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Abstract 

This paper derives the best linear unbiased prediction (BLUP) for an unbalanced panel data model. 

Starting with a simple error component regression model with unbalanced panel data and random 

effects, it generalizes the BLUP derived by Taub (1979) to unbalanced panels. Next it derives the BLUP 

for an unequally spaced panel data model with serial correlation of the AR(1) type in the remainder 

disturbances considered by Baltagi and Wu (1999). This in turn extends the BLUP for a panel data 

model with AR(1) type remainder disturbances derived by Baltagi and Li (1992) from the balanced to 

the unequally spaced panel data case. The derivations are easily implemented and reduce to tractable 

expressions using an extension of the Fuller and Battese (1974) transformation from the balanced to 

the unbalanced panel data case. 
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1 Introduction

Panel data is usually unbalanced or unequally spaced due to lack observations on house-

holds not interviewed in certain years or firms not filing their data survey forms for a

particular period. Even daily stock price data has no observations when the market is

closed due to holidays or weekends. The unequally spaced pattern is also useful for re-

peated sales of houses that are not sold each year but at irregularly spaced intervals. It

is also a common problem for longitudinal surveys and household surveys in developed

as well as developing countries, see examples of these in Table 1 of McKenzie (2001) as

well as Table 1 of Millimet and McDonough (2017). Unbalanced panel data estimation

and testing has been studied in econometrics, see Chapter 9 of Baltagi (2013a) and the

references cited there. This paper focuses on forecasting with unbalanced panel data.

In particular, the paper starts by extending the best linear unbiased predictor (BLUP)

derived by Taub (1979) for the random effects error component model from balanced to

unbalanced panel data models. Next, the BLUP for the unequally spaced panel data

with serial correlation of the AR(1) type in the remainder disturbances, considered by

Baltagi and Wu (1999) is derived. This extends the BLUP for the random effects model

with serial correlation of the AR(1) type derived by Baltagi and Li (1992) from balanced

panels to unequally spaced panels. Unbalanced panel data can be messy. This paper

keeps the derivations simple and easily tractable, using the Fuller and Battese (1974)

transformation extended from the balanced to the unbalanced panel data case.

2 The Best Linear Unbiased Predictor

Consider an unbalanced panel data regression model:

yit = X ′itβ + uit (1)

for i = 1, . . . , N ; t = 1 . . . , Ti. The i subscript denotes, say, individuals in the cross-

section dimension and t denotes years in the time-series dimension. The panel data is

unbalanced since there are N unique individuals and individual i is only observed over Ti
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time periods.1 The regressor Xit is a K × 1 vector of the explanatory variables and β is

a K × 1 vector of coefficients. In an earnings equation in economics, for example, yit is

log wage for the ith worker in the tth time period. Xit may contain a set of variables like

age, experience, tenure, and whether the worker is male, black, etc. In most of the panel

data applications, the disturbances follow a simple one-way error component model with

uit = µi + vit (2)

where µi denotes the unobservable time-invariant individual specific effect, such as ability.

vit denotes the remainder disturbance that varies with individuals and time, see Baltagi∑
(2013a) . Let n = N

i=1 Ti. In vector notation, Equations (1) and (2) can be written as

y = Xβ + u (3)

and

u = Zµµ+ v (4)

where y = (y . . . , y , y , . . . , y , . . . , y ′
11, 1T1 21 2T2 N1, . . . , yNTN ) is an n× 1 vector of ,obser-

vations stacked such that the slower index is over individuals and the faster index is

over time.2 Other vectors or matrices including X, u and v are similarly defined. µ =

(µ1, . . . , µN)′ is an N×1 vector. The selector matrix Zµ = diag [ιTi ] is a matrix of ones and

zeros, where ιTi is a vector of ones of dimension Ti. It is simply the matrix of individual

dummies that one may include in the regression to estimate the µi if they are assumed

1The data is assumed to be missing at random. This in turn allows the missingness of the data scheme

to be ignorable in the language of Little and Rubin (2002).
2This pattern of unbalancedness does not have to be from 1, 2, .., Ti. In fact, these Ti observations can

be for any subset of the observed time series period. This pattern is used to make the derivation easy and

tractable and follow similar derivations for the balanced case. A more general pattern of unbalancedness

can be used. In fact, section 2 extends this to the unequally spaced panel data with serial correlation

across time considered by Baltagi and Wu (1999). A two-way error component model with a general type

of missing data is considered in Wansbeek and Kapteyn (1989).
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to be fixed parameters. Define P = Z (Z ′ Z )−1
µ µ µ Z ′µ, which is the projection matrix on

Zµ. In this case, ZµZ
′
µ = diag [JTi ], where JT is a matrix of ones of dimension Ti. Let[ ] i

¯ ¯JTi = JTi/Ti. Hence P reduces to diag JTi , which averages the observation across time

for each individual over their Ti observations. Similarly, Q = INT − P is a matrix which

obtains the deviations from individual means. For example, if we regress y on the matrix∑
of dummy variables Zµ, the predicted values Py have a typical element yi. = Ti

t=1 yit/Ti

repeated Ti times for each individual. Qy gives the residuals of this regression with typical

element yit − yi..

For the random effects model, µi ∼ IID(0, σ2
µ), vit ∼ IID(0, σ2

ν) and the µi are indepen-

dent of the vit and Xit for all i and t. The variance-covariance matrix of the disturbances

is given by

Ω = E(uu′) = σ2
µdiag [JTi ] + σ2

vdiag [ITi ] = diag
[
ω2
i J̄Ti + σ2

νETi
]

(5)

¯ ¯where ω2
i = Tiσ

2
µ+σ2

ν ,and ETi = ITi−JTi . Using the fact that JTi and ETi are idempotent

matrices that sum to the identity matrix I , it is easy to verify thatTi

Ω−1 = diag
1

ω2
i

J̄Ti +
1

σ2
ν

ETi

[ ]
(6)

and

Ω−1/2 = diag
1

ωi
J̄Ti +

1

σν
ETi

[ ]
(7)

see Wansbeek and Kapteyn (1982). Now a GLS estimator can be obtained as a weighted

least squares following Fuller and Battese (1974). In this case one premultiplies the[ ] [ ]
¯ ¯regression model in Equation (3) by σ −

νΩ
1/2 = diag σν JTω i

+ ETi = diag ITi − θiJTii

where θi = 1− (σν/ωi). GLS becomes OLS on the resulting transformed regression of y∗

on X∗ with y∗ = σνΩ
−1/2y having a typical element y∗it = y ∗ −1/2

it − θiȳi.,and X = σνΩ X

defined similarly.

