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Abstract 

The goal of this study was to (1) develop a methodology for real-time, in vivo probing of 

chemical and physical changes in spinal cords and (2) compare these changes in the immediate 

aftermath of a localized contusive injury to uninjured spinal cords. Raman spectroscopy images 

were obtained on in vivo spinal cords that had been surgically exposed between T9 and T10. A 

total of six rats were studied in two n=3 groups of injured and  uninjured control animals. A 

single 830 nm laser of 100 um round spot size was either spatially scanned across the cord or 

held at a specified location relative to the injury to improve signal to noise in the Raman spectra 

and explore effects of injury spread on surrounding tissue. Results show that Raman spectra 

acquired using our methodology show similar spectra to those acquired previously in our lab and 

with known literature. Principal component analysis was performed and showed three distinct 

components assigned to static tissue, cerebrospinal fluid, and plasma. Analysis of the Raman 

spectra suggest that the tissues underwent changes for both the control and injured animals; 

however, injured cords display Raman features indicative of changes known in spinal cord 

injury. Based on this work, use of Raman spectroscopy in the future could facilitate better 

understanding of in vivo injury in spinal cords. 
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Chapter 1: Introduction 

Spinal cord injury (SCI) is a debilitating condition that affects approximately 347,000 people 

in the United States alone at a given time. More than half of the individuals with SCI are single 

at the time of injury, resulting in additional care being required, and those who are married see 

higher divorce rates over time. Even worse are the effects on employment, with approximately 

12 percent of patients employed after being injured1. Although various levels of spinal cord 

injury exist, they all maintain the same effect of reducing the quality of life of the individual. 

Emotional, physical, and monetary pain is involved in SCI, leading to a great drive to understand 

how and what is occurring during the damaging process. Research is continually yielding more 

information about the state of the spinal cord after injury in an attempt to reduce or reverse the 

effects. In general, the effects of an injury can be seen as a physical disruption of the healthy 

tissue, resulting in a number of factors such as immediate neuronal death2, glial cell phenotypic 

and functional changes3, and endothelial cell death4 resulting in cellular constituents, fluids, and 

the introduction of foreign matter not normally present in the spinal cord environment.5 One 

primary concern is tissue changes early after injury. Understanding the effects of tissue change 

both in the injury area and in surrounding tissue could help lead to lessened hospital stay and 

possible reduction of the severity of injury.  

Two events follow the aftermath of a spinal cord injury known as the primary phase and the 

secondary phase. The primary phase involves the immediate damage associated with injury such 

as cell lysing and tissue death. This leads to the secondary phase of injury, where nearby tissue 

becomes vulnerable to further degradation through a series of chemical and inflammatory 

events6. Bleeding can occur due to ruptured blood vessels and the breakdown of the blood-brain 

barrier exposes neuronal cells to ion imbalances, disruption of myelin function, and possible 
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infectious agents found in blood7. The secondary phase also involves migration of cells such as 

neutrophils and macrophages as well as cerebrospinal fluid leakage in and out of the damaged 

area, resulting in an even more complex environment than initially perceived5,8.  

Additionally, changes also occur within the tissue after injury. Astrocyte phenotypes are 

converted from passive to active and begin the process of glial scar formation, chondroitin 

sulfate proteoglycan (CSPG) chains are formed that inhibit neuronal regeneration, and microglia 

take on an ameboid-like phenotype that is similar to infiltrating macrophages9,10. Phagocytosis of 

myelin and apoptotic debris combined with neutrophil persistence in the area resulting in 

continued release of inflammatory cytokines can cause continued damage to surrounding 

bystander cells from early injury to even after glial scar formation6,11.  

Despite seeing these early effects of spinal cord injury on the tissue, more understanding is 

needed at the early timepoint after injury. Many currently available techniques to image changes 

in spinal cord tissue do so on a macro scale and are unable to differentiate chemical or cellular 

scale changes.  Even though microglia are known to phenotypically change to resemble 

macrophages, this same mechanism makes their function after injury ambiguous due to difficulty 

in discerning between the two cell types12. The earliest imaging changes that occur can be seen 

using magnetic resonance imaging (MRI) and computer tomography (CT) scan, however both 

scans require hemorrhagic lesions to assess damage to the area13. In the case of a contusion style 

injury, where the trauma often restricts blood flow into the site, the effectiveness of these 

imaging modalities is severely limited14,15. In addition, while these methods can help visualize 

blood pooling in acute injuries, they cannot aid in visualizing the full area of injury, as many 

surrounding cells are affected away from the injury site, nor can they differentiate between the 

different types of tissue being affected16. The timeline of cell responses after injury is becoming 
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increasingly important to create clinical methodologies for treatment as well. Patients who  

undergo surgical repair after 24 hours tend to show a greatly decreased rate of recovery 

compared to those receiving early treatment17. 

To address these concerns, this initial study has developed a method of measuring early 

biochemical changes in spinal cord injury using Raman spectroscopy. Raman spectroscopy is a 

noncontact, nondestructive optical technique using scattered light from a sample to measure the 

chemical composition of the material18. A laser of known wavelength is focused onto a sample in 

the absence of external light sources. Molecules within the sample become excited and emit four 

waves of energy: Raleigh scattering, Fluorescence scattering, Stokes and anti-Stokes Raman 

scattering.  Raleigh scattering involves an elastic energy transfer of the energy in the laser to the 

material, resulting in a wavelength returned at the same energy level as the laser19. Fluorescence 

scattering is the result of absorbed energy that emits photons over time in the sample and is 

commonly understood as noise for the purposes of Raman spectroscopy20. Stokes and anti-

Stokes scattering are inelastic, near instantaneous changes in the energy state of a molecule. The 

resulting energy change results in the emission of a specific wavelength of energy correlated to 

the molecule21. Unlike the previous two scattering events, Stokes and anti-Stokes changes in 

energy are specific biochemical markers and can be used to determine the composition of the 

sample being measured18,21.  

A wide variety of utilizations for Raman spectroscopy have been demonstrated in both the 

medical and non-medical fields. Applications include scanning for measurements of the internal 

temperature of combustion engines22, uses in the detection of precancerous and cancerous 

tissue23,  and determining the brittleness of bones in mouse models24. Additional work has been 

performed for in vivo measurements including the real time acquisition of gastric cancer 
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diagnosis during colonoscopy exams25 and assessment of atherosclerotic plaques during femoral 

bypass surgery26. The different uses for Raman spectroscopy show how varied its applications 

can be. Recently, interest has been shown in the field of neurology, with studies ranging from 

tumor detection to cancer diagnosis in a neurosurgical environment27,28. 

Raman spectroscopy has been previously used in spinal cord studies in both an in vitro 

and ex vivo environment. Biochemical changes of ex vivo intact, injured spinal cord samples 

have been compared previously to uninjured spinal cords at time lengths of up to 8 weeks, 

showing differences in Raman spectra at each timepoint measured5. In vitro organotypic slices of 

spinal cord were analyzed using Raman spectroscopy to measure biochemical differences in 

tissue before and after use of chondroitinase ABC, a treatment method for spinal cord injury29. 

Results for both showed significant differences in many factors, such as changes in lipids, amide 

and protein content, and glycosaminoglycan concentrations over time. These timelines and 

resulting changes correlate with known literature results in spinal cord injury6,14,30, however, 

there were limitations to these studies. Both used ex vivo spinal cord measurements to assess 

injury severity and could only measure at discrete timepoints after removal from the animals. In 

vivo, injury effects are dynamic processes that are difficult to measure once removed from the 

subject. In addition, increased interest in spinal cord tissue has helped to create a base of known 

wavenumbers established in literature to compare measured signatures in Raman spectroscopy to 

previous work31–33. Unfortunately, there is a lack of biochemical information on in vivo spinal 

cords using Raman spectroscopy, resulting in databases on biochemical markers being 

incomplete for in vivo work.  

