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ABSTRACT 

The genome of eukaryotes is associated with chromosomal proteins 

that fold the DNA into ordered arrangements. The most abundant of these are 

the histones. Four of these (H2A, H2B, H3 and H4) form the nucleosomal 

core around which DNA is wrapped. Other proteins can associate with 

chromatin and fold it into higher order structures. During spermatogenesis in 

many organisms the standard chromatin configuration undergoes a transition 

to a highly condensed form in which small, highly basic proteins called 

protamines replace the histones. It is thought that protamine-based chromatin 

is more resistant to mutational damage. 

 Previous work by the Renkawitz-Pohl group identified and cloned the 

protamine genes from Drosophila melanogaster.  In this species there are two 

tandemly arranged genes encoding similar small, highly basic proteins, 

ProtamineA and ProtamineB, that are expressed in late spermatogenesis and 

that accumulate in the sperm head as the histones disappear. Interestingly, 

these protamines are not essential for sperm function, although sperm lacking 

the protamines were more susceptible to mutation.  

 In the present study I sought to extend these studies to another insect 

species, the red flour beetle Tribolium castaneum. Here I describe the 

identification of three clustered genes (called Protamine-1, Protamine-2, and 

Protamine-3) encoding small highly basic proteins that show similarity to the 

Drosophila protamines. To see if these are indeed protamines, I have used 

gene splicing methods to tag each of them with a fluorescent marker (GFP, a 
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green fluorescent protein) and have subcloned the tagged constructs into a 

germline transformation vector, pB3xP3-EGFP, that will be used to create 

transgenic beetles that express the fluorescent proteins. To date, Dr. Belote 

has generated transformed lines of fluorescently tagged Protamine-1 and has 

confirmed that this gene is expressed during spermatogenesis and that the 

protein accumulates in the sperm head as expected for a protamine. I have 

successfully GFP-tagged the Protamine-2 gene and subcloned it into the 

transformation vector. The next step will be to generate transgenic beetles and 

examine the sperm-specific expression of this candidate protamine gene. 

Generation of the Protamine-3 GFP-tagged construct is in progress. 

 It is anticipated that these fluorescent-tagged protamine lines will be an 

invaluable genetic tool for a variety of studies in which direct visualization of 

live sperm is desired. 

 

 

This work was supported by a Ruth Meyer Award for Undergraduate Research 

and a Renee Crown Honors Program Research Award 
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INTRODUCTION 

 

Chromatin and chromosomal proteins  

The genome of eukaryotic cells does not exist as extended “naked” DNA 

molecules, but rather is highly folded and condensed, and is associated with 

chromosomal proteins organized into a nucleoprotein assembly called chromatin 

(Lewis, et al., 2003). This nucleoprotein assembly, consisting of DNA interacting 

with histone and non-histone proteins, confers several levels of ordered structure. 

The basic subunit of chromatin is the nucleosome, which consists of 146 (bp) of 

DNA wrapped around a histone (H3-H4) tetramer associated with 2 (H2A-H2B) 

histone heterodimers. Another histone called HI, or linker histone, associates with 

the DNA that lies between adjacent nucleosomes. These particles are dynamically 

active in maintaining higher levels of chromatin organization. That is, the 

nucleosomal “beads on a string” configuration can be further folded into a 30 nm 

chromatin fiber, as well as more complex looped domains along the chromosomes 

(Fig. 1).  

As “DNA packaging” proteins, histones have been historically considered 

to play a purely structural role in the mediation of chromatin structure. However, 

more recent studies have revealed that exchange of specialized histone variants 

and the modification of core histone tails, which extend outward from the 

nucleosome perimeter, provide complex levels of epigenetic regulation affecting 

cellular processes such as transcription and DNA repair (Henikoff, 2008). Thus,  
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Fig 1. 
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histone variability and modification can alter the structural nature of nucleosomes 

to help in the control of gene function.  

 

Protamines: Sperm-specific chromosomal proteins   

 In many species, the chromatin structure typical of somatic cells undergoes a 

dramatic compaction during sperm development (see Lewis, et al., 2003 for 

review). This transition is correlated with the appearance of sperm-specific 

chromosomal proteins called protamines. It is envisioned that during the late 

stages of spermatogenesis, the histones that make up nucleosomal-based 

chromatin are removed, and a protamine-based, highly condensed, chromatin 

structure is assembled. This switch is thought to be facilitated by additional 

chromosomal proteins, such as the “protamine-like” proteins, and various histone 

“variant” proteins, as well as others (Rathke, et al., 2007).  

Unlike histones, protamines from different organisms are not highly 

conserved in their primary amino acid (aa) sequences; however they do have 

similar overall properties (Balhorn, 2007). That is, they are characterized as 

highly basic nuclear proteins that are typically quite short (50-110 aa in length). 

For example, protamine-2 of humans is a 102 aa protein with a preponderance of 

basic residues, especially in the C-terminal half of the protein (Fig. 2). Two 

identifying structural elements within the protamine polypeptide have been found: 

small ‘anchoring’ domains containing multiple positively charged arginine or 

lysine amino acids (used to bind the protein to DNA); and multiple serine and 

threonine residues (used as phosphorylation sites) (Balhorn, 2007). 
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Fig.2 
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The P1 protamine of placental mammals has also been well studied. It is about 

50 aa long, and contains three domains: a central arginine-rich DNA binding 

domain flanked by short peptide segments containing cysteine residues (Balhorn, 

2007). These cysteines could conceivably be involved in disulfide bond 

formation. This central DNA binding domain typically consists of a series of 

anchoring sequences containing 3-11 consecutive arginine residues, which bind 

the protein to the DNA. When comparing this domain between fish protamines 

and mammalian P1 protamines, there is a high conservation in this anchoring 

domain, but other than that, there is high variation between the other domains 

(Balhorn, 2007).  

 

Spermatogenesis and histone replacement  

Spermatogenesis is a complex developmental process that involves 

amplification of germline stem cells, their differentiation into spermatocytes, two 

meiotic divisions, and finally dramatic differentiation into mature spermatozoa 

(Fuller, 1998; Olivia and Castillo, 2011). During this process, there is a dramatic 

nuclear transformation, including chromatin reorganization (Rathke et al., 2010), 

which is essential for spermatogenesis. A complex cascade of transcriptional and 

regulatory events facilitates this dramatic reorganization of local and global 

chromatin structure (Jayaramaiah et al, 2005).  

