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Abstract 

This paper develops new statistical inference methods for the parameters in threshold regression 

models. In particular, we develop a test for homogeneity of the threshold parameter and a test for linear 

restrictions on the regression coefficients. The tests are built upon a transformed partial-sum process 

after re-ordering the observations based on the rank of the threshold variable, which recasts the cross-

sectional threshold problem into the time-series structural break analogue. The asymptotic distributions 

of the test statistics are derived using this novel approach, and the finite sample properties are studied 

in Monte Carlo simulations. We apply the new tests to the tipping point problem studied by Card, Mas, 

and Rothstein (2008), and statistically justify that the location of the tipping point varies across tracts.. 
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1 Introduction

Threshold regression models have been widely used and studied in economics and statistics.

See, among many others, Hansen (2000a), Caner and Hansen (2004), Seo and Linton (2007),

Lee, Seo, and Shin (2011), Li and Ling (2012), Yu (2012), Lee, Liao, Seo, and Shin (2018),

Hidalgo, Lee, and Seo (2019), and Yu and Fan (2019).

This paper proposes a new framework for testing hypotheses about the parameters in

threshold regression models. In particular, we treat the rank statistics of the threshold

variable as time and recast cross-sectional threshold models into the time-series structural

break counterparts. Based on this transformation, we develop a test for homogeneity of

the threshold parameter (i.e., a constant threshold) and a test for linear restrictions on the

regression coefficients. The latter test can be used to test whether there exists a threshold

effect. Both tests are empirically motivated by the tipping point problem.

The tipping point model is proposed by Schelling (1971) to analyze the phenomenon that

the neighborhood’s white population substantially decreases once the minority share exceeds

a certain threshold, called the tipping point. Card, Mas, and Rothstein (2008) empirically

study this phenomenon by considering the following threshold regression model:

 = 01 + 011 [  0] + 
|
 02 +  (1)

for neighborhoods  = 1     , where the observed variables , , and  denote the white

population change in a decade, the initial minority share, and other social characteristics

in the th tract, respectively. The unknown parameters,
| |(01 02 01) and 0, denote the

regression coefficients and the threshold, respectively. With the model (1), one is interested

in testing whether 01 = 0 or not, that is, testing if the tipping point phenomenon exists.

More generally, we construct a new test for linear restrictions on the regression coefficients,

the average likelihood-ratio (LR) type test (named as the  test), which is inspired by

Andrews (1993), Andrews and Ploberger (1994), and Elliott, Müller, and Watson (2015). In

the problem of testing whether 01 = 0, the  test strongly rejects the null hypothesis of

no threshold effect and reinforces the existing founding in Card, Mas, and Rothstein (2008).

See also Lee, Seo, and Shin (2011). Compared with existing methods, this new test has

substantially higher powers as we show in Monte Carlo simulations.

When the test rejects the null hypothesis of no threshold, one wants to examine the

assumption that the tipping point 0 remains constant across neighborhoods. Card, Mas,

and Rothstein (2008) first assume 0 to be a constant within a city and estimate the model
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(1) with tract-level data. After collecting the results from all the cities, they further regress

the estimated 0 on a measure of white population’s attitude to the minority at the city

level, and find that the tipping point highly depends on this measure. This finding raises

the concern that 0 may vary across neighborhoods (tracts), which motivates our constant-

threshold test (named as the  test). Specifically, we develop a test for a constant threshold

0 against any types of heterogeneous thresholds  (or nonparametric alternatives), which is

new to the literature. This test strongly rejects the null hypothesis of a constant threshold,

implying that the model (1) is insufficient to characterize the tipping phenomenon. See Lee

and Wang (2019) and Yu and Fan (2019) for other motivating examples.

To develop the new tests, we first reframe the cross-sectional threshold model (1) into its

time-series structural break analogue. This is done by re-ordering the data according to 

and treating the rank statistic of  as time. We then construct the partial sum process of

the re-ordered b along the rank of , where b is the fitted residual. We construct tests
based on the limiting distribution of this partial sum process, which is close in spirit to the

methods developed by the aforementioned works in structural break problems (e.g., Elliott

and Müller (2007) and Elliott and Müller (2014)).

It should be noted that, however, this re-ordering does not allow us to directly apply

the existing tests in the structural break literature. It is mainly because, once we see the

rank based on the quantiles of  as time, the re-ordering results in time-varying moments of

other induced order statistics that lead to a nonstandard limiting distribution of the partial

sum process. In comparison, the corresponding moments are time invariant in the structural

break models. To solve this nonstationarity issue, we construct a novel transformation that

recovers the simple and tractable limiting observation, which consists of a standard Wiener

process and a piecewise linear drift term. Recovering this simple limit allows us to develop

tests whose limiting distributions are free from nuisance parameters.

The rest of the paper is organized as follows. Section 2 introduces the re-ordering and

transformation idea and studies asymptotics of the partial sum process of the induced order

statistics. Using this asymptotic results, Section 3 constructs two new tests and studies

their limiting properties. Section 4 examines their finite sample performance by Monte Carlo

simulations, and Section 5 revisits the tipping point problem as an illustration. Section 6

concludes with some remarks. All proofs are collected in the Appendix.

We use the following notations. Let → denote convergence in probability, → conver-

gence in distribution, and ⇒ weak convergence of stochastic processes as  → ∞. Let =

denote equivalence in distribution. Let  denote the biggest integer smaller than  andb c

2



1[] the indicator function of a generic event . Let kk denote the Euclidean norm of a

vector or matrix .

2 Preliminaries

2.1 Partial sum process

We consider a threshold regression model given by

 =  0 +  01 [ 0] +  (2)
| | ≤

for  = 1     , where the variables
| |( 1+

   ) ∈ R +1 are observed but the threshold

parameter 0 ∈ R as well as the regression coefficients | | |0 = (0 0) ∈ R2 are unknown. All
these parameters can be consistently estimated by the standard profile least squares method

as Bai and Perron (1998) and Hansen (2000a). Specifically, we estimate 0 by minimizing



=1

 − 
|

b() + 

|

b()1 [ ≤ ]

2X³ ´
|

in , where (b ()b| | ()) are the least squares estimators of (2) with a fixed . Once b is
| | | |

obtained, we let b = (b b | ) = (b (b)b (b |)) .

Similarly as Nyblom (1989) and Elliott and Müller (2007), we develop tests based on

the partial sum process of b, where b is the fitted residual. When the index  has some

natural ordering, such as time in the structural break model, the definition of the partial sum

is straightforward. However, we do not have such natural ordering for the cross-sectional

observations in general. In this section, we propose an ordering method based on the rank of

the threshold variable , and study the partial sum process with the re-ordered observations.

We suppose  is a continuous random variable whose distribution function,  (·), is
continuous and monotonically increasing. We define 0 =  (0) ∈ (0 1). Then we can
rewrite (2) as

 = 
|
 +  ,   

where

 = 0 + 01 [ () ≤ 0] . (3)

In this setup, the threshold variable  affects the parameter stability through  (), where

3



 () is a standard uniform random variable. Once we sort { ()}=1 ascendingly, we can
treat them as an irregularly-spaced “time” from the perspective of structural break. In

practice, we replace  (·) with the empirical distribution, b(·), and then b() equals to
, where  denotes the rank statistic of . By doing so, we can form an equi-spaced

time (i.e., ordering) induced by the rank of .

More precisely, we let (·) = −1 (·) denote the quantile function of . We assume
the density of , denoted as (·), to be continuous and positive over the support of ,
implying that (·) is continuous and strictly increasing. By sorting {}=1 into the order
statistics (1:) ≤ (2:) ≤  ≤ (:) and re-arranging the data according to their ranks,

we denote the re-ordered observations
| |(  ) associated with (:) as

| |([:] [:]) , that

is,
| | | |([:] [:]) = ( 1

  ) if (:) = . Such re-ordered values are called induced order

statistics or concomitants in the statistics literature (e.g., Bhattacharya (1974) and Yang

(1985)). Similarly, we write the re-ordered  as

[:] = 0 + 01
£
 ((:)) ≤ 0

¤
.

Such a re-ordering naturally covers structural break models, in which (:) =  =  is the

time. In what follows, we drop “: ” in the subscripts for simplicity. The subscript [] is

reserved for the th induced order statistics associated with the order statistic (:).

Based on the re-ordering, we now construct the partial sum of b along the rank of 
as b () =

1√


bcX
=1

[]b[] (4)

for  [0 1], where b | |
=   b  b1 [ b]. In order to derive the weak limit of b∈  −  −   ≤  (·),

we impose the following regularity conditions, which are similar to Condition 1 in Hansen

(2000a). We define

() = E [
|
 | =  ()]

 () = E
£


|
 
2
 | =  ()

¤
for  ∈ [0 1].

1Since  is continuous, the probability of seeing ties is negligible. In finite samples, we may simply drop

duplicate (i.e., tied) observations of .
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Condition 1

1.
| |(   ) is i.i.d.

2. E[|] = 0 almost surely.

3.  has a continuous density function  such that for all , 0  ()   for some

 ∞.

4.
| | |

0 =  −
0 for some 0 = 0 and  ∈ (0 12); (0 0) belongs to some compact subset

of R2.

5. 0 ∈ [  1−  ] for some  ∈ (0 12).

6. () and  () are well-defined matrix-valued functions that are positive definite and

continuously differentiable with bounded derivatives at all  ∈ (0 1).

7. E |
[ ]  E

|
[ 1 [ () ≤ ]]  0 for all  ∈ (0 1).

8. sup E[  4
  = ] ∈R and sup∈R E[ 

4
  = ]  .

6

|| || | ∞ || || | ∞

Condition 1.1 assumes i.i.d. observations. Under this condition, we can show that

{  }[] [] =1 is a martingale difference array, which is a key condition for our main result.

Weak dependence would break such a martingale property after re-ordering and hence dra-

matically complicates the analysis. We leave this to future research. Condition 1.2 assumes

a correctly specified model. Condition 1.3 implies that the quantile function of  is contin-

uous and uniquely defined for all . Condition 1.4 adopts the widely used shrinking change
| |

size setup as in Bai and Perron (1998) and Hansen (2000a), under which b = (b |b ) is√
-consistent and asymptotically normal.2 In Condition 1.5, the truncation is to avoid the

threshold being close to the boundary so that there are infinitely many observations on both

sides of the threshold. This is commonly assumed in both the structural break and the

threshold model literature.

Condition 1.6 requires the moment function to be smooth so that (·) and  (·) are well
defined. These two functions are usually treated as constant matrices in the structural break

literature (e.g., Li and Müller (2009) and Elliott and Müller (2014)). However, they can

2The case with  = 0 is also allowed in our approach by using the argument in Chan (1993). In this case,

the limiting distribution of b is non-standard and non-pivotal. However, it is still consistent and converges
at the rate , which is sufficient for constructing our tests. We do not consider this case for illustrational

simplicity.
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be any continuous matrix-valued functions here. The smoothness of (·) and  (·) can be
generalized to piecewise smoothness with a finite number of jumps. It is worth noting that

invertibility of  (·) excludes the situation that  is a linear combination of  or  is one
of the elements of  when including a constant term. Condition 1.7 is a full-rank condition,

and Condition 1.8 bounds the conditional moments.