Using Raman Spectroscopy as a real time, in vivo measurement tool, this work measured 

chemical changes before and after contusion injury on the spinal cord tissue of rats. Surgery was 
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performed to expose the spinal cord by removing the dorsal half of the vertebrae and an impactor 

rod was dropped to simulate contusion injury. Three animals were used in injury testing, while 

three control animals only underwent the surgical procedure without the contusion injury. All 

subjects were scanned for a total of 5 hours after injury and spectra were compared to verify 

whether Raman spectroscopy could be used as an in vivo technique. Principal component 

analysis was used to visualize changes from injured to control animals, and wavenumbers that 

correlate to constituents within the tissue based on known tissue reactions to injury are discussed.  

 

Specific Aims 

Aim 1: Develop a method to acquire in vivo Raman spectra in spinal cord tissue over time for 

both injured and uninjured rats.   

Aim 2:  Compare the effects of contusion injury in spinal cord by location and time on in vivo 

Raman spectra to known literature of spinal cord injury. 

Aim 3: Compare changes in specific chemical groups from Raman spectra to known tissue injury 

response to determine early biological reaction in spinal cord tissue following contusion trauma. 
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Chapter 2: Materials and Methods 

2.1 Surgery and Animal Preparation 

The animal protocol used was approved by the Institutional Animal Care and Use 

Committee (IACUC) of Syracuse University in compliance with National Institute of Health 

(NIH) guidelines. All surgical procedures were performed in a sterilized surgical suite located in 

the Laboratory Animal Research (LAR) facility at Syracuse University. Six female Sprague 

Dawley rats, at weight range 250g to 330g, were purchased from Charles River laboratories and 

housed in LAR at least two weeks prior to surgery to acclimate to their environment. Unless 

specified, all materials were obtained by ThermoFisher. 

 Animals were anesthetized using a procedure standardized in LAR for rat surgery with 

approval by a certified veterinarian. After placing the animal into a sealed chamber, 5% 

isoflurane (Shopmetvet, Mettawa, IL) was allowed to flow for 2 minutes until animal responses 

were minimal. After initial anesthetization, the animal was removed from the chamber and a 

nosecone was used to continually flow 2% or 2.5% isoflurane throughout the procedure 

depending on the weight of the animal. The surgical area was shaved and sterilized using alcohol 

and betadine-soaked pads. A hot water therapy pump (Braintree Scientific, Braintree, MA) was 

used to regulate the temperature of the animal throughout the procedure and was placed at 37oC. 

The device was turned on prior to anesthetization to allow adequate time to reach temperature. 

All surgical tools were sterilized using a micro glass bead tabletop autoclave for 2 minutes per 

manufacturer instructions to ensure sterility before, during and for cleaning after surgery.  

 The locations of vertebrae T8, T9, T10 and T11 were verified through touch along the 

animal spine as both T8 and T11 spinal processes were more pronounced than surrounding 
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vertebrae. A final check was made to ensure deep anesthetization by tail pinch and blink reflex 

tests detailed in IACUC requirements. An approximately 1-inch long incision was made along 

the spinal column from T8 to T11 using a #10 scalpel blade (Fine Science Tools, Foster City, 

CA). A hole was cut into the fat layer beneath the skin using surgical scissors (Fine Science 

Tools, Foster City, CA) and blunt dissection was used to separate the muscle and fat layers; the 

fat layer was then cut and moved away from the surgical area. In parallel, incisions were made 

through each of the three muscle layers on either side of the spine.  Once more, the position of 

the spinal processes was used to verify the location of T9 and T10 by moving the back of the 

scalpel along the vertebral column; incisions were made perpendicular to the spine between T8 

and T9, T9 and T10, and finally T10 and T11. Muscle was gradually dissected using both 

surgical shears and a scalpel to expose bone. The dorsal layer of bone for T9 and T10 was 

removed to expose the spinal cord to a full length of at least 1 cm using Friedman-Pearson 

Rongeurs (Fine Science Tools, Foster City, CA). The area was cleaned using a saline spray and 

sterile cotton balls prior to scanning. After completion of the experiment, all animals were 

humanely euthanized under anesthesia through an overdose of 0.5ml pentobarbital (Sigma-

Aldrich) by intraperitoneal injection.  

2.2 Impactor Device 

 The injury model for a rat and all techniques for creating a contusion injury were 

developed by Rutgers University’s W.M. Keck Center for Collaborative Neuroscience division30. 

The contusion injury for all injured animals was produced using the Multicenter Animal Spinal 

Cord Injury Study (MASCIS) Impactor model III using the standard 3mm size impaction tip at 

12.5mm above the spinal cord. These parameters have been previously shown to induce a 
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moderate level of spinal cord injury. All animals were aligned beneath the impactor regardless of 

injury to ensure any additional factors in moving after surgery were accounted for. 

2.3 Micromotor Stage and Raman Alignment 

 In order to scan across the spinal cord of the animal, 

a programmable x-y stage was developed in the 

Hasenwinkel lab shown in Figure 1. An Arduino 

microcontroller, using a custom-built MATLAB script, 

was capable of controlling two separate stepper motors 

independently with steps as small as 10 microns. An 

additional fixed arm was attached in order to hold the 

Raman laser in place. The arm was placed on the 

stationary portion of the stage, allowing the stage to 

move beneath the laser. After the surgical procedure, 

the animal was carefully moved to the stage to avoid 

agitating the surgical area. Two vertebral clamps on the 

stage platform were attached to T8 and T11 to 

minimize animal movement during scanning. This 

also allowed the spinal column to be aligned in a 

single dimension to maintain scanning across the 

spinal cord. Both the stage and the MASCIS impactor were placed onto a table with black drapes 

placed on struts to prevent external light in the room from reaching the Raman laser. 

Figure 1: Diagram showing the X-Y stage with Raman 
laser above the animal clamps. The black box is the 
Raman laser housing, with the silver cable supplying 
the laser and the black cable connecting to the 
detector. The moveable stage is controlled by an 
Arduino micromotor to move beneath the laser 
housing without changing the laser position.    
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 To verify weight-drop location on the cord, the top of the stage was modified to include a 

rail that extended out underneath the MASCIS impactor. The Raman laser was focused manually 

before the animal was carefully moved along rails attached to the stage until underneath the 

MASCIS impactor. Three positions were determined at this time along the spinal cord in 

reference to where the impact of the weight occurred, denoted as position A, towards the rostral 

end of the animal, position B, on the center of the weight drop, and position C, towards the 

caudal end of the animal as depicted in Figure 2.  Both positions A and C were located a distance 

of 1-millimeter away from the spinal column on either side to avoid potential overlap with bone, 

where the approximate distance for position B would be centered between positions A and C to 

determine drop location. Once the positions were determined, the animal was returned along the 

rail to the stage and secured. The Raman laser spot size was re-verified before beginning the 

scanning process.  

Figure 2: Schematic of experimental injury. 1). Spinal cord before injury and the normal scan path of control experiments. 2). 
Approximate impact site of the injury. 3). Spinal cord after contusion injury. Darkened area shows the immediate vicinity of 

impactor drop. Each position was scanned for 5 minutes before spending 5 minutes moving to the next position beginning at 
position A. After all points are scanned the laser returned to its starting position. 

2.4 Raman Scanning Method 

 After verifying the positions on the cord, all light sources were turned off and the room 

was made dark with the exception of a monitor to see live Raman spectra acquisition. A black 

- Position A

- Position B

- Position C

- Laser Path

- Impact Site
1 2 3
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tarp was placed over the animal, stage and impactor to ensure as little exterior light as possible 

reached the Raman detector. In order to maintain equal scanning times for each of the three 

positions along the spinal cord and avoid potential burning from prolonged exposure, a set scan 

time of 25 minutes was used for one complete scan and can be visualized in Figure 2. Within this 

timeframe, the detector remained on one position, beginning with position A, for 5 minutes. The 

stage was then moved over the course of five minutes to the next location to scan across the 

distance between position A and B. Upon reaching position B the stage was stopped for 5 

minutes of scanning with the process being repeated for the distance between positions B and C. 

