight (MW 50,000) 

cutoff tubing in a liter of 0.11 M NaCl solution, exchanging the water multiple 

times (~6 x 1L) to wash away unreacted B12.  This caused a white precipitate to 

crash out of solution, which refused all attempts to redissolve it.  Because a 

product that will not remain in solution is not helpful to the stated purpose of this 

experiment, these products only received mild attempts at purification and 

characterization.   
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5.1.2   Fluorescent Tagged B12-TT or TT (B12-TT* or TT*) 

 The B12-TT or TT was added to 200µg/mL carbonate buffer at pH 9.6.  

10mg of CypHer 5E was added and the mixture was rotated at room temperature 

in the dark for 2 hours.  This mixture was then dialyzed (MW 50,000) overnight 

into PBS buffer at pH 7.4 at 4ºC.  The samples were kept in 4ºC and away from 

light until use. 

5.1.3   Fluorescent Tagged IF (IF*) 

 10mg IF was added to 1 mL of 200µg/mL carbonate buffer at pH 9.6.  The 

solution was vortexed and centrifuged to remove undissolved solids.  50 µL of 

Alexa Fluor 405 (1µg/µL solution in DMSO) was added to the IF solution.  The 

solution was rotated at room temperature and in the dark for one hour, and then 

dialyzed (MW 25,000) into PBS buffer at pH 7.4 at 4ºC for one day. 

5.2   Purification 

 After dialysis, the purification of the conjugated system vs. the unreacted 

TT was done on the HPLC.  Almost all chromatography data looked similar for 

any ratio of B12:TT that was attempted.  This indicates that the TT is the most 

important factor in determining properties of the compound, making it difficult to 

distinguish between free TT and the B12-TT compound.  Because of this, many 

different methods were tried before finding a method that be suitable. 

 The method developed ran the reaction through a reverse-phase size 

exclusion column and gained better separation of peaks, but not as well as one 
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could wish.  An 0.11 M NaCl solution was used as the mobile phase to dissociate 

the ionic interactions of the B12-TT with the column.  A flow rate of 1.5 mL/min 

was used to elicit separation on the tandem GF450-250 column.   

 

 All three peaks came off the column red, indicating the presence of B12.  

The peak at 15.3 min was found to be mostly B12, with small amounts of protein, 

and the peaks at 12.2 and 8.8 were found to contain both B12 and TT, though the 

peak at 8.8 had a higher concentration of the protein.  This reaffirms the idea 

stated above, that the different ratios of B12-TT and free TT cannot be separated 

because their properties are overwhelmingly determined by the TT. 

 The major peak at 12.2 was collected for characterization and testing.  

Some of the peak was set aside to that tests could compare their results to the 

crude reaction as well.  The rest of the collected peak was dialyzed in a tinted 

dialysis container against distilled water, in order to wash the NaCl from the 

compound.  This was then lyophilized and reconstituted in PBS buffer.   
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Table 1. Summary of the reactions carried out and the different 
mole ratios (collected from peak at 12.2 min) 

B12:TT reaction mole ratio Conjugate Designation 
295 1 

60 2 

15 3 

 

5.3   In Vitro Assays 

5.3.1   Bradford Assay 

 On a 96-well plate, known concentrations of BSA (2 mg/mL-0.15 mg/mL) 

were run in order to build a calibration curve and, concurrently, 5 µl of each 

sample were also plated.  All samples and standards were run in triplicate.  250 

µL of quick start Bradford dye reagent was added to each well. The plate was 

allowed to incubate for 10 minutes at room temperature. The absorbance was read 

at 670 nm and compared to a calibration curve gained from BSA. 

5.3.2   ELISA Assay 

100 µl of 1µg/mL rabbit antibody solution (ab53829; polyclonal to TT) in 

0.05 M carbonate buffer at pH 9.6 was incubated in 96 well plate overnight at 

4 °C.  The solution was removed and the wells were washed three times with 

phosphate buffered saline, pH 7.4, 0.05% tween (PBST).  After each of the 

following incubations, the plate was again washed as described. 200 µL of PBST 

with 2.5% dried milk (PBSTM) was added to the wells and was incubated for one 

hour at 37 °C.  Three wells of 100 µl of the compounds or TT standard dilutions 

were incubated for two hours at 37 °C.  100 µl (0.8 µg/mL) of mouse antibody 
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solution (ab26247; monoclonal to TT) in PBSTM were incubated for two hours at 