During these late stages of spermatogenesis, where spermatid 

differentiation occurs, the initially round spermatids undergo extensive 

morphological changes that give rise to elongated spermatids (Fuller, 1998).  
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These extensive morphological changes of the sperm can be attributed to two 

processes: generation of a long sperm tail containing a structure called the 

axoneme that acts as the motility apparatus, and the elongation of the sperm head, 

that is associated with significant condensation and elongation of the sperm 

nucleus. This latter process is thought to be caused, at least in part, by the switch 

from histone-based chromatin to protamine-based chromatin (Fig. 3). It is 

hypothesized that protamine binding to DNA in these late stages of 

spermatogenesis results in the production of an uncharged chromatin complex that 

enables the DNA molecules to be condensed into a volume some 1/20th that of a 

somatic nucleus (Balhorn, 2007). It has been speculated this protamine-based 

chromatin organization, that leads to a compact hydrodynamic sperm head, can 

work to protect the paternal genome from physical and chemical damage (Rathke 

et al., 2010; Jayaramaiah et al., 2005). 

In certain plant and animal species, the histones that package DNA in 

early spermatids are removed from the DNA and replaced in the final stages of 

spermatid maturation by one of three types of proteins: sperm-specific histones, 

protamine-like proteins or protamines. Studies have shown that there are three 

general mechanisms for histone replacement: (a) large-scale incorporation of 

histone variants, creating less stable nucleosomes; (b) genome-wide histone 

hyperacetylation; and (c) competition for DNA binding with very basic DNA-

interacting non-histone proteins such as transition proteins and protamines 

(Gaucher, et al. 2010). 
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Fig. 3 
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Rapid divergence and evolution of protamines 

 Comparing various organisms, there is a wide variety in the number and types 

of genes that code for protamine or protamine-like proteins. For example, in 

salmonid fish there are 15 closely related protamine genes, while birds have two 

copies of almost identical protamine genes, and mammals have two very distinct 

protamine genes, called protamine-1 and protamine-2 (Balhorn, 2007). Focusing 

on the mammalian protamines, it is widely thought that the protamine-2 gene 

arose by tandem duplication of protamine-1. Both genes are located in a tight 

cluster on chromosome 16, and they show significant amino acid similarity, 

although they differ in overall length (protamine-1 is 50 aa long, and protamine-2 

is 102 aa). It has been shown that protamine-2 undergoes proteolytic cleavage 

which removes the N-terminal half, making the processed protamine-2 similar in 

size to protamine-1.  

 Interspecific comparisons of protamines have shown that these proteins are 

very rapidly evolving (Balhorn, 2007). For example, Retief, et al., (1993) 

compared the protamine-1 genes from several primate species, including human, 

and found a remarkably high amino acid substitution rate, among the fastest 

known for any protein. This rapid evolution is also seen when comparing 

protamine genes from different species of Drosophila. For example, Fig. 4 shows 

the amino acid alignments of the known protamines from five closely related 

species of the melanogaster subgroup (D. melanogaster, D. simulans, D.sechellia, 

D. yakuba, and D. erecta). While these proteins clearly represent products of 

orthologous genes, there are significant differences in the sequences. The degree  
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Fig. 4 
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of divergence is very high, considering that these species shared a common 

ancestor less than 10 million years ago (Fig. 5). An even more dramatic 

evolutionary divergence in protamine sequence is seen when comparing 

D.melanogaster and D. virilis (divergence time 40 Mya). As shown in Fig. 6, here 

the amino acid sequences show a very weak alignment (Fig. 6). This rapid 

evolutionary divergence makes it difficult to identify orthologous protamine 

genes by database searches when comparing species that are not close relatives.  

 Protamine-like proteins have also been found in many species, and are 

characterized by a high lysine and arginine content (35-50% Arg and Lys), 

comparable to that seen in histones, and are considerably larger than true 

protamines (up to 300 aa’s). These structural characteristics showing similarity to 

both histones and protamines suggest that protamine-like proteins represent an 

evolutionary mid-transition to modern protamines (Balhorn, 2007). Evolution to a 

true protamine is hypothesized to occur as the protamine-like gene becomes better 

able to influence the stability of the sperm chromatin complex, and exhibit more 

efficient success in displacement of histones and transition proteins from DNA, as 

a true protamine gene will accomplish.  

 

Studies of Drosophila protamines 

Although many studies have been done in mammalian systems to 

investigate the mechanisms of the histone to protamine transition, less is known 

for the Drosophila melanogaster model. To date, much of the information about 

Drosophila protamines has been obtained by the continued studies of the  
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Fig.5 
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Fig. 6 
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Renkawitz-Pohl group (Jayaramaiah-Raja and Renkawitz-Pohl, 2005; Rathke, et 

al., 2007; Rathke, et al., 2010). Jayaramaiah-Raja and Renkawitz-Pohl (2005) 

were the first to identify the protamine genes in this species, and show that the 

histone-protamine transition occurs during the late stages of spermatogenesis. 

Analysis of the Drosophila genome sequence identified two tandemly arranged 

genes, called Mst35Ba and Mst35Bb, that encoded proteins showing similarity to 

mammalian protamines (Fig. 7). These genes were originally defined in a cDNA 

library screen as encoding male-specific transcript of unknown function. Because 

their sequences showed similarity to each other and to known protamine genes 

from other species (i.e., small, highly basic proteins), it was hypothesized that 

they represented protamine genes. To test this, the Renkawitz-Pohl group created 

transgenic flies with GFP-tagged Mst35Ba and Mst35Bb, and demonstrated that 

these proteins are expressed in the male germline and replace histones during the 

late stages of spermatogenesis, as expected for protamines. These genes were 

therefore renamed ProtamineA and ProtamineB.  

Another specifically male transcribed gene, Mst77F, a distant relative of 

the histone H1/H5 (linker histone) family, was proposed to play a role either as a 

transition protein or a replacement protein for the compaction of the Drosophila 

sperm chromatin.  

While it was known that Drosophila histone-based nucleosomal chromatin 

configurations are replaced by a protamine-based chromatin structure during 

sperm maturation, the biological advantage of this chromatin reconfiguration is  
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Fig. 7 
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unclear. To study the biological effects of the two protamine genes, gene 

knockouts of the Mst35Ba and Mst35Bb plus three unrelated (and non-essential) 

genes were created by the deletion of Df(2L)FDD-0338164, referred to as 

protΔ (Rathke, et al., 2010). The observation that flies homozygous for this 

deletion were fertile, although somewhat reduced, proves that these protamines 

are not essential for either viability or fertility (although about 20% of the sperm 

showed abnormal sperm head morphology). This was surprising because previous 

research had shown that in mice and humans, loss of even one of the two copies 

of the protamine-1 or protamine-2 genes results in complete male sterility (that is, 

the protamine genes are haplosufficient). These results showed that in Drosophla, 

the protamines are not absolutely required for sperm differentiation and function. 