Under Condition 1 and from Hansen (2000a), we can verify that the least squares esti-
| |

mator b is consistent and asymptotically independent of b = (b |b ) . Furthermore, it holds
that (e.g., eq.(11) in Hansen (2000a))

√


µb − 0b − 0

¶
→

µ
Φ

Φ

¶
(5)

as →∞ for some -dimensional normal random vectors Φ and Φ. The following theorem

derives the weak limit of b () in (4).
Theorem 1 Suppose Condition 1 holds. Then, b (·)⇒  (·) as →∞, where

 () =

Z 

0

 ()12 ()−
µZ 

0

 () 

¶
Φ −

ÃZ min{0}

0

 () 

!
Φ (6)

for  ∈ [0 1], Φ and Φ are given in (5), and (·) is the  × 1 vector standard Wiener
process defined on [0 1].

Theorem 1 lays the foundation of our asymptotic analysis. In particular, the limiting

observation  () is to be used to motivate the key structure of our test statistics. Note

that, in the special case that the functions (·) and  (·) are respectively constant matrices
̄ and ̄ , () reduces to

̄ 12() ̄Φ ̄min  0 Φ.− − { } (7)

This is the limiting observation studied by Elliott and Müller (2014) and Elliott, Müller,

and Watson (2015) for structural break problems. Comparing (6) with (7), the nuisance

functions (·) and  (·) substantially complicate the limiting expression. In the following
subsection, we construct a novel transformation that recasts  () into to its simpler form

in (7).

6



2.2 Transformation

To construct the transformation, for any  × 1 vector  satisfying |  = 1, we first define

two continuous and strictly increasing functions:

 () =

Z 



1

| ()−1  () ( ()−1)|
 and  () =

 ()

 (1− )
(8)

for  ∈ [  1 −  ], where the truncation parameter  is specified in Condition 1.5. It sets

to ensure 0   ()  ∞ since  (·) and  (·) may not be well defined near the boundary
of 0 or 1. Since the mapping  : [  1 −  ] → [0 1] is strictly increasing with () = 0 and

(1− ) = 1, we can treat (·) as a transformed and rescaled time over the unit interval.
Using (8), we define the transformed process of  () in (6) as

7

G () = 12

−1()

−1(0)
(1) () | ()−1  () ,

Z
(9)

where  = (1 − ), (1)() =  ()  = 1{ |  ()
−1

 () ( ()
−1 |) }, and −1(·) is

the inverse function of  (·).3 In what follows, the calligraphic letter G and its variants are
reserved for the transformed processes.

The intuition for constructing G can be explained as follows. First, we standardize the
non-constant variance-covariance matrix  (·) by pre-multiplying its inverse matrix function
 (·)−1. Second, to standardize  (·), we set (1) () as the weighting function that is propor-
tional to the inverse local Fisher information, | |  ()

−1
 () ( ()

−1
) . Finally, becauseR −1()

 1 (1) ()  = 
(0)

for any  ∈ [0 1], we can transform the stochastic integral to a stan-−

dard Wiener process while maintaining the deterministic term as a piecewise linear function.

If  (·) and  (·) are respectively the constant matrices ¯ ¯ and , this transformation is

essentially the same as pre-multiplying | ¯  −12 to (7), which yields

1()− |̄ −12̄Φ −min{ 0}|̄ −12̄Φ. (10)

The novelty of such transformation lies on the design of  (·) and the integral defined inR
the last step. In comparison, a transformation of the form



0
T ()() with any weighting

function T (·) can simplify only either the stochastic integral or the deterministic function,
3We do not have an explicit form of −1 (·) in this case. However, it is well defined as −1 () = −1( ),

where the inverse function of | 1 1 |(·), −1(·), exists and is differentiable since   ()
−

 () ( ()
−
)  is

strictly positive for all  [  1  ].∈ −

7



but not both of them simultaneously. Hence, our time transformation is different from those

studied in the nonstationary time-series literature (e.g., Park and Phillips (1999)).

The following theorem gives the main motivation of this transformation: G () in (9),
the transformed process of the limiting observation  (), is distributionally equivalent to

the simple form in (10). Recall that we define 0 =  (0).

Theorem 2 The transformed process G () in (9) satisfies

G () = 1 ()− |Φ
 −min{  (0)}|Φ

 (11)

for  ∈ [0 1], where Φ
 = 

12
 Φ and Φ

 = 
12
 Φ.

Theorem 2 implies that the complicate  () process can be transformed into the sim-

ple G (), which consists of a standard Wiener process and (piecewise) linear drift terms.
Therefore, once properly eliminating the drift terms by demeaning, we can construct test

statistics whose limiting distributions are free from nuisance parameters. This idea is simi-

lar to some approaches in the structural break models (e.g., Elliott and Müller (2014) and

Elliott, Müller, and Watson (2015)) that develop tests based on the partial-sum limit in (7),

which resembles (11).

3 Tests for Threshold Models

In this section, we consider two testing problems: testing for homogeneity of the threshold

parameter (i.e., a constant threshold) and testing for linear restrictions on the regression

coefficients. Both problems can be analyzed in the unified framework introduced in the

previous section.

3.1 Test for homogeneous threshold

For the structural break models and threshold regression models, most of the existing studies

focus on testing for whether the coefficient change exists. However, once we reject the null

hypothesis of no change, a natural question is then to consider whether one single threshold

is sufficient to characterize the model. In this subsection, we develop a test for homogeneity

of the threshold parameter, which is novel in the threshold model literature.

8



To construct the new test, we consider a heterogeneous threshold case given by

 = 0 + 01 [ () ≤ ]

instead of (3), where  denotes a random variable defined on (0 1). More precisely, as in

Condition 1.5, we assume that  ∈ [  1−  ] for some  ∈ (0 12). The hypotheses are then
formulated as

0 : P( = 0) = 1 for some 0 ∈ [  1−  ] (12)

1 : P( = 0)  1 for any 0 [  1  ]∈ −

Note that the alternative hypothesis is very general. It covers the case with multiple thresh-

olds that are the same for all  (cf. Bai and Perron (1998) in the structural break model) and

the case with heterogeneous thresholds that vary across . Moreover,  can be a function

of some random variables . Examples include an index form,
|

 =   for some parameter

, as in Yu and Fan (2019); and even a nonparametric from,  = () for some unknown

function (·), as in Lee and Wang (2019). This setup also covers the tipping point problem,
where  includes some demographic characteristics of the th neighborhood that affect the

heterogeneous tipping points through some unknown function (·).
We construct a test statistic for (12), which only requires estimating the model under

the null hypothesis (i.e., the constant threshold regression model with (3)). To this end,

we first obtain the sample analogue of G (), denoted as bG (), and study its asymptotic
properties.

We first estimate  () and  () as4

b () =



=1=bc
()−


[]

|
[]P

=1=bc
³
()−



´ (13)

P
6

³ ´
6

4We can instead estimate them asµ ¶ µ ¶
1 X ()  1 X|

b ( 
−

[ b ()  |
) = ] () =    2

  []
and

−
[] [

    ]
b[],

 
=bc =bc

because (after multuplying ()
−1) the denominator in (13) or (14) converges to the pdf of  [0 1] at  by

construction and hence 1 in probability.

6 6
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b () =



=1=bc
()−


[]

|
[]
b2[]P

=1=bc
³
()−



´ (14)

P ³
6

´
6

for some kernel function (·) and some bandwidth , where b[] denotes the re-ordered
regression residual under the null hypothesis:

| |
b =  −  b   −  b 1[ ≤ b]. We use the

leave-one-out kernel. Given (13) and (14), functions in (8) are estimated by

b () = 1



bcX
=bc+1

1

| b ()−1 b () ( b ()−1)| and b () = b ()b (1− )
. (15)

Under the following conditions (e.g., Li and Racine (2007) and Yang (1981)), we can verify

that all these kernel estimators are uniformly consistent.

Condition 2

1. (·) is Lipschitz continuous, continuously differentiable with bounded derivative,R R
and symmetric around zero, which satisfies  ()  = 1,  ()  = 0, 0 R
2() ∞, lim | 2

 |() = 0, and lim  (()) = 0.→∞ →∞

2.  → 0,  log →∞, and 14 →∞ as →∞.

Second, since b(b(())) = b () and b(b(())) = b (), we can construct the
sample analogue of G in (9) as

bG () = b12√


b−1()cX
=bc+1

b(1)()| b ()−1 []b[], (16)

where
12

 =  (1− )
12
, b−1(·) is computed as the numerical inverse of b(·), andb(1)() = 1{ | b |()

−1
b () (b ()−1) b}. The following lemma establishes thatbG (·) weakly converges to G (·) as in (11).

Lemma 1 Suppose Conditions 1 and 2 hold. Then under the null hypothesis in (12),

(i) b (), b (), b (), and b () are uniformly consistent on [  1−  ];

(ii) bG (·)⇒ G (·) as →∞, where G () is given in (11) for  ∈ [0 1].

Lemma 1 implies that the transformed partial sum process bG () has a well-defined weak
limit under the null hypothesis. It also shows that the testing problem essentially reduces

b b

10



to testing for additional changes either before or after  (0). In order to use this result for

the inference purpose, however, we need to eliminate the nuisance terms Φ
 and Φ

 . It can

be done by constructing some statistic that is invariant to location shift. In particular, we

consider the following re-scaled and demeaned sample process

bG∗ () = bG∗1 () if  ≤ b(b)bG∗2 () otherwise,
(17)

(

where b = (b),
bG∗1 () =

1pb(b)
½bG ()− b(b) bG(b(b))

¾
,

bG∗2 () =
1p

1 b(b)
½bG (1)− bG ()− 1− 

1− b(b) ³bG (1)− bG(b(b))´
¾
.

b

−

By the continuous mapping theorem and the consistency of b(b) to (0), the Φ

 and Φ



terms are canceled out asymptotically so that the weak limits of bG1∗ () and bG2∗ () are free
of nuisance terms. By construction, they behave as the standard Brownian bridges defined

on [0 1] in the limit.

We now define the constant-threshold test statistic, or the  test statistic, as

 =
1

bb(b)c
b()cX
=1

nbG∗()o2 + 1

b− b(b)c
X

= () +1

nbG∗()o2 (18)

b c

in a similar vein to Nyblom (1989) and Elliott and Müller (2007). Theorem 3 below estab-

lishes that  converges to the integral of the squared Brownian bridges under the null

hypothesis of a constant threshold but diverges under the alternative hypothesis.

Theorem 3 Suppose Conditions 1 and 2 hold. Then as →∞,

 →

1

0

B2 ()| B2 ()  (19)

Z
under the null hypothesis in (12), where B2 () is the 2× 1 vector standard Brownian bridge
on [0 1]. In addition,  →∞ under the alternative hypothesis in (12).

The limiting distribution of  is pivotal under the null hypothesis of a constant thresh-

old. Therefore, we can easily simulate the critical values, which are given in Table 1. The
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Table 1: Simulated critical values of the CT test

R 1 |P( B2 () B2 ()  cv) 0.800 0.850 0.900 0.925 0.950 0.975 0.990
0

cv 0.467 0.527 0.608 0.666 0.744 0.888 1.066

Note: Entries are based on 50,000 replications and 5000 step approximations to the continuous time

process.

test for (12) is then conducted as a one-sided test that rejects the null hypothesis if  is

larger than the corresponding critical values.

We conclude this subsection by summarizing the steps of implementing the  test.

Step 1 Obtain the profile least squares estimators b and b.
Step 2 For each  ∈ {(bc+ 1)  (bc+ 2)   b(1− )c}, obtain the kernel esti-

mators b () and b () as in (13) and (14), and the estimators b (), b (), and b(1)()
as in (15). Obtain b−1 (·) by numerically inverting b(·).