For the ith individual, we want to predict S periods ahead. As derived by Goldberger

4



(1962), the best linear unbiased predictor (BLUP) of yi,Ti+S for the GLS model is

ŷi,Ti+S = X ′i,Ti+SβGLS + w′Ω−1ûGLS,ˆ (8)

ˆfor S > 1, where βGLS is the GLS estimator of β from equation (3), w = E(ui,T+Su), Ω is

the variance-covariance structure of the disturbances, and ûGLS = y− ˆXβGLS. Note that

we have ui,Ti+S = µi + ν ′ 2 ′
i,Ti+S for period Ti +S and hence w = σµ(0, .., ιTi , 0, .., 0). In this

case

w′Ω−1 = σ2
µ(0, .., ι′Ti , 0, .., 0)diag

1

ω2
i

J̄Ti +
1

σ2
ν

ETi =
σ2
µ

ω2
i

(0, .., ι′Ti , 0, .., 0)

[ ]
(9)

since ι′Ti J̄Ti = ι′Ti and ι′TiETi = 0. The last term of BLUP becomes

w′Ω−1ûGLS =
Tiσ

2
µ

ω2
i

ûi.,GLS, (10)

∑
where ûi.,GLS = T−1 Ti

i t=1 ûit,GLS. Therefore, the BLUP for yi,T+S corrects the GLS

prediction by a fraction of the mean of the GLS residuals corresponding to that ith

individual over the Ti observed periods. This BLUP was derived by Taub (1979) for the

balanced panel data case. Note that it is based on the true variance components. In

practice, we need to estimate the variance components to get feasible GLS and a feasible

BLUP. Methods for estimating the variance components for the unbalanced panel data

model are described in more details in Baltagi (2013a). To account for the additional

uncertainty introduced by estimating these variance components, Kackar and Harville

(1984) proposed inflation factors for the predictor.

Although this derivation has albeit a restrictive form of missing observations, for

example, the time series has no gaps, the results still hold for the Fuller and Battese

(1974) transformation and the Goldberger (1962) BLUP derivation even with time series

gaps. This is because the individual effects are independent and the idiosyncratic error

terms are not correlated across time. Also, as footnote 2 states, the pattern of missing

observations can be more general, all that matters is that individual i be observed for

only Ti periods and these can be any subset of the observed sample period.

For a recent survey of the BLUP literature mostly for balanced panel data in economet-

rics, see Baltagi (2013b). The BLUP methodology in statistics has been used extensively
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in biometrics, see Henderson (1975). Harville (1976) showed that BLUP is equivalent to

Bayesian posterior mean predictors with a diffuse prior. Robinson (1991) has an extensive

review of how BLUP can be used for example to remove noise from images and for small-

area estimation. It can be also used to derive the Kalman filter. For several applications

of forecasting with panel data in economics and related disciplines, see the handbook of

forecasting chapter by Baltagi (2013b) and the references cited there.

In the next section, we revisit the unequally spaced panel data model with AR(1)

type remainder disturbances, considered by Baltagi and Wu (1999). While the Fuller and

Battese (1974) transformation for that model was derived in that paper, the Goldberger

(1962) BLUP was not given. For forecasting purposes, we derive a simple to compute

expression of this predictor and show that it reduces to the usual BLUP under several

special cases.

3 Unequally Spaced Panel Data Model with AR(1)

type remainder disturbances

Baltagi and Wu (1999) considered an unequally spaced panel data model with both random

effects and serial correlation of the AR(1) type in the remainder disturbances. To be

specific, µi ∼ IID(0, σ2
µ) and is assumed to be independent of the remainder disturbances

vit. In this case, vit follows an AR(1) process given by

vit = ρvi,t−1 + εit (11)

for t = 1, .., Ti, where εit ∼ IID(0, σ2
ε ) and |ρ| < 1. For the initial value, we assume vi0 ∼

(0, σ2
ε/(1−ρ2)). For each individual i, one observes the data at times ti,j for j = 1, . . . , ni.

Furthermore, we have 1 = ti,1 < · · · < ti,ni = Ti for i = 1, . . . , N with ni > K. This is

a general form of unbalanced panel data which encompasses the case in Section 1. For

i = 1, . . . , N , we have

ui = µiιni + νi, (12)

6



( ) ( )
where u′i = ui,ti,1 , . . . , u

′
i,ti,n , vi = vi,ti,1 , . . . , vi,ti,n and ιni is a vector of ones of dimen-

i i

sion ni. In vector forms, the disturbance term in Equation (12) can be written as

u = diag [ιni ]µ+ ν, (13)

where u = (u1, . . . , uN), µ = (µ1, . . . , µN) and v′ = (v′1, . . . , v
′
N). The variance-covariance

matrix of u is Ω = E (uu′) = diag [Λi], where Λi = E (uiu
′
i) = σ2

µJni + Vi, Jni is a matrix

of ones of dimension ni, and Vi = E (viv
′
i). For any two observed periods, say ti,j and ti,l,( ) | |the covariance term is given by cov v , vi,ti,l = σ2 ti,j−ti,l

i,ti,j ερ / (1− ρ2) for j, l = 1, . . . , ni.

To remove the serial correlation in vit and keep it homoskedastic, Baltagi and Wu (1999)

introduced an ni × ni transformation matrix C∗ (ρ), which is given byi

C∗i (ρ) =
(
1− ρ2

)1/2
(14)

×



1 0 · · · 0 0

−ρti,2−ti,1(
1−ρ2(ti,2−ti,1)

)1/2
1(

1−ρ2(ti,2−ti,1)
)1/2 · · · 0 0

...
...

. . .
...

...

0 0 · · · −ρti,ni
−ti,ni−1(

1−ρ2(ti,ni
−ti,ni−1)

)1/2
1(

1−ρ2(ti,ni
−ti,ni−1)

)1/2


.

Premultiplying Equation (12) by C∗i (ρ), we get the transformed error

u∗i = C∗i (ρ)ui = µigi + C∗i (ρ) νi, (15)

where

gi = C∗i (ρ) ιni =
(
1− ρ2

)1/21,
1− ρti,2−ti,1(

1− ρ2(ti,2−ti,1)
)1/2

, · · · , 1− ρti,ni−ti,ni−1(
1− ρ2(ti,ni−ti,ni−1)

)1/2

 .

 

(16)

Baltagi and Wu (1999) showed that C∗ (ρ) ν ∼ (0, σ2I ), i.e., C∗ (ρ)V C∗ ′
i i ε ni i i i (ρ) = σ2

ε Ini .

The variance-covariance matrix for the transformed disturbance u∗ = (u∗1, . . . , u
∗
N) is

Ω∗ = diag [Λ∗i ], where

Λ∗i = C∗i (ρ) ΛiC
∗
i (ρ)′ = σ2

µgig
′
i + σ2

ε Ini = ω2
i Pgi + σ2

εQgi , (17)

with ω2
i = g′igiσ

2
µ + σ2

ε , P
′ −1 ′

gi = gi (gigi) gi, Qgi = Ini − Pgi and Ini is an identity matrix

of dimension ni. Using the fact that Pgi and Qgi are idempotent matrices which are

7



orthogonal to each other, we have

Λ
∗−1/2
i = ω2

i

−1/2
Pgi + σ2

ε

−1/2
Qgi = σ2

ε

−1/2
Ini − σ2

ε

−1/2 − ω2
i

−1/2
Pgi .

( ) ( ) ( ) [( ) ( ) ]
(18)[

∗−
Hence, 2 1

σ /
εΩ
∗−1 1/2 ∗− /2

= diag σεΛi , where σεΛi = Ini − θiPgi and θi = 1 − σε/ωi.

Premultiplying y∗ = diag [C∗i (ρ)] y by σεΩ
∗−1/2, one gets y∗∗ = σεΩ

∗−1/2y∗. The elements

of y∗∗ are given by

]

y∗∗i,ti,j = y∗i,ti,j − θigi,j
ni
s=1 gi,sy

∗
i,ti,s∑ni

s=1 g
2
i,s

.