This raised the question of what is the function of protamines. One possibility is 

that they act to protect the paternal genome from mutagens. This was tested using 

the Muller5 test (Muller and Altenburg, 1919). In this procedure flies are 

subjected to X-irradiation, and the frequency of induced recessive lethal 

mutations provides a measure of mutagen sensitivity. Results showed that 

Protamine-A and B-deficient sperm are more sensitive to X-rays than wild-type 

sperm (Rathke, et al., 2010).  

 

The use of fluorescently-tagged protamines to study sperm mobility, 

behavior, and function in Drosophila 

 In addition to being of interest in its own right, the identification and 

characterization of Drosophila protamines has led to the development of a 
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molecular genetic tool that has provided a breakthrough in the ability to visualize 

live sperm within the female reproductive tract. Using gene splicing methods, the 

protamines have been tagged with green or red fluorescent markers (either Green 

Fluorescent Protein, GFP, or Red Fluorescent Protein, RFP), and transgenic 

Drosophila strains generated in which males produce sperm with green or red 

sperm heads. Such sperm can be easily identified and tracked inside the dissected 

female sperm storage organs (Fig. 8). Using these lines, Manier, et al. (2010) were 

able to address many previously unanswered questions regarding the nature of 

sperm competition when females mate consecutively with two males, and how 

sperm move and interact with one another inside the female. For example, sperm 

were found to exhibit a much higher degree of mobility within the female’s sperm 

storage organs than originally thought, and the sperm remained motile for several 

days, even after mating with a competitor male. It was also seen that when a 

female mates with a second male, the stored sperm from the first male have a 

tendency to leave storage, and then be replaced by sperm from the second male. 

This observation helps explain the long-known fact that in multiply mated female, 

most progeny are sired by the last male to male (a phenomenon known as second 

male sperm precedence).  

 A related phenomenon is conspecific male precedence. In this case it has been 

seen that when a female mates with two males, one of her own species (the 

conspecific male) and one from a closely related species (the heterospecific male), 

the female produces a large majority of offspring sired by the conspecific male, 

regardless of whether he was the first or second to mate. To examine the basis for  
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Fig. 8 
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this, the GFP- and RFP- tagged D. melanogaster protamine transgenes have been 

introduced into the sibling species D. simulans and D. mauritiana so that their 

sperm can be distinguished in interspecific crosses, and the details of sperm 

storage and motility inside the dual mated female are now being studied (Manier, 

et al., in preparation).  

 Other experiments have involved introducing the D. melanogaster tagged 

protamine genes into more distantly related Drosophila species (D. 

pseudoobscura and D. bifurca). In these cases, the expression of the heterologous 

melanogaster gene is not very strong and the sperm heads, while visible, are only 

weakly labeled (J. Belote, unpublished results). This could be related to the fact 

that protamines are rapidly evolving and so the melanogaster gene (or its protein 

gene product) is not expressed well in these other species. Thus, it seems that if 

this overall approach to visualizing living sperm is to be carried out with other 

organisms, it might be necessary to tag the protamine gene naturally found in that 

species or a close relative.  

 

This research project: Identify, clone and fluorescently tag protamine genes 

from the flour beetle, Tribolium castaneum 

While there have been numerous studies of protamines in fish, birds, and 

mammals, relatively little is known about protamines and the histone-protamine 

transition in insects. The only detailed studies in insects are those described above 

for Drosophila. To obtain a more complete picture of the structure and function of 

insect protamines, it would be useful to identify and analyze the protamine genes 
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of another insect species. Among the types of questions that could be then 

addressed are: (1) How many protamine genes are there? (2) What is the level of 

amino acid identity? (3) Are protamines dispensable for fertility in insects other 

than Drosophila? (4) Is the timing of the histone-protamine transition during 

spermatogenesis well conserved in insects? (5) Are there recognizable regulatory 

sequences that specify testis-specific expression of protamines? 

As a starting point to get at these questions, the present study was 

undertaken to identify, clone, and GFP-tag the protamine genes from the red flour 

beetle, Tribolium castaneum. This species was chosen because of the many 

genetic tools that are available to manipulate its genome (Denell, 2008). For 

example, its genome has been fully sequenced and is available in a public 

database, its genetics and development are well studied, there are many mutant 

strains available from a stock center, it is easy to rear in the lab, and an effective 

germline transformation protocol has been worked out. In addition, Tribolium and 

Drosophila are far enough apart on the evolutionary tree (they diverged about 280 

Mya) that conserved DNA and amino acid sequences should be meaningful.  

A separate goal of this work was to create Tribolium strains that express green 

or red fluorescent sperm heads so that studies of sperm motility, behavior and 

competition, similar to those done with Drosophila, could be extended to the 

beetle model system. There have been numerous studies of post-copulatory sexual 

selection in Tribolium (Bloch Qazi, 2003; Michalczyk, et al., 2010), but the 

mechanisms by which sperm from different males are favored, and what goes on 

inside the female’s reproductive tract are unknown. The material produced in this 
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present study (e.g., transgenic beetles with green and/or red labeled sperm heads) 

should prove invaluable for investigating these topics in the beetle model system.  
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MATERIALS AND METHODS 

 

Triboloum castaneum culture maintenance 

Culturing and handling of Tribolium were done according to the procedures 

described in Berghammer, et al. (1999) and Sokoloff (1974), as well as those 

described on the “Beetle Wrangling” website of Prof. Richard Beeman (USDA 

Agricultural Research Service, Manhattan, KS): 

http://bru.gmprc.ksu.edu/prof/tribolium/wrangle.asp. All Tribolium castaneum 

lines (the wild-type GA-2 and the mutant pearl stocks) were obtained from the 

Tribolium Stock Center (USDA-ARS-GMPRC, Manhattan, KS) and maintained 

in a medium of organic whole grain wheat flour (Bob’s Red Mill, Milwaukie, 

Oregon), enriched with 5% torula yeast powder (USB Corp., Cleveland, OH), and 

(as anti-fungal agent) 0.3 g of Fumagilin-B (Medivet Pharmeceuticals, Alberta, 

Canada) per kilogram of flour. Cultures were kept in 6 oz. polypropylene 

Drosophila bottles or in polystyrene vials (25 mm x 95 mm) in a humid incubator 

at 31° C.  

 

Isolation of DNA from Adult Tribolium 

Approximately 50 beetles (Strain GA-2) were added to a 15mL Dounce 

homogenizer along with 5 mL Homogenization Buffer (HB, 10Mm Tris HCl (pH 

7.5), 60 mM NaCl, 10mM EDTA, 150µM spermine, 150µM spermidine). The 

beetles were ground with the A pestle (looser fit than the B pestle in order to not 

rupture the nuclei). The mixture was transferred to a 14mL Sarstedt centrifuge 
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tube and spun in a Sorvall RC5 centrifuge at 1000rpm for one minute to pellet the 

cuticle and beetle debris but not the nuclei. The supernatant was removed with a 

transfer pipette and transferred to a new 14mL Starstedt tube. This was 

centrifuged at 8000 rpm for 5 minutes to pellet the nuclei.  