Once the scanning process was complete, the stage returned to the initial position and the animal 

was monitored to ensure adequate hydration of the injury site as well as continued respiration 

and anesthetization were maintained throughout the procedure. This procedure was completed a 

total of 10 times for all animals over the course of five hours. 

2.5 PV[O]H Algorithm and Hematocrit Mapping 

 A specialized algorithm developed by Dr. Joseph Chaiken’s lab was used to determine 

hematocrit levels in the spinal cord during Raman scanning. All backscattered light is created 

using a near infrared laser and can be categorically separated into two states: elastically scattered 

light (EE) equivalent to Rayleigh light scattering where no energy is lost between collection and 

collected light with a wavelength shift denoted as inelastic light scattering (IE). We modeled the 

spinal cord as a three-phase system consisting of red blood cells, plasma volume and static 

tissue, and also assumed that the tissue had no voids. Based on the optical scattering of those 

features, volume fractions of these characteristics can be developed as shown in Chaiken et. al.34  

Hematocrit (Hct) was defined as shown in equation 1, with red blood cell volume fraction (𝜙𝑟) 

defined in equation 2 and plasma volume fraction (𝜙𝑝) shown in equation 3.  
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1. 𝐻𝑐𝑡 = 𝜙𝑟/(𝜙𝑟 + 𝜙𝑝) 

2. 𝜙𝑟 = 𝑎 + 𝑏 (
𝐸𝐸

𝐸𝐸0
) + 𝑐(

𝐼𝐸

𝐼𝐸0
) 

3. 𝜙𝑝 = 𝑑 + 𝑒 (
𝐸𝐸

𝐸𝐸0
) + 𝑓(

𝐼𝐸

𝐼𝐸0
) 

The six parameters, a through f, are values determined from previous results on capillary blood 

in skin34,35. A dialysis device known as CritLine, an FDA approved gold standard measurement 

for hematocrit, was previously used to calibrate the algorithm. 𝐸𝐸0 and 𝐼𝐸0 were determined as 

the initial elastic and inelastic scattering acquired during the first Raman scan of an experiment.  

 To obtain a better understanding of the hematocrit of the spinal cord after surgery, the 

laser was scanned across both spinal cord and surrounding tissue to create a map of hematocrit in 

the area. No two points are scanned twice to avoid overlap and artificially increasing the amount 

of signal detected. Additionally, only muscle, bone and spinal cord were ever scanned, 

precluding fat and skin.                       

2.6 Raman Device and Post-Processing 

 The spectroscopic measurements employed a modified commercial Raman spectrometer 

(Lambda Solutions, Waltham, MA). The rest of the optics and filtering was standard for Lambda 

Solutions probes but there was an additional Raman notch filter (Semrock, Rochester, NY) 

placed between the collimating lens and the grating to allow adjustment of the elastic signal (EE) 

and inelastic signal (IE) for optimum range in the hematocrit calculation. A standard Raman 

normal incidence probe having a focal length of 1 cm was used with an effective numerical 

aperture of ≈0.13 and the smallest spot size was ≈100 m. The entire surgical field and in 

particular the point where light contacts the tissue was kept moist in order to prevent burning 
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during extended exposures. The exterior surface was contacted directly with 80 mW of 

continuous-wave light at 830 nm.  

Raw spectra were cropped to the fingerprint region of organic molecules (400 cm-1 to 

2400 cm-1) to visualize changes in the spinal cord. To remove additional noise and accentuate 

Raman peaks, a ‘101-7’ arbitrary baseline correction was applied to each Raman spectra. A 101-

point adjacent average of the raw spectra was obtained and subsequently subtracted from the 

original dataset. In addition, a 7-point average smoothing is applied to remove any excess high 

frequency noise inherent in the sample. The result can be seen in Figure 3, where Figure 3B 

shows differences in relative peak height across all time scans. 

 

2.7 Spectroscopy Data Analysis 

 In order to compare peaks among samples, a baseline sample was needed to account for 

animal specific changes and surgical trauma in the spinal cord. For all experiments, an initial 

Raman scan was acquired prior to injury to serve as a ‘pre-injury’ internal control. All 

subsequent spectra and peaks were analyzed by subtracting the pre-injury spectrum from each 

timepoint spectrum. Peak analysis was performed both qualitatively and quantitatively based on 

                                         

       

 

      

      

      

      
        
         
         
         
          
          
          
          
          
          
          

                 

                                         

      

 

     

     

     

     

        
         
         
         
          
          
          
          
          
          
          

                 

  

Figure 3: Example of Raman signal post-processing. A). Raw Raman spectra of scans for position A on an injured animal. Note 
the decrease in signal over time that can be attributed to fluorescence of the spinal cord. B). Raman data after 101-7 smoothing 
and dark current subtraction. 
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peak area. Relevant peaks were determined based on relative visual changes seen among spectra 

as well as peaks identified in literature. Peak area was determined by a change in inflection; 

when one curve reached an inflection point from the previous peak, this point was considered the 

beginning of the curve for the area. Through this method, each of the positions on the spinal cord 

and each experimental group were analyzed separately. Specific wavenumbers were chosen as 

representative peak area assignments.  

 To determine full group comparison from injured to uninjured, Principle Component 

Analysis (PCA) was performed on both datasets. PCA is a method in which correlated variables 

are orthogonally transformed to create a new set of variables based on the variance of the data. 

These new variables, known as Principle Components, can be used to reduce the dimensionality 

of larger datasets by combining similar variables together and is a common method of both 

visualizing and analyzing Raman spectra in literature36–38. Due to the size of the dataset, single 

value decomposition (SVD) was used.  This is a common method of determining principal 

components of non-symmetric matrices. SVD uses a rectangular matrix, defined here as An x p 

where n is the number of rows and p is the number of columns, and through Single Value 

Decomposition theorem states that:  

4. 𝐴𝑛𝑥𝑝 = 𝑈𝑛𝑥𝑛𝑆𝑛𝑥𝑝𝑉
𝑇
𝑝𝑥𝑝 

 

where UTU and VTV are orthogonal matrices, the columns of U are left singular vectors, S 

corresponds to the same dimensions as A and contains the single values along its diagonal, and 

VT contains the rows that are right singular vectors corresponding to U. To determine the SVD, 

both eigenvalues and eigenvectors are needed from AAT and ATA; the columns of AAT 

correspond to the columns of U and the columns of ATA correspond to the columns of V. For the 
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single values in S, these values are composed of either AAT or ATA eigenvalues returned as 

square root values. From SVD theory, the matrix S can be equated as shown in equation 5. 

5. 𝐴𝑉 = 𝑈𝑆𝑉𝑇𝑉 = 𝑈𝑆 

Eigenvalues and eigenvectors determined by using the covariance matrix of A are used to form 

the various components of the PCA. Equation 6 shows the covariance matrix definition of a 

symmetric matrix, but since the matrix used is non-symmetric, the definition of A is substituted 

from equation 4 to produce equation 7: 

6. 𝐶 =
𝐴𝑇𝐴

(𝑛−1)
 

7. 𝐶 =
𝑉𝑆𝑈𝑇𝑈𝑆𝑉𝑇

𝑛−1
= 𝑉 (

𝑆2

𝑛−1
)𝑉𝑇 

Where C is the covariance matrix for matrix A 39,40. Given that we have the solution to matrix S, 

V and VT, it is possible to solve for the covariance matrix. For this work, 3 principle components 

were chosen to describe nearly 100% of the variance in the data.  

2.8 Statistical Analysis 

 Statistical analysis was performed using R studio (version 1.1.383, October 9th 2017). 

