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ABSTRACT 

 
 
 Climate change has the potential to impact many aspects of an organism’s 

biology, including phenology, the timing of important biological events. The timing of 

reproduction and spawning events for commercially important fish species is a critically 

important area of research for fisheries management. Haddock are commercially 

important as well as sound-producing, which allows for monitoring via non-invasive 

passive acoustics. This study presents an application of passive acoustic monitoring to 

a multi-year dataset to increase understanding of haddock sound production, as well as 

trends in spawning phenology and behavior. An automatic acoustic detector was able to 

identify haddock calls within known spawning grounds, and identify the timing of 

spawning events from fish choruses and calls that have been linked to spawning 

behavior. When used in conjunction with traditional fisheries research methods such as 

boat-based surveys, passive acoustic monitoring can be a powerful tool for fisheries 

biology and management. This is the first study to show the application of these 

techniques to this commercially important fish species in its natural environment. 
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CLIMATE CHANGE AND MARINE TROPHIC ECOLOGY – A REVIEW 
  
 
GLOBAL IMPACTS OF CLIMATE CHANGE  

 Climate change is certainly one of the most pressing issues of the 21st century, 

as warming temperatures and more variable climate patterns around the globe impact 

every facet of life on earth. Scientists have long predicted that the changing of the 

earth’s climate would have profound impacts on the distribution of species, and this is 

seen throughout the fossil record as the earth’s temperature has fluctuated through time 

(Raup 1986, Davis and Shaw 2001). In fact, throughout time, climatic changes and sea 

level shifts have been the two biggest drivers of global extinction events (Raup 1986). In 

addition to extinction, climate shifts can have profound impacts on ecosystems by 

altering habitat ranges and behavior for organisms, which can change food web 

dynamics and disrupt the balance of the system (Davis and Shaw 2001). In recent 

years, changes to temperatures and climate patterns have been linked to increased 

storms, prolonged drought, and a decrease in the biodiversity of many ecosystems 

(O’Gorman 2015, Yilmaz et al. 2014, Bellard et al. 2012). This loss of biodiversity is 

especially problematic for ecosystems under climate stress, and can come from 

changes in organisms’ ranges, shifts in phenology, or physiological impacts and 

extinction (Bellard et al. 2012). Marine systems are of special concern with regard to 

climate change because they play a critical role in the global carbon cycle, and thus 

directly impact the pace and extent of climate change (Hays et al. 2005, Heogh-

Guldberg and Bruno 2010).  
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EFFECTS OF CLIMATE CHANGE IN MARINE SYSTEMS  

Primary Productivity  

 In marine pelagic systems, water temperature is directly linked primary 

productivity and growth of phytoplankton (Edwards et al. 2016; Thomas et al. 2017). 

Most phytoplankton species are quite sensitive to changes in temperature, with a limited 

temperature band for optimal growth (Edwards et al. 2016). Many phytoplankton 

species are also strongly limited by nitrogen and phosphorus availability, and their 

sensitivity to high temperatures is exacerbated in low-nutrient conditions (Thomas et al. 

2017).  

 Phytoplankton species are particularly good indicators of the effects of climate 

change on the marine environment for a number of reasons. First, their physiology is 

temperature- and nutrient-dependent, so changes to the global climate will have 

impacts on the phytoplankton community (Geider 1987). Second, these organisms are 

short-lived, with a distinct growing season, so their abundance is directly related to 

environmental conditions, rather than the persistence of individuals from previous 

generations (Thomas et al. 2003). Third, phytoplankton are not commercially harvested, 

so any changes to their abundance or distribution are most likely due to climate effects. 

This all leads to a strong relationship between phytoplankton abundance and climate, 

and changes to the abundance of primary producers can often be reflected throughout 

the food web via trophic cascades.  
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Marine Biodiversity  

 Changes to temperature, salinity, and other physical features of the environment 

have the potential to cause many direct or indirect effects on marine animals. The first 

response for many organisms to rising temperatures is a shift in distribution, which has 

been seen for many fish stocks in the North Atlantic (Nye et al. 2009, Perry et al. 2005). 

Some species may adapt and shift their ranges more readily than others, which could 

leave some species more vulnerable to the effects of climate change (Perry et al. 2005). 

Climate change has also been linked to the decline of many marine species in recent 

decades, including puffins (Sandvik et al. 2005), right whales (Greene and Pershing 

2004), and a number of fish species (Rjinsdorp et al. 2009). Perhaps the most dramatic 

example in recent years is the Atlantic cod, where rapid and extreme warming of the 

waters of the Gulf of Maine combined with fishing pressure led to a total collapse of the 

cod fishery in the early 1990’s (Pershing et al. 2015). Despite a fishing moratorium since 

1992, the cod fishery still shows no signs of recovery in the Gulf of Maine (Pershing et 

al. 2015, Budreau and McBean 2006). As the waters of the Gulf of Maine continue to 

warm, continued fishing pressure on other species may lead to eventual collapse if not 

properly managed. In addition to extinction or loss of biodiversity, these effects could 

lead to further consequences for the ecosystem through trophic dynamics.  