The brown pellet was resuspended in 0.5mL HB and transferred to a new 

1.5 mL Eppendorf microfuge tube. Proteinase K was added to a final 

concentration of 100 µg/mL and mixed. 50µL of 10% SDS was added and mixed 

by inverting several times, and the tube incubated for 45-60 minutes at 37°C.  

Next, 0.5 mL of phenol/chloroform/isoamyl alcohol (25:24:1) was added 

and the mixture was vortexed vigorously, spun for a few minutes, and then the 

aqueous top layer was transferred to a new 1.5 mL tube. This 

phenol/chloroform/IAA extraction was repeated, and the aqueous layer was 

transferred to a new tube. A small amount of H2O was added to bring the volume 

back to 0.5mL and then 0.5mL of choloroform was added, mixed, and spun. The 

aqueous layer (top) was then transferred to a new 1.5 mL tube.  

20µL of 5M NaCl was then added to the tube and after mixing, 1.0 mL of 

absolute ethanol was slowly added to the tube, by layering it on top. The tube was 

gently mixed by inverting several times. At this point, the DNA precipitated and 

appeared as a fluffly, fibrous, tangle of strands. The precipitate was brownish 

because of the pigments that co-purify with DNA.   

A glass hook was used to transfer the DNA to a new 1.5 tube containing 

0.5 mL of 70% ethanol. The tube containing the DNA and the 70% ethanol was 

then spun for 5 minutes to pellet the DNA. The ethanol was then poured off and 
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the sides were blotted dry with a Kimwipe. The tube was vacuum-dried for 10 

min and the DNA was resuspended in 100 µL of TE containing RNaseA 

(20µg/mL). This sample was incubated at 37°C for 20 minutes with occasional 

light vortexing to dissolve the DNA.  

Next, 260 µL of TE and 40µL 3M NaOAc was added, and mixed. 1.0 mL 

of absolute ethanol was added, mixed, and the tube was placed at -20°C for 20 

minutes. After microfuging at 13000 rpm for 10 minutes, the ethanol was poured 

off, and the pellet washed with 70% ethanol. The DNA pellet was vacuum-dried 

for 10-20 min, resuspended in 100 µL of TE at 37°C with occasional light 

vortexing, and left overnight in the refrigerator (about 4°C) to allow for the pellet 

to completely dissolve.  

The quality of the DNA was checked by running 3µL of uncut DNA, and 

3 µL of EcoRI cut DNA, on an agarose gel. For uncut DNA, a prominent high 

molecular weight band is expected, with little smearing (which indicated DNA 

degredation). The restriction digest should give a broad smear, indicating that the 

DNA is not resistant to enzymatic digestion.  

 

Synthesis of Oligonucleotide Primers 

DNA primers required for PCR and Site-directed Mutagenesis were 

ordered from Sigma-Genosys (http://www.sigmaaldrich.com/life-science/custom-

oligos.html). All samples were received in a dried state and were made into a 

250µM stock solution by dissolving in TE. For working solutions of primers, the 

stock solution was typically diluted to 5 µM with TE.  
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The following primers were used to PCR amplify the fragments of the Tribolium 

genome containing the protamine-like genes:  

 
Primer # Sequence 
Primer 2 CAGTTAGCTTCGGTCCGAAATG 
Primer 4 AGCACATCAAAATCTATAAGATAG 
Primer 5 TCTCCAGTTACGCATCTTCTAACCTCGT 
Primer 8 GGGCCCTCGTCAAAATCATTCATGC 
Primer 7 TCCCGAAGCTACGCTACAGCTATTAA 
Primer 9 TAATGGGCAAAGGAGTTTTCTGT 

 
Polymerase Chain Reaction 

The PCR reaction typically contained 4µl 5x GoTaq Polymerase Reaction 

Buffer (Promega, Madison, WI), 2µl 200 µM  dNTP mixture (containing 

equimolar amounts of dATP, dCTP, dGTP, dTTP), 1µl 5’ Primer (5 µM), 1µl 3’ 

Primer (5µM), 1 ng of Tribolium genome DNA, and dH2O brought up to 20 µl. 

The initial denaturing step was performed at 94° for 5 minutes, 5µl of diluted Taq 

polymerase was added (1 part Taq polymerase, 10 parts 5X PCR buffer, 40 parts 

water) and the sample was amplified for 35 cycles (94°C for 1 minute, 58°C for 1 

minute, 72°C for 1 minute) and completed with a final extension period at 72°C 

for 8 minutes. The samples (25 µL total volume) were then stored at 4°C; a15 µL 

aliquot was checked by agarose gel electrophoresis.  

TOPO TA Cloning of PCR Products 

The TOPO TA Cloning kit by Invitrogen was used to clone the PCR 

product into a suitable vector using Topoisomerase I. The reaction was as follows: 

0.5 to 4µl of fresh PCR product, 1µl of ¼ diluted salt solution (1X=1.2 m NaCl2, 

.06 m MgCl2), water to bring the reaction up to 5µl, 1µl of TOPO vector. The 

reaction was mixed gently and incubated for 20 min at room temperature (22-
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23°C). The reaction was placed on ice, and the E. coli transformed by 

electroporation or heat shock-method.  

Transformation of E.coli  

 Two different methods were used for transformation: electroporation or heat-

shock method. For the transformation of the first PCR product containing the 

Tribolium genes (with primers 8/5 and 7/9), into the TOPO vector, electroporation 

was used. Electrocompetent cells were made using E. coli strain DH5α. The cells 

were collected during the exponential growth phase, then washed repeatedly with 

10% glycerol to remove soluble compounds (e.g., salts) detrimental to the 

electroporation. 80µl aliquots of these cells were quick frozen in a dry ice/ethanol 

bath and stored at -70° C until needed. For transformation, cells were thawed on 

ice and 2µL of ligation mixture (2µL DNA, 1µL dil salt, 1µL TOPO vector, 2µL 

sterile H2O) was added to the cell aliquots. Cells were placed in a cold 

electroporation cuvette and subjected to 1800 V in an Eppendorf 2510 

Electroporator. Cells were immediately transferred to 800µl SOC media in a 14 

ml sterile culture tube and incubated with shaking for 45 minutes at 37°C. 300µl 

of the mixture was then placed in a 5 mL sterile tube. At this point, the 

electroporation transformation used the same procedure as the standard 

transformation from the addition of antibiotic onward.  