Step 3 Construct bG∗ () for  ∈ {1 2  1} as (17).
Step 4 Compute the  statistic as in (18) and compare it with the critical values from

Table 1.

3.2 Test for linear restrictions

With a minor modification to the previous section, we can develop a test for linear restrictions

on the regression coefficients. We focus on inference about 0 for illustration, which covers

the important question about the existence of the threshold.5 Specifically, we consider the

following hypotheses:

0 : 
|0 = 0 against 1 : 

|0 = 06 (20)

for some non-zero ×1 vector . For example, one can consider | = (1 0     0) for testing

whether the first element of  = 0 + 01 [ () ≤ 0] in (3) has a coefficient change, which

is the case of the tipping point problem.

5Inference about 0 can also be studied by combining the transformation idea and the test developed in

Elliott and Müller (2014).
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When 0 can be consistently estimated, inference about 0 and 0 becomes straight-

forward since their least squares estimators based on b are still √-consistent and asymp-
totically normal (e.g., Lemma A.12 in Hansen (2000a)). Therefore, we focus on the more

challenging case where 0 cannot be consistently estimated. In particular, we consider a local

alternative 0 = −120 (i.e.,  = 12 in Condition 1.4) for some 0 = 0, which is contiguous

to the no-threshold case. This local alternative leads to non-degenerate asymptotic powers

for the hypothesis testing problem (20), as similarly considered in Hansen (2000b), Elliott

and Müller (2007), and Elliott, Müller, and Watson (2015).

Now we let b be the residual by regressing  on  only and | = ( ). Then, we can

construct bG in (16) in the same way as described in the previous section. In particular,
a similar (and even simpler) argument as Lemma 1 yields that bG (·) ⇒ G (·) as  → ∞,

6

where

G () = 1 () |Φ
 min   (0) |0

12
− − { }

for  ∈ [0 1]. In this case, the nuisance term | Φ
 can be eliminated by constructing

bG∗ () = bG ()− bG (1) .
Then, by the continuous mapping theorem, we have bG∗ (·)⇒ G∗(·) as →∞, where

G∗() = (1() 1(1)) (min   (0)  (0))  0
12
 (21)− − { }− |

for  ∈ [0 1]. Under the null hypothesis in (20), | 12
 0 = 0 and hence the right-hand-side

of (21) reduces to the standard Brownian bridge.

By Girsanov’s theorem, the Radon-Nikodym derivative of the distribution of G∗() rela-
tive to the distribution of the standard Brownian bridge1()−1(1), evaluated at G∗(),
is given by (e.g., Chapter 7 in Liptser and Shiryaev (2013))

(G∗ ;  (0)  |012 ) = exp
⎜⎝|0

12
 G∗((0))−

³
|0

12


´2
2

 (0) (1−  (0))
⎟⎠ , (22)

⎛ ⎞

which yields the likelihood ratio. With two nuisance terms and | 12
 =  (0)  =  0

that appear only under the alternative hypothesis, we follow Andrews and Ploberger (1994)

and Elliott, Müller, and Watson (2015) to construct a weighted likelihood-ratio test that

13



maximizes the weighted average power criterion:

 =

Z
 ( ∗

 ;  ) ( )G

for some weight function (· ·) over the values of ( ).
For an easy implementation, we choose (· ·) such that the test statistic has a closed-form

expression. This can be done by choosing the uniform weight on  and the normal-density

weight on . Then, we can show that  can be written as an integrated form of

G∗()2((1− )) as follows.

Lemma 2 With the choice of  ∼  [  1
2

− ] and |( = ) ∼ N (0 2(1− )) for some

  0,

lim
2→0

2

2

√
1 + 2− 1 =

1

1− 2
1−



G∗()2
(1− )

. (23)
³ ´ Z

Note that the limit expression in (23) coincides with the “average LR” statistic with

a uniform weight in Andrews and Ploberger (1994), which can be obtained by combining

equations (2.5) and (3.3) in their paper. Lemma 2 leads to the average bG∗ test statistic,
namely the  test, defined as

 =
1

(1− 2)
b(1−)cX
=  +1

(bG∗ ())2
()(1− ()) ,b c

(24)

whose limiting distribution is the same as (23). This is established in the following theorem.

Theorem 4 Suppose Conditions 1 and 2 hold with  = 12 in Condition 1.4. Then as

 ,→∞
 →

1

1 2

Z 1−



G∗()2
(1 )

 (25)− −
where G∗(·) is defined in (21).

Under the null hypothesis that | 0 = 0, G∗() reduces to1()−1 (1), and hence the

limiting distribution of  is the same as the average LR test established by Andrews and

Ploberger (1994). Then using the critical values tabulated in their Table II (pp. 1401-1402),

the  test controls size asymptotically.

As a remark, we heuristically discuss the asymptotic admissibility of the  test. A

formal study requires analyzing the higher-order approximation biases in the nonparametric
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estimation, which is beyond the scope of this paper. On the one hand, nonparametrically

estimating  (·) and  (·) may cost efficiency; on the other hand, the fact that the transfor-
mation is one-to-one implies that the  test also shares the optimality of the average LR

test established by Andrews and Ploberger (1994). We investigate such ambiguity in Section

4 by Monte Carlo experiments. The results show that the  test could be substantially

more efficient than the average LR test with adjusted critical values, especially when  (·)
and  (·) are highly nonlinear. Such a finding is close in spirit to the efficiency gain of the
feasible generalized least squares (GLS) regression relative to the ordinary least squares with

robust standard errors in the context of classical linear regression with heteroskedasticity.

4 Monte Carlo Experiments

4.1 The  test

This section examines the small sample performance of the  test in (18). We consider

the following data generating processes (DGPs):

DGP CT-1
| |

 =  0 +  01 [ ≤ 0] + ;

DGP CT-2
| |

 =  0 +  01 [ ≤ sin()2] + ;

DGP CT-3
| |

 =  0 +  0 (1 [ ≤ 0] + 1 [  01]) + ,

where | = (1 2) ∈ R2 with the first element 1 = 1 and  is some scalar random

variable specified later. We set 0 = 02 and consider 0 = 2 for  ∈ {025 050 075 100},
where

|
2 = (1 1) .

These DGPs correspond to each of the following three different threshold specifications:

(i) one single threshold at 0; (ii) a functional threshold of sin () 2 for some scalar random

variable ; and (iii) two thresholds at 0 and 01. The first one corresponds to the null

hypothesis of the homogeneous threshold in (12), while the other two are for the alternative

hypothesis in (12). We set
|

 = (1 0) , and use the rule-of-thumb choice of the bandwidth

 = (112)
12

−15 and the Gaussian kernel. The truncation parameter  is 01. Other

choices of bandwidth, kernel, and  are also implemented, which lead to negligible changes.

The sample sizes are  = 500, 1000, and 1500, and the significance level is 5%. The results

are based on 1000 simulations.
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For comparison, we implement two existing methods. The first one is the  (2|1) test
proposed by Bai and Perron (1998), which is designed for testing one against two structural

breaks. Note that this test is developed for the time-series case with (piecewise) stationary

data only, which corresponds to the case that  (·) and  (·) are both constant matrices.
To implement this test, one obtains the sum of squared residuals 1 and 2, which

are from the change-point regression models with one and two breaks, respectively. The test

statistic is then constructed as (2|1) = (1 − 2)1. We use their choice of

the parameter  = 005, which is the minimum number of observations between the two

breaks.

The second one is the model selection approach proposed by Gonzalo and Pitarakis

(2002). Specifically, Gonzalo and Pitarakis (2002) introduce the following information crite-

rion

 () = log +



(+ 1)

where  denotes the number of thresholds,  is the sum of squared residuals from the

regression with  thresholds, and  is some tuning parameter that satisfies  → ∞ and

 → 0. The number of thresholds is determined by minimizing  () over . To

compare with the aforementioned tests for (12), we count the mis-selection probability when

 = 1 as the rejection probability. We follow Gonzalo and Pitarakis (2002) to choose the

BIC approach by setting  = log  and 3 log, denoted BIC1 and BIC3 respectively in

Tables 2 and 3 below. The minimum number of observations between the two thresholds is

also chosen as 005.

Table 2 reports the results under the i.i.d. case with (   ) ∼ N (0 4). Sev-
eral findings can be summarized as follows. First, since  is independent of other variables,

re-ordering the data leads to the canonical structural break model, in which time is determin-

istic. Thus both the  and the  (2|1) tests should control size under the null hypothesis,
as illustrated in the first three columns. Second, the  (2|1) test is very conservative while
the  test has approximately the correct size. The middle three columns show the (size-

adjusted) powers under the smooth threshold alternative, where the  test dominates the

 (2|1) test. Third, the last three columns show the powers under the alternative with two
thresholds. This is the exact alternative that the  (2|1) test is designed for, while our 
test still achieves comparable powers. Finally, the model selection based on BIC has good

selection probabilities, especially when the change size is large. However, its performance is

very sensitive to the choice of the tuning parameter as we compare the results for BIC1 and

BIC3. In particular, BIC3 uses a larger tuning parameter (i.e., heavier penalty) than BIC1,
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Table 2: Rejection probabilities with independent q

DGP CT-1 DGP CT-2 DGP CT-3

  = 500 1000 1500 500 1000 1500 500 1000 1500

CT test

0.25

0.50

0.75

1.00

0.06

0.06

0.07

0.08

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.14

0.43

0.68

0.05

0.41

0.82

0.95

0.10

0.66

0.97

1.00

0.08

0.14

0.22

0.31

0.08

0.19

0.39

0.55

0.11

0.30

0.55

0.72

F(2|1) test
0.25

0.50

0.75

1.00

0.01

0.01

0.01

0.00

0.01

0.01

0.01

0.01

0.01

0.01

0.02

0.01

0.01

0.02

0.18

0.43

0.01

0.19

0.67

0.92

0.02

0.41

0.90

1.00

0.01

0.08

0.24

0.44

0.03

0.22

0.54

0.73

0.04

0.37

0.68

0.88

BIC1

0.25

0.50

0.75

1.00

0.24

0.05

0.07

0.06

0.04

0.03

0.03

0.04

0.01

0.02

0.03

0.03

0.34

0.11

0.44

0.78

0.08

0.27

0.82

0.99

0.03

0.50

0.96

1.00

0.04

0.14

0.43

0.71

0.02

0.28

0.72

0.93

0.03

0.41

0.89

0.98

BIC3

0.25

0.50

0.75

1.00

0.97

0.04

0.00

0.00

0.74

0.00

0.00

0.00

0.34

0.00

0.00

0.00

0.99

0.32

0.00

0.00

0.94

0.01

0.01

0.17

0.76

0.00

0.08

0.47

0.04

0.00

0.00

0.09

0.00

0.00

0.06

0.36

0.00

0.00

0.17

0.61

Note: Entries are rejection probabilities under the null hypothesis in (12) of the  test, the  (2|1) test
by Bai and Perron (1998), and the model selection using the BIC by Gonzalo and Pitarakis (2002), based

on 1000 simulations. The significance level is 5%. Data are generated from DGPs CT-1 to CT-3 with

(   ) ∼ N (0 4). The first three columns are based on 0 () = 0; the middle three are based on

0 () = sin () 2; the third three are based on two thresholds at 0 and 0.1.
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Table 3: Rejection probabilities with dependent q

CT test F(2|1) test F(2|1)-Boot.
  = 500 1000 1500 500 1000 1500 500 1000 1500

0.25 0.07 0.06 0.05 0.09 0.12 0.14 0.21 0.26 0.24

0.50 0.07 0.05 0.06 0.08 0.11 0.14 0.23 0.22 0.25

0.75 0.08 0.07 0.06 0.08 0.10 0.12 0.24 0.25 0.26

1.00 0.09 0.07 0.07 0.09 0.12 0.14 0.20 0.24 0.26

BIC1 BIC3

  = 500 1000 1500 500 1000 1500

0.25 0.62 0.38 0.26 0.99 0.96 0.89

0.50 0.27 0.26 0.23 0.59 0.06 0.00

0.75 0.29 0.24 0.21 0.02 0.00 0.00

1.00 0.30 0.27 0.25 0.00 0.00 0.00

Note: Entries are rejection probabilities under the null hypothesis in (12) of the  test, the  (2|1) test
by Bai and Perron (1998), the  (2|1) test with bootstrap critical values from 100 bootstrap samples, and

the model selection using the BIC by Gonzalo and Pitarakis (2002). The results are based on 1000

simulations. The significance level is 5%. Data are generated from DGP CT-1 with ( ) ∼ N (0  ),¡ ¢ 2

| (   ) = ( ) ∼ N 0 1(1 + 2 + 2 2
  ) , and | =  ∼ N (0 1 +  ).

which leads to substantially lower powers as BIC3 always chooses one threshold even if the

true number of thresholds is more. This feature is also seen in Table 3.