 

Food Web Dynamics  

 Much of ecology is focused on understanding the relationships of organisms to 

each other and their environment, and understanding how large-scale processes impact  
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plant and animal populations. Trophic ecology aims to decipher the energetic 

relationships between predators and their prey in an ecosystem. We can follow the flow 

of energy from photosynthesizers through grazers to animal predators, in what is known 

as a bottom-up process; alternatively, we can investigate complementary top-down 

processes, where consumers impact the abundance and behavior of their prey. Insight 

into the trophic interactions of an ecosystem can help illuminate the complexity of the 

system, thus providing a fundamental basis for generating predictions for how an 

ecosystem may respond to extrinsic disturbances, such as climate change or 

exploitation.  

 As water temperatures produce changes to the abundance and distribution of the 

primary producers in marine pelagic systems, higher trophic levels begin to experience 

these effects as well. Previous research has shown that copepod abundance fluctuates 

with temperature, and because they make up the base of the marine food web as the 

primary prey item for many species of small fish as well as some large whales, changes 

in copepod abundance will be transferred through the food web to impact animals at 

higher trophic levels. During the last few decades of the 20th century, peak copepod 

abundance shifted forward by 10 days (Edwards and Richardson 2004), and distribution 

patterns have changed dramatically from year to year. These changes at lower trophic 

levels must then have consequences for the predators that feed on them.  

 Many fish species go through larval stages that also depend on phytoplankton 

and zooplankton for food in their early life stages. As changes in temperature and 

climate produce shifts in the phenology of plankton blooming, this could have significant  

   
 
 

4 



	

impacts on the success of larval survival and recruitment for these fish. In the North 

Atlantic, the successful recruitment of larval haddock has been linked to the timing of 

the fall phytoplankton bloom in recent years, suggesting that we are already seeing the 

impacts of climate change on marine food webs (Leaf and Friedland 2014).  

 Studies have already begun to show the impacts of climate change on predatory 

species due to indirect effects such as predator prey interactions (Fredericksen et al. 

2013, Durant et al. 2003, Hedd et al. 2006, Meyer‐Gutbrod and Greene 2018). Trophic 

effects (bottom-up controls) have been seen in multiple seabird populations in the North 

Atlantic, with hatching success being negatively correlated with sea surface 

temperatures (SST) from the previous year, via change in the abundance of the 

dominant copepod Calanus finmarchius, which forms the base of this food web 

(Fredericksen et al. 2013). Previous work has shown that sandeel abundance is 

positively correlated with copepod abundance, and bird hatching success was positively 

correlated with sandeel abundance, with a one-year lag (Fredericksen et al. 2006), 

suggesting that there is significant bottom-up control for predators in this system. 

Temperature-linked declines in herring availability are linked to lowered hatching 

success for Atlantic puffins, which depend on herring as a staple in their diet (Durant et 

al. 2003). Similarly, on the west coast of North America, temperature driven availability 

of first-year sand lance was directly related to the breeding success of the rhinoceros 

auklet, which depends heavily on this fish for prey (Hedd et al. 2006). Calanus 

copepods make up more than ninety percent of the diet for North Atlantic right whales, 

and due to rising temperatures, these copepods have shifted their range northward over  
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the past decade. If right whales continue to follow their prey northward, they will be in 

unprotected waters, leaving them vulnerable to increased anthropogenic mortality, 

which has already been seen in the past year (Meyer‐Gutbrod and Greene, 2018). The 

continuation of these changes could have dramatic effects for the ecosystem as a 

whole, including for the many commercially important species in this system.  

 Through bottom-up processes, we expect climate-driven changes at the level of 

primary producers to have cascading effects through higher trophic levels. Many top 

predators in marine systems, such as marine mammals and seabirds, are endothermic, 

so climate effects on these taxa are mostly indirect, influenced primarily by habitat or 

prey availability (Sydeman et al. 2015).  

 

Phenology  

 In temperate systems with seasonal growing cycles, another dimension must be 

added to our understanding of the system. In addition to changes in abundance, 

organisms may also display changes in phenology, which is the timing of important 

biological events in an organism’s life, such as blooming or spawning. Temperature 

changes have been shown to affect the phenology of phytoplankton and zooplankton, 

and are expected to impact the phenology of fish and other predators as well. 

Phenology can alter the dynamics of trophic relationships, resulting in a “trophic 

mismatch,” where animals at higher trophic levels reach high abundance either earlier 

or later than their prey species, which can change the dynamic of the ecosystem. For 

example, a 2004 study by Edwards and Richardson demonstrated a shift in timing of the  
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major annual dinoflagellate bloom between about 1960 and 2000, with the peak 

biomass shifting to almost 1 full month earlier in more recent years. If dinoflagellate 

predators had not yet adapted to this change in phenology, predator populations would 

likely decline as they would miss the peak abundance of their prey.  

 Some 14honological changes are already being observed in marine predators. 