 The standard heat shock tranformation of E. coli used DH5α chemically-

competent E. coli cells which were stored at -70°C, and thawed on ice before use. 

5µL of the ligation mixture or a 100-fold dilution of purified plasmid DNA was 

added to the cells, which were incubated on ice for 20 minutes. The mixture of 
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cells and DNA was then given a 90 second heat shock in a 42°C heating block 

and returned to the ice. The mixture was transferred to a 5 mL sterile tube and 200 

µL of LB was added. The tubes were incubated 1-2 hours at 37°C. At the end of 

the incubation, 20µL of 20 mg/mL ampicillin was added to the mixture. 50µL of 

20% X-gal and 10µL 100mM IPTG (isopropyl-thio-galactosidase) was added to 

the mixture as well to allow blue/white selection of colonies of interest (i.e., 

colonies containing plasmid only turn blue, colonies containing recombinant 

plasmids are white). 3mL of top agarose was added to the 37°C tube, and the top 

agar spread evenly over pre-warmed LB-Amp plates. After 10 minutes, the plates 

were inverted and placed in a 37°C incubator overnight.  

 

Isolation of Plasmid DNA from E.coli 

 Two protocols were used to isolate plasmids from E.coli: Plasmid Miniprep 

method and Wizard Plasmid Prep method. The former was used for most general 

purposes while the latter was used when high-purity DNA was needed (e.g., for 

DNA sequencing).  

(1) Plasmid Miniprep Method 

In a 14mL sterile tube, 1.5 mL of TB (Terrific Broth) containing 

Ampicillin (50 µg/mL) was inoculated with a colony of transformed E.coli cells 

that were selected on LB+Amp plates. The tubes were allowed to shake overnight 

in a 37°C incubator.  

 The cultures were then poured into 1.5 mL microfuge tubes and spun for 3 

min to pellet the cells. The liquid was poured off, 200 µL of Resuspension Buffer 
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(Promega) was added, and the pelleted cells resuspended by vortexing. 200 µL of 

Lysis Buffer (Promega) was added, and the sample mixed by inversion about 5 

times. After 5 min, 200 µL of Neutralizing Buffer (Promega) was added, and the 

sample mixed by inversion several times. The tubes were put on ice for 10 

minutes, and then spun in the microfuge at 13000 rpm for 10 minutes. The 

supernatant was transferred to  new 1.5 mL tubes using a pipette, using care not to 

transfer the white precipitate. 450 µL of isopropanol was added to the 

supernatant, the tubes were allowed to sit on ice for 10 minutes and then spun for 

another 10 minutes. The isopropanol was poured off, and 500µL of cold 70% 

ethanol was added to wash the DNA pellets. The ethanol was removed, and the 

tubes were vacuum dried for about 10 minutes. The DNA pellets were 

resuspended in 100 µL of TE, and incubated at 37°C for 10-15 minutes with 

occasional vortexing to allow the DNA to dissolve. The amount and integrity of 

the DNA was then checked by restriction digestion and gel electrophoresis.  

(2) Wizard Plasmid Prep 

The Wizard Plasmid Purification Kit (Promega, Madison, WI) was used 

for high yields of quality DNA. The procedure was identical to that described 

above, up to the point where the Neutralizing Solution was added and the white 

precipitate spun down. In this procedure, instead of isopropanol precipitation, the 

supernatant was passed over a Wizard Plasmid Prep purification column.  

 The cartridges and syringe barrels were set up on the vacuum manifold 

hooked up to the house vacuum line. 1.0 mL of Wizard Resin (shaken well) was 

added to each syringe barrel. About 700 µl of the supernatant was transferred to 
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the syringe barrel, where the plasmid DNA bound to the Wizard Resin. The 

vacuum was then turned on, and the liquid was down through the cartridge, while 

the resin with the bound DNA was retained. The stopcocks were then closed and 

2.0 mL of Wash Solution from the Wizard Kit was added.  

 For each of the samples, the cartridge with the DNA and the resin were placed 

on top of a 1.5 mL tube with its top removed. These were placed in the microfuge 

and briefly spun at 13000 rpm to dry the resin. Another set of 1.5 Eppy tubes were 

prepared by cutting the tops off. The now dry cartridges were placed on top of the 

new tubes and 50 µL of 50° C TE was added. After sitting for a couple of minutes 

to elute the DNA the tubes were centrifuged for 5 min, and the DNA solution 

transferred to a 500 µL sterile tube. The DNA was checked by gel electrophoresis, 

with the average yield being approximately 300-500 µg/mL.  

 

Restriction Enzyme Digestion and Agarose Gel Electrophoresis 

 Restriction enzyme digests were normally performed in a 25 µL reaction with 

10-13µL of distilled H2O, 3-6 µL of DNA, 2 µL 10xbuffer (this is specific for the 

enzyme used), 1µL endonuclease.  In some cases of digesting a cloning vector, 

1µL of Shrimp Alkaline Phosphatase (SAP) was added to prevent subsequent 

reclosing of the plasmid vector during ligation. Restriction digests were incubated 

at 37°C for a minimum of 1 hour and a maximum of 18 hours.  

 Gel electrophoresis was typically performed using 0.7% agarose in 1X TAE 

buffer [40mM Tris-acetate, 2mM ethylene diamine tetraacetic acid (EDTA), pH 

8.0] with 0.5 µg/mL ethidium bromide. Bromophenol blue (2µL per well) was 
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used as loading dye. 1X TAE buffer was poured to cover the gel before the DNA 

was added to the wells. The gel was run at 60-90 V with times ranging from 45-

150 minutes, depending on fragment length and gel density. DNA was visualized 

with a UV transilluminator, and DNA ladder (DNA Hi-Low Marker) was used for 

approximate size comparison.  

 

Ligation into Plasmid Vectors 

Ligation into plasmid vectors was typically done with 6µL of insert DNA 

(approximately 100-200 ng), 3µL plasmid vector (approximately 50-100 ng), 1.5 

µL 10X Ligation Buffer, 1µL T4 DNA ligase (Promega), and 3.5 µL distilled 

water. Ligation reactions were incubated at 4°-14°C overnight, or for at least 15 

hours. Ligation reactions with relatively large insert DNA fragments were subject 

to an extra hour of room temperature incubation following addition of 1 µL 

additional T4 Ligase. A sample of the ligation mixture was transformed into 

DH5α  E. coli cells using the methods described above.  

 

DNA Sequencing  

DNA sequencing was outsourced to GeneWiz (http://www.genewiz.com). 