∑
(19)

Baltagi and Wu (1999) proposed estimating σ2
µ and σ2

ε by

σ̂2
µ =

u∗′diag [Pgi ]u
∗ −Nσ̂2

ε∑N
i=1 g

′
igi

and σ̂2
ε =

u∗′diag [Qgi ]u
∗∑N

i=1 (ni − 1)
. (20)

Since the true disturbances u∗ are unknown, we use ũ∗OLS instead, which are the OLS

residuals from the (*) transformed equation. In order to make the (*) transformation

operational, we need an estimate of ρ. Let ṽ be the within residuals from y on X.

Inserting zeros between ṽi,ti,j and ṽi,ti,j+1
if the data between these two periods are not

available, one gets a new T × 1 residual ei. An estimate of ρ can be obtained as

ρ̂ =
1
m

N
i=1

T
t=2 eitei,t−1

1
n i=1 t=1 it∑

where m = N
i=1mi, mi is the number of observed consecutive pairs for each individual∑

i and n = N
i=1 ni.

∑N ∑T e2
,

∑ ∑
(21)

Theorem 1 Assume that (i) εit ∼ iid(0, σ2); (ii) i=1 v
2
i0 = O (1); (iii)

N N i=1 µ
2
i =

We have ρ̂− ρ = op (1).

1
∑N 1

∑N

O (1); (iv) N → 0.
m

The proof is given in the Appendix. Assumptions (i), (ii) and (iii) were used in Hahn∑
and Kuersteiner (2002). Assumption (iv) N → 0 is equivalent to m = 1 N

i=1 mi → ∞.
m N N

The consistency of ρ̂ requires the average number of observed consecutive pairs to be

large. For balanced panel data, this condition reduces to T → ∞. Using this estimator

8



of ρ, one gets a feasible GLS estimator of β. Detailed steps can be found in Baltagi and

Wu (1999).3

Now, we return to prediction. Using the fact that the disturbances are independent

across different individuals, we have w′ = E(u ′ ′
i,T+Su ) = (0, .., E (ui,Ti+Sui) , 0, .., 0), which

is a vector of zeros except for the ith position. Therefore,

′ − ′ [ ] ( )
w Ω 1 = (0, .., E (ui,Ti+Sui) , 0, .., 0) diag Λ−1

i = 0, .., E (u ′ −1
i,Ti+Sui) Λi , 0, .., 0 (22)

and

w′Ω−1ûGLS =
(
0, .., E (ui,Ti+Su

′
i) Λ−1

i , 0, .., 0
)

û1

û2

...

ûN

 = E (ui,Ti+Su
′
i) Λ−1

i ûi, (23)

( )
where u′i = ui,ti,1 , . . . , ui,ti,n and ûi denote the GLS residuals. Since ui,Ti+S = µi+νi,Ti+S,

i

we can decompose equation (23) into two terms:

E (ui,Ti+Su
′
i) Λ−1

i ûi = E (µiu
′
i) Λ−1

i ûi + E (vi,Ti+Su
′
i) Λ−1

i ûi. (24)

Since Λ∗i = C∗i (ρ) ΛiC
∗
i (ρ)′, we have

Λ−1
i = C∗i (ρ)′ Λ∗−1

i C∗i (ρ) = C∗i (ρ)′
(
ω−2
i Pgi + σ−2

ε Qgi

)
C∗i (ρ) (25)

using Equation (18). Since µi and vi are independent of each other, we have E (µiu
′
i) =( )

E µiµiι
′
ni

= σ2
µι
′
ni

. The first term in equation (24) can be rewritten as:

E (µiu
′
i) Λ−1

i ûi

= σ2
µι
′
ni
C∗i (ρ)′

(
ω−2
i Pgi + σ−2

ε Qgi

)
C∗i (ρ) ûi

=
σ2
µ

ω2
g′iû
∗
i ,

i

(26)

3It is important to note that this is easily programmable. In fact, the Baltagi and Wu (1999) feasible

GLS procedure has been implemented in Stata using xtregar, so it is easy to derive the BLUP from these

results.
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where C∗i (ρ) ûi = û∗i , using the fact C∗i (ρ) ιni = gi, g
′
iPgi = g′i and g′iQgi = 0. By continu-

ous substitution, we have

vi,Ti+S = ρSvi,Ti + ρS−1εi,Ti+1 + · · ·+ εi,Ti+S

and

E (v u′) = E (v v′) = E ρSv + ρS−1
i,Ti+S i i,Ti+S i i,Ti εi,Ti+1 + · · ·+ ε ′

i,Ti+S vi = ρSE (vi,Tiv
′
i)

since E [εi,Ti+1v
′
i] = · · · = E [εi,Ti+Sv

′
i] = 0. Because E (vi,Tiv

′
i) is the last column of the

covariance matrix E (viv
′
i) = Vi, we have

[( ) ]

E (vi,T+Su
′
i) = ρS (0, · · · , 0, 1)Vi.

Also, Λ−1
i in Equation (25) reduces to

Λ−1
i = C∗i (ρ)′

(
ω−2
i Pgi + σ−2

ε Qgi

)
C∗i (ρ)

= C∗i (ρ)′
[
σ−2
ε Ini −

(
σ−2
ε − ω−2

i

)
Pgi
]
C∗i (ρ)

= C∗i (ρ)′
[
σ−2
ε Ini −

(
g′igiσ

2
µ

σ2
εω

2
i

)
gi (g

′
igi)
−1
g′i

]
C∗i (ρ)

= σ−2
ε C∗i (ρ)′C∗i (ρ)

[
Ini −

σ2
µ

ω2
i

ιnig
′
iC
∗
i (ρ)

]
using the fact that Qgi = Ini −Pgi , ω2

i = g′igiσ
2 2 ∗
µ +σε and gi = Ci (ρ) ιni . The second term

in equation (24) becomes:

E (vi,Ti+Su
′
i) Λ−1

i ûi

= ρS (0, · · · , 0, 1)Viσ
−2
ε C∗i (ρ)′C∗i (ρ)

[
Ini −

σ2
µ

ω2
i

ιnig
′
iC
∗
i (ρ)

]
ûi

= ρS (0, · · · , 0, 1)

(
ûi −

σ2
µ

ω2
i

ιnig
′
iû
∗
i

)
= ρSûi,Ti −

ρSσ2
µ

ω2
g′iû
∗
i

i

(27)

[ ]−1
using the fact that σ−2V = C∗ (ρ)′C∗ ∗ ∗ ′ 2

ε i i i (ρ) since Ci (ρ)ViCi (ρ) = σε Ini . Combining

10



equations (26) and (27), one gets

w′Ω−1ûGLS

= ρSûi,Ti +

(
1− ρS

)
σ2
µ

ω2
i

g′iû
∗
i

= ρSûi,Ti +

(
1− ρS

)
(1− ρ2)

1/2
σ2
µ

ω2
i

[
û∗i,ti,1 +

ni∑
j=2

1− ρti,j−ti,j−1(
1− ρ2(ti,j−ti,j−1)

)1/2
û∗i,ti,j

]
. (28)

Special case 1: No missing observations. This is the balanced panel data model with

AR(1) remainder disturbance terms considered by Baltagi and Li (1992). In this case, we

have ti,j − ti,j−1 = 1, Ti = ni = T ,

gi =
(
1− ρ2

)1/2
1,

1− ρ
(1− ρ2)1/2

, · · · , 1− ρ
(1− ρ2)1/2

= (1− ρ) ιαT ,

( )
√

where ιαT = (α, 1, · · · , 1) with α = (1 + ρ) / (1− ρ).

g′igi = (1− ρ)2 d2,

and d2 = α2 + T 1. Hence ω2 = σ2 , where σ2 = (1 ρ)2− i α α − d2σ2
µ + σ2

ε .