In Table 3, we introduce some correlation between  and ( ) and investigate the size

properties of these three tests. The powers are not presented since only the  test controls

size. In particular, we generate data under the null hypothesis of a single threshold at 0

and use (   ) ∼ N (0  ),  | (   ) = ( ) ∼ N (0 1(1 + 2 + 2
  2     )) and 

2

| =
 ∼ N (0 1 +  ). Several findings can be summarized as follows. First, as expected,

the  (2|1) test fails to control size since its asymptotic distribution is contaminated by the
rank-varying moments. Second, as a remedy, Hansen (1997) suggests using the original test

statistics with bootstrap critical values. However, bootstrap is not expected to perform well

in this case since the  (2|1) test statistics is not pivotal. This is verified in the top last
three columns, where the results are based on 100 bootstrap samples and the residuals from

the null model with one single threshold. Third, the  test performs well in terms of

controlling size if the sample size and the break size are large enough, while the  (2|1) test
fails to control size with either the original or the bootstrap critical values. Finally, mis-

selection probabilities from the BIC are far from 5% because the strong correlation between
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 and  and the conditional heteroskedasticity are difficult to distinguish from the potential

coefficient changes. This issue can be alleviated by choosing a larger tuning parameter as in

BIC3, which again leads to severe under-rejections under the alternative.

4.2 The  test

This section examines the small sample performance of the  test in (24). We consider

the following DGPs:

 = 
|
 0 + 

|
 01 [ ≤ 0] +  (26)

where | = (1 2)  (2 ) ∼ N (02 (1 05; 05 1)) and | =  ∼ N (0 2()) with
() given by

DGP AG-1 () = 1 + ||0;

DGP AG-2 () = 1 + ||1;

DGP AG-3 () = 1 + ||2;

DGP AG-4 () = 1 + ||3.

In these specifications, the effect of  on  (·) gets more substantial as the power of ||
gets higher. We set | |0 = (01 02) = 02 and consider 0 = (01 02) = 2 for  ∈
{000 025 050}. We choose the same ,  , , and the Gaussian kernel as in the previous
experiment. The sample sizes are  = 500, 1000, and 1500, and the significance level is 5%.

The results are based on 1000 simulations.

We are interested in testing whether the intercept term has a coefficient change (i.e.,

01 = 0 or not), as motivated by the tipping point application. We implement the  test

in (24) with the simulated critical values in Table 1. As a comparison, we also consider the

average LR test developed in Andrews and Ploberger (1994) and the sup LR test developed

in Andrews (1993), which are respectively given by

1

1− 2
Z 1−



F ()  and sup
∈[1− ]

F () , (27)

where F () =  (0 −  ())  () denotes the Chow-test statistic given the

threshold  with 0 and  () being the restricted and unrestricted sums of squared

residuals, respectively (p. 582 in Hansen (2000a)). In particular, we first re-order the data
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Table 4: Rejection probabilities of the AG test and the average F test

DGP AG-1 DGP AG-2 DGP AG-3 DGP AG-4

  = 500 1000 1500 500 1000 1500 500 1000 1500 500 1000 1500

 test

0.00 0.07 0.05 0.05 0.06 0.05 0.04 0.04 0.04 0.03 0.03 0.03 0.02

0.25 0.20 0.33 0.45 0.30 0.51 0.70 0.34 0.61 0.79 0.32 0.62 0.82

0.50 0.57 0.85 0.96 0.81 0.98 1.00 0.88 0.99 1.00 0.89 1.00 1.00

bootstrap average LR test

0.00 0.07 0.07 0.07 0.07 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06

0.25 0.28 0.50 0.66 0.16 0.29 0.46 0.10 0.12 0.14 0.08 0.07 0.07

0.50 0.82 0.99 1.00 0.64 0.95 1.00 0.24 0.57 0.84 0.10 0.12 0.13

bootstrap sup LR test

0.00 0.07 0.06 0.06 0.08 0.06 0.06 0.07 0.05 0.06 0.06 0.06 0.06

0.25 0.29 0.53 0.71 0.22 0.38 0.56 0.12 0.16 0.22 0.08 0.08 0.07

0.50 0.84 0.99 1.00 0.72 0.97 1.00 0.34 0.65 0.88 0.12 0.15 0.20

Note: Entries are finite sample rejection probabilities of the  test and the average  test with bootstrap

critical values. Data are generated from (26). See the main text for description of four DGPs and two

tests. The significance level is 5%. Based on 1000 simulations.

according to  and treat the rank of  as time. Then, we construct the average LR and the

sup LR test statistics and apply the fixed-bootstrap algorithm given by Hansen (2000b) to

adjust the critical value.

Table 4 presents the small sample rejection probabilities of the  test, the average LR

test, and the sup LR test in (27). They all have approximately correct size under the null

hypothesis (01 = 0) and reasonable powers under the alternative (01 = 025 and 050),

which increase in the sample size and the magnitude of 01. However, a comparison among

different DGPs exhibits a sharp difference in the efficiency among these tests. First, in DGP

AG-1,  is independent of  and has only mild correlation with . This feature implies that

DGP AG-1 is very close to the classic structural break model with piecewise stationary data.

Therefore, the bootstrap critical values are almost identical to the original ones tabulated in

Table II of Andrews and Ploberger (1994), and hence the bootstrap tests are almost efficient.

In comparison, the nonparametric estimation in the  test suffers from some efficiency loss.

Second, in DGP AG-2,  enters the standard deviation of  linearly, which introduces

nonlinearity to  (·) and  (·). Now the bootstrap critical values start to deviate from the

original ones, which results in substantial efficiency loss. In contrast, the transformation

method substantially outperforms the bootstrap ones. Finally, the relative performance of
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Table 5: Tipping point estimation and testing results (1980-1990)

City  b AG -value CT -value

Chicago 688 6.94 0.000 0.000

Los Angeles 1263 17.47 0.000 0.000

New York 315 16.08 0.000 0.000

Washington D.C. 719 15.54 0.000 0.000

Note: Entries are sample sizes (), the constant tipping point estimation (b), and the p-values of the AG
test (24) and the CT test (18). Data are available from Card, Mas, and Rothstein (2008).

the transformation grows profoundly better in the nonlinearity of (·). In particular, the
 test dominates the bootstrap ones by approximately 80% more powers when the sample

size is 1500 in DGP AG-4, which is quite remarkable.

5 Application: Tipping Point and Social Segregation

Our motivating example is on social segregation and the tipping point phenomenon. Card,

Mas, and Rothstein (2008) empirically examine the theory proposed by Schelling (1971)

that the white population substantially decreases once the minority share in a tract exceeds

a certain threshold, called the tipping point. In particular, they consider the following

threshold regression model:

 = 01 + 011 [  0] + 
|
 02 + ,

where for tract  in a certain city,  denotes the minority share in percentage at the beginning

of a certain decade,  the normalized white population change in percentage within this

decade, and  includes six tract-level control variables: unemployment rate, the logarithm

of mean family income, the fractions of single-unit, vacant, and renter-occupied housing

units, and the fraction of workers who use public transport to travel to work. The data

are collected from a variety of cities in three periods: 1970-1980, 1980-1990, and 1990-2000.

They apply the least squares method to estimate the tipping point 0. For most cities and

all three periods, they find that white population flows exhibit the tipping-like behavior,

with the estimated tipping points ranging approximately from 5% to 20% across cities.

We revisit this problem by first testing for 01 = 0 using the  test in (24). We choose
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Figure 1: Estimated tipping point in Chicago, 1980-1990

Note: The figure depicts the point estimate of the tipping point as a function of the tract-level unemployment

rate, using the method proposed by Lee and Wang (2019) and the data in Chicago in 1980-1990. Data are

available from Card, Mas, and Rothstein (2008).

the rule-of-thumb bandwidth  = (112)12 1
 − 5 and the truncation parameter  = 01 as

in the Monte Carlo experiments. We also follow Card, Mas, and Rothstein (2008) to use the

tracts in which the initial minority share is between 5% and 60%. As an illustration, Table

5 shows the -values of the  test with the data in Chicago, Los Angeles, New York City,

and Washington D.C. in the decade 1980-1990. These small -values reinforce the existing

founding that the tipping point feature is statistically significant. See also Lee, Seo, and

Shin (2011) for another test based on a sup-likelihood-ratio type statistic, which gives the

same conclusion.

Next, we examine the hypothesis that the tipping point remains constant across different

tracts. Intuitively, such a null hypothesis can be easily rejected since some social character-

istics endogenously determine the tipping points. In particular, Card, Mas, and Rothstein

(2008) construct an index that measures white people’s attitude against the minority and

find that the level of the tipping point strongly depends on this index. To formalize such
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finding, we consider the model:

 = 01 + 011 [  0()] + 
|
 02 + ,

where 0(·) denotes an unknown tipping point function, and  denotes the attitude index.

We are interested in testing if the tipping point remains constant across tracts. By treating

 = 0 (), the testing problem is then equivalent to (12).

Table 5 shows the results of the  test in (18) with the same city/decade and tuning

parameter choice as above. The small -values suggest that a single constant threshold is

insufficient for fully capturing the social segregation behavior. Data from other cities and

decades lead to similar results, which are hence not reported. To have a rough sense of

how the tipping point changes, we use the unemployment rate as  and nonparametrically

estimate the function 0 (·) using the method proposed by Lee and Wang (2019). Figure 1
shows that the tipping point decreases substantially in the unemployment rate.

6 Conclusion

Threshold models have broad applications in economics. This paper develops a new frame-

work that recasts the cross-sectional threshold problem into the time-series structural break

analogue. Using this new framework, we develop two tests empirically motivated by the

tipping point problem: a test for homogeneity of the threshold parameter and a test for

linear restrictions on the regression coefficients.

Though we focus on these two tests in this paper, we can apply the same approach to

develop other types of tests. In particular, our framework allows other inference methods

developed in the structural break models to be converted into the threshold model setup,

including inference about 0 (e.g., Elliott, Müller, andWatson (2015)) and inference about 0

(e.g., Elliott and Müller (2014)). Moreover, for the  test, since its alternative hypothesis

is unspecified, we can modify it for more general cases as long as we can consistently estimate

the null model. For instance, the test can be generalized to test for the null hypothesis of

any fixed number of thresholds against additional thresholds.
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Appendix: Proofs

We first establish the convergence of the key partial sum processes. Let  denote a generic constant.