DNA samples were prepared according to the GeneWiz protocol and submitted 

via the drop box at SUNY-Upstate. Results were provided online and in text 

format.  
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Site Directed Mutagenesis 

 

Oligo Name Dimer Sequence (5’-3’) 
Tc5-8 mutS CCGAAAAAACGCCGCATATGTTAAACACAGTTCCG 
Tc5-8 mutAS CGGAACTGTGTTTAACATATGCGGCGTTTTTTCGG 

 

 Mutagenesis was performed using the QuickChange Site-directed 

Mutagenesis Kit (Agilent Technologies, Inc., Santa Clara, CA). Typical reaction 

conditions and procedure were: 5µL 10x reaction buffer (Pfu DNA pol buffer), 

1µL of plasmid prep DNA (~20ng), 2µL 10mM primer Sense, 2µL 10mM primer 

Antisense, 1µL dNTP mix, 38µL distilled water and 1µL Pfu Turbo (DNA 

polymerase) were placed in the PCR machine and run under the following 

conditions: 95°C for 30 seconds followed by 12 cycles of 95°C for 30 seconds, 

55°C for 1 minute, and 68°C at 2 minutes per kb of plasmid length (e.g., 12 

minutes for 5.6 Kb plasmid). After the mutagenesis step, 2µL DpnI was added 

and incubated for 2 hours to digest parental DNA plasmid. A sample of the 

reaction mixture was then subjected to electroporation transformation as 

described above. 
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RESULTS 

 

Tribolium castaneum as a genetic model system 

To better understand this research project, a review of the Tribolium 

genetic model system would be helpful. Male and female adult beetles are a few 

millimeters long and are very similar in appearance, but can be distinguished by a 

small patch of bristles, called the sex patch, on the front legs of the male. Pupae 

are more easily sexed since males and females have very different genital papillae 

(Fig.9). The beetle will go through three developmental stages before adult hood 

is reached, the entire cycle from egg to fertile adult taking about 32 days when 

reared at 30°C. The embryonic stage is about three days; the larval stage is the 

longest, about 20 days; and the pupal stage lasts 4 days before the beetle reaches 

adulthood (see Fig. 10). 

 The method for producing transgenic beetles is very similar to that used for 

Drosophila (Lorenzen, et al., 2003). That is, the DNA of interest is cloned into a 

piggybac transformation vector (Horn and Wimmer, 2000) which is mixed with 

“helper” plasmid encoding the piggybac transposase gene, and early embryos are 

injected in their germline region within a few hours of egg laying. The survivors 

are then mated and progeny scored for the transformation vector marker (green 

fluorescent eyes in the case of the p3xP3/EGPFaf vector).  
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Fig. 9 
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Fig. 10 
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Overview of the experimental plan to clone and tag the T. castaneum 

protamine genes 

 

The overall strategy to identify, clone and tag Tribolium protamines is 

illustrated in Fig 11. Briefly, I used bioinformatics to identify the DNA sequences 

in the Tribolium genome sequence database that showed recognizable similarity 

to the known Drosophila protamine coding sequences, and that had properties 

expected for a protamine (i.e., small size, highly basic charge). PCR was then 

used to amplify these candidate protamine genes and they were cloned into a 

plasmid vector, pCR2.1 TOPO. After subcloning into a smaller vector, 

pBS/2xAsc, site-directed mutagenesis was used to create a unique NdeI restriction 

enzyme cutting site at the C terminus of the coding sequence. An in-frame NdeI 

GFP cassette was inserted to create a protamine-GFP fusion gene. Next, the GFP-

tagged construct was cut out with AscI and inserted into the unique AscI site of 

the transformation vector piggybac/3xP3-EGFPaf. This final construct can then be 

used to introduce the protamine –GFP construct into the Tribolium genome using 

the method of piggybac-mediated germline transformation, where transgeneic 

beetles can be identified by the eye-specific GFP marker carried on the vector. If 

the protamine candidate gene is really a protamine coding gene, then these beetles 

should produce sperm with glowing green sperm heads.  
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Fig. 11 
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Bioinformatics: BLAST search for candidate protamine genes in Tribolium 

castaneum 

The National Center for Biotechnology Information  (NCBI) website 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to access the BLAST alignment 

search tool, which searches DNA or protein sequences in the database for 

meaningful similarities. The sequence of the Drosophila melanogaster 

ProtamineA protein was used to query the translated Tribolium castaneum 

genome sequence using the tblastn search function, to find candidate protamine 

genes. Three tandemly arranged annotated genes on Linkage Group 4 were found 

in the Tribolium genome that encoded proteins with significant similarity to the 

Drosophila protamine (E values of 2e-06 to 2e-07). These genes were named 

LOC663849 (or TcGLEAN_07827), LOC100141730 (or TcGLEAN_07828),  

and LOC100141946 (or TcGLEAN_07670). Fig. 12 shows the sequence 

alignment between the Drosophila melanogaster ProtamineA  and these three 

Tribolium proteins. Although the sequence alignment is not very convincing due 

to the low number of conserved amino acid, the presence of a high proportion of 

basic amino acids (e.g., lysine (K) and arginine (R)) and the small size of the 

proteins supports their role as protamine (Fig. 13: A/B map).  

 

PCR amplification and cloning of the candidate protamine genes 

 

The complete genome of T.castaneum is available from the BeetleBase 

database (http://www.beetlebase.org/). Therefore, it was possible to design PCR  
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Fig. 12 
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Fig. 13 
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primers flanking each of the three candidate protamine genes so that they could be 

individually amplified and cloned for analysis. Fig. 14 shows the gene cluster 

with the positions of the primers for this study. For simplicity, I will refer to 

Tc07670 as Protamine-1, Tc07827 as Protamine-2 and Tc07828 as Protamine-3.  

For this experiment genomic DNA was isolated from adult beetles using the 

protocol described in the Materials and Methods, and then used as a template for 

PCR. 

 A series of PCR experiments were carried out, using different combinations of 

primers to amplify the three genes either individually, or in some cases as a pair. 

The following combinations of primers were used: 

 
5’-3’ Primer 3’-5’ Primer  Gene(s) Targeted 
Tc9 Tc7 Protamine genes 2&3 
Tc9 Tc8 Protamine gene 2 
Tc5 Tc8 Protamine gene 2 
Tc5 Tc7 Protamine gene 2&3 
Tc4 Tc2 Protamine gene 1* 
*Tc 2-4 was done at a separate time therefore not visualized on the same gel 

Fig. 15 shows the results of the agarose gel electrophoresis to analyze the 

products produced by these PCR reactions. The results demonstrated that each of 

the three genes could be successfully amplified. The sizes of the observed bands 

fit well with what was expected from the known genomic sequences and the 

positions of the primers used. For example, primers Tc5 and Tc8 produce the 

expected 1,260 bp band containing the Protamine-2 gene region, Tc7 and Tc9 

produce the expected 1,200 bp band containing gene Protamine-2 and Protamine-

3, and Tc8 and Tc9 produce the expected 810 bp band carrying Protamine-2.  
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Fig. 14 
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Fig. 15 
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Although it is not shown on this gel, primers Tc2 and Tc4 yielded a fragment of 

1,980 bp that contains Protamine-1.  