Comparison between peak area for both subtraction spectra and PCA peak area was performed 

using one factor ANOVA and unpaired Student’s t-test respectively. PCA was performed using 

the prcomp function built in R with additional analysis using the built in R library, factoextra, 

corrplot, and FactoMineR extensions. Contributions of the variables to the principal components 

was determined using one factor ANOVA. Unless otherwise stated, all test significance was set 

at p<0.05.  
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Chapter 3: Results 

3.1 Verification of Real-Time Raman use on Spinal Cord 

 In vivo Raman spectra were successfully acquired using live Raman spectra methods. To 

verify Raman acquisition was based on spinal cord tissue and not surrounding tissue, samples 

were compared to previous work performed in the lab as shown in Figure 4. Representative 

spectra for this study are shown in Figure 4a, Figure 4b shows spectra acquired from organotypic 

slice cultures of mouse spinal cords. Despite differences in preparation and scanning location, 

similarities across both graphs can be seen. Peak numbers of approximately 1445cm-1, 1300 cm-

1, 950 cm-1, and 700 cm-1 can be compared across all samples; where additional peaks not present 

are due to differences in white and grey matter spectra33.  
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Figure 4. Graphic depiction of Raman spectroscopy for spinal cord from various sources. A). Representative sample  
taken from current work. Grey lines are indicative of peaks that either correlate with the other sources or peaks that  
are unique. Data truncated to 1800 cm-1 to visualize spectrum compared to other graphs. See table 1 for peak  
assignments and values. B). Previous lab Raman data depicting peaks obtained from organotypic slices of artificial cerebrospinal 
fluid infused tissue. Images were taken perpendicular to dorsal section of spinal cord compared to other graphs. Graph B shows 
comparable peaks compared to graph A. Graphs B was modified from source 25.     
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 Directly after surgery, redness could be seen on the spinal cord attributed to irritation 

from removal of dorsal section of the vertebral column, however this discoloration receded in 

both controls and injury samples before initial Raman scans. During surgery, no significant 

changes were observed in spinal cord morphology due to Raman laser exposure or exposure to 

environmental conditions. Occasional hiccups from animals did cause some small perturbations 

in Raman acquisition that were removed prior to final Raman spectra plotting. These hiccups 

were believed to be simple autonomous reactions due to the anesthesia and were considered 

inconsequential. Fluid buildup was apparent in both control and injury samples from an unknown 

source; however, no change in the Raman signal or any signs of detrimental effects on the 

surrounding tissue were observed and the fluid was believed to be residual saline. After surgery, 

exposed spinal cords were lightly cleaned of excess fluids with sterile tissue paper. 

 

3.2 Assignment of Raman Peak Values 

Raman spectra bands were acquired and processed as previously described. Peak 

wavenumbers were assigned to represent a range as shown in the grey boxes from Figure 4A. 

Peak definition was determined based on previous work performed in the lab as well as areas in 

which changes were apparent from first scans to last. Peak area was determined by comparing 

inflection points in the data where curves would intersect to allow unbiased peak ranges. This 

enabled more focused definition of wavenumber ranges and the ability to obtain quantitative 

values for peak area reliably. Peak assignments can be seen in Table 1. Biochemical group 

assignments were based on Raman sources to biochemical markers relevant to spinal cord tissue.  
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Peak Wavenumber 

(cm-1)  

Biochemical 

Assignment 
Reference Number 

426 Cholesterol, Serine 41 

581 Phosphatidylinositol 41 

662 Bicarbonate, Tyrosine 41–44  

873 saccharide (β) 29,41 

953 Phosphorylation 45 

989 Phenylalanine 33,46 

1072 Lipids 46,47 

1189 Lipids 46,47 

1298 Amide III 33,41 

1385 Nucleotides 32,46 

1439 Lipids 32,41,46,47 

1666 Amide I 5,29,32 
Table 1: Peak position and assignments of Raman spectra from in vivo spinal cord measurements from 400 cm-1 to 2400 cm-1. 
Reference numbers refer to the biochemical assignment source.  

 

3.3 Change of Raman Spectra Over Time 

 In order to obtain quantifiable changes over time, a subtraction spectrum was 

acquired in each of the tests performed. Subtraction spectra are determined by subtracting each 

subsequent Raman spectra in a single position from the first scan performed. In this case, the first 

spectrum of each subtraction is before the contusion injury for the injured animal cases to create 

an animal specific baseline. 

To determine proof of concept that Raman spectroscopy can detect changes over time in 

in vivo spinal cord tissue, a comparison of control subtraction spectra and injury subtraction 

spectra of each timepoint was performed. Subtraction spectrum of each animal for all timepoints 

and locations were created to verify if these changes were consistent among both control and 

injured animals. Using the methods described above, two graphs can be seen in Figure 5 of 

differences occurring over the time course of the scan, with the top graph in Figure 5 
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representing unaltered Raman data and the bottom graph representing subtraction spectra of the 

same data. Qualitatively, the majority of peaks obtained in the subtraction spectrum are not the 

same as the initial scan with peaks tending further from zero, the point at which a spectrum 

would match the pre-injury scan, as time increased. Representative samples of each spectra can 

be seen in Figure 6 for injury and Figure 7 for control. Like the results shown previously, the 

injury animal shows changes away from zero in spectra at all positions with a pattern tending 

toward larger peaks over time. In control samples a likewise effect can be seen, however, initial 

scans appear to remain closer to zero than in injury scans and changes become more pronounced 

over time. The later timepoint spectra could be attributed to environmental factors and trauma 

due to surgery but were not examined in this study, however the lack of early peak changes that 

are present in the injured animals a possible change due to the contusion injury. 
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Figure 5: Representative image showing changes in spinal cord over time. Top graph shows Raman spectrum of injured spinal 
cord over 5-hour scan. Bottom graph shows subtraction spectra from top graph pre-injury spectra. Note that the final timepoint 
is the greatest change in many peaks but that is not true of all the peaks showing changes occurring throughout the procedure. 
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Figure 6: Representative image showing changes in spinal cord of injury using subtraction spectra with respect to each position 
on the spinal cord. Spectra are acquired by subtracting each timepoint spectra from the pre-injury spectra acquired before 
contusion injury. Dotted black line is representative of zero, where values on that line show no difference from the pre-injury 
spectrum, indicating no change over time. Qualitatively, all peak wavenumbers from table 1 change with respect to the initial 
scan for all positions.  
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Figure 7: Representative image showing changes in spinal cord of control animals using subtraction spectra with respect to each 
position on the spinal cord. Dotted black line is representative of zero, where values on that line show no difference from the 
pre-injury spectrum, indicating no change over time. Qualitatively, for all 3 positions, the 30 minute timepoint denoted by the 
solid black line is closest to the dotted line, with subsequent timepoint curves changing similar to Figure 5. 
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To quantify the differences, the peak area under each timepoint curve was calculated, an 

average was determined, and ANOVA was performed comparing injury subtraction spectra to 

control subtraction spectra; significance comparing peak area for multiple wavenumbers is 

shown in Table 2. Position A shows significance at both the bicarbonate and Amide I 

wavenumbers, while position C shows significance at C-C lipid bending, indicating the 

possibility that an increase in bicarbonate and a decrease in protein formation is occurring 

towards the rostral end of the animal while a possible increase in lipid formation is occurring 

towards the caudal end. Position B shows a greater degree of significance across multiple 

wavenumbers indicating possible cell infiltration into the area (DNA), decrease in protein 

formation (Amide I and III), an increase in lipid formation (C-C lipid bending) and an increase in 

tyrosine concentration likely indicative of regulating ion channels after injury6,29,48. The greater 

degree of significance in position B is highly indicative of changes due to the contusion injury, 

showing that changes in response to the injury can be successfully acquired using Raman 

spectroscopy technique; however, the high similarity of peak change over time in control animals 

compared to injury indicate that either environmental effects, the surgical procedure, or the 

Raman laser itself may be causing unknown injury to the tissue compared to healthy cord. 
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Differences between Control and Injury Area p-values 

Peak (cm-1) Assignment Change Position A Position B Position C 

426 Serine  0.17 0.38 0.41 

662 Bicarbonate, Tyrosine  0.016 0.20 0.40 

1072 C-C Lipid Bending  0.94 0.045 0.045 

1189 Lipid  0.85 0.050 0.43 

1298 Amide III  0.96 0.045 0.44 

1385 DNA  0.95 0.050 0.42 

1439 CH2 Lipid Bending  0.88 0.060 0.41 

1666 Amide I  0.010 0.012 0.48 

Legend: p>0.05 0.05≥p 

Table 2: Comparison of subtraction peak area wavenumbers between control and injury animals. Significance is determined at 
p<0.05 and was performed by ANOVA. Red coloring indicates non-significance of a wavenumber at a position. The majority of 
significance is found at position B, at the site of injury, while few wavenumbers at positions A and C show differences.  
 