1− ρti,j−ti,j−1 1− ρ( ) = ,
1/2

1− ρ2(ti,j ti,j−1) (1− ρ2)1/2−

û∗i = Cûi, where C is the T × T Prais-Winsten (PW) transformation matrix

C =



(1− ρ2)1/2 0 0 · · · 0 0

−ρ 1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

0 0 0 · · · −ρ 1


.

 

Therefore, Equation (28) reduces to

w′Ω−1ûGLS = ρSûi,T +
(1− ρ) 1− ρS σ2

µ

σ2

(
αû∗i1 +T

t=2 û
∗
it

)
.

( )
α

This is Goldberger’s BLUP extra term derived by Baltagi and Li (1992). So, the unbal-

anced panel Goldberger’s BLUP correction term reduces to its balanced panel counterpart

in the case of AR(1) remainder disturbance terms.

11



Special case 2: No random effects. This reduces to a panel data model without

individual effects, but with AR(1) remainder disturbances. In this case σ2
µ = 0, and

equation (28) reduces to

w′Ω−1ûGLS = ρSûi,Ti . (29)

This is Goldberger’s BLUP extra term for the unbalanced panel data model with AR(1)

remainder disturbances but no random individual effects. Goldberger (1962) actually con-

sidered a simple time series regression (not a panel) with AR(1) remainder disturbances.

Special case 3: No serial correlation. This is the unbalanced random effects model

without serial correlation in Section 1. In this case ρ = 0, gi = ιni , g
′
igi = ni, ω

2
i = niσ

2
µ+σ2

ε

and û∗it = ûit. Equation (28) in this case reduces to

w′Ω−1ûGLS =
σ2
µ

ω2
i

ni∑
j=1

ûi,ti,j =
niσ

2
µ

ω2
i

ûi.,GLS, (30)

where ûi.,GLS = n−1 ni
i j=1 ûi,ti,j . This is Goldberger’s BLUP extra term for the unequally

spaced panel data model with no serial correlation. This encompasses the case derived

in Section 1 with ni = Ti, ω
2
i = Tiσ

2
µ + σ2

ε and the extra BLUP Goldberger (1962) term

reduces to the one given in Equation (10).

∑

4 Monte Carlo Simulation

To study the finite sample performance of the proposed estimator of ρ as well as the

performance of the corresponding predictors, we perform Monte Carlo experiments in this

section. Following Baltagi, Chang and Li (1992) but with random effects, we generate

the following panel model

yit = 1 + xit + µi + vit, (31)

for i = 1, . . . , N ; t = 1 . . . , T + 1, where xit = 0.1t+ 0.5xi,t−1 + wit. wit follows a uniform

distribution [−0.5, 0.5] and xi0 = 5 + 10wi0. The individual specific effects are generated
iid

as µi ∼ N (0, 10) and the remainder error follows an AR(1) process vit = ρvi,t−1 + εit,
iid

where εit ∼ N (0, 1) and ρ takes the values {0, 0.3, 0.6, 0.9}. As pointed out by Baltagi

12



et al. (1992), one can translate this starting date into an “effective” initial variance

assumption regardless of when the AR(l) process started. More specifically, to check
iid

the impact the of the initial condition, we let vi0 ∼ N (0, τ/ (1− ρ2)) where τ varies

over the set {0.2, 1, 5}. We generate the estimation sample such that the average time

¯period observed is T = 1
∑N

i=1 Ti = 5, 10, 20 or 40. As shown in Table 1, we consider
N

four different unbalanced panel data designs that are similar to those in Bruno (2005).

In each design, the Ahrens and Pincus (1981) index ω, which measures the extent of

unbalancedness, is set to be 0.36 or 0.96.4 In all experiments, the number of individuals

is always N = 50. We perform 1,000 replications for each experiment.

Table 2 reports the bias, interquantile range (IQR), and root mean squared error

(RMSE) of the estimator of ρ. Following Kelejian and Prucha (1999), bias is calculated

as the difference between the median and the true parameter value; IQR is the difference[ ]1/2
between the 0.75 and 0.25 quantiles; and RMSE = bias2 + (IQR/1.35)2 . These

measures are always assured to exist, see Kelejian and Prucha (1999) for details. As

¯ ¯shown in Table 2, when T is small, ρ̂ has negative bias. However, the bias shrinks as T

increases. When ρ > 0, the bias, IQR and RMSE all decrease when τ increases.

Tables 3-5 report the prediction performance of the following estimators: the pooled

ordinary least squares (OLS), panel fixed-effects (FE) and random effects (RE) estimators

that ignore autocorrelations in the error terms, and the fixed-effects and random effects

estimators with AR(1) term, which are denoted as FEAR and REAR respectively. To

summarize the accuracy of the forecasts, following Baltagi and Liu (2013a), we report

the sampling mean square error (MSE), the mean absolute error (MAE) and the mean

absolute percentage error (MAPE), which are computed as

MSE =
1

NR

R∑
r=1

N∑
i=1

d2
i,Ti+Si

, (32)

4See also Baltagi and Chang (1995) for more discussion on incomplete panels and this Ahrens and∑¯ N
Pincus measure. Note that ω = N/(T i=1 T

−1
i ), with 0 < ω ≤ 1. When the panel data is balanced

ω = 1. When the panel data is unbalanced ω takes on smaller values.
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MAE =
1

NR

R∑
r=1

N∑
i=1

|di,Ti+Si| (33)

and

MAPE =
100

NR

R∑
r=1

N∑
i=1

∣∣∣∣di,Ti+Siyi,Ti+Si

∣∣∣∣ , (34)

where di,Ti+Si = ŷi,Ti+Si − yi,Ti+Si , R = 1, 000 replications and we forecast the last year

available for individual i.5 As shown in Tables 3-5, REAR usually has the smallest MSE

and MAE when ρ > 0. However, FEAR sometimes has a smaller MAPE than REAR

even though the true DGP is created to be a random effect model with an AR(1) error

term.

5 Application

In this section we illustrate the BLUP forecasts using an extract from the National Lon-

gitudinal Study data set employed by Drukker (2003). This is an unbalanced panel data

over the years 1968-1988 with gaps. The data is used to illustrate the xtreg command

in Stata and includes observations on wages for 4711 young working women who were

14–26 years of age in 1968, some with only one observation. We regressed the loga-

rithm of wage (lnwage) on the woman’s age and its square (age, age2), total working

experience (exp), tenure at current position and its square (tenure, tenure2), current

grade completed (grade), a dummy variable for not living in a standard metropolitan

statistical area (nsmsa), a dummy variable for living in the south (south) and a dummy

variable for black (black).6 we estimate the model by using the pooled OLS, FE, RE,

5It is worth pointing out that forecasting is not always one period ahead, as it varies by individual

depending on the missing observations. In fact, the last available year for a particular individual could

sometimes be several years ahead due to irregular gaps of missing data between years. This is why we

gave the expression for the BLUP forecast for Si periods ahead for individual i.
6Drukker (2003) uses this data to estimate an earnings equation to illustrate a test for serial correlation

proposed by Wooldridge (2002). Experience squared was not significant and was dropped from the

regression. Zero serial correlation of the first order was rejected.
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FEAR and REAR respectively. In order to compute the forecasts, we focus on women

who had records for at least three years. For each estimator, we compute the forecast

of the logarithm of wage for the last available year for that individual. This year is not

used in the estimation but is used in the computation of the three forecast performance

measures. To summarize the accuracy of the forecasts, we report MSE, MAE and MAPE,

which are defined in Equation (32)-(34) with R = 1. As shown in Table 6, the random

effects model with an AR(1) term has the smallest MSE or MAE. While, the fixed-effects

model with an AR(1) term has the smallest MAPE. This is consistent with the findings

in the simulation results. For time series data sets, Diebold and Mariano (1995) derived a

test to compare prediction accuracy. Recently, Timmermann and Zhu (2019) extend the

Diebold and Mariano (1995) test to panel data to compare the significance of pairwise

forecasts averaged over all cross-sectional units. The results of this panel data test of

equal predictive accuracy is reported in Table 7. Overall, the random effects model with

an AR(1) term predicts significantly better than all other models.