Seabirds such as puffins and auks have changed their breeding and nesting phenology 

in response to changes in the timing of food availability (Frederikson et al. 2004, Moe et 

al. 2009). Some species have shifted earlier in the year, while others have shifted later, 

which will change the seasonal makeup of the biological community in these 

ecosystems (Moe et al. 2009). Fish species have shown changes in phenology too, as 

atlantic cod were shown to alter their spawning phenology as temperatures rise in the 

Gulf of Maine, shifting earlier in the year as water temperatures increased (McQueen 

and Marshall 2017). For marine mammals, changes in migration phenology have been 

seen in a temperate system in the St. Lawrence estuary, where fin and humpback 

whales shifted their timing of arrival on foraging grounds one month earlier over the 

course of 30 years (Ramp et al. 2015), which may have consequences for their feeding 

success or the survival of their forage fish prey.  

 

CONCLUSIONS  

 As the climate continues to warm, scientists try to predict how ecosystems may 

respond to temperature increases in the future. Characterizing patterns and trends 

correlated to localized, short-term climate cycles allows us to extrapolate and predict  
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impacts of human activities like large-scale anthropogenic climate change on marine 

ecosystems, and particularly highproductivity systems like the Gulf of Maine, which 

provides critical foraging habitat for many endangered and ecologically important 

species, as well as supporting many lucrative fisheries on which we depend for food. In 

the next chapter, I present a case study of spawning phenology in haddock in relation to 

climate and water temperature over a span of nearly a decade. This study can be used 

to build predictions for the consequences of climate change on other species and other 

systems in the future. 
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USING PASSIVE ACOUSTICS TO INFER SPAWNING BEHAVIOR AND 
PHENOLOGY: A CASE STUDY OF HADDOCK ON GEORGES BANK 
 
 
INTRODUCTION 

 Understanding the reproductive biology and spawning behavior of fish species 

has been a critical area of research in fisheries management for decades. Traditional 

methods of studying spawning have involved large research vessels and net tows to 

identify and quantify larval fish and eggs (Ciannelli et al. 2007, Neidetcher et al. 2014, 

Fincham et al. 2013, Asch et al. 2015, Genner et al. 2009). When these data are 

collected consistently over a long period of time, they can be extremely useful for 

understanding the dynamics of spawning for a species. These data are used to assess 

spawning success and recruitment, as well as temporal and spatial variability in 

spawning season and location. For example, long-term ichthyoplankton sampling by the 

Alaska Fisheries Science Center allowed for the characterization of spawning 

phenology in Alaskan Pollock (Gadus chalcogrammus), and linked changes in spawning 

phenology to large-scale changes in climate (Ciannelli et al. 2007). 

 These traditional approaches to studying spawning have their limitations, 

however. They are costly, requiring a huge amount of survey effort, using expensive 

research vessels to collect data in each year. As mentioned in Ciannelli et al. (2007), 

the data collection is often inconsistent in time and space, due to constraints of funding 

or weather between years. Another risk to this method is if sampling begins after 

spawning has started, it is impossible to get accurate measurements of spawning 

seasonality or spawning success in that year. 
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Passive Acoustics 

 Passive acoustic monitoring has been an important tool in marine science and 

management for decades. Sound recorders can be deployed in the environment to 

collect data on acoustic communication, animal interactions, and ambient noise without 

disturbing the organisms. Multiple recorders can be used to collect data over large 

spatial areas for extended durations of time, and recordings can be made in all weather 

 conditions (Mellinger et al. 2007). Passive acoustic techniques have been used 

extensively with marine mammal populations to monitor presence, movement, 

communication, and behavior (Sousa-Lima et al 2013, Van Parijs et al. 2009, Zimmer 

2011), but only recently been more widely applied to other sound producing species. 

 Sound-producing fish have been known since the time of Aristotle, and they 

produce sounds for a variety of reasons, usually in intraspecific communication, such as 

coordinating spawning, attracting a mate, or defending territory.  Early fish acoustic 

studies focused on characterization of sounds and exploration of the behavioral 

functions of these sounds (Myrberg 1981, Fish and Mowbray 1970, Hawkins and 

Chapman 1966), but the application of passive acoustics to fisheries biology has been a 

more recent development (Rountree et al. 2006). In recent years, the field of fisheries 

passive acoustics has yielded vast amounts of new data from several species, to 

document many different aspects of fish biology. Passive acoustic monitoring has been 

used to study fish presence and movement patterns (e.g. D’Spain and Batchelor 2006, 

Luczkovich et al. 2008, Wall et al. 2013), group and individual communication (e.g. 

Myrberg 1981, Fine and Thorson 2000), and spawning behavior (e.g. Lobel 2002,  
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Hawkins and Amorim 2000).  The first group of soniferous (sound-producing) fish to be 

studied extensively via passive acoustics were fish from the family Sciaenidae. 

(Rountree at el 2006, Fish and Mobray 1970, Ramcharitar et al 2006). The sciaenids 

include drums and their relatives, who have long been known to produce sounds, and 

their spawning behavior has been studied acoustically to provide information about 

phenology and behavior (Luczkovitch et al. 2008, Rice et al. 2016, Monczak et al. 

2017). Acoustic methods have provided critical data about movement patterns, stock 

composition, and spawning phenology for a number of sciaenid species 

(Lowerre‐Barbieri et al. 2008, Luczkovitch et al. 2008). 

The sciaenids may be the best studied, but they are not the only soniferous fish. 