 

Cloning of the PCR products into the pCR2.1 TOPO plasmid vector 

 For the next step, I selected the Tc9-7, Tc8-5 and Tc9-8 PCR products to be 

cloned into the plasmid vector, pCR2.1 TOPO. [Note: Dr. Belote cloned the Tc2-

4 fragment into pCR2.1 TOPO.] This linear TOPO vector is very efficient for 

cloning PCR products because of its ability to ligate DNA fragments containing 

A-overhangs at their ends using DNA topoisomerase I. The TOPO vector carries 

a specific sequence, 5’-(C/T)CCTT-3’ in addition to a covalently attached 

topoisomerase I on both of its ends. When the solution of the TOPO vector and 

PCR product are left to incubate at room temperature with a required diluted salt 

and Taq Polymerase (which adds an extra adenine nucleotide to the PCR 

product), the strands will covalently link with high efficiency.  

 After ligation, the samples were transformed into E. coli using 

electroporation. Colonies successfully grew on the ampicillin plates indicating 

that they carried the Amp-R gene on the vector. The transformants needed to be 

checked by isolating plasmid DNA and doing a restriction enzyme digest. The 

correct banding patterns in each transformant would confirm that Tc9-7, Tc5-8 

vector, and the Tc8-9 were successfully inserted into the TOPO vector. In order to 

do this, six colonies from each plate, a total of 18 colonies, were used to inoculate 

medium and plasmid DNA was purified from the cultures using a plasmid 

miniprep procedure. The purified DNA from each of the colonies was then 
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restriction enzyme digested using the EcoRI restriction enzyme. This specific 

enzyme was used because of the EcoRI cutting sites flanking the location of the 

added PCR product. Because the size of the PCR products for each combination 

are known, and none of the products contain EcoRI sites, the restriction digest 

should result in two bands. One of the bands should be 3.9 kb, the size of the 

original TOPO vector without the insert, and the other band should be the size of 

the original PCR product. The results of this analysis are shown in Fig. 16.  

 It was concluded that all three PCR cloning experiments were successful. I 

therefore chose a subset of the confirmed clones to be checked by DNA 

sequencing, to insure that no PCR-generated mutations had occurred. The samples 

chosen were: 

 (TOPO+Tc9-7) # 2 & 3 

 (TOPO+Tc5-8) # 7 & 8 

 (TOPO+Tc9-8) # 16 & 17 

These DNAs were prepared using the Wizard Prep method, which produces 

cleaner DNA, and the samples sent to a commercial facility (GeneWiz) for 

sequencing. Comparison of the sequences with the known sequence in the 

database revealed that the clones named TOPO/Tc8-5#7 and TOPO/Tc9-7#3 had 

no mutations and so these were used for subsequent steps.  

 Although the Tc8-5 and Tc7-9 clones both carried the Protamine-2 and 

Protamine-3 genes, the Tc8-5 fragment had more flanking sequences for 

Protamine-2 and Tc7-9 had more flanking sequences for Protamine-3. So, Tc8-5 

was used for Protamine-2 analysis and Tc7-9 used for Protamine-3. Clones  
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Fig. 16 
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carrying the Tc9-8 fragment were not carried forward since they did not provide 

any additional information that could not be gained from the other clones.  

[Note: The further analysis of Protamine-1, carried on the cloned Tc2-4 fragment, 

was done by Dr. Belote. The results of that analysis will be discussed below in the 

Future Directions section. For the rest of this Results section I will focus on my 

work with the Protamine-2 and Protamine-3 gene clones.] 

 

Subcloning of candidate protamine gene fragments into the pBS/2xAsc 

vector 

 

While the pCR2.1 TOPO vector is ideal for directly cloning PCR 

products, it lacks some features that are needed for my subsequent manipulations. 

Therefore, I wanted to subclone the fragments into another plasmid, pBS/2xAsc, 

that is more suitable for further work. This vector is smaller than pCR2.1 TOPO 

(2.9 kb vs. 3.9 kb), which is advantageous for the site-directed mutagenesis step 

(see below). In addition, this vector has two AscI restriction cutting sites flanking 

the multiple cloning site of pBlueScript so that the subcloned fragments can be 

cut out with AscI for cloning into the piggybac transformation vector’s unique 

AscI cloning site (described below). 

The pCR2.1 TOPO vector contains EcoRI restriction enzyme cutting sites 

flanking the PCR insert site. So, to remove the PCR insert from TOPO+Tc9-7 and 

TOPO+Tc5-8, a restriction enzyme digest with EcoRI was performed. The 
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plasmids were also treated with ScaI, another restriction enzyme, to cut the TOPO 

vector sequence into two pieces thereby disabling it from easily re-forming.  

Simultaneously, the pBS/2xAsc vector was cut with EcoRI, creating a 

linear plasmid with the ability to be ligated to the insert fragment that had 

corresponding EcoRI cutting site sticky ends. The pBS/2xAsc vector was also 

treated with Shrimp Alkaline Phosphatase (SAP), which catalyzes the 

dephosphorylation of the 5’ end of the linearized pBS/2xAsc DNA to prevent it 

from recircularizing without the desired insert. 

The next step was to ligate the Tc8-5 and the Tc7-9 DNA fragment inserts 

with the pBS/2xAsc vector. Two ligation reaction mixes were set up for each. 

One tube contained T4 ligase, and the other one did not.  This was to monitor how 

well the ligation reaction worked; there should be a considerably smaller number 

of colonies on the Amp plates for the no ligase reaction, because without ligase 

the insert fragment and the pBS/2xAsc vector would not be able to join together. 

After overnight incubation at 14°C, the ligation mixtures were removed, 

transformed into chemically competent E. coli cells, and plated on Amp plates at 

37°C. The next day, hundreds of colonies were observed.  Colonies from both 

pBS/2xAsc/Tc5-8 and pBS/2xAsc/Tc7-9 were picked, inoculated into LB media, 

and after overnight growth at 37°C, plasmid minipreps were done to purify the 

DNA. 