6 Conclusion

This paper derives the BLUP for the unbalanced panel data model and the unequally

spaced panel data model with AR(1) remainder disturbances and illustrates these with

an earnings equation using the NLS young women data over the period 1968-1988 em-

ployed by Drukker (2003) using Stata. These results can be extended to the unbalanced

panel data model with AR(p) remainder disturbances, see Baltagi and Liu (2013a) for

the corresponding balanced panel data case. Also, the unbalanced panel data model

with MA(q) remainder disturbances, see Baltagi and Liu (2013b) for the corresponding

balanced panel data case. Another extension is for the autoregressive moving average

ARMA(p, q) remainder disturbances, see Galbraith and Zinde-Walsh (1995) for the bal-

anced panel data case.
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Data Availability Statement

The data used in the paper are available on the Stata web site for all Stata users.
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Table 1: Unbalanced Design

T̄ Ti ω Si S̄

5 4(i ≤ 25), 6(i > 25)

1(i ≤ 25), 9(i > 25)

0.96

0.36

3(i ≤ 25), 1(i > 25)

9(i ≤ 25), 1(i > 25)

2

5

10 8(i ≤ 25), 12(i > 25)

2(i ≤ 25), 18(i > 25)

0.96

0.36

5(i ≤ 25), 1(i > 25)

17(i ≤ 25), 1(i > 25)

3

9

20 16(i ≤ 25), 24(i > 25)

4(i ≤ 25), 36(i > 25)

0.96

0.36

9(i ≤ 25), 1(i > 25)

33(i ≤ 25), 1(i > 25)

5

17

40 32(i ≤ 25), 48(i > 25)

8(i ≤ 25), 72(i > 25)

0.96

0.36

17(i ≤ 25), 1(i > 25)

65(i ≤ 25), 1(i > 25)

9

33

∑¯ N
Note: N = 50 for all experiments. Ti is the available years for each individual i and T = 1

N i=1 Ti.∑¯ N
ω = N/(T i=1 T

−1
i ) is the Ahrens and Pincus (1981) measure of unbalancedness. We forecast Si years∑¯ahead for each individual i and S = 1 N

N i=1 Si.
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Table 2: Bias, IQR, and RMSE of the Estimator of ρ

T̄ ω ρ τ Bias IQR RMSE

5 0.96 0 0.2 -0.202 0.080 0.210
1 -0.202 0.080 0.210
5 -0.202 0.080 0.210

0.3 0.2 -0.297 0.084 0.303
1 -0.291 0.084 0.297
5 -0.220 0.079 0.227

0.6 0.2 -0.433 0.084 0.437
1 -0.411 0.080 0.416
5 -0.217 0.052 0.220

0.9 0.2 -0.595 0.072 0.597
1 -0.570 0.067 0.572
5 -0.390 0.034 0.391

0.36 0 0.2 -0.130 0.066 0.139
1 -0.130 0.066 0.139
5 -0.130 0.066 0.139

0.3 0.2 -0.183 0.066 0.189
1 -0.182 0.067 0.188
5 -0.143 0.062 0.150

0.6 0.2 -0.266 0.063 0.270
1 -0.252 0.060 0.256
5 -0.118 0.045 0.123

0.9 0.2 -0.398 0.057 0.400
1 -0.372 0.054 0.374
5 -0.219 0.026 0.220

10 0.96 0 0.2 -0.093 0.054 0.101
1 -0.093 0.054 0.101
5 -0.093 0.054 0.101

0.3 0.2 -0.130 0.055 0.136
1 -0.129 0.056 0.135
5 -0.106 0.053 0.113

0.6 0.2 -0.188 0.054 0.192
1 -0.179 0.054 0.183
5 -0.081 0.042 0.087

0.9 0.2 -0.297 0.048 0.299
1 -0.272 0.043 0.274
5 -0.142 0.021 0.143

0.36 0 0.2 -0.060 0.047 0.069
1 -0.060 0.047 0.069
5 -0.060 0.047 0.069

0.3 0.2 -0.082 0.047 0.089
1 -0.082 0.047 0.089
5 -0.071 0.044 0.078

0.6 0.2 -0.114 0.045 0.119
1 -0.111 0.043 0.115
5 -0.057 0.034 0.062

0.9 0.2 -0.192 0.038 0.194
1 -0.175 0.034 0.176
5 -0.076 0.016 0.076

20 0.96 0 0.2 -0.045 0.037 0.053
1 -0.045 0.037 0.053
5 -0.045 0.037 0.053

0.3 0.2 -0.060 0.037 0.067
1 -0.060 0.037 0.066
5 -0.053 0.037 0.060

0.6 0.2 -0.082 0.037 0.086
1 -0.080 0.035 0.084
5 -0.046 0.030 0.051

Continued on Next Page. . .
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Table 2 – Continued

T̄ ω ρ τ Bias IQR RMSE

0.9 0.2 -0.140 0.028 0.141
1 -0.126 0.028 0.128
5 -0.047 0.013 0.048

0.36 0 0.2 -0.035 0.036 0.044
1 -0.035 0.036 0.044
5 -0.035 0.036 0.044

0.3 0.2 -0.047 0.035 0.054
1 -0.047 0.036 0.054
5 -0.043 0.034 0.050

0.6 0.2 -0.062 0.032 0.066
1 -0.061 0.032 0.065
5 -0.038 0.025 0.042

0.9 0.2 -0.102 0.024 0.104
1 -0.093 0.024 0.095
5 -0.031 0.013 0.033

40 0.96 0 0.2 -0.028 0.033 0.037
1 -0.028 0.033 0.037
5 -0.028 0.033 0.037

0.3 0.2 -0.039 0.033 0.046
1 -0.039 0.033 0.046
5 -0.036 0.033 0.043

0.6 0.2 -0.050 0.028 0.054
1 -0.049 0.029 0.053
5 -0.033 0.025 0.038

0.9 0.2 -0.079 0.023 0.081
1 -0.072 0.022 0.074
5 -0.025 0.013 0.026

0.36 0 0.2 -0.021 0.028 0.029
1 -0.021 0.028 0.029
5 -0.021 0.028 0.029

0.3 0.2 -0.028 0.028 0.035
1 -0.028 0.028 0.035
5 -0.026 0.026 0.032

0.6 0.2 -0.037 0.025 0.041
1 -0.036 0.025 0.040
5 -0.026 0.021 0.031

0.9 0.2 -0.052 0.018 0.054
1 -0.048 0.018 0.050
5 -0.019 0.012 0.021

Note: N = 50 for all experiments. τ/(1− ρ2) is the variance of the initial condition.