3.4 Principle Component Analysis  

 Principle Component Analysis (PCA) was performed to further examine the effect time 

has on changes in the spinal cord and to observe possible changes that may be occurring between 

injury and control animals as shown in Figures 5 and 6. Due to the quantity of variables and high 

similarity among the timepoint scans, data was compiled into two sets of injury and control for 

each n=3 to observe variance of each position across all timepoints. Raman spectrum data was 

used from 400 cm-1 to 2400 cm-1.  

To capture greater than 99% of the variance in the data, three components were created 

for both control and injury data. Representative graphs of the averaged principal component 

analysis loading for both groups are shown in Figures 8-10. Loading graphs are measures of the 

importance of a wavenumber on the original data, with greater magnitudes indicating greater 

influence. Each position was compared between the two groups and peak area was calculated 
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using student t-tests at p<0.05. Significance results are shown in Table 3 for each position and 

component. For component 1, much of the variation in the data closely follows that of the normal 

Raman spectrum for both injury and controls. Significant variations in the peak areas of position 

C can be seen, but only a single instance of significance at 662 cm-1 is shown at position A and 

no significance can be seen at position B. 662 cm-1 for position A is attributed to tyrosine in this 

case that also shows a Raman peak in spinal cord tissue at this wavenumber41,46. For position C, 

581 cm-1 is indicative of phosphatidylinositol, a lipid present in spinal cord tissue, while 1072 

cm-1, 1189 cm-1, 1385 cm-1, 1439 cm-1 and 1666 cm-1 are represented as described previously in 

Table 1.   

 Component 2 shown in Figure 9 shows large changes in injury compared to control 

animals among many peak areas. 1072 cm-1, 1189 cm-1, 1298 cm-1, 1385 cm-1, 1439 cm-1 are 

likely indicative of lipids, DNA and protein concentration changing due to increased cell 

migration to the injured cord6. Unlike previously in component 1, the double peak indicated by 

662 cm-1 is attributed to bicarbonate ions due to their well-known peak profile and relatively 

high concentration in spinal cord cerebrospinal fluid44,49. The 873 cm-1 peak shows change in 

saccharides while the 953 cm-1 peak is a possible indicator of phosphorylation of proteins33,45,48. 

While position B only shows significance at 662 cm-1 and 953 cm-1, many of the other 

wavenumbers show near significance; position A shows similar near significance at many of the 

shorter length wavenumbers. Position C shows high similarity to the previous component, with 

levels of significance across a majority of the wavenumber peaks.  
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Figure 8: Graphs depicting the first principal component at each position for both injury and controls. A). Principal component 1 
for position A. B.) Principal component 1 for position B. C.) Principal component 1 for position C. While all graphs qualitatively 
show high similarity between injury and control, changes in peak amplitude at multiple wavenumbers can be seen.  
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Figure 9: Graphs depicting the second principal component at each position for both injury and controls. A). Principal component 
2 for position A. B.) Principal component 2 for position B. C.) Principal component 2 for position C. Large fluctuations in peak 
loading amplitudes can be seen throughout all positions. This is primarily due to a single injury animal affecting the loading 
curves, however, significant results can still be seen as shown in table 3. 
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Figure 10: Graphs depicting the third principal component at each position for both injury and controls. A). Principal component 
3 for position A. B.) Principal component 3 for position B. C.) Principal component 3 for position C. Graphs A and B injury curves 
show specific peaks at 953 cm-1, and 1439 cm-1. Graph C shows greatly reduced peak amplitude for the injury curve compared to 
positions A and B.  
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Table 3: Peak area comparison between injured and control principal component analysis wavenumber loadings among all 
positions. Significance was determined at p>0.05 and areas were compared by unpaired student t-tests. Green colored cells 
indicate significance while red colored cells indicate a lack of significance.  

Component 3 shows an increase in injury curves at three peaks at for position A: 953 cm-

1, 1298 cm-1, and 1439 cm-1. The 953 cm-1 peak is attributed to additional phosphorylated 

proteins caused by the injury and is also present at position B. The presence of both 1298 cm-1 

and 1439 cm-1 peak structures are suggestive of additional amide I and lipid formation. Position 

C shows lower magnitude peaks at 953 cm-1 while maintaining a peak at 1439 cm-1, however the 

1298 cm-1 peak is no longer significant, and an additional significance is found at 1666 cm-1 

indicative of amide III.  

Based on the orthogonal nature of each principal component, the results can be depicted 

as describing altogether different compositions within the spinal cord based on each component. 

The high similarity of the first component wavenumber amplitudes to those of the original data 

suggest that the first component is likely depicting static tissue. The amount of variance depicted, 

~ 95%, in the first component also explains this as the majority of the spinal cord being 

measured would be tissue. The second component is believed to be cerebrospinal fluid. The 

presence of the double peak in the data shown at 662 cm-1 indicative of bicarbonate is explained 

by the high concentration of bicarbonate in spinal fluid44,50. Additionally, the presence of 

Principal Component Analysis Table of Peak Area Significance between Injury and Control
Component 1 Component 2 Component 3

Wavenumber (cm-1) Position A Position B Position C Position A Position B Position C Position A Position B Position C

426 0.76 0.96 0.55 0.022 0.092 0.031 0.79 0.22 0.19

581 0.18 0.088 0.034 0.072 0.10 0.059 0.85 0.94 0.80

662 0.042 0.21 0.18 0.068 0.050 0.014 0.70 0.21 0.70

873 0.16 0.16 0.075 0.064 0.063 0.046 0.12 0.24 0.30

953 0.45 0.61 0.56 0.021 0.050 0.024 0.0065 0.036 0.36

989 0.33 0.17 0.050 0.10 0.057 0.337 0.39 0.55 0.057

1072 0.22 0.13 0.0049 0.10 0.062 0.033 0.25 0.57 0.024

1189 0.35 0.24 0.0073 0.16 0.098 0.031 0.74 0.33 0.22

1298 0.14 0.27 0.12 0.14 0.070 0.010 0.049 0.24 0.45

1385 0.17 0.13 0.018 0.12 0.12 0.034 0.12 0.37 0.17

1439 0.16 0.10 0.022 0.095 0.068 0.049 0.027 0.075 0.038

1666 0.27 0.18 0.039 0.087 0.058 0.072 0.31 0.94 0.0048

Legend: p>0.05 0.05≥p
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phosphorylation could also be explained by the presence of Tau proteins found in cerebrospinal 

fluid after injury50. The third component is likely explained by plasma; however, a relatively low 

amount of variance, less than ~1%, shows a high volume of noise compared to the other two 

components, making the exact composition difficult to discern. 