Lemma A.1 Suppose Condition 1 holds. Then, as →∞

1√


bcX
=1

[][] ⇒
Z 

0

 ()12 ()

for  [0 1] and∈

sup
∈[01]

°°°°° 1
bcX
=1

[]
|
[]
−
Z 

0

 () 

°°°°°→ 0,

° °

where (·) is the  × 1 vector standard Wiener process defined on [0 1].

Proof of Lemma A.1 We prove the first result using Theorem 2 in Bhattacharya (1974). By

the Cramér-Wold device, it suffices to show for any  1 non-zero vector ,×

1√


bcX
=1

|[][] ⇒
Z 

0

(| ())12 1 () . (A.1)

Note that | [][] is a scalar random variable and is the induced order statistics of
|  associated

with . We now check Conditions 1 to 3 in Bhattacharya (1974). Condition 1 requires  to be

continuous, which is implied by our Condition 1.3. For Condition 2, our Conditions 1.2 and 1.8

imply that E |[  ] = 0 a.s. and|

sup
∈R

E (|)
4 | =  ≤  sup

∈R
E kk4 | =  ∞.

h i h i
Condition 3 is directly implied by our Condition 1.6. In particular, the continuous differentiability

of  ( ) implies that the function |  ( ) is of bounded variation. Define· ·

 () =


0

| ().

Z
By Theorem 2 in Bhattacharya (1974), we have

( (1))
−12

=1

|[][] ⇒1
 ()

 (1)
. (A

bcX µ ¶
.2)
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Then (A.1) follows from the continuous mapping theorem and the fact that

 (1)
121

µ
 ()

 (1)

¶
=

Z 

 ()
121().

 0

|
For the second result, we let | =    and denote [] as the induced order statistics of 

associated with (). Define the processes

() =

Z −1 ()

−∞
E[| = ] b()

where b(·) is the empirical distribution of , and
() =

Z −1()

−∞
E[| = ] ().

Conditions 1.6 and 1.8 imply that sup E[| = ] ∞ and E[∈R | = ] is of bounded variation.

Therefore, sup [01] |()− ()|→ 0 almost surely by integration by parts and application of∈
the Glivenko-Cantelli theorem (e.g.,¯ Lemma 2 in Bhattachary¯ a (1974)). By the triangular inequal-¯ P ¯
ity, it will suffice to show ¯ −1 b

sup [01]  =1
c
[] − ()¯→ 0, which is done in a way analogous∈

to (A.2) (e.g., p. 1038 in Bhattacharya (1974)). The desired result follows by the Cramér-Wold

device. ¥

Proof of Theorem 1 First note that

b () =
1√


bcX
=1

[][]

− 1


bcX
=1

[]
|
[]

n√

³b − 0

´
+ 1

£
 (()) ≤ 0

¤√

³b − 0

´

− 1√


bcX
=1

[]
|
[]
b n1 h b(()) ≤ bi− 1 £ (()) ≤ 0

¤o
b1 () b2 () b3 () ,

o

≡ − −

where the continuous mapping theorem yields

b1 () ⇒
Z 

0

 ()12 ()

b2 () ⇒
µZ 

0

 () 

¶
Φ −

ÃZ min{0}

0

 () 

!
Φ
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from Lemma A.1 and (5). For the last term, we write

b3 () =
1√


X
=1


|

b {1 [ ≤ 0]− 1 [ ≤ b]}1[ ≤ (bc)]

=
1√


X
=1


|
 0 {1 [ ≤ 0]− 1 [ ≤ b]}1[ ≤ (bc)]

+
1√


X
=1


|


³b − 0

´
{1 [ ≤ 0]− 1 [ ≤ b]}1 £ ≤ (bc)

¤
≡ b31 () + b32 () .

Let  be the event that b ∈ B 1+2(0) for some   0− , where B() denotes a generic open¡ ¢
ball centered at  with radius . Lemma A.12 in Hansen (2000a) yields that P 

 ≤  for any

  0 if  is sufficiently large. Then for any   0 and any   0, if  is sufficiently large,

P sup
∈[01]

°°° b31 ()
°°°   ≤ P sup

∈[01]

°°° b31 ()
°°°   ∩ + P

¡



¢
≤ −112E [k| 0 {1 [ ≤ 0]− 1 [ ≤ b]}k1 []] + 

≤ −112−−1+2 + 

,

Ã ! Ã( ) !

≤

where the second inequality is by Markov’s inequality; the third inequality is by Conditions

1.4³ with  ∈ (0 12), 1.7,´ and 1.8. Using a similar argument, we can also show that

P sup [01] b32 ()   . It follows that∈ || || ≤

sup
∈[01]

°°° b3 ()
°°° = (1) (A.3)

and hence the desired result is obtained. ¥

Proof of Theorem 2 Substituting the definition of  (·) yields that

G () = 12

−1()

−1(0)
(1)()| ()−1  ()12  ()

−12

Z −1()

−1(0)
(1)()× |Φ

−12

Z min{−1()0}

−1(0)
(1)()× |Φ

Z
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≡ 1() 2() 3()− − . (A.4)

First, we show 1() = 1 (). Since both terms are mean-zero Gaussian processes with inde-

pendent increments, it suffices to show that they have the same variance function, which can be

verified as Z −1()

−1(0)


³
(1)()

´2
| ()−1  ()()

=

Z −1()

−1(0)



(| ()−1  ()() )2
| ()−1  ()()

=

Z −1()

−1(0)
(1)()

= 
¡
−1()

¢− (−1(0))

= 

for any  ∈ [0 1]. For 3(), we haveZ min{−1()0}

−1(0)
(1)() = (min{−1 ()  −1( (0))})− (−1(0))

= min { (0)}

for any  ∈ | 12
[0 1] and hence 3() = min { (0)}  Φ . By the same argument, we have
| 12

2() =  Φ as desired. ¥

Lemma A.2 Let b 0 () = P
=1=bc []

|
[]
2
[]
 ()P

=1=   ()
,

6

6 b c

where () = −1 ((() − )). Under Conditions 1 and 2, sup b
∈[1− ] || () b−  0 () || =

 (1).

Proof of Lemma A.2 For expositional simplicity, we only present the case with scalar .

Note that

b ()− b 0 () = (1)
P

=1=bc
³
2
[]
b2
[]
− 2

[]
2
[]

´
 ()

(1)
P

=1=bc ()
,

6

6

where the denominator converges to 1 in probability as →∞ for any  ∈ [  1− ] from Condition
2.1. For the numerator, as b = −(b b−0)−(−0)1 [ ≤ 0]

b− (1 [ ≤ b]− 1 [ ≤ 0]),
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we have ¯̄̄̄
¯̄ 1

X
=1=bc

2[]
¡b[] + []

¢ ¡b[] − []
¢
 ()

¯̄̄̄
¯̄ (A.5)

≤ 1



X
=1

¯̄̄
3 (b + ) (b − 0) ()

¯̄̄
+
1



X
=1

¯̄̄
3 (b + ) (b − 0)1 [ ≤ 0] ()

¯̄̄
+
1



X
=1

¯̄̄
3 (b + )b {(1 [ ≤ b]− 1 [ ≤ 0])} ()

¯̄̄
1() +2() +3().

6

≡
|

Let  be the event that b | | = (b b ) ∈ B 12(0) and  the event that b ∈ B 1+2( )− ¡ ¢ − 0

for some . Lemma A.12 in Hansen (2000a) implies P( P 
) ≤  and  ≤  for any   0 if

 and  are large enough. Then for any   0,

P sup
∈[1− ]

|1()|  

≤ P
Ã(

sup
∈[1− ]

|1()|  

)
∩ ∩

!
+ P(

 ∪
)

≤ −1 max
1≤≤

sup
∈[01]

 ()× E
h¯̄̄
3 (b + ) (b − 0)

¯̄̄
|

i
+ 2

≤ −1 max
1≤≤

sup
∈[01]

 ()×
n
2E
h¯̄̄
3(

b − 0)
¯̄̄
|

i
+ E

h¯̄̄
4 (
b − 0)

2
¯̄̄
|

i
+E

h¯̄̄
41 [ ≤ 0] (

b − 0)(b − 0)
2
¯̄̄
|

i
+E

h¯̄̄
4
b(b − 0) (1 [ ≤ b]− 1 [ ≤ 0])

¯̄̄
| ∩

io
+ 2

≤ −1−12−1
¡
2E
£¯̄
3

¯̄¤
+ E

£¯̄
4
¯̄¤¢
+ 2

≤ 3

Ã !

for sufficiently large , where the second inequality is from Markov’s inequality; the third inequality

follows from the triangular inequality; the fourth inequality follows from Condition 2.1 and the fact

that 1 [·] ≤ 1; and the last inequality follows from Conditions 1.8 and 2.2. For 2() and 3(),

the same argument yields that sup∈[1  () =  (1) and sup− ] | 2 |  ∈[1− ]


|3()| = (1) as

well because b = (
− ) = (1). Hence, the desired result follows. ¥
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Lemma A.3 Suppose Conditions 1 and 2 hold. Then under the null hypothesis in (12),

sup b b b
∈[1− ] || () −  () || =  (1), sup∈[1  ] || () −  () || =  (1), sup− ∈[1 − ] | () −

()| =  (1), and sup [1  ] |b()∈ − − ()| =  (1).

Proof of Lemma A.3 We first prove the uniform consistency of b (), and the uniform con-

sistency of b () follows in the same way. By Lemma A.2, it suffices to show sup b
∈[1− ] || 0 ()−

 () || = (1). For expositional simplicity, we only present the case with scalar . We denote

b 0 () =
−1

P
=1=bc 

2
[]
2
[]
 ()

−1
P

=1=bc ()
≡

b()b() ,
 () = E

£
2

2
 | () = 

¤
=

ZZ
22(  )

()
≡  ()

()
,

6

6

where  =  () is the standard uniform random variable. Hence, () = 1 and b() → 1 as

→∞ for any  ∈ [  1−  ] from the standard kernel density estimation result. It follows that

sup
∈[1− ]

¯̄ b 0 ()−  ()
¯̄ ≤ sup

∈[1− ]
¯̄ b()−  ()

¯̄
+  (1) ,

¯ ¯ ¯ ¯
and the desired result follows by showing sup b

∈[1− ] |()−  () | = (1) using a similar argu-

ment as in the proof of Lemma A.11 of Lee and Wang (2019). We now provide more details.

The triangular inequality yields

sup
∈[1− ]

¯̄̄ b()−  ()
¯̄̄
≤ sup

∈[1− ]

¯̄̄
E[b()]−  ()

¯̄̄
+ sup

∈[1− ]

¯̄̄ b()− E[b()]¯̄̄ ,
where the first item is (1) as established in eqs. (12)-(13) and Lemma 1 in Yang (1981). For the

second term, let  be some large truncation parameter to be chosen later, satisfying  → ∞ as

 . Define→∞ b 
 () =

1





=1

2[]
2
[] ()1[

2
[]

2
[] ≤ ].