21



Table 3: MSE of the Predictors

T̄ ω ρ τ OLS FE RE FEAR REAR

5 0.96 0 0.2
1
5

20.062
20.062
20.062

11.659
11.659
11.659

11.455
11.455
11.455

12.040
12.040
12.040

11.977
11.977
11.977

0.3 0.2
1
5

21.034
21.036
21.070

12.393
12.445
13.773

12.101
12.142
13.120

12.405
12.433
13.194

12.102
12.116
12.525

0.6 0.2
1
5

25.578
25.602
26.237

14.827
15.484
31.991

14.490
15.029
27.997

13.083
13.341
18.936

12.533
12.663
15.547

0.9 0.2
1
5

50.502
61.731

346.585

19.448
22.006
85.625

19.692
21.678
82.645

14.132
15.226
36.620

14.242
14.428
21.583

0.36 0 0.2
1
5

19.712
19.712
19.712

11.113
11.113
11.113

10.988
10.988
10.988

11.282
11.282
11.282

11.200
11.200
11.200

0.3 0.2
1
5

20.734
20.737
20.784

12.006
12.035
12.677

11.823
11.847
12.360

11.437
11.452
11.780

11.201
11.213
11.468

0.6 0.2
1
5

25.418
25.437
25.871

15.550
15.942
25.493

15.263
15.594
23.210

11.863
11.948
13.917

11.344
11.391
12.439

0.9 0.2
1
5

56.347
62.653

215.656

24.022
27.480

114.272

24.166
27.108

110.148

12.756
13.492
26.889

12.712
12.661
15.170

10 0.96 0 0.2
1
5

20.011
20.011
20.011

10.855
10.855
10.855

10.799
10.799
10.799

10.960
10.960
10.960

10.922
10.922
10.922

0.3 0.2
1
5

20.986
20.987
21.041

11.815
11.835
12.241

11.714
11.731
12.079

11.036
11.046
11.251

10.902
10.912
11.109

0.6 0.2
1
5

25.539
25.558
26.005

15.831
16.096
22.184

15.619
15.849
20.820

11.279
11.324
12.364

10.932
10.966
11.637

0.9 0.2
1
5

58.684
61.969

146.389

27.884
32.137

135.067

27.929
31.712

129.994

12.043
12.571
21.495

11.925
11.840
13.263

0.36 0 0.2
1
5

20.064
20.064
20.064

10.603
10.603
10.603

10.583
10.583
10.583

10.646
10.646
10.646

10.632
10.632
10.632

0.3 0.2
1
5

21.009
21.011
21.039

11.558
11.563
11.722

11.513
11.518
11.660

10.672
10.675
10.756

10.617
10.620
10.714

0.6 0.2
1
5

25.491
25.500
25.668

15.911
16.008
18.610

15.780
15.865
18.056

10.770
10.782
11.194

10.611
10.623
10.980

0.9 0.2
1
5

60.888
61.863
86.469

33.890
38.042

142.262

33.795
37.594

136.592

11.311
11.524
15.610

11.128
11.033
11.583

20 0.96 0 0.2
1
5

19.827
19.827
19.827

10.441
10.441
10.441

10.425
10.425
10.425

10.461
10.461
10.461

10.447
10.447
10.447

0.3 0.2
1
5

20.780
20.780
20.786

11.385
11.389
11.483

11.354
11.358
11.443

10.472
10.474
10.522

10.435
10.438
10.497

0.6 0.2
1
5

25.374
25.376
25.426

15.910
15.974
17.472

15.818
15.875
17.172

10.519
10.530
10.769

10.431
10.442
10.682

Continued on Next Page. . .
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Table 3 – Continued

T̄ ω ρ τ OLS FE RE FEAR REAR

0.9 0.2
1
5

61.796
62.118
69.479

38.709
42.446

135.669

38.521
41.993

130.267

10.912
11.025
13.214

10.706
10.642
10.911

0.36 0 0.2
1
5

19.978
19.978
19.978

10.315
10.315
10.315

10.308
10.308
10.308

10.248
10.248
10.248

10.246
10.246
10.246

0.3 0.2
1
5

20.986
20.987
20.990

11.553
11.557
11.624

11.531
11.535
11.598

10.264
10.267
10.292

10.256
10.259
10.292

0.6 0.2
1
5

25.703
25.705
25.740

17.024
17.071
18.133

16.937
16.979
17.931

10.305
10.312
10.415

10.288
10.297
10.426

0.9 0.2
1
5

62.733
62.795
64.331

53.855
57.725

152.980

53.356
57.037

148.293

10.632
10.671
11.526

10.423
10.382
10.452

40 0.96 0 0.2
1
5

20.068
20.068
20.068

10.235
10.235
10.235

10.228
10.228
10.228

10.213
10.213
10.213

10.210
10.210
10.210

0.3 0.2
1
5

21.109
21.109
21.110

11.455
11.458
11.513

11.436
11.439
11.492

10.222
10.222
10.232

10.214
10.215
10.229

0.6 0.2
1
5

25.902
25.904
25.927

16.942
16.980
17.883

16.874
16.909
17.741

10.245
10.247
10.297

10.248
10.252
10.323

0.9 0.2
1
5

64.074
64.126
65.161

59.933
63.567

154.393

59.390
62.883

150.596

10.469
10.467
10.850

10.331
10.298
10.304

0.36 0 0.2
1
5

20.303
20.303
20.303

10.306
10.306
10.306

10.302
10.302
10.302

10.255
10.255
10.255

10.256
10.256
10.256

0.3 0.2
1
5

21.371
21.371
21.371

11.531
11.533
11.581

11.520
11.522
11.569

10.260
10.259
10.261

10.269
10.269
10.273

0.6 0.2
1
5

26.151
26.150
26.158

17.054
17.089
17.906

17.009
17.042
17.815

10.277
10.276
10.290

10.324
10.323
10.350

0.9 0.2
1
5

63.944
63.965
64.759

63.308
66.720

151.605

62.798
66.107

148.949

10.403
10.397
10.533

10.323
10.304
10.289

Note: N = 50 for all experiments. τ/(1− ρ2) is the variance of the initial condition.
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Table 4: MAE of the Predictors