Due to the location of position C caudal to the injury site, it is likely that the extent of 

swelling was reduced compared to the rostral position, A, and the injury site, B. Previous work 

performed in rats at T10 showed that compression caused decreased blood flow of the injury and 

surrounding area and ischemia tended to expand into the rostral end greater than the caudal 

end51. This is likely the cause of decreased significance throughout components A and B due to a 

change in focal spot of the Raman laser from swelling of the tissue. Wavenumbers at 662 cm-1, 

953 cm-1, 1072 cm-1, 1189 cm-1, 1385 cm-1, and 1439 cm-1 are the most common peaks to show 

significance among components and positions. 953 cm-1 indicates high levels of phosphorylation 

among injury models compared to controls at all positions. 662 cm-1 shows decreased levels of 

tyrosine in component 1 for position A, while its change in component 2 is indicative of levels of 

bicarbonate ions in the injured area, likely originating from cerebrospinal fluid to regulate pH 

balance and astrocyte swelling in the area due to ischemia17,44,49,52. Significance of lipids in 

injury could be attributed to swelling of the surgical area. The Raman laser being used is fixed in 

position before the experiment begins; as swelling of the tissue occurs due to the inflammation 

response the amount of tissue being measured may change as mentioned previously. Primarily, 

the Raman signals represent white matter, the tissue in the central nervous system (CNS) rich 

with lipid content, due to penetration of the laser. Changes in measurement of lipids can be 

expected in position C due to little change in focal position affecting the amount of white matter 

being measured; as is seen at 1072 cm-1, 1189 cm-1, and 1439 cm-1 33. Positions A and B are 
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likely not measuring as many differences due to the focus of the laser changing. Amide I and III, 

denoted by 1666 cm-1 and 1298 cm-1 respectively, are well known vibrational bands 

corresponding to protein content in a sample. The presence and increase of these peaks indicates 

production of proteins, such as myelin and lymphocyte protein (MAL) and tau protein, that are 

known to increase during spinal cord injury33,53,54.  

 

3.5 Analysis of Timeline for Injury 

 Principal component analysis was also performed on each individual animal to visualize 

any trends that time may have during injury. The percent contribution of a timepoint to a 

component was used for both injury and control animals. Cosine squared values of the variance 

for each timepoint were used and percentages were calculated by dividing by the total variance 

to obtain percentage values. ANOVA was used to determine significance of a contribution to the 

sample; in all situations, values greater than 10% contribution were significant. A representation 

of the division of contributions for a sample can be seen in Figure 11, where the dotted red line 

indicates the 10% contribution limit. Values greater than this were counted for both injury and 

control animals at each position and the results can be seen in Tables 4 and 5 for cerebrospinal 

fluid and plasma respectively. Static tissue was not included as all timepoints showed equal 

contribution, resulting in no significant difference.   
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Figure 11: Representative graph depicting contributions of individual timepoints to an animal. Red dotted line indicates the 10% 
contribution level. Values greater than this were used to determine a trend in timepoint data for injury and control animals.  

 

Table 4 shows a tendency for injury timepoints to have significant contributions from 30 

minutes to 90 minutes and from 240 minutes to 300 minutes at all positions, while controls show 

a more randomized pattern including timepoints such as 120 minutes and 180 minutes. Injury 

position C also shows contributions at 150 minutes that may be due to different effects of 

ischemia on the location compared to positions A and B.  Table 5 shows far greater variation in 

timepoint contribution to plasma than compared to cerebrospinal fluid for both controls and 

injury animals. Though injury tends to have a greater number of animals that have significant 

contributions at the early, 30 minutes, and late, 300 minutes, timepoints, there are also many 

contributions that are shown throughout the timeline. In a similar manner, control contributions 

tend to show timepoints in a seemingly random pattern as before, though two animals show  
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Component 2 Timepoint Contributions 

Time (minutes) Injury A Injury B Injury C Control A Control B Control C 

30 1 2 2 1 2 1 

60 2 1 1 1   1 

90 1 2   1 1 2 

120         1   

150     2 2   1 

180         1 1 

210 1           

240 1 1 1 1 2 1 

270 1 2 2   1   

300 2 1 2 3     
Table 4: Count of significant contributions to component 2 each measured timepoint made to injury and control for each 
position. Significance, p<0.05, was determined by ANOVA of the squared cosine variance for each timepoint; >10% contribution 
was used. Injury shows grouping near early timepoint (30-90 minutes) and late timepoint (240-300 minutes) compared to 
controls at all positions. Green corresponds to all three animals contributing, yellow corresponds to two animals contributing, 
while red corresponds to a single animal contributing for ease of visualization.  

Component 3 Timepoint Contributions  

Time (minutes) Injury A Injury B Injury C Control A Control B Control C 

30 2 2 3 2   3 

60   1 1 1 2 1 

90 1 2 1   1 1 

120   1 1 2   2 

150 1       2   

180     1 2 1   

210 2 1 1   1 2 

240 2   1 1   1 

270 1 1 2 3 2 1 

300 2 2 1 1 2 1 
Table 5: Count of significant contributions to component 3 each measured timepoint made to injury and control for each 
position. Significance, p<0.05, was determined by ANOVA of the squared cosine variance for each timepoint; >10% contribution 
was used. Injury shows some grouping near early and late timepoints compared to controls, but a greater distribution of 
contributions at timepoints not seen in Table 4. Green corresponds to all three animals contributing, yellow corresponds to two 
animals contributing, while red corresponds to a single animal contributing for ease of visualization. 

 

significant contributions often in the time period of 120 minutes to 210 minutes compared to 

injury contributions. 

Though no significant conclusion can be made from this, trends do show that early and 

later timepoint contributions tend to affect the data greater than interim timepoints in injury 
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animals for all positions compared to controls. Injury cerebrospinal fluid shows the greatest 

difference from 30 minutes to 90 minutes and from 240 minutes to 300 minutes, while injury 

plasma also shows similar, if less pronounced, results on early and late timepoint contributions to 

the data; control timepoints tend to show a far more distributed contribution among the 

timepoints that, given the lack of substantial damage to the tissue, is expected from the lack of an 

immune response to injury.  

3.6 Mapping of spinal cord hematocrit  

 Raman spectroscopy also has applications in measuring both topographical information 

as well as hematocrit data for live tissue samples34,55. A single healthy animal was used to scan 

the Raman probe across the cord in a pattern designed to never scan over the same location twice 

to avoid bleaching effects of the laser. IE and EE taken from the scan were used as previously 

described to obtain apparent hematocrit levels of the spinal cord shown in Figure 12. Higher 

concentrations of apparent hematocrit can be seen at the approximate center of the spinal cord 

corresponding to the anterior spinal artery and extending capillaries56.  Lower levels of apparent 

hematocrit in the surrounding tissue can be attributed to distance from the Raman laser and not 

remaining in the field of focus. By visualizing apparent hematocrit levels in the spinal cord that 

correspond to known anatomy, the possibility of measuring changes in blood accumulation 

during injury is a future methodology that Raman spectroscopy may be capable of performing in 

in vivo spinal cord measurements.  
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Figure 12: Image of surgical field including spinal cord of healthy subject based on apparent hematocrit values determined by 
PV[O]H software for calculation of blood metrics35. Obtained in a scan trajectory designed so that no point can get probed twice, 
reducing overlap. Mapping shows possible application in determining rough concentration of blood volume before and after injury. 
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Chapter 4: Discussion 

 Raman spectroscopy is a strong analytical tool for examining the highly dynamic nature 

of living tissue. As mentioned, previous works have used the technique in avenues such as 

cancer detection23, determination of atherosclerotic plaque buildup26, ex vivo spinal cord tissue 

assessment of injury5,29, and measuring the brittleness of living bone24; however, to our 

knowledge, no work has been shown to use Raman spectroscopy to analyze changes in vivo of 

spinal cord injuries. This study presents a novel application of Raman spectroscopy to measure 

chemical and physical changes in the spinal cords of rats over time after the effects of a 

contusion injury to better understand the complex makeup of early SCI in vivo.  