X
The triangular inequality gives that, for any   0,

P

Ã
sup

∈[1− ]

¯̄̄ b()− E[b()]¯̄̄  

!
≤ P

Ã
sup

∈[1− ]

¯̄̄ b ()− b
 ()

¯̄̄
 3

!
(A.6)

+P

Ã
sup

∈[1− ]

¯̄̄
E[b ()]− E[b 

 ()]
¯̄̄
 3

!
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+P

Ã
sup

∈[1− ]

¯̄̄ b 
 ()− E[b

 ()]
¯̄̄
 3

!
1 + 2 + 3.≡

For 1, since sup [1  ] |()  ∈ − | −1
 1 for some 0  1 ∞ from Condition 2.1, we have

E sup
∈[1− ]

¯̄̄ b()− E[b()]¯̄̄ ≤ E
1



X
=1

2[]
2
[]1[

2
[]

2
[]  ] (A.7)

≤ −1 −1 1 sup
∈R

E
£
4

4
 | = 

¤
≤ 1

−1
 −1

" # " #

for some 1 ∈ (0∞), where we use Condition 1.8 and the fact thatZ
||

||() ≤ −1

Z
||

||2 () ≤ −1 E[
2]

for a generic random variable  ∼ . Therefore, 1 ≤ 31() by Markov’s inequality.

Similarly,

sup
∈[1− ]

¯̄̄
E[b ()]− E[b 

 ()]
¯̄̄
≤ −1 −1 1 sup

∈R
E
£
4

4
 | = 

¤ ≤ 1
−1
 −1

and hence 2 ≤ 31() as well. For 3, Lemma A.4 below verifies that 3
1 12

≤
(3)− (log()) for some 0    ∞. Therefore, if we choose  such that  =

(( log)
−12), we have both 1 and 2 are also bounded by (3)

−1(log ( ))12. A¡ ¢ 

possible choice of  4
 is  = ( 5) or larger as long as   1

 =  − 5 . By combining these

results, it follows that

P

Ã
sup

∈[1− ]

¯̄̄ b()− E[b()]¯̄̄  

!
≤ 9



µ
log



¶12
→ 0

as →∞, where log ()→ 0 from Condition 2.2.

The uniform consistency of b() readily follows since
b()− () =

1



bcX
=bc+1

b ()2b () −
Z 



 ()2

 ()


=
1



bcX
=bc+1

( b ()2b () −  ()2

 ()

)
+
1



bcX
=bc+1

 ()2

 ()
−
Z 



 ()2

 ()
,
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where the first term is uniformly (1) by the uniform consistency of b(·) and b (·); the second term
is (1) from the standard Riemann integral, which is guaranteed by Condition 1.6. The uniform

convergence of b() then follows from that of b() and the continuous mapping theorem. ¥
Lemma A.4 Under the same condition as in Lemma A.3, for any   0, 3 in (A.6) satisfies

that  ≤ (3)−1(log( ))123  for some 0   ∞.

Proof of Lemma A.4 Since [  1−  ] is compact, we can find  intervals centered at

1      with length  that cover [  1−  ] for some  ∈ (0∞). We denote these intervals
as I for  = 1     and choose  later. The triangular inequality yields

sup
∈[1− ]

¯̄ b
 ()− E[b 

 ()]
¯̄ ≤  ∗1 +  ∗2 +  ∗3,

¯ ¯
where

 ∗1 = max
1≤≤

sup
∈I

¯̄ b 
 ()− b 

 ()
¯̄

 ∗2 = max
1≤≤

sup
∈I

¯̄̄
E[b

 ()]− E[b 
 ()]

¯̄̄
 ∗3 = max

1  

¯̄̄ b 
 ()− E[b 

 ()]
¯̄̄
.

¯ ¯

≤ ≤

We first bound 3
∗
. Let


() = −1 2[]

2
[] ()1[

2
[]

2
[] ≤ ]− E 2[]

2
[] ()1[

2
[]

2
[] ≤ ] 

n h io
and then b

 ()− E[b
 ()] =

X
=1


().

Note that, similarly as (A.7), sup [1 2 ] 
2  ()1[

2 2   1∈ − ] 2[] [] [] []
≤ is bounded by −

 for

some constant  
2 (0 ) and hence () 22() for all  = 1     . Define  =

( log)12
∈ ∞ | | ≤

 . Then |
()| ≤ 22(log())

12 ≤ 12 for all  when  is sufficiently

large. Using the inequality exp() ≤ 1 +  + 2 for || ≤ 12, we have exp(|
()|) ≤ 1 +

 
() + 2 

()
2. Hence| | | |

E[exp(
¯

()
¯)] ≤ 1 + 2E (

())
2 ≤ exp 2E (

())
2 (A.8)

¯ ¯ £ ¤ ¡ £ ¤¢
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since E[
()] = 0 and 1 +  ≤ exp() for  ≥ 0. Using the fact that P(  ) ≤

E[exp()] exp() for any random variable  and nonrandom constants  and , we have that

P ¯̄ b
 ()− E[b 

 ()]
¯̄
  = P b

 ()− E[b 
 ()]   + P −b 

 () + E[b 
 ()]  

≤
E
h
exp

³
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´i
+ E

h
exp

³
−

X
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´i
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≤ 2 exp(−) exp

Ã
2

X
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E
£
(

())
2
¤!

(by (A.8))

≤ 2 exp(−) exp
¡
23

2
 ()

¢

³¯ ¯ ´ ³ ´ ³ ´

for some sequence  → 0 as →∞, where the last inequality is from
X
=1

E
£
(

())
2
¤ ≤ −2

X
=1

E
h
4[]

4
[]

2
 ()1[

2
[]

2
[] ≤ ]

i
≤ 3

2
()

−1

for some 3 ∈ (0∞). This bound is independent of  given Condition 1.8, and hence it is also the
uniform bound, i.e.,

sup
 [1  ]

P
³¯̄̄ b 

 ()− E[b 
 ()]

¯̄̄
 

´
≤ 2 exp ¡− + 23

2
 ()

¢
. (A.9

∈ −
)

Now given , we need to choose  → 0 as fast as possible, and at the same time we let  →∞
at a rate that ensures (A.9) is summable and   2

2
 (). This is done by choosing

 = ( log)
12 and  = ∗ 1 1−

 log = ∗((log) ()) 2 for some finite constant

∗. This choice yields

− + 23
2
 () = −∗ log+ 3 log = −(∗ − 3) log.

Therefore, by substituting this into (A.9), we have

P ( ∗3  ) = P
µ
max

1≤≤

¯̄̄ b
 ()− E[b

 ()]
¯̄̄
 

¶
≤  sup

∈[1− ]
P
³¯̄̄ b 

 ()− E[b 
 ()]

¯̄̄
 

´
≤ 2 


∗−4 .

X
Now, we can choose ∗ sufficiently large so that

∞
P (3

∗
  ) is summable, from which we

=1

have

 ∗3 =  () =  (log())
12

³ ´
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by the Borel-Cantelli lemma.

For 1
∗
, if  is sufficiently large,

E
¯̄̄ b 

 ()− b 
 ()

¯̄̄
= E

"¯̄̄̄
¯ 1

X
=1

2[]
2
[] ( ()− ())1[

2
[]

2
[] ≤ ]

¯̄̄̄
¯
#

≤ 4 (1− 2)

for some constant 4  ∞ given  ∈ I . This bound does not depend on  and hence 1
∗
 =

(). The same argument yields that

¯̄̄
E[b

 ()]− E[b 
 ()]

¯̄̄
≤ E

¯̄̄̄
1



X
=1

2[]
2
[] ( ()− ())1[

2
[]

2
[] ≤ ]

¯̄̄̄
4 (1 2),

"¯ ¯#
≤ −

which does not depend on , and hence it gives the uniform bound 2
∗
 = () as well.

Therefore, by choosing = [((log)(
12 1

)) ]
− , we have that 1

∗
 and 2

∗
 are both the order

of ((log) ( ))12 . By combining these results, it follows that 3 ≤ (3)−1((log) ())12
for some  ∈ (0∞) by Markov’s inequality. ¥

Lemma A.5 Let

G () = 
12
√


b−1()cX
=  +1

(1)()|()−1[]b[]. (A.10)

b c

Suppose Conditions 1 and 2 hold. Then under the null hypothesis in (12), we have G(·)⇒ G(·)
as  .→∞

Proof of Lemma A.5 Recall that b |
=   (b |

  −  − 0) −  (
b − 0)1 [ ≤ 0]

|
−

 b  (1 [ b] 1 [ 0]). Hence, we have≤ − ≤

G() =

12
√


b−1()cX
=bc+1

(1)()| ()−1 [][] (A.11)

−
12




b−1()cX
=bc+1

(1)()| ()−1 []
|
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√
(b − 0)

−
12




b−1()cX
=  +1

(1)()| ()−1 []
|
[]

√
(b − 0)1

£
() ≤ 0

¤
b c
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−
12
√


b−1()cX
=bc+1

(1)()| ()−1 []
|
[]
b ¡1 £() ≤ b¤− 1 £() ≤ 0

¤¢
≡ 1 ()−2 ()−3 ()−4().

First, we derive the limit of 1 () by applying Corollary 29.14 in Davidson (1994).
6 To this

end, we let
12

 =  −12(1) |()  ()−1  
[ 

)
] [] and ( = {}=1, and check Conditions£ ¤

29.6(a) to (f0) in the corollary. Condition (a) is satisfied since E [] = E[E |() ] = 0 given
our Conditions 1.1 and 1.2. Condition (b) is implied by our Conditions 1.6 and 1.8 by setting

 = 1 in the corollary as seen by

sup
∈[1− ]

kk4 ≤

12
√


sup
∈[1− ]

°°| ()−1°°
4

sup
∈[1− ]

¯̄
(1)()

¯̄× sup
∈R

E ||||4 | =  ∞,
° ° ¯ ¯ Ã h i 14!

where ||·|| denotes the -norm. Condition (c) is implied by the fact that {}=1 is a martingale
difference array (see, e.g., Lemma 3.2 of Bhattacharya (1984)). Thus, the NED condition is satisfied.¥ ¦
Condition (d) holds by setting  = 1 and () = −1() , and from the fact that −1 (·)
is continuously differentiable. Condition (e) is satisfied by setting  = 1 since {}=1 is
independent conditional () almost surely (see, e.g., Lemma 3.1 of Bhattacharya (1984)). To

satisfy Condition (f0), our Condition 1.6 and Taylor expansion of  ( ) at  yield that·

E
h
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|
[]
2[]

i
= E

h
E
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|

2
 | = ()

ii
= E

£
 ( (()))

¤
=  () + E

∙
 ()



¡

¡
()
¢− 

¢¸
=  () +

³
−12

´
, (A.12)

where  is between  and  (()) in the third equality. The last equality follows from

sup
∈[1− ]

°°°°E∙ ()

³

¡
()
¢− b(())´¸°°°° ≤ sup

∈[1− ]

°°°° ()

°°°°E sup
∈[1− ]

¯̄̄
 ()− b()¯̄̄

= 
³
−12

´
,

" #

6Note that we cannot apply Theorem 2 in Bhattacharya (1974) to derive the limit of 1 () as in

the proof of Theorem 1. This is because the pre-ordered version of {(1) | 1
()  ()

−
[][]}=1 is

{(1) | 1
()  ()

−
}=1, which is no longer i.i.d. given the rank statistics {}=1.
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which is from Donsker’s theorem and Condition 1.6. Then we obtain that

E

⎡⎣⎛⎝ ()X
=bc+1



⎞⎠2⎤⎦ = E
⎡⎣ ()X
=bc+1
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→ 

Z −1()



³
(1) ()

´2
| ()−1  () ()−1 

=

Z −1()
(1)() = ,

−1(0)

where the first equality is from the fact that {}=1 is a martingale difference array; the third
equality is by (A.12); the second expression from the bottom is by Riemann integral as →∞; the
last expression is by the definition of (1) (·) and −1(0) =  . Therefore, Corollary 29.14 DavidsonX (
(1994) implies that

 )
 2
1 () =  ⇒1() for  ∈ [0 1].