T̄ ω ρ τ OLS FE RE FEAR REAR

5 0.96 0 0.2
1
5

3.576
3.576
3.576

2.728
2.728
2.728

2.703
2.703
2.703

2.770
2.770
2.770

2.761
2.761
2.761

0.3 0.2
1
5

3.660
3.660
3.663

2.809
2.815
2.964

2.775
2.781
2.892

2.810
2.814
2.900

2.774
2.777
2.824

0.6 0.2
1
5

4.030
4.032
4.083

3.070
3.140
4.516

3.035
3.093
4.224

2.884
2.915
3.473

2.823
2.839
3.146

0.9 0.2
1
5

5.666
6.268

14.855

3.515
3.738
7.384

3.537
3.710
7.254

2.996
3.111
4.836

3.009
3.028
3.711

0.36 0 0.2
1
5

3.548
3.548
3.548

2.659
2.659
2.659

2.644
2.644
2.644

2.680
2.680
2.680

2.669
2.669
2.669

0.3 0.2
1
5

3.641
3.641
3.646

2.766
2.769
2.841

2.745
2.748
2.805

2.698
2.700
2.737

2.670
2.671
2.699

0.6 0.2
1
5

4.031
4.032
4.066

3.146
3.184
4.028

3.117
3.150
3.843

2.750
2.758
2.973

2.689
2.694
2.809

0.9 0.2
1
5

5.996
6.317

11.710

3.919
4.183
8.532

3.931
4.156
8.376

2.853
2.930
4.139

2.850
2.841
3.104

10 0.96 0 0.2
1
5

3.569
3.569
3.569

2.634
2.634
2.634

2.627
2.627
2.627

2.646
2.646
2.646

2.641
2.641
2.641

0.3 0.2
1
5

3.652
3.652
3.656

2.745
2.747
2.791

2.734
2.735
2.773

2.655
2.656
2.678

2.638
2.639
2.661

0.6 0.2
1
5

4.032
4.034
4.070

3.178
3.202
3.752

3.157
3.178
3.637

2.682
2.687
2.803

2.641
2.644
2.720

0.9 0.2
1
5

6.098
6.269
9.642

4.216
4.522
9.266

4.219
4.493
9.090

2.771
2.828
3.698

2.758
2.747
2.903

0.36 0 0.2
1
5

3.570
3.570
3.570

2.589
2.589
2.589

2.586
2.586
2.586

2.593
2.593
2.593

2.591
2.591
2.591

0.3 0.2
1
5

3.650
3.650
3.653

2.703
2.704
2.724

2.697
2.698
2.716

2.597
2.597
2.608

2.589
2.590
2.603

0.6 0.2
1
5

4.025
4.025
4.038

3.176
3.187
3.441

3.163
3.173
3.389

2.609
2.612
2.665

2.589
2.591
2.638

0.9 0.2
1
5

6.230
6.281
7.417

4.634
4.912
9.508

4.627
4.882
9.317

2.678
2.704
3.154

2.657
2.646
2.713

20 0.96 0 0.2
1
5

3.559
3.559
3.559

2.579
2.579
2.579

2.577
2.577
2.577

2.582
2.582
2.582

2.580
2.580
2.580

0.3 0.2
1
5

3.642
3.642
3.642

2.691
2.692
2.703

2.688
2.688
2.698

2.583
2.583
2.589

2.578
2.578
2.585

0.6 0.2
1
5

4.027
4.027
4.031

3.184
3.190
3.336

3.174
3.180
3.307

2.589
2.590
2.619

2.577
2.579
2.608

Continued on Next Page. . .
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Table 4 – Continued

T̄ ω ρ τ OLS FE RE FEAR REAR

0.9 0.2
1
5

6.268
6.282
6.641

4.976
5.206
9.297

4.964
5.179
9.109

2.635
2.648
2.900

2.612
2.603
2.634

0.36 0 0.2
1
5

3.560
3.560
3.560

2.557
2.557
2.557

2.556
2.556
2.556

2.547
2.547
2.547

2.546
2.546
2.546

0.3 0.2
1
5

3.651
3.651
3.651

2.703
2.703
2.710

2.701
2.701
2.708

2.548
2.548
2.550

2.547
2.547
2.550

0.6 0.2
1
5

4.042
4.042
4.045

3.283
3.288
3.389

3.275
3.279
3.371

2.552
2.553
2.564

2.550
2.551
2.565

0.9 0.2
1
5

6.304
6.308
6.387

5.818
6.021
9.755

5.793
5.987
9.605

2.594
2.598
2.698

2.568
2.563
2.568

40 0.96 0 0.2
1
5

3.571
3.571
3.571

2.552
2.552
2.552

2.551
2.551
2.551

2.549
2.549
2.549

2.549
2.549
2.549

0.3 0.2
1
5

3.661
3.661
3.661

2.699
2.699
2.706

2.696
2.697
2.703

2.550
2.550
2.551

2.549
2.549
2.551

0.6 0.2
1
5

4.053
4.053
4.055

3.279
3.282
3.368

3.272
3.275
3.354

2.553
2.553
2.559

2.553
2.553
2.562

0.9 0.2
1
5

6.384
6.386
6.437

6.144
6.324
9.697

6.117
6.292
9.580

2.581
2.581
2.626

2.562
2.558
2.560

0.36 0 0.2
1
5

3.594
3.594
3.594

2.561
2.561
2.561

2.561
2.561
2.561

2.555
2.555
2.555

2.555
2.555
2.555

0.3 0.2
1
5

3.688
3.687
3.687

2.706
2.706
2.712

2.705
2.705
2.710

2.556
2.556
2.556

2.557
2.557
2.557

0.6 0.2
1
5

4.078
4.078
4.079

3.293
3.297
3.374

3.289
3.292
3.366

2.558
2.558
2.560

2.565
2.565
2.568

0.9 0.2
1
5

6.390
6.391
6.432

6.324
6.482
9.457

6.300
6.454
9.380

2.575
2.574
2.589

2.566
2.564
2.561

Note: N = 50 for all experiments. τ/(1− ρ2) is the variance of the initial condition.
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Table 5: MAPE of the Predictors

T̄ ω ρ τ OLS FE RE FEAR REAR

5 0.96 0 0.2
1
5

388.781
388.781
388.781

364.873
364.873
364.873

347.241
347.241
347.241

374.599
374.599
374.599

361.344
361.344
361.344

0.3 0.2
1
5

472.399
543.080
408.194

394.322
424.699
400.761

370.196
395.002
366.890

395.632
427.752
390.466

367.692
393.979
351.306

0.6 0.2
1
5

371.881
352.733
675.286

410.321
395.485

1471.764

386.695
367.156

1307.010

385.988
369.172

1020.926

351.848
328.525
795.121

0.9 0.2
1
5

271.515
241.323
221.586

287.700
311.349
297.925

276.200
303.178
295.588

256.298
265.039
199.071

232.382
242.539
175.240

0.36 0 0.2
1
5

568.493
568.493
568.493

511.893
511.893
511.893

500.355
500.355
500.355

526.548
526.548
526.548

519.162
519.162
519.162

0.3 0.2
1
5

663.620
635.870
578.635

504.944
491.649
473.317

472.328
461.389
441.880

520.457
500.913
473.201

477.871
461.624
433.509

0.6 0.2
1
5

436.830
323.176
343.554

340.231
302.449
452.999

331.524
290.554
420.084

321.295
282.579
338.357

304.499
262.214
302.176

0.9 0.2
1
5

536.172
339.431
296.403

573.998
362.950
638.546

557.402
353.319
631.597

373.336
267.107
326.427

307.967
245.592
266.351

10 0.96 0 0.2
1
5

507.105
507.105
507.105

331.547
331.547
331.547

328.826
328.826
328.826

334.001
334.001
334.001

331.750
331.750
331.750

0.3 0.2
1
5

419.093
419.633
422.457

303.235
303.216
308.346

296.054
296.009
299.043

293.198
293.091
295.611

282.471
282.448
283.320

0.6 0.2
1
5

477.066
403.383
470.734

391.849
382.440
564.990

385.872
374.101
534.902

330.971
316.133
406.885

317.429
297.884
361.299

0.9 0.2
1
5

394.535
657.131
363.493

332.292
608.006
757.189

327.953
600.628
744.736

244.422
460.184
280.140

238.606
432.760
217.670

0.36 0 0.2
1
5

515.523
515.523
515.523

308.034
308.034
308.034

308.532
308.532
308.532

303.731
303.731
303.731

306.309
306.309
306.309

0.3 0.2
1
5

820.423
817.758
804.463

579.910
576.675
561.687

584.989
581.895
568.271

486.742
481.931
456.013

488.252
483.171
456.192

0.6 0.2
1
5

541.557
543.008
664.811

407.318
404.685
561.389

408.491
406.128
561.359

319.719
316.472
429.551

315.776
313.995
430.648

0.9 0.2
1
5

478.897
498.468
671.631

352.948
332.856

1023.864

344.789
320.943

1006.655

204.472
190.843
323.556

208.310
205.824
288.608

20 0.96 0 0.2
1
5

735.155
735.155
735.155

606.707
606.707
606.707

604.971
604.971
604.971

605.472
605.472
605.472

603.203
603.203
603.203

0.3 0.2
1
5

747.760
747.064
743.592

503.655
502.110
495.168

510.359
509.011
503.430

495.780
494.440
487.975

509.192
507.842
502.421

0.6 0.2
1
5

620.470
623.924
644.380

448.076
455.387
502.154

453.185
460.378
506.337

354.475
358.678
381.293

360.875
365.064
386.356

Continued on Next Page. . .
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Table 5 – Continued