Many fish species across multiple families produce specific sounds that serve to 

coordinate spawning (Luczkovitch et al. 2008, Amorim 2006). Lab and tank-based 

experiments characterized the behavioral context of these spawning calls for many 

species (Hawkins and Chapman 1966), which has since allowed for the identification of 

spawning grounds in situ through passive acoustic recordings (Lobel 2002, Gilmore 

2002, Roundtree 2006). In 2006, a review of passive acoustic research in fisheries 

proposed that an understanding of spawning phenology, or the seasonal timing of 

spawning events, was an area of critical need for research for fisheries management 

(Rountree et al. 2006). 

  

Haddock as a Model System 

 Haddock (Melanogrammus aeglefinus) are abundant deep-water fish that provide  
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one of the most important fisheries in the North Atlantic, producing between 14,000 and 

20,000 metric tons per year in the U.S. (Brooks et al. 2008, Brodziak et al. 2006). While 

not fished as heavily as the closely related cod (Gadus morhua), the fishery has been 

heavily exploited since the early 1900’s. Severe overfishing in the late decades of the 

20th century lead to the near collapse of the fishery in the 1990s. Since then, a rigorous 

management plan and cooperation between U.S. and Canadian agencies has allowed a 

slow recovery of haddock populations in the western North Atlantic (Brooks et al. 2008). 

Haddock are found on both sides of the Atlantic Ocean, and the western North 

Atlantic population is comprised of two separate breeding stocks, one which spawns in 

the Bay of Fundy, Canada and one which spawns on Georges Bank, in the Gulf of 

Maine off the U.S. coast. The timing of haddock spawning can vary widely from year to 

year, but the average spawning period in the Gulf of Maine begins in February, with a 

peak spawning concentrated in March and into early April (Page et al. 1999, Gulf of 

Maine Research Institute, Brodziak et al. 2006). 

While haddock were presumed to be sound-producing fish for most of the 20th 

century, the first recorded sounds of haddock and hypotheses about their behavioral 

contexts came from Hawkins and Chapman (1966). They suggested that the knocking 

sounds they recorded were likely used in agonistic territorial interactions between 

mature males (Hawkins and Chapman 1966). Further work with captive haddock 

acoustics by Hawkins identified a range of sound types, and linked specific signal 

production to courtship and spawning in addition to the aggression signals (Hawkins et 

al. 1967, Hawkins et al. 2000, Casaretto and Hawkins 2002, Hawkins et al. 2012). The  
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work of Hawkins et al. provided a baseline for haddock call production their connection 

to spawning behavior. 

Once the sounds of spawning haddock had been characterized in captivity, 

Hawkins et al. took short acoustic recordings in known haddock spawning areas to 

locate spawning aggregations in situ (Hawkins et al. 2002, Casaretto et al. 2014). These 

methods have since been applied to corroborate fisheries-based observations of 

spawning sites in the Northeast Atlantic (Casaretto et al. 2014).  Van Parijs et al (2009) 

characterized examples of haddock calls recorded in situ in Massachusetts Bay, 

including spawning calls, and showed that these calls can be identified via automatic 

acoustic detectors.  

  

Implications for Spawning Phenology 

Stereotyped calls with a clear behavioral context allow for the inference of 

spawning behavior and phenology from acoustic recordings. Multi-year acoustic 

datasets can provide additional information about inter-annual variability in seasonality 

and phenology. These data can provide insights into the phenology of spawning activity 

of target sound producing species. When linked with traditional fisheries sampling 

methods, validation of these acoustic techniques can further the potential for 

applications of passive acoustic monitoring as a valuable remote sensing tool to aid in 

fisheries management and conservation. These data may be able to provide critical 

information about the spawning activity of commercially important species, which have 

implications for the long-term health of fish stocks and can be used to inform  
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management decisions. Multiple scientists have proposed that passive acoustics could 

be used to study the spawning seasonality of haddock (Lobel 2002, Rountree et al. 

2006, Hawkins and Casaretto 2004, Casaretto et al. 2014). This study is the first to 

show the potential for this approach to track interannual variability in the spawning 

season of haddock. 

 
METHODS 

Acoustic Data Collection 

Acoustic recordings used in this study were collected as part of a monitoring 

project for marine mammal activity in Massachusetts Bay. Nineteen bottom-mounted 

Marine Autonomous Recording Units (MARUs) were deployed by the Cornell University 

Bioacoustics Research Program in a grid within Massachusetts Bay in summer of 2007, 

and recorded continuously through the summer of 2013, spanning six years of haddock 

spawning (Calupca et al. 2000) (Figure 1). 

Figure 1. Map of Massachusetts Bay showing the deployment locations of all nineteen MARUs (circles) 
and the NERACOOS oceanographic station (red star). The initial detector run identified five locations with 
haddock spawning calls in at least one year, which are shown in blue. Dark blue indicates the two 
locations that had haddock spawning calls in all years of the study period. These locations were then 
used to determine annual variability in haddock spawning phenology. 
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Each MARU contained an HTI-94-SSQ hydrophone (High Tech Instruments; 

sensitivity: −168 dB re 1 V/µPa), connected to a pre-amplifier and A/D converter with 

12-bit resolution, resulting in an effective system sensitivity of −151.7 dB re 1 V/µPa. 