=bc+1
For 2() and 3(), we apply Lemma A.1, Lemma A.12 in Hansen (2000a), and the contin-

uous mapping theorem to obtain that

2 ()→
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−1(0)
(1)()| ()−1 ()  Φ

12
 = |Φ
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3 () =
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ÃZ min(−1()0)

−1(0)
(1)()| ()−1 () 

!
Φ
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= min{  (0)}|Φ12 .

ÃZ −1 !

and

Finally, for 4, let  denote the event that b ∈ B−1+2(0) for some . Lemma A.12 in¡ ¢
Hansen (2000a) yields that P 

 ≤  for any   0 as →∞ Then for any   0 and   0, if
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 is sufficiently large,
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i
+ 

≤ −1−1+2 + 

≤ 2,

Ã !

where the second inequality is by Markov’s inequality and the fourth inequality is by Conditions 1.6

and 1.8. Thus, sup [01] ||4()|| = (1). The desired result follows by combining these results.∈
¥

Proof of Lemma 1 The first result follows from Lemma A.3. For the second result, given

Lemma A.5, it suffices to establish

sup
∈[01]

¯̄ bG ()− G()¯̄ = (1).
¯ ¯

We first consider −1 12 12
()  b−1(). Given Lemma A.5 and b =  + (1) from Lemma A.3,

we have, for any  [0 1],∈

bG ()− G() =

12
√


b−1()cX
=bc+1

b(1)()| b ()−1 []b[]
−

12
√


b−1()cX
=bc+1

(1)()| ()−1 []b[] +  (1)

=

12
√


b−1()cX
=bc+1

nb(1)()| b ()−1 − (1)()| ()−1
o
[]b[]

−
12
√


b−1()cX
=b−1()c+1 

(1)()| ()−1 []b[] +  (1)
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≡ 1 ()−2 () +  (1) . (A.13)

For expositional simplicity, we only present the case with scalar . Then  is simply 1.

For 1 (), we write

1() =

12
√


b−1()cX
=bc+1

nb(1)() b ()−1 − (1)() ()−1
o
[][]

+

12
√


b−1()cX
=bc+1

nb(1)() b ()−1 − (1)() ()−1
o
[]
¡
[] − b[]¢

11() +12(). (A.14)≡

We can verify sup [01] |11()| = (1) from the argument in Chapter 2 of van der Vaart and∈
Wellner (1996), which we present in Lemma A.6 below. For 12(), define the event  = b{ ∈
B 12(0)} for some . Lemma A.12 in Hansen (2000a) implies that− P(

) ≤  for any   0

as  . Then for any   0, if  is large enough, we have→∞

sup
∈[01]

|12()|

≤ 12 sup
∈[1− ]

¯̄̄b(1)() b ()−1 − (1)() ()−1
¯̄̄
sup

∈[1− ]

1√


¯̄̄̄
¯̄ bcX
=bc+1

[](b[] − [])

¯̄̄̄
¯̄

≤ (1)

⎧⎨⎩ sup
∈[1− ]

1√


bcX
=bc+1

2[]|b − 0|

+ sup
∈[1− ]

1√


bcX
=bc+1

2[]1
£
() ≤ 0

¤ |b − 0|

+ sup
∈[1− ]

1√


bcX
=bc+1

2[]|b| ¯̄1 £() ≤ 0
¤− 1 £() ≤ b¤¯̄

⎫⎬⎭
= (1),

where the second inequality is by Lemma A.3, and the last equality follows from Lemma A.1 and

(A.3). Therefore, 1() in (A.13) is uniformly (1).
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For 2() in (A.13), we write

2() =

12
√


b−1()cX
=b−1()c+1 

(1)() ()−1 [][]

+

12
√


b−1()cX
=b−1()c+1 

(1)() ()−1 []
¡b[] − []

¢
≡ 21() +22(). (A.15)

For 21(), define the event  = {sup [01] |b−1()∈ − −1()|  } for some   0. By Lemma

A.3, P(
) ≤  for any   0 and   0 as  → ∞. On the event , for any given value

b−1() = (), we have that

sup
∈[01]

|21()| ≤ sup
∈[01]

sup
|()−−1()|

¯̄̄̄
¯̄12√



b−1()cX
=b()c+1

(1)() ()−1 [][]

¯̄̄̄
¯̄

⇒ sup
∈[01]

sup
|()−−1()|

¯̄̄̄
¯12

Z −1()

−1(0)
(1)() ()−1  ()12  ()

−12

Z ()

−1(0)
(1)() ()−1  ()12  ()

¯̄̄̄
¯

= sup
∈[01]

sup
|()−−1()|

|1()−1((()))|

¯ ¯

similarly as 1() in (A.4). Then, we can choose  small enough to obtain that, for any   0,

P

Ã
sup
∈[01]

|21()|  

!
≤ P

Ã(
sup
∈[01]

|21()|  

)
∩

!
+ P(

)

→ P

Ã
sup
∈[01]

sup
|()−−1()|

|1()−1((()))|  

!
+ 

≤ −1E

"
sup
∈[01]

sup
|()−−1()|

|1()−1((()))|
#
+ 

≤ −112 + 

2,≤

where the second inequality is by Markhov’s inequality; thei third inequality follows from the conti-p
nuity of (·) and from the fact that E sup [0] |1()| ≤ 2; and the last inequality holds∈
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with a sufficiently small . For 22(), consider the same events  and  as above. Then, on

the these two events, using the same decomposition with the 2 (), 3 (), and 4() terms as

in (A.11), we have that

sup
∈[01]

|22()|

≤ 12 sup
∈[1− ]

¯̄̄
(1)() ()−1

¯̄̄
sup
∈[01]

1√


b−1()cX
=b−1()c+1

¯̄
[]([] − b[])¯̄

≤  sup
∈[01]

1√


b−1()cX
=b(−1()−)c+1

2[]

n
|b − 0|+ |b − 0|1

£
() ≤ 0

¤
+ b ¯̄1 £() ≤ b¤− 1 £() ≤ 0

¤¯̄o

≤  sup
∈[01]

1



b−1()cX
=b(−1()−)c+1

2[]

→  sup
∈[01]

Z −1()

−1()−
 () 

for some constant 0    ∞, where the second inequality is from Condition 1.6; the third£ ¤
inequality is from the fact that 1 () ≤  ≤ 1 for any , result in (A.3), and by conditioning on

the events  and ; the last convergence is from Lemma A.1. By choosing a sufficiently small

, therefore, sup [01] |22()| = (1), which completes the proof. The proof for () ≤ b−1() is∈
identical and hence omitted. ¥

Lemma A.6 Under the same condition as in Lemma 1, sup [01] |11()| = (1), where ∈ 11(·)
is defined in (A.14).

Proof of Lemma A.6 Note that for each , {  } are independent conditional on ()[] [] =1 =

{1     } almost surely (Lemma 3.1 in Bhattacharya (1984)). We aim to use the empirical

process argument for independent variables in van der Vaart and Wellner (1996). To this end, we

consider the class of functions (· |) = (1)(·)  (·)−1 and the stochastic process

V() =



=bc+1
(),

X

where
12

() =  −12()[][]. Define the semi-metric (1 2) = sup∈[1− ] |1() −
2()|. Then the space of continuously differentiable functions defined on [  1− ], denoted 1[  1−
 ], is totally bounded. We now apply Theorem 2.11.9 in van der Vaart and Wellner (1996) by

checking their conditions. (See also Theorem 3 in Bae, Jun, and Levental (2010) for a martingale
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difference array argument since { 
[][]}=1 also form a martingale difference array by Lemma 3.2

in Bhattacharya (1984)).

First, we let their  be b(1− )c and their F be 1[  1−  ]. Set their envelope function 

as ̄ |||| for a large enough constant ̄. Then, their first condition is satisfied as we write, for any
  0,

b(1−)cX
=bc+1

E
∙
sup
∈F

|()|1
∙
sup
∈F

|()|  

¸¯̄̄̄
()

¸

≤
b(1−)cX
=bc+1

E
∙
sup
∈F

|()|2
¯̄̄̄
()

¸12
P
µ
sup
∈F

|()|  

¯̄̄̄
()

¶12

≤ −4
b(1−)cX
=bc+1

E
∙
sup
∈F

|()|2
¯̄̄̄
()

¸12
E
∙
sup
∈F

|()|4
¯̄̄̄
()

¸12

≤ ̄3−32−4
b(1−)cX
=bc+1

E
h°°[][]°°2 ¯̄̄ ()i12 E h°°[][]°°4 ¯̄̄ ()i12

→ 0 a.s.

as  → ∞, where the first two inequalities are from Cauchy-Schwarz inequality and the third

inequality is by substituting the envelope function ̄ |||| and from Condition 1.8. Regarding their

second condition, we have

sup
(1)≤

b(1−)cX
=bc+1

E
h
(()− (1))

2 |()
i
≤ ̄2

−1
b(1−)cX
=bc+1

E
h ¯̄
[][]

¯̄2 ¯̄̄
()

i
→ 0 a.s.

for every  ↓ 0. Regarding their third condition, the smoothness of F is sufficient for Corollary

2.7.2 in van der Vaart and Wellner (1996) by considering their  and  as both 1. This is further

sufficient for their uniform bracketing entropy condition. Thus their Theorem 2.11.9 implies that

conditional on (), the process V(·) is asymptotically tight, that is, for any   0, there exists

some  such that if  is large enough,

P

Ã
sup

(12)≤
|V(1)−V(2)|  

¯̄̄̄
¯ ()

!
≤  a.s. (A.16)

Define  = {(b ) ≤ } for   0, where b |( b·) = b(1)(·) (·)−1. Then, for any   0, we
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have

P

Ã
sup
∈[01]

|11()|  

!

≤ E
"
P

Ã(
sup
∈[01]

|11()|  

)
∩

¯̄̄̄
¯ ()

!#
+ P (

)

≤ E
"
P

Ã
max
1≤≤

sup
( )≤

¯̄̄
V()−V( b)¯̄̄  

¯̄̄̄
¯ ()

!#
+ 

≤ E
⎡⎣ P

³
sup

( )≤ |V()−V( b)|  
¯̄̄
()

´
1−max1≤≤ P

³p
 sup

( )≤ |V()−V( b)|  
¯̄̄
()

´
⎤⎦+ 

.≤

The second inequality is from Lemma A.3 that implies P(
) ≤  if  is large enough, and from

the law of iterated expectations. The third inequality is from the Ottaviani’s inequality (e.g., A.1.1

in van der Vaart and Wellner (1996)) and the fact that {[][]}=1 are independent conditional
on (). The last inequality is from (A.16) and the steps in p. 227 in van der Vaart and Wellner

(1996). In particular, for some 1 0 ,≤ ≤

max
1≤≤

P

Ãp
 sup

( )≤
¯̄̄
V()−V( b)¯̄̄  

¯̄̄̄
¯ ()

!