37 °C in all wells.  100 µl (1 µg/mL) of rabbit antibodies (ab6728; polyclonal to 

mouse IgG) conjugated to horseradish peroxidase in PBSTM was incubated for 1 

hour at 37 °C.  After the last wash, 100 µl of 2,2′-azino-bis(3-

ethylbenzothiazoline-6-sulfonic acid) liquid substrate was added to the wells and 

was allowed to incubate for 15 min at room temperature.  The absorbance at 405 

nm was then recorded.  The control dilutions of TT were plotted and fitted with a 

linear best fit line which was only considered accurate when the line had an R2 

value greater than 0.9.  This calibration curve was used to calculate the 

concentration of the samples. 

5.3.3   MALDI-MS Preparation 

 Because MALDI is an inherently finicky system, a project was undertaken 

to search for the best preparation conditions under which to see results from the 

TT.  By varying the kind of matrix, concentration of matrix, and concentration of 

analyte, a balance of these was found that produced consistent reproducible 

results.  Even though MALDI is usually employed first to know that something 

worth pursuing has been created, the best course of action was to run a Bradford 

assay first to determine the concentration of the complex for better MALDI data.  

This is important because the concentration of the analyte was the major factor in 

the success of MALDI results. 

 10 mg of SA was placed in an epindorf tube, along with 30µL of 

acetonitrile and 70µL of water (both chromatography grade).  This mixture was 
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vortexed to maximize saturation and then centrifuged before use in MADLI 

plating.  The two solutions were plated at 10:1, 5:1 and 1:1 matrix:analyte ratios. 

5.3.4   Confocal Methods to Confirm B12-TT* Uptake 

 The BeWo cells were plated (200,000 cells/dish) on 356x100 mm vented 

dishes and  incubated at 37 °C overnight in RPMI 1640 media.  In the morning, 

each plate was rinsed with PBS buffer (3x1 mL) and then 1 mL of of B12-TT* in 

solution of IF (10 mg/mL) in PBS was added to each plate and incubated for 1 

hour.  The drug solution was then removed, and the cells were washed with 50 

mM PBS (3x1 mL) at a pH of 7.4. The cells were then washed with PBS at 3.5 

(3x1 mL) to prevent any noncovalent membrane interaction with the proteins. The 

plate was then filled with 1mL of PBS buffer at pH 7.4 and viewed under the 

confocal microscope. A wavelength of 600 nm was used to excite the CypHer 5E, 

and optical slices were taken by the machine to confirm that the fluorescence was 

inside the cell instead of attached to the membrane on the outside. 

5.3.5   Confocal Methods to Confirm B12-TT* and IF* Co-localizaiton  

 The BeWo cells were plated (200,000 cells/dish) on 356x100 mm vented 

dishes and  incubated at 37 °C overnight in RPMI 1640 media.  In the morning, 

each plate was rinsed with PBS buffer (3x1 mL) and then 1 mL of B12-TT* 

conjugated to IF* in PBS was added to each plate and incubated for 1 hour.  The 

drug solution was then removed, and the cells were washed with 50 mM PBS 

(3x1 mL) at a pH of 7.4. The cells were then washed with PBS at 3.5 (3x1 mL) to 

prevent any noncovalent membrane interaction with the proteins. The plate was 

then filled with 1mL of PBS buffer at pH 7.4 and viewed under the confocal 
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microscope. A wavelength of 600 nm was used to excite the CypHer 5E and 405 

nm to excite the Alexa Fluor 405 dye. 

6.0   Testing 

6.1   Characterization: 

 Because of the size of the TT and the fact that complexed and 

uncomplexed TT were difficult to differentiate, MALDI-MS was the only 

instrument through which to detect a shift during the experiment.  SDS PAGE 

gels were run, and although red bands in the gel before staining indicated 

successful conjugation to B12, the poor resolution made it difficult to show a size 

difference between the free and conjugated TT.  The next step was MALDI-MS. 