MARUs sampled continuously at a rate of 2000 Hz, producing an effective analysis 

bandwidth of 10 to 1000 Hz, with a flat frequency response (±1 dB) between 55 and 585 

Hz. The units were moored 1 to 2 m above the sea floor in depths ranging from 30 to 

100 m, and approximately 3 kilometers apart. Units were deployed for approximately 3 

months at a time and were recovered and redeployed throughout the study period with 

minimal days in between (see Risch et al. 2013). The result is near-continuous data for 

more than six years at a large spatial scale, with the exception of occasional equipment 

failure or accidental trawling of the recording units that resulted in short data gaps. 

  

Spatial Detection of Haddock 

         Recorders from the acoustic array were located within known haddock spawning 

grounds in the Gulf of Maine (Page et al. 1999). To narrow the study location, a 

template spectrogram detector (RavenPro 2.0, Cornell University Bioacoustics 

Research Program) was developed to detect haddock spawning pulses. The detector 

was developed and trained using haddock spawning calls found within a 24-hour period 

of February 28th, 2013. This detector had a high false negative rate, meaning that it 

often missed haddock signals but only one false positive for the data sample where the 

detector was run (7.1% false positive rate). The detector was then run on all 19 

locations for all 24 hours of March 5th in each year. This date was chosen as it has  

 

15 



	

historically been the time of peak haddock spawning activity (Brodziak et al. 2006, 

Brooks et al. 2008). Given the high call rate of haddock during the spawning season, 

the probability of missing all haddock calls in a full 24-hour recording was relatively low. 

The goal of the detector was to efficiently screen all 19 recorders to identify areas with 

consistent haddock spawning detections in all years.  Haddock spawning calls were 

identified via detector on five of the recording units in at least one year (Figure 1). The 

detector identified two adjacent recorders, located within a known haddock spawning 

area on Georges Bank (Page et al. 1999, Brodziak et al. 2002), approximately 3 km 

apart, where haddock spawning pulses were consistently detected in each year, and 

this subset was used for further analysis to look at inter-annual variability in spawning 

sound activity (Table 1). 

Table 1: Locations for the two MARU sites used in the spawning phenology analysis, and the 
NERACOOS oceanographic recording station A01. 
 

Site Latitude Longitude Depth (m) 

15 42 19.29 -70 43.84 61 

19 42 19.20 -70 46.52 34 

NERACOOS 42 31.23 -70 33.55 65 

 

  

Acoustic Signal Analysis 

Van Parijs et al. (2009) provided examples of haddock calls recorded in situ in  

Massachusetts Bay, and identified three main species-specific call types: single knocks,  
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double knocks, and repetitive knocking pulse trains. The series of repeated knocks has  

been directly linked to spawning behavior, and was the target sound for the present 

study. These pulse trains are broadband, with frequency ranges from approximately 10 

Hz to 350 Hz, with peak energy centered around 70-100 Hz. See figure 2 for examples 

of haddock spawning pulses. 

 

 

Figure 2. An example waveform (a) and spectrogram (b) showing a spawning call from a male haddock. 
Measurements of the call parameters were taken as shown using Raven 2.0. 
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For each of the six years with complete data, acoustic data from these units were 

browsed visually and aurally to detect the presence of haddock spawning calls. 

Browsing was done in RavenPro 2.0, with an FFT of 1024 and a window of 300 

seconds. Eighty spawning pulses with a high signal-to-noise ratio were selected across 

years for detailed signal analysis. For each call, the minimum frequency, maximum 

frequency, duration, 1st quartile frequency, bandwidth, peak frequency, and inter-pulse 

interval were measured using RavenPro 2.0 (Figure 2).  

 

Acoustic Detection of Spawning Phenology 

         The start of the spawning season was determined as the first day where multi-

pulse haddock calls were detected, indicating spawning. The detections of these calls 

were documented on a daily basis until three consecutive days without haddock 

spawning call detections were found, and this was marked as the end of the spawning 

period for haddock at that location in that year. Three metrics were then used to 

characterize the spawning activity of haddock at this location: start of spawning, end of 

spawning, and total length of spawning season. 

 

Ichthyoplankton Survey Data 

Data on the abundance and distribution of haddock larvae on George’s Bank 

have been collected from ichthyoplankton surveys conducted by the NOAA Northeast 

Fisheries Science Center since 1977. Since 1999, plankton sampling was conducted bi-

monthly, monthly, or quarterly each year depending on the sampling program (David  
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Richardson, NOAA, personal communication).  Samples were collected both day and 

night on cruises using a 61-cm bongo net fitted with a 333-µm mesh net.  Oblique tows 

were a minimum of 5-minutes in duration, and fished from the surface to within 5-m of 

the seabed or to a maximum depth of 200-m.  A mechanical flowmeter was fitted in the 

mouth of each net to record the volume of water sampled.  The Georges Bank region 

was sampled each April, and this data set was compared to our acoustic results.  