≤ max
≤0

P

⎛⎝−12
0X

=bc+1

¯̄¯̄
[][]

¯̄¯̄
 

¯̄̄̄
¯̄ ()

⎞⎠
+max

0≤
P

Ã
sup

( )≤
¯̄̄
V()−V( b)¯̄̄  

¯̄̄̄
¯ ()

!
 a.s.,≤

where the second inequality follows from Markov’s inequality, (A.16), and setting a large enough

 satisfying  →∞ and  −120 0 0 → 0. ¥

Proof of Theorem 3 We first prove (19) under the null hypothesis. To this end, define

eG∗ () =
( bG∗1(·) if  ≤ (0)bG∗2(·) otherwise,
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which is different from bG∗(·) only in a neighborhood of  (0). Under the null hypothesis, Lemmas
A.1 and A.3 and the continuous mapping theorem yield that

eG∗ ()⇒ ⎪⎨⎪⎩
1√
(0)

n
1 ()− 

(0)
1 ( (0))

o
if  ≤ (0)

1√
1−(0)

n
1 (1)−1 ()− 1−

1−(0) (1 (1)−1 ( (0)))
o

otherwise

⎧

R
as →∞. Therefore, we can establish 1 ¯

0 ¯ bG∗ () e ¯− G∗ ()¯  =  (1) to obtain the desired result.

However, since the empirical cdf is uniformly consistent, Lemma A.3 yields b(b¯ ¯ ) − ( (1)R 0) =  .

Therefore, it suffices to establish
(0)+ ¯̄ b ¯

() e ()  =  (1) for some (0)− G∗ − G∗ ¯¯ ¯ ¯ → 0 with →∞,¯¯ ¯ ¯ ¯
which is further implied by the fact that both sup ¯ b [01] G∗ ()¯ and sup [01] ¯ eG∗ ()¯ are ∈ ∈ (1) given

Lemma 1. The limiting null distribution of  hence follows as (19) by the continuous mapping

theorem.

We now examine the limit of bG () under the alternative. In this case, b (or b = b (b)) is
never consistent since  (or ) is a random variable with a non-degenerate variance. Hence, the

nonparametric estimators that depend on b, b (·), b (·), and b(·), are no longer consistent but
still (1). On the other hand, b (·) does not depend on b (or b), and hence it is still consistent
under the alternative. For b = (b|b| | ) , in addition, we can verify that there exists a constant

 [0 ) such that

¯ ¯

∈ ∞
(b − 0) =  + (1) (A.17)

for any given  (or ). In particular, denote () = (   1 [  ]) and () =
| | |(   1 [  ]) . Given b =  for any ,

b b | | |


³b − 0

´
= 

X
=1

()()
|

−1 X
=1

() { −()
|0}

=

Ã
1



X
=1

()()
|
!−1Ã





X
=1

() +




X
=1

() (()−())
| 0

!
Θ−11 (Θ2 +Θ3) .

Ã ! Ã !

≡

Similarly as Lemma A.5 of Lee and Wang (2019), we have Θb1 → Θ1, which is positive definite

by Condition 1.7. For the numerator, since 12−Θb2 = (1) by the standard Central Limit

Theorem, we have Θb2 = (1) as  ∈ (0 12) in Condition 1.4. Furthermore, since 0 = 0
−

with 0 = 0, we have Θb3 = (1) at most from Conditions 1.4, 5 and 7, though it can be (1)

under some special circumstances.

6
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Let [] be the induced order statistics of  () associated with (). We decompose

1bG () =
b12√


b− ()cX
=bc+1

b(1)()| b ()−1 []b[]
=

b12√


b−1()cX
=bc+1

b(1)()| b ()−1 [][]
−
b12√


b−1()cX
=bc+1

b(1)()| b ()−1 []|[]{(b − 0) + 1 [ ≤ b] (b − 0)}

−
b12√


b−1()cX
=bc+1

b(1)()| b ()−1 []|[]0 ¡1 [ ≤ b]− 1 £ ≤ []
¤¢

b1 () b2 () b3 () ,≡ − −

and denote their re-scaled and demeaned terms as in (17) as

b∗
 () =

b∗1 () b∗2 () b∗3 () .G − −

The first b1∗ () term is (1) because b1 () = (1) given Theorem 1, where the probability

limits of b , b(1)(·) are all still bounded and b(b)→ ̄ ∈ [0 1] as →∞ though ̄ is not necessarily

the same as (0). For b2∗ (), sinceb (·) is still uniformly consistent, a similar argument as Lemma
A.5 implies that, for any  [  1  ],∈ −

1



b−1()cX
=bc+1

b(1)() b ()−1 []|[] → ,

1



b−1()cX
=bc+1

b(1)()| b ()−1 []|[]1 [ ≤ ]→ min { ̄}

as →∞, which yields

b2 () = (+ (1))
12(b − 0) + (min { ̄}+  (1))

12(b − 0) =  12−
³ ´

since b−0 = (
−) from (A.17). However, as b2 () is linear in , the re-scaling and demeaning¡ ¢

procedure eliminates the leading term and hence we have b2∗ () =  12− . This result holds
naturally when b − 0 = (

−).
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Lastly, the fact that [] is a non-degenerate random variable implies

1



b−1()cX
=bc+1

b(1)()| b ()−1 []|[] ¡1 [ ≤ b]− 1 £ ≤ []
¤¢
= (1).

Furthermore, since we suppose the support of  is located in the interior of the support of 

(i.e., Condition 1.5 holds for any values of ), 1 [  b]− 1 [  £ ¤ ] or equivalently 1 [ ≤ b]−
1  ≤ [] cannot be zero for all  at the same time unless b locates at the boundary of the¡ ¢
support of  (or b is either 0 or 1), which is excluded in our case. Hence b  () =  12−3 as

| |
0 =  −0 with 0 = 0 and E[ ]  E [ 1 [ () ≤ ]]  0 for any  from Condition 1.7. In¡ ¢
this case, even the re-scaling and demeaning procedure cannot eliminate the leading  12−¡ ¢
term unless  = 0 for all

7. It follows that b∗ 2
3 () =  1  b

  − , which dominates G∗ (·).
Therefore, since  ∈ (0 12), bG∗ (·) diverges and hence  →∞ with probability approaching to

one under the alternative hypothesis. ¥

6

Proof of Lemma 2 Let  be uniformly distributed over [  1−  ] and |( = ) ∼ N (0  ())

for some function  () to be specified later. Then the weighted likelihood ratio test statistic reads

 =
1

1− 2
Z 1−



Z


Ã
p
 ()

!
exp

µ
G∗()−

2
2
 (1− )

¶
,

where  (·) denotes the standard normal density function. Denote  = G∗ 1() and  =  ()− +

 (1− ). Then, we have


p
 ()

exp

µ
G∗()−

2
2
 (1− )

¶
=

1p
2 ()

exp

µ
−

2


2
+ 

¶
=

1p
2 ()

exp

µ
−1
2

³

− 

´2
+
1

2

2



¶


Ã !

Using the fact that a density integrates to 1, we find that

Z


Ã
p
 ()

!
exp

µ
G∗()−

2
2
 (1− )

¶
 =

1p
 ()

exp

µ
1

2

2



¶


7For instance, consider the case with two thresholds, 1 and 2 with 1 = 2. Even when b consistently
estimates one threshold, say 1, and the re-scaling and demeaning procedure in (17) is defined using b, one of
the right or left sides of 1 still has a jump at 2. Because¡ of this¢ nonlinearity, the re-scaling and demeaning

procedure cannot completely eliminate the leading  12− term asymptotically.

6
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Setting  () = 2((1− ))−1 for some constant 2  0 yields that

 =
1

1− 2
1 



1√
1 + 2

exp
1

2

2

1 + 2
G∗()2
(1− )



Z − µ ¶
Then following Andrews and Ploberger (1994), we have

lim
2→0

2
√
1 + 2− 1

2
=

1

1− 2
Z 1−



G∗()2
(1− )



³ ´

as desired. ¥

Proof of Theorem 4 We first show bG ()⇒ G () for  ∈ [0 1], where

bG () = b12√


b−1()cX
=bc+1

b(1)()| b ()−1 []b[]
with b =  − (b − ) + 0

−121 [ ≤ 0]. To this end, we go through the proof of Lemma 1

under 0 = 0
−12. For simplicity, we present the case for a scalar  (so  = 1). First, in view of

the proof of Lemma A.2, we replace (A.5) by¯̄̄̄
¯̄ 1

X
=1=bc

2[]
¡b[] + []

¢ ¡b[] − []
¢
 ()

¯̄̄̄
¯̄ ≤ 1



X
=1

¯̄̄
3 (b + ) (b − 0) ()

¯̄̄

+
1

32

X
=1

¯̄
3 (b + ) 01 [ ≤ 0] ()

¯̄
≡1() + 0

2().

6

Then by the same argument as the proof of Lemma A.2, 1() and 2
0
() are both uniformly

 (1) over  ∈ [  1−  ].

Second, Lemma A.3 holds identically since it does not rely on the magnitude of 0. Third, we

establish Lemma A.5. Substituting b, we obtain
G () =

b12√


b−1()cX
=bc+1

(1)()()−1[][]

−
b12



b−1()cX
=bc+1

(1)() ()−1 []
|
[]

√
(b − 0)
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+
b12



b−1()cX
=bc+1

(1)() ()−1 []
|
[]

√
01

£
() ≤ 0

¤
≡ 1 ()−2 () +03 () .

By the same argument as the proof of Lemma A.5, the 1 () and 2 () terms have the same

limits as before. Regarding 03 (), since 0 = 0
−12, we apply Lemma A.1 and the continuous

mapping theorem to obtain

03 () =
b12



b−1()cX
=bc+1

(1)() ()−1 []
|
[]
1 [ ≤ 0]

√
0

→ 
12


ÃZ min(−1()0)

−1(0)
(1)() ()−1 () 

!
0

= min{  (0)}012 .

Finally, in view of the proof of Lemma 1, the 11 term in (A.14) and the 21 term in (A.15)¡ ¢
remain unchanged. For 12, Lemmas A.1 and A.3 and the fact that b − 0 =  −12 yield

that

sup
∈[01]

|12()|

≤ 12 sup
∈[1− ]

¯̄̄b(1)() b ()−1 − (1)() ()−1
¯̄̄
sup

∈[1− ]

1√


¯̄̄̄
¯̄ bcX
=bc+1

[](b[] − [])

¯̄̄̄
¯̄

≤ (1)×
⎧⎨⎩ sup

∈[1− ]

1√


bcX
=bc+1

2[]|b − 0|+ sup
∈[1− ]

1



bcX
=bc+1

2[] |0|
⎫⎬⎭

= (1).

For 22, consider the events  = b{ ∈ B−12(0)} for some   0 and  =

{sup [01] |b−1() − −1()|  } for some   0. Then, on the these two events, Condition∈
1.6 and Lemma A.1 yield that

1

sup
∈[01]

|22()| ≤ 12 sup
∈[1− ]

¯̄̄
(1)() ()−1

¯̄̄
sup
∈[01]

1√


b− ()cX
=b−1()c+1

¯̄
[]([] − b[])¯̄

≤  sup
∈[01]

1√


b(−1()+)cX
=b(−1()−)c+1

¯̄̄
2[]

¯̄̄ ³
|b − 0|+ −12 |0|

´
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1

b −X1()c
≤  sup 2

 []
∈[01]

=b(−1()−)c+1Z −1()
→  sup  () 

∈[01] −1()−

for some constant 0   ∞. Then sup∈[01] |22()| = (1) by choosing a sufficiently small .

We thus establish bG ()⇒ G () for  ∈ [0 1] by combining the above four steps. The rest of the
proof follows immediately from the continuous mapping theorem. ¥
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