 First, the weight of the control (free TT) was established at ~158.5 kDa, 

(see figure 2), with two MALDI peaks showing both a +1 mass/charge ratio and 

assumably at +2 mass/charge ratio.  This was 8.5 kDa above the known weight of 

the molecule, but presumably the incorporation of formalin and lysine during the 

inactivation process has caused an increase in mass.  Next, the sample from the 

first peak from the HPLC separation of 1 was run, showing ~170 kDa, where the 

mass increase would be roughly equivalent to 8 B12 molecules.   
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Figure 2. MALDI-TOF/MS of TT (Top) with a weight of ~158 kDa and of B12-
TT conjugate (bottom) 1 with a weight of ~ 170 kDa. 
 

Next, the first HPLC peaks from reactions 2 and 3 were brought to the MADLI-

MS.  2 saw increase of ~10 kDa over the control, equivalent to about 7 molecules 

of B12, and 3 saw an increase of ~4 kDa, roughly equivalent to 3 B12 molecules.   
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Figure 3. Mass spectrometry of 3 (top) and 2 (bottom) showing a molecular 
weight of ~ 162 kDa, and ~ 167 kDa respectively. 
 

 It appears that the B12-TT load limit is being reached in 1, since varying 

the amount of B12 from 1, 4, and 20mg causes a ratio increase of only 3, 7, and 8 

B12 molecules to each TT.   

 In order to gain a better understanding of the location and number of the 

B12-TT linkages, a trypsin digest of the conjugate 3 was done and MALDI was 
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used to obtain the fragment sizes.  Using the known TT sequence and known cut 

sites, the compound was compared to the theoretical, though this comparison was 

made difficult by the cross-linking of formalin inactivation.  All detected peaks 

that were near to theoretical peaks were examined for a weight increase of 

theoretical fragment plus B12.  Eleven of the peaks collected fit this analysis (see 

table 2). 

 
Figure 4. Mass spectrum of a trypsin digest of 3. 
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Table 2. Molecular weights, position and sequence of suspected fragments of 
conjugation. (Weight of peptide only) 
Molecule Weight (Da) Position Amino Acid Sequence 

882 405-411 DLKSEYKGQNMR 
882 86-92 FLQTMVK 
940 1007-1014 FNAYLANK 
1003 721-727 RSYQMYR 
1143 99-109 NNVAGEALLDK 
1291 1211-1222 VGYNAPGIPLYK 
1382 334-345 DSNGQYIVNEDK 
1384 97-109 IKNNVAGEALLDK 

1777.9 417-433 VNTNAFRNVDGSGLVSK 
2069.9 602-619 DIIDDFTNESSQKTTIDK 
3007 560-584 ITMTNSVDDALINSTKIYSYFPSVISK 
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 All of the above fragments contain a lysine but for one that contains two 

arginine residues.  Though lysine is a stronger nucleophile and therefore the 

expected target of CDT coupling, arginine is still a nucleophile for possible 

binding.  The missing possible conjugation sites could be involved in cross liking, 

or it could be that certain fragments were unable to ionize and were therefore not 

seen, or that some fragments were not solvent exposed in such a way that enabled 

binding. 

 Since 3 has a calculated B12-TT ratio of 3:1, the appearance of 11 binding 

sites in the tryspin digest indicates that the sample is a collection of polymorphs.  

This means that there is unavoidable variation in each sample, but also that the 

B12 binding is less likely to block the same antigenic epitopes every time, perhaps 

making the vaccine more effective. 

6.2   In Vitro Studies 

 In order to test cellular uptake, the human placenta choriocarcinoma 

BeWo cell line was used because past literature suggests that it expresses the 

cubilin receptor.19, 20  Confocal microscopy studies showed colocalization of 

fluorescently tagged IF* and B12-TT* inside the cell.   

 First, immunostaining studies were done with fluorescently tagged cubilin 

antibodies in order to ensure that the cells did indeed express the cubilin receptor.  

CHO cells, which are known to not express the cubilin receptor, were used as a 

control.  This successfully showed the presence of cubilin receptors on the cell 

line, enabling B12 uptake studies. (see figure 5) 



20 

 

 
Figure 5. 63X image of BeWo Cells and fluorescently tagged Cub-antibody using 
confocal microscopy. 
 