 
Adult Haddock Survey Data 

Fisheries data were collected as part of the NOAA spring trawl survey, which 

takes place in March-May of each year. The Massachusetts Bay sites are generally 

sampled in late April or early May. This time period is after the peak spawning period of 

haddock, but these data can still be useful for assessing fish abundance and site fidelity 

or changes in habitat use between years. Sites are randomly selected within geographic 

ranges, so the same sites are not always sampled in each year.  

 
Temperature Data 

 Water temperature data were collected daily from the Northeast Regional 

Association of Coastal and Ocean Observing Systems (NERACOOS) archive, and 

came from Station A01, which is located in Massachusetts Bay and records 

temperatures at the surface as well as at 50 meters depth (Figure 1, Table 1). While 

average sea surface temperature data was available for every month of the study 

period, the data at depth was less complete, and only included complete samples from 

January of each year.  
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RESULTS 

Spatial Detection of Haddock 

 Preliminary use of an automatic acoustic detector identified five recorders with 

haddock spawning calls present in at least one year (Figure 1). Two of these locations 

contained haddock spawning calls in all years of the study period. Haddock were 

generally found further offshore, at the deepest locations of the array, and were not 

detected at any of the shallow near-shore locations.  

 
Acoustic Signal Analysis 

         Haddock spawning calls consisted of multiple pulses in quick succession, 

sometimes running together to form a continuous rumble. The average call parameters 

for this call type are shown in table 2.  

 

Table 2: Call parameters for a subset of eighty spawning calls taken across years of the study period. 

 

Low 
Freq 
(Hz) 

High 
Freq 
(Hz) 

Q1 
Freq 
(Hz) 

BW 
90% 
(Hz) 

Duration 
(s) 

Peak 
Freq 
(Hz) 

Inter-
pulse 

interval 

average 12.3 336.0 69.8 184.3 2.363 88.0 0.29 

stdev 7.5 130.8 12.4 70.6 0.973 16.5 0.05 

min 4.7 150.9 43.0 74.2 0.672 50.8 0.20 

max 29.7 558.3 89.8 269.5 4.116 128.9 0.41 
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 Average pulse duration was about two seconds (+/-0.97 seconds), with an 

average inter-pulse interval of about 0.29 seconds (+/-0.05 seconds). The peak 

frequency of the calls was generally between 80 and 90 kHz, but varied between 50.8 

and 128.9 kHz. These parameters are similar to descriptions of spawning calls both 

collected in captivity (Hawkins and Amorim 2000) and in situ (Van Parijs et al. 2009). 

Previous studies have shown some individual variation in sound production by different 

fish (Hawkins and Amorim 2000, Hawkins et al. 2002), but individuality could not be 

assessed in this study. 

 
Acoustic Detection of Spawning Phenology 

         Haddock spawning phenology was measured at two sites in the study area that 

had haddock spawning calls present in each year. Overall, the start of the haddock 

spawning seasonality was fairly consistent between years (Figure 3). The spawning 

season had an average start date of February 16th, and lasted for an average of 34 

days. The earliest spawning start date was February 10th, and the latest start date was 

February 29th. The earliest spawning season end date was March 5th, and the latest 

spawning season end date was April 15th. The shortest spawning season spanned 6 

days (2012), while the longest was 64 days (2013) (Table 3). 
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Figure 3. Annual variation in the overall recording time (light blue) and days with haddock spawning call 
detections (dark blue) 
 
 

Table 3: Phenology measurements for the haddock spawning season in each year taken from acoustic 
analysis. All dates are listed as Julian day. 
 

Year Spawning Start Date Spawning End Date Spawning Season Length 

2008 47 89 42 

2009 47 90 43 

2010 41 76 35 

2011 46 63 17 

2012 60 65 5 

2013 41 105 64 
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Ichthyoplankton Survey Analysis 

         The NOAA ichthyoplankton surveys covered Georges Bank and the Gulf of 

Maine in February and April of each year. For the purposes of this study, the April 

survey data is presented, since these surveys took place immediately after the peak 

spawning season in early March.  The sampling sites varied between years, but larval 

haddock were present on Georges Bank in each year of the study period. The highest 

abundance of larval haddock was found in 2009, while the lowest abundance was found 

in 2012 (Table 4). The results of the haddock sampling in each years are shown in 

Table 4. Abundance of haddock varied by location in each year as well.  Figure 4 shows 

the relative abundance of larval haddock at each sampling site for each year during the 

study period, as well as sampling locations where no larval haddock were detected in 

each year. 

	
Table 4. The average abundance of haddock larvae (count per 100 cubic meters of seawater) in each 
year of the study period. Data were collected during NOAA cruises in April of each year, at randomly 
selected sampling sites across Georges Bank, Massachusetts Bay, and the Gulf of Maine. 
 

 2008 2009 2010 2011 2012 2013 

average 144.92 409.26 288.68 364.95 101.19 209.55 

stdev 192.15 487.55 539.30 397.21 146.30 327.29 

min 0 0 0 0 0 0 

max 1145 2286 2107 1967 822 1834 
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Figure 4. Abundance of larval haddock collected during ichthyoplankton surveys conducted by NOAA in 
April of each year. Survey sites were randomly selected in each year and trawled once to determine 
species composition. Circles show sites where larval haddock were collected, while X’s show locations 
where samples were taken, but no haddock were found. 
 