T̄ ω ρ τ OLS FE RE FEAR REAR

0.9 0.2
1
5

572.536
441.088
534.917

494.404
360.780
998.425

491.723
355.768
978.935

258.131
203.415
278.228

253.562
197.831
242.891

0.36 0 0.2
1
5

448.128
448.128
448.128

275.879
275.879
275.879

280.058
280.058
280.058

175.659
175.659
175.659

177.954
177.954
177.954

0.3 0.2
1
5

276.183
276.175
276.135

157.497
157.306
156.461

160.107
159.923
159.268

150.674
150.743
150.758

156.668
156.723
156.956

0.6 0.2
1
5

585.028
584.386
581.580

277.583
280.559
297.120

275.941
278.667
293.132

249.051
251.681
265.511

232.881
235.231
245.963

0.9 0.2
1
5

519.122
469.154
690.008

461.106
388.893
612.667

459.089
388.020
600.099

171.033
127.027
279.444

164.562
126.163
300.555

40 0.96 0 0.2
1
5

132.745
132.745
132.745

73.487
73.487
73.487

74.413
74.413
74.413

72.354
72.354
72.354

73.275
73.275
73.275

0.3 0.2
1
5

195.023
195.025
195.035

106.445
106.565
107.217

107.825
107.949
108.691

90.899
90.968
91.289

94.947
95.043
95.617

0.6 0.2
1
5

206.088
206.086
206.090

134.901
135.425
138.809

136.284
136.810
140.421

98.269
98.373
98.532

103.515
103.656
104.194

0.9 0.2
1
5

434.826
660.541
488.213

338.220
571.856
618.274

339.467
570.239
612.791

125.598
237.506
111.589

127.396
231.242
111.776

0.36 0 0.2
1
5

35.574
35.574
35.574

22.870
22.870
22.870

22.934
22.934
22.934

22.393
22.393
22.393

22.445
22.445
22.445

0.3 0.2
1
5

35.348
35.348
35.350

24.015
24.015
24.047

24.068
24.068
24.101

22.729
22.726
22.714

22.919
22.916
22.908

0.6 0.2
1
5

49.704
49.697
49.672

36.403
36.458
37.131

36.511
36.565
37.237

25.224
25.215
25.147

25.842
25.838
25.813

0.9 0.2
1
5

502.623
435.106
840.215

527.477
415.868
902.339

526.176
415.743
900.909

69.947
104.319
112.293

73.859
114.070
118.572

Note: N = 50 for all experiments. τ/(1− ρ2) is the variance of the initial condition.
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Table 6: Estimation and Forecasting Results using the National Longitudinal Study

OLS FE RE FEAR REAR
age 0.0405 0.0417 0.0414 0.0420 0.0415

(0.0037) (0.0033) (0.0031) (0.0031) (0.0032)
age2 -0.0007 -0.0009 -0.0008 -0.0009 -0.0008

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
exp 0.0271 0.0398 0.0348 0.0399 0.0347

(0.0011) (0.0017) (0.0013) (0.0016) (0.0013)
tenure 0.0450 0.0334 0.0363 0.0332 0.0363

(0.0020) (0.0018) (0.0017) (0.0017) (0.0018)
tenure2 -0.0018 -0.0020 -0.0019 -0.0020 -0.0019

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
nsmsa -0.1642 -0.0815 -0.1246 -0.0791 -0.1249

(0.0054) (0.0100) (0.0075) (0.0092) (0.0074)
south -0.1007 -0.0501 -0.0833 -0.0475 -0.0830

(0.0052) (0.0116) (0.0077) (0.0107) (0.0076)
grade 0.0622 0.0643 0.0643

(0.0011) (0.0019) (0.0019)
black -0.0697 -0.0545 -0.0548

(0.0056) (0.0103) (0.0102)
Intercept 0.2248 0.1822 0.1782

(0.0520) (0.0498) (0.0504)
σµ 0.3245 0.2373 0.2684 0.2308
σv 0.3594 0.2732 0.2732 0.2747 0.2721
ρ 0.1012 0.1012
LBI 1.8404 1.8404
F-statistics 107.4471 107.4471
p-value 0.0000 0.0000
MSE 0.2136 0.1647 0.1610 0.1603 0.1559
MAE 0.3328 0.2688 0.2674 0.2623 0.2609
MAPE 41.1100 31.0870 32.3895 30.6727 32.2694

Note: The sample is an unbalanced panel data of 3640 women over the years 1968-1988 with gaps. We

compute the forecasts of logarithm wage for the last available year. In-sample model coefficient

estimates are based on 22887 observations from all previous years. For the in-sample, the average

¯available years T = 6.288 and the Ahrens and Pincus index ω = 0.724. On average, we are forecasting

S̄ = 2.131 years ahead. MSE, MAE and MAPE are out-of-sample forecast comparison for the last

available year. σµ and σv are the standard deviations of the individual effects and remainder

disturbances, respectively. ρ is the autocorrelation parameter of the remainder disturbances. LBI is the

locally best invariant test statistic in Baltagi and Wu (1999). F-statistics and p-value are for the panel

serial correlation test in Wooldridge (2002). Standard errors in parentheses.
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Table 7: Panel Data Test Results of Equal Predictive Accuracy using the National Lon-

gitudinal Study

OLS FE RE FEAR REAR

OLS

FE -10.9947

RE -14.4038 -3.8038

FEAR -11.8924 -11.6062 -0.6650

REAR -16.2446 -6.9276 -10.5975 -3.5953

Note: The test statistic asymptotically follows a standard normal distribution. A negative entry

means the row estimator is better than the column.
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Appendix

Proof of Theorem 1

Proof. Denote T (1) as the set of observations when both ti,j and ti,j−1 are observed.

Equation (21) could be rewritten as

ρ̂ =

1
m

N
i=1 ti,j∈T (1) ν̂i,ti,j ν̂i,ti,j−1

1
n

∑N
i=1

∑ni
j=1 ν̂

2
i,ti,j

.

∑ ∑
where

˜ − ˆν̂i,ti,j = yi,ti,j βFEx̃i,ti,j = ṽi,ti,j − β̂FE − β x̃i,ti,j ,∑
with ỹi,ti,j = yi,ti,j − ȳ −

i. and ȳi. = n 1 ni
i j=1 yi,ti,j . Other terms such as x̃i,ti,j , x̄i., ṽi,ti,j and

v̄i. are similarly defined. Hence,

( )
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