 Secondly, the B12-TT* was incubated with IF* for 30 minutes, after 

which the B12-TT*-IF* was incubated with the BeWo cells for 6 hours.  The cells 

were then rinsed with PBS at a pH of 7.4 and then with PBS at a pH of 3.0, in 

order to remove the compound and break up any nonspecific interactions.  The 

plate was then filled with PBS at pH of 7.4 and taken for confocal.  Using optical 

slices, the two fluorescent signals were found to be colocalized inside the cell.  A 

further study with B12-TT*-IF also showed internalization of the compound by 

itself as well. 

 
Figure 6. 63X images of BeWo cells and internalized IF* and 1* (left) and 3* 
(right). 
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 Colocalization with 1*-IF* shows that the blue (IF*) surrounds the red (1*) 

like a halo, consistent with what would be expected from multiple B12s, while the 

run with 3* show colocalizaiton but not a halo, which would be expected from the 

smaller number of B12 molecules to attach to the IF*.  This is important because it 

shows that uptake across the cell membrane occurs even for conjugates with a 

lower vitamin:vaccine ratio. 

 As another control, IF and TT* were incubated together and then with the 

cells in the same concentration as the conjugate runs, but showed no uptake.  

Some external membrane interaction was seen with TT*, which is as expected, 

since the heavy chain of the TT seeks the membrane and facilitates uptake. 

 
Figure 7. BeWo cells with TT*. No internalization was observed, only some 
minor surface interaction, seen in red. 
 

 In order to understand the activity of the conjugate, two tests were 

simultaneously employed to determine the activity and the amount of vaccine in 

each conjugate, and to relate these two data.  Using the TT starting material, a 

Bradford control test was run, showing a ratio of ~0.32 Lf/µL.  Before ELISA, all 
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three samples were concentrated or diluted to the same concentration of protein.    

The stock TT had an activity of 0.32, much higher than the samples, perhaps 

because the B12 blocks activity or because the purification process was not 

efficient enough. 

Table 3. Lf/µg ratio as determined by ELISA and Bradford assays. 

Compound Crude (1) 1 2 3 

Lf/µg 0.00022 0.0053 0.0073 0.0031 
 

6.3   In Vivo Studies 

 The in vivo studies on guinea pigs were done by Serum Institute in India, 

as part of the grant provided for this project.  Due to this, a shipping method was 

created: dissolve concentrated solution in a 1% sucrolose and 1% mannose 

solution and begin lyophilization.  Once it is complete, keep refrigerated at all 

times. 

 The guinea pigs were put on a low B12 diet and then administered PBS, TT, 

or the compound, either orally or through subcutaneous injection.  Blood samples 

were taken from the animals at 28 days in order to run a titer ELISA for TT IgG 

antibodies.   
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Table 4. IgG titer concentrations from guinea pigs, determined by ELISA. 

Experimental group 
Dose/animal 

on day 0 
Route of 

administration 
Day 28 Mean 
IU/mL ± SD 

PBS 1 mL Oral 0.004 ± 0.001 

PBS 1 mL s.c 0.004 ± 0.001 

Tetanus 1 Lf s.c. 2.13 ± 1.4 

1 1 Lf s.c. 0.004 ± 0.001 

Tetanus 8 Lf Oral 0.004 ± 0.001 

1 8 Lf Oral 0.003 ± 0.005 

 

These results suggest that conjugation is causing the TT to lose activity, 

especially when considering the in vivo data that supports the idea that uptake is 

occurring across the enterocyte.  Both the confocal colocalization and the ELISA 

drop in activity agree with this.  The test was also done with 2 and 3, with similar 

results. 

7.0   Conclusions 

 Seeing titer increase from the subcutaneous injection of TT but not B12-TT, 

and knowing the confocal data showed uptake across the in vitro cells, the 

strongest conclusion from this experiment is that there is most likely cellular 

uptake but not enough antigenicity to confer immunity.  The immune system 

probably cannot reach the TT though all of the steric bulk of the B12 and its add-

ons.   
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 The remarkable thing about this experiment is that cellular uptake in vitro 

with TT is 5 times larger than the previously known largest molecule carried by 

B12, EPO (29 kDa).21 

8.0   Future Work 

 The future of this project is quite straightforward: attempt to make a 1:1 

conjugate in order to address the inability of the B12-TT to confer immunity even 

as a subcutaneous injection.  Also, more reliable and more efficient purification is 

necessary for any substantial work to be done in the field. 
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