 

Adult Haddock Survey Analysis 

 The NOAA spring trawl survey of Massachusetts Bay took place in late April or 

early May for each year during our study period, with the earliest trawl in 2009 (April 

22), and the latest trawl in 2011 (May 10). Adult haddock were present in the 

Massachusetts Bay study area at this time in four out of six years of the study period. 

The results of these trawl surveys are summarized in Table 5. 
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Table 5. Total counts of adult haddock collected during NOAA spring trawl surveys of Massachusetts Bay 
 

 2008 2009 2010 2011 2012 2013 

Location of trawl sample 
(Latitude, Longitude) 

42 23.7 
-70 42.4 

42 24.6 
-70 40.6 

42 30.5 
-70 41.5 

42 12.9  
-70 29.5 

42 24.8 
-70 47.5 

42 23.5 
-70 44.9 

Total haddock count 
in Massachusetts Bay 109 7 9 20 0 0 
 
Temperature Data 

 Temperature values varied across years, but overall showed an increasing trend, 

with 2012 having the highest water temperatures in all months and depths (Table 6). 

The beginning of the spawning period was shown to correlate positively with water 

temperature (Figure 5). A longer study period over a larger spatial scale is needed to 

evaluate the relationship of temperature and climate to long-term spawning phenology 

of haddock. 

Table 6. Average monthly water temperatures collected at sea surface (SST) for January, February, and 
March in each year, and collected at 50 meters in January of each year. All data collected from the 
NERACOOS data station in Massachusetts Bay. 
 

Year SST Jan SST Feb SST Mar Depth Jan 

2008 4.5 3.4 3.2 5.2 

2009 4.3 3.1 3.3 4.8 

2010 4.9 3.7 4.6 5.4 

2011 4.7 3.3 3.9 5.5 

2012 6.9 5.5 6.3 7.2 

2013 6.8 5.0 4.1 7.6 
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Figure 5. Average monthly sea surface temperature in March of each year (a), and the relationship 
between the start of the spawning season and temperature. The relationship is driven by the extremely 
late spawning start in 2012, which was also the warmest March temperature. 
 

DISCUSSION 

 As seen in previous studies, stereotyped haddock calls were readily identified, 

and fell into three categories: single pulses, double pulses, and pulse trains. These 

findings are consistent with previous work that has characterized haddock sounds, both 

in captivity and in situ (Hawkins and Amorim 2000, Van Parijs et al. 2009). The pulse 

trains were found during the known peak spawning season and on recorders that are 

positioned closely to known spawning grounds, providing further support that these calls 

are an indication of spawning behavior. Overall, these results indicate that passive 

acoustic monitoring is a valid and valuable remote sensing method to monitor haddock 

spawning activity in situ, and improve out understanding of interannual variability in 

spawning which impacts the larval success and recruitment for the fishery in each year. 

 The spawning calls varied in frequency range, peak frequency, duration, and 

inter-pulse interval, with mean values similar to previously reported measurements 

(Hawkins et al. 2002). Recordings collected from captive haddock have found high  
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levels of variability between individual fish, which may account for some of the variability 

in these calls. Despite this individual variation, haddock spawning calls are stereotyped 

enough to allow for the use of broad template detectors to locate calls automatically. 

This method was introduced by Van Parijs et al. (2009), who showed that haddock calls 

could be identified by means of an automated detection algorithm. The present study 

builds on this foundation to show the application of a detector over multiple locations 

and multiple sites to identify areas of high acoustic spawning activity. Future studies 

should explore passive acoustic monitoring of spawning phenology for other haddock 

stocks to assess variation in these signal characteristics between haddock stocks in the 

wild. In species with patchy distribution and small-group spawning, being able to 

monitor large areas simultaneously is a clear advantage of passive acoustic techniques 

that can be applied to fisheries of high management concern such as haddock. 

 Passive acoustic monitoring, thus, is a viable and valuable tool for remote 

sensing of spawning behavior, including variations in spatial distribution and interannual 

variations in phenology, in haddock. Acoustic recordings consistently detected haddock 

in locations that have been previously known as spawning grounds (Brodziak 2006, 

Perry et al. 2005). While a majority of the Georges Bank haddock spawn further 

offshore, the consistent presence of spawning calls at inshore locations within 

Massachusetts Bay support the hypothesis that haddock spawn in small groups at 

many different spawning sites that contribute to the overall larval population (Rountree 

2017). The presence of haddock spawning calls at these recording stations each year 

shows spawning site fidelity, while also allowing for quantification of the timing of 

spawning activity. 

 
27 



	

         The first four years of sampling show a remarkably stable spawning phenology at 

this site, with the start and end of the spawning season varying by only five days. The 

final two years of our study period showed different patterns. In 2012, the spawning 

season was dramatically different, with a start nearly three weeks after the previous 

years, and an extremely short spawning period, lasting only five days. In 2013, the 

spawning start date was consistent with previous years, but the spawning season was 

much longer in duration. While previous studies have shown variation in spawning 

success and recruitment from year to year, the reasons for these differences are not 

well understood (Brodziak et al. 2006). 