 To start, we gathered multiple scans of 3 specific locations along the exposed spinal cord 

of female rats, one location towards the head of the animal, one in the center at the contusion 

drop location, and one towards the tail end of the animal as shown in Figure 2. This was done to 

observe any locational changes that could occur as an after effect of the contusion injury and to 

gather as much information about the spread of injury as possible. We show that, compared to 

the timepoint before injury, the location at the injury site shows the greatest amount of 

significant difference in the injured animals compared to controls. While this result agrees with 

our initial hypothesis, there were additional factors in both positions surrounding the injury site 

that warrant further discussion. The following will discuss the significant differences between 

subtraction spectra of injured and uninjured animals and the Raman assignments shown in 

Figures 5 and 6 and Tables 1 and 2, respectively.   

 At position A in the cord, we saw an increase at 662 cm-1 and 1666 cm-1 in injured 

animals compared to that of the uninjured controls. 1666 cm-1 is attributed to that of Amide I, a 

well-known marker of protein concentration. Its decrease could be attributed to swelling in the 
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area of the injured animals compared to uninjured, changing the concentration of the protein 

content being measured within the tissue as the Raman laser becomes unfocused. 662 cm-1 could 

be attributed to either tyrosine or bicarbonate ions in the area. Tyrosine has an identifiable peak 

at this point attributed to benzine ring deformation57 while bicarbonate normally has a very 

distinct double peak present representative of CO2 bending modes in the molecule44 but due to 

lower concentrations compared to tyrosine, especially in injured animals, it may not be easily 

visible50,58. The presence of significance in only position A for 662 cm-1 agrees with previously 

reported work previously that described swelling of tissue increasing further toward the head of 

the animal compared to that of the tail. As the swelling increases, tyrosine, a precursor to 

epinephrine and other essential neurotransmitters58, may be in higher concentrations than that of 

other locations in the cord around the injury. This hypothesis requires further testing.  

 At position B, many of the significantly different wavenumbers correlate with previous 

findings on spinal cord injury. Previous work performed in our lab29 showed significant changes 

at 1666 cm-1, 1385 cm-1, 1189 cm-1,  and 1072 cm-1 corresponding to the results shown in this 

work. Interestingly, 1298 cm-1 was investigated previously, but did not show significant changes 

4 days after injury; this result could be due in part to the length of time being measured or the 

type of injury, hemi-section incision compared to contusion, being performed5. The presence of 

lower concentrations of amide I and amide III, 1298 cm-1 and 1666 cm-1 respectively, may be an 

indication of reduced protein concentration in the injury area similar to the previous instance at 

position A. Increases in 1385 cm-1 are likely due to increased cell infiltration into the injured site 

as part of the wound response. The increases at 1189 cm-1 and 1072 cm-1 are attributed to lipid 

content in the sample. Previously, lipid content was shown to decrease in relation to 

demyelination at the injury site after SCI due to the high lipid content of myelin29, however its 
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increase may be due to cell infiltration similar to increases in DNA concentration at 1385 cm-1. 

Position C shows only one instance of significant difference from injured to uninjured animals at 

1072 cm-1. This difference may be due to lipid concentration. The lack of additional significant 

lipid peaks at any other wavenumber make this result likely to be that of cholesterol 

concentration47.  

 Overall the changes in the spinal cord measured by Raman spectra show similar bands to 

those previously reported in literature5,29, though differences in methods warrant further 

discussion. One major observation in using live, in vivo Raman spectroscopy is the high 

similarity in intensity between that of the control spectra and injured spectra. Control spectra 

show a determinedly monotonic increase over time at each position compared to that of the 

injured spectra that show increases, but not to the same extent. A possible result of doing live 

experiments may be that the Raman laser itself is causing damage to the tissue over time, 

resulting in the changes seen. Additionally, exposure to an open environment and subsequent use 

of anesthesia may also be affecting results. While these factors were not accounted for, it was 

still observed that changes at the injury site and in nearby locations could be determined, 

indicating that Raman spectroscopy can be used as a method to determine changes in rat spinal 

cords in vivo as a result of contusion spinal cord injury.  

 Principal component analysis was performed to measure changes in the cord that were 

not seen with the subtraction spectra analysis. Principal components can be used to segregate the 

data into separate orthogonal components that can be characterized into different aspects of the 

spinal cord composition. In our case, we chose the first principal component to symbolize static 

tissue, the second component to symbolize cerebrospinal fluid, and the third component to 
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symbolize plasma based on the percent composition of each component and general physiology 

of the spinal cord.  

 Static tissue shows a high similarity to the original spectra for both the control and injury 

spectrum at each location. This helped to choose static tissue as the primary source for this 

component. In comparing injured to control spectra as seen in Table 3, both position A and 

position B show little significant change from control to injured spectra, however, position C 

shows many significant wavenumbers. This change may be caused by blood flow from the 

rostral to caudal areas. Previous work performed by Farrar et. al. showed that blood flow along 

the dorsal half of the spinal cord flows from the head of the animal towards the tail while at 

interspaced locations throughout, additional flow is seen radially along the spinal cord59. As 

injured tissue constituents flow from position A and B towards position C, additional changes in 

the injured spinal cords compared to control spinal cords could be observed. Additionally, due to 

expected reduced swelling in the area51, laser penetration of position C compared to positions A 

and B is possible. The experimental procedure did not account for additional swelling in the cord 

at different locations, as the laser was set before injury and its height was never changed through 

the course of the experiment. As such, changes in the spinal cord height due to swelling were not 

accounted for, and the laser focal point would change over time as the spinal cord would swell. 

Since position C is expected to have the least amount of swelling compared to positions A and B, 

it is likely that changes can be attributed to both flowing constituents towards the site and 

appropriate laser focusing.  

 The second component corresponding to cerebrospinal fluid shows high levels of near 

significance across nearly all wavenumbers for all positions. The primary rational for choosing 

cerebrospinal fluid comes from the addition of a double wavenumber peak appearing in the 
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loading spectra at 662 cm-1. This wavenumber is a very well defined peak type corresponding to 

bicarbonate, a compound found in high concentrations within cerebrospinal fluid44,50. During 

injury, it is also known that increases in bicarbonate levels can be seen and affect both the ion 

balances in neuronal function and astrocytic neurotransmitter functions52. The presence of a peak 

at 953 cm-1 is also taken into account, as this peak is considered to be an indicator of 

phosphorylation, a process commonly seen within cerebrospinal fluid occurring at serine and 

threonine sites on tau proteins47,54. In addition, the high level of near significance for most 

wavenumbers shown in cerebrospinal fluid at each position may indicate that a large amount of 

early spinal cord injury changes are occurring in the interstitial fluid between static tissue. This is 

logically sound, as immediately after injury, cell constituents from necrotic damage from the 

contusion injury will be released into the interstitial space comprised of cerebrospinal fluid. 

Additional ions contained in the fluid will begin to “leak” into the tissue due to damage, resulting 

in a complex cascade of events resulting in the secondary phase of spinal cord injury6,50,54.  