         Traditional methods of studying spawning phenology involve large research ships 

and many personnel, are often weather dependent, and have spatial and temporal 

limitations (Ciannelli et al. 2007). The nature of boat-based surveys means that sites are 

sampled sequentially, rather than simultaneously, which can cause inaccuracies when 

dealing with highly mobile study subjects over the course of surveys which can take 

weeks or often months to complete.  

         The ichthyoplankton surveys found the lowest abundance of haddock in 

George’s Bank in 2012, which was the year with the shortest duration of spawning calls 

from the acoustic data. In this year, haddock larvae were also concentrated further 

offshore, with areas low density and no larvae inshore (Figure 4). This suggests that the 

haddock may have changed their spawning location or phenology during this year of 

abnormally high temperatures, but due to the patchy nature of sampling, and the fact 

that not all sites were sampled in all years, it is difficult to draw conclusions about 

haddock spawning behavior from these data. 
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 Likewise, the surveys of Massachusetts Bay for adult haddock are limited by their 

timing, taking place well after the peak of spawning activity in haddock. Both surveys 

noted a decrease in haddock biomass in Massachusetts Bay during the 2012 season, 

which was one of the warmest winters to date, and which was mirrored by the acoustic 

phenology data (Mills et al. 2013). The two warmest winters during the study period, 

2012 and 2013, found no adult haddock in Massachusetts Bay in late April, suggesting 

that they may have changed their distribution in response to temperature changes. 

Without broader simultaneous sampling it is impossible to determine where haddock 

may have moved to, and if this change in distribution corresponds to a decrease in 

spawning or spawning success, or simply a spatial shift in distribution. Haddock are 

known to be affected by water temperatures, having a fairly narrow temperature band 

for successful egg development, between 1 and 8 degrees C (Buckley et al. 2000). 

Because of this physiological constraint, localized changes to water temperatures could 

force haddock to change spawning grounds in order to find areas with more optimum 

temperature. 

         The North Atlantic, and the Gulf of Maine in particular, are currently being 

impacted by global climate change at a greater rate and magnitude than about 99% of 

the world’s oceans (Belkin et al. 2009; Wassmann et al. 2011, Mills et al. 2013). Rising 

water temperatures could impact haddock physiology in multiple ways. In addition to 

physiological constraints of spawning and egg development, changes in water 

temperature have been shown to impact the timing and strength of phytoplankton 

blooms, which are a critical source of food for haddock larvae (Edwards and Richardson 

2004). Fish species have shown changes in phenology too, as Atlantic cod were shown  
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to alter their spawning phenology as temperatures rise in the Gulf of Maine, shifting 

earlier in the year as water temperatures increased (McQueen and Marshall 2017). As 

cod are closely related to haddock, we may expect to see a similar trend in haddock 

spawning as waters continue to warm. Our shortest spawning season, 2012, was also 

the year with the lowest larval haddock abundance, and coincided with one of the 

warmest winters on record. If haddock are responding to rising water temperatures by 

moving or abandoning their traditional spawning grounds, this could have serious 

implications for fisheries management. 

         One potential drawback to relying exclusively on acoustic data is the limited 

detection range. Fish calls are in general low-amplitude, and thus do not travel far 

through the water. Previous studies have estimated the detection range of haddock in 

the natural environment at around 50-100 meters (Casaretto et al. 2014). Thus, while 

acoustic data can provide a detailed picture of acoustic activity over a long period of 

time, these data are spatially limited. Haddock are known to spawn in small clusters, so 

spawning may be patchy, and a single acoustic recorder may not provide the most 

accurate indication of the presence of spawning, as suggested by Rountree (2017). 

However, by using an array of acoustic recorders, and complementing acoustic data 

with traditional fisheries surveys, we can produce a more complete picture of fish 

spawning activity over a broad scale.   

 Future research should aim to expand the use of passive acoustic monitoring in 

areas that are thought to be important for spawning, to improve spatial resolution and 

gain insight into movement and distribution of fishes within traditional spawning 

grounds. This is especially critical for recovering stocks, to expand our understanding of  
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habitat use and site fidelity to help with conservation measures and management 

(Hernandez et al. 2013, Rountree et al. 2006). Additionally, acoustic surveys have the 

potential to expand our understanding of spawning behavior over long time scales. 

Long-term acoustic monitoring with an array or recorders to pick up spatial fluctuations 

would produce the detail necessary to determine trends in phenology and habitat use in 

relation to physical and biological parameters that may influence spawning, and thus 

allow for the implementation of management practices to conserve these stocks. The 

use of passive acoustic monitoring alongside traditional surveys allows for more robust 

data that can be used to inform management decisions and aid in conservation. 

           

CONCLUSIONS 

         Passive acoustic monitoring is a powerful tool that has the potential to greatly 

increase our knowledge of fish behavior and biology. The relatively low cost and large 

sampling range, both spatially and temporally, of acoustic recordings allows for more in-

depth data collection for some of the most important commercial fisheries. When used 

in combination with traditional fisheries surveys, passive acoustics can provide great 

insight into the spawning behavior of acoustically active fish. These data can be critical 

for fishery management, as we see changes in the distribution and abundance of many 

species as a result of environmental changes. 
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