 The third component we measured is attributed to plasma and additional changes not 

presently shown in either static tissue or cerebrospinal fluid. The primary rationale for this 

assignment is the expected volume of plasma in the space compared to the other two components 

and its contribution, as the third component, comprises less than 1% of variance in the data. This 

results in a high amount of noise in the data to compare, though some wavenumbers corroborate 

this result. Thrombin, an important enzyme used in clotting of blood through conversion of 

fibrinogen to fibrin, is known to have Raman spectra peaks at 1439 cm-1, 1666 cm-1, and 1298 

cm-1 60,61. These wavenumbers all correspond to significant peaks seen in plasma, though not in 

every position. The lack of ubiquitous significance across the positions may be due to the high 

level of noise or possible presence in control animals due to the surgical procedure.   
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 Additionally, measurement of the contributions each timepoint had in relation to 

cerebrospinal fluid and plasma from the principal component analysis for both injury and 

controls are shown in Tables 4 and 5 with static tissue omitted as the contributions from time 

were nearly uniform. Each of the animals measured, n=3 for injury and n=3 for control, were 

used and timepoints contributing at least 10% to the component were retained. This method was 

used to find possible trends that may be occurring in both controls or injuries with regards to 

when the greatest contributions to the data were being observed. For cerebrospinal fluid, there 

appeared to be a trend that showed clustering of the data at early timepoints, comprising 30 

minutes, 60 minutes and 90 minutes, and for later timepoints, at 240 minutes, 270 minutes and 

300 minutes for injury animals. Control animals did not show any specific trend, showing a more 

random distribution of occurrences. Due to the lack of a specific injury in control animals the 

non-specific grouping of timepoint contributions is a logical outcome. It needs to be mentioned, 

however, that for many cases only a single animal was counted at specific timepoints for a 

location regardless of injury or control. Despite this, future experiments can benefit from 

focusing on both early and late timepoints during injury specifically for confirmation that these 

timepoints show the greatest effects on cerebrospinal fluid change. Measurements were also 

performed for plasma shown in Table 5, however, no clear pattern was discerned from these 

results. Whether a factor of the low contribution of plasma to the data or low signal to noise ratio 

is unknown.  

 A final measurement was used to determine if Raman spectroscopy could be used to 

measure the apparent hematocrit of a live, in vivo rat spinal cord. IE and EE measurements were 

able to simulate hematocrit levels across the surgical area and could be used to represent blood 

concentration levels within the spinal cord35. As mentioned previously, the red measurement 
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shown in Figure 11 is attributed to the anterior spinal artery running longitudinally along the 

spinal cord. Measurements were acquired using a pattern that scanned the whole surgical area 

without scanning over a location twice to avoid oversampling. While blood may have pooled in 

muscle tissue surrounding the cord, a drop in hematocrit levels from the spinal cord shadow in 

Figure 11 to the outer fringes can be seen, denoting changes in Raman spectra elastic (EE) and 

inelastic (IE) scattering. These results are only performed on a single, uninjured animal, 

however, and additional testing and range acquisition for hematocrit levels are needed to confirm 

the use of Raman spectroscopy as a measure of hematocrit in live rat spinal cords. Additionally, 

future tests are needed to verify if changes to blood flow can be acquired in injured animals over 

time. Total acquisition time for a hematocrit scan is approximately 30 minutes depending on the 

size of the open surgical area and portion of the spinal cord being measured. Measurements 

similar to those taken previously from other experiments in this thesis showed similar timescales, 

indicating long timescale measurements of hematocrit levels in the spinal cord after injury are 

possible. If performed, additional information into localization of blood concentration after 

contusion injury can be measured and movement of blood concentration during inflammation 

and healing could be an outcome.  

 This thesis set out to achieve three separate goals. The first was to develop a method to 

acquire Raman spectra on live, in vivo rat spinal cords. By comparing the measurement of 

Raman spectra acquired to previously published work, high similarity in peak location and 

wavenumbers could be seen in both control and injured animal data. Second, we set out to 

compare the effects of contusion injury in spinal cord by location and time on in vivo Raman 

spectra to known literature of spinal cord injury. Comparing both previous work on spinal cord 

injury using Raman spectra for ex vivo tissue as well as the known immune response to spinal 
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cord injury in vivo, results were able to verify that changes that were occurring in injured tissue 

were consistent with those expected due to spinal cord injury. In addition, it was found that 

cerebrospinal fluid changes are highly dynamic in the timescale immediately after injury, 

warranting further examination of the interstitial fluid within spinal cord physiology. This also 

helps to confirm our third goal of comparing changes in specific chemical groups from Raman 

spectra to known tissue injury response. We can see that changes in bicarbonate levels and 

phosphorylation levels not previously seen in ex vivo Raman tissue measurements can be 

acquired using our in vivo method. While the majority of this work acts as a pilot study, the 

results show great promise that additional work using Raman spectroscopy will find changes 

throughout timescale of the injury process.  

Chapter 5: Conclusions 

 In conclusion, we demonstrated that Raman spectroscopy can be used in an in vivo 

surgical environment on live rat models. Measurements collected from the Raman spectra 

correlate with known spinal cord injury spectra both from our own previous lab experiments and 

in Raman spinal cord injury literature. To our knowledge, we are the first to demonstrate use of 

Raman spectroscopy on a live, in vivo spinal cord. Both control and injury animals were used to 

measure the effects of contusion weight drop on rat spinal cords. Some changes that are shown in 

both control and injured animals appear to be similar in spectra, indicating that additional, 

unaccounted damage is occurring. It is hypothesized that these changes may be due to the 

surgical procedure, the environmental exposure of the tissue, or the Raman laser itself. Despite 

these artifacts, however, we saw measurable changes between those of injured and control 

animals attributed to changes seen in cerebrospinal fluid and plasma shown in spinal cord injury 

literature. Additionally, use of the Raman scanning method was demonstrated to have possible 
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applications in measuring hematocrit levels in spinal cords using previously demonstrated 

software. Overall, these data and methods contribute to the use of Raman spectroscopy as a 

measurement tool for in vivo injury particularly in the area of spinal cord injury and a viable 

technique to measure early timepoint changes due to contusion injury.  

Chapter 6: Future Work 

 Additional work in perfecting the methodology of acquiring Raman spectra is required 

for future experiments. Manual focusing of the laser after impact required movement of the laser 

from its initial z plane height, adding variability to the final focal position of the laser during 

scanning. By automating the laser focus with a micromotor, similar to the stage used to move the 

animal, the laser position could be focused initially, the location recorded, and the laser height 

changed to allow movement of the animal freely without the laser being removed and reattached. 

In this same vein, automation of moving the impactor rod would also eliminate the need to move 

the animal along the rails used to align the rod with the spinal impact site. This would also 

require having the impactor device on rails itself to move above the animal instead, with either a 

motor to precisely define where the impact would occur, or simple manual rails to align above 

the impact site if exact precision is not needed.  

 More experimental Raman spectra from both injury and control animals are required as 

well, as this study had a subsequently low number of samples, n=3, to make statistical 

comparisons to. While differences were seen, additional samples to increase the power are 

required. Using one example of the averages and standard deviations of the subtraction spectra 

for 1666 cm-1 for control and injury for position C, at 80 percent power an additional 3 animals 

would be required. While this may not be true for all wavenumbers, it does show that additional 

animals are required to improve the power of the experimental procedure. Additionally, it was 
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noted earlier that a single injury animal did have a large standard deviation compared to other 

injured animals. Due to this work involving living animals, a high variability of result is 

expected and additional experiments to help remove some extraneous outliers would be 

beneficial.  

 One change in the future work for this project would be extending the amount of time 

measuring injury. With up to 5 hours after injury being measured, increasing the time to a range 

between 5 hours and 1 day to observe a continual change across the course of the day would be a 

logical continuation of this work. Previous measurements of injury in the spinal cord in our lab 

using Raman spectroscopy begin at 1 day after injury in the case of scanning organotypic slice 

cultures of tissue, leaving a gap of knowledge from the early timepoint to 1 day. In addition, 

measuring Raman changes in vivo much later after injury would help to see changes otherwise 

unknown, as other methods of using Raman to measure injury require ex vivo or in vitro 

cultures, removing the effects that the body may have on the tissue in real time. Future 

experiments using the timepoint method utilized previously our the lab5 can be compared to 

previous work. Finally, changing the level of injury could produce different results, as the insult 

used in this work was set to what is known in spinal cord injury work as a “moderate” level of 

injury. By increasing or decreasing the level of injury, different levels of change could be 

observed, and factors such as the efficacy of Raman spectra to detect minor changes can be 

explored.  
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