The potential pBS/2xAsc/Tc8-5 clones were worked on first.  Several plasmid 

DNA minipreps were analyzed by EcoRI digestion. If the plasmid was the 

expected pBS/2xAsc/Tc5-8 recombinant, I would have expected to see two bands, 
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a 2.9 kb band representing the pBS/2xAsc vector, and a 1.3 kb band representing 

the Tc8-5 fragment.  As shown in Fig. 17, plasmid #1 appears to have the correct 

banding pattern.  To confirm that it is the desired clone, I then checked that DNA 

by cutting it with a number of other restriction enzymes (ApaI, AscI and HinCII).  

Fig. 18 shows that this plasmid does exhibit the banding pattern expected for the 

correct pBS/2xAsc/Tc8-5 clone.  Fig.19 shows a map of the pBS/2xAsc/Tc8-5 

clone.  

 

Site Directed Mutagenesis to create a unique NdeI Site in the Protamine-2 

coding region 

Once the desired pBS/2xAsc/Tc8-5 clone had been obtained, the next step was 

to create a unique restriction site at the C-terminus of the Protamine-2 coding 

region so that a fluorescent tag could be inserted in-frame, producing a 

Protamine-2-GFP fusion construct. The C-terminus was chosen as the site for 

inserting the GFP cassette since previous work on Drosophila protamines 

demonstrated that protamines with C-terminal GFP or RFP tags were normally 

expressed and apparently fully functional (Jayaramaiah-Raja and Renkawitz-Pohl, 

2005; Manier, et al., 2010). Because there was an existing plasmid construct 

containing the GFP coding sequence flanked by NdeI sites that could be used as 

the source of a GFP cassette, and because there was no NdeI site already present 

in the pBS/2xAsc/Tc8-5 clone, I used site-directed mutagenesis to create a unique 

NdeI site at the end of the Protamine-2 coding sequence to be used for inserting  
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Fig. 17 
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Fig. 18 
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Fig. 19 
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the tag.  Fig. 20 shows the sense/anti sense mutagenesis primer sequence used to 

create the new NdeI site at the end the Protamine-2 coding region. 

After annealing the synthetic oligonucleotide primers to the denatured 

pBS/2xAsc/Tc8-5 plasmid, the strand-displacing action of PfuTurbo DNA 

polymerase will extend and incorporate the mutagenic primers resulting in nicked 

circular strands containing the desired mutation. The methylated non-mutated 

parental DNA template, which became methylated during growth in the host E. 

coli cells, is then digested by DpnI treatment, while the in vitro synthesized new 

mutant strands are left intact. After transforming the sample into competent E. 

coli, the resulting colonies were picked, grown up overnight in liquid culture, and 

subjected to plasmid DNA miniprep procedure. The DNA was then checked by 

restriction enzyme digest using NdeI. Since there should only be one NdeI site in 

the newly mutated pBS/2xAsc/Tc8-5+Nde plasmid, the resulting banding pattern 

should reveal one band of about 4.2 kb (Fig. 21). As seen, samples # 1, 4, 6, and 7 

are all the desired pBS/2xAsc/Tc8-5+Nde constructs. 

 

 

GFP-tagging of the Protamine-2 gene in the pBS/2xAsc/Tc5-8+NdeI construct 

The GFP cassette, flanked by NdeI cutting sites, is located in a plasmid 

called pTOPO/GFP/Nde3 (Manier, et al., 2010). This plasmid was treated with 

NdeI (to cut out the GFP coding sequence) and ScaI (to cut the pTOPO vector in 

two, disabling its ability to recircularize without the GFP insert). The 

pBS/2xAsc/Tc8-5+Nde#1 plasmid was treated with NdeI to cut the plasmid at the  



 

 

56 

Fig. 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

57 

Fig. 21 
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newly created NdeI site within the Protamine-2 gene sequence. The plasmid was 

also treated with SAP to dephosphorylate the 5’ nucleotides to prevent it from 

rejoining without the GFP cassette. The resulting bands from pTOPO/GFP/Nde3 

after being cut with NdeI and ScaI are 2.1 kb and 1.8 kb, representing the ScaI-cut 

pTOPO vector, and 0.9 kb from the GFP NdeI cassette.  NdeI digestion of 

pBS/2xAsc/Tc8-5+Nde#1 yields one band of 4.2 kb representing the linearized 

plasmid.  Agarose gel electrophoresis of the two digests confirmed that the proper 

fragments were produced. The DNAs were then mixed and a ligation reaction was 

performed. Two reactions were set up, one was the ligation reaction using T4 

ligase, and the other was a no ligase control reaction. The ligase and no ligase 

reactions were transformed by heat shock into chemically competent E. coli cells.  

After overnight incubation, multiple colonies were picked and plasmid minipreps 

carried out. The resulting purified DNA was then initially checked by EcoRI 

digestion. Fig. 22 shows the restriction map of the desired Tc8-5/Nde+GFP 

construct. The GFP cassette has an EcoRI site, therefore, the insert is in the proper 

orientation, EcoRI digestion should give three bands: a 2.9 kb band representing 

the vector, and 1.9 kb and 0.3 kb bands representing the Tc8-5-GFP digested 

fragments. If the GFP is inserted in the wrong orientation, the three bands will be 

2.9, 1.3 and 0.9 kb. If there is no GFP insert, then there will be two bands of 2.9 

and 1.3 kb. As seen in Fig. 23, clones #1 and #13 appear to have the GFP insert, 

with #13 showing the correct orientation and #1 being in the wrong orientation.  

To confirm that #13 was the correct plasmid construct, two additional digests 

(e.g., NdeI and AscI) were carried out. Fig. 24 shows that the correct pattern was  
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Fig. 22 
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Fig. 23 
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Fig. 24 
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observed. Therefore, this construct, named pBS/2xAsc/Tc8-5-GFP#13 was used 

for the next step.  

 

Insertion of the Tc8-5 GFP-tagged Protamine-2 gene into the transformation 

vector pB3xP3-EGFPaf 

 

After successful creation of the pBS/2xAsc/Tc5-8-GFP construct, the next 

step before introducing it into the T. castaneum genome was to subclone the 

construct into another plasmid called pB3xP3-EGFPaf (see Fig. 25).  This vector 

carries sequences from an insect transposable element, called piggybac, which 

allows one to introduce the cloned DNA back into the Tribolium genome.  To do 

this, the DNA is injected, along with another “helper” plasmid that encodes the 

piggybac transposase enzyme, into the germline region of Tribolium embryos. 

The transposase then catalyzes the transposition of the piggybac plasmid construct 

into the genome. After the injected embryos become adults, they are mated and 

the offspring scored for presence of the transgene. This vector also carries as a 

genetic marker a GFP coding region downstream of a strong eye-specific 

promoter sequence, 3xP3/EGFP. Transgenic beetles are therefore easily 

recognized by their fluorescent green eyes (Fig. 26).  

The pB3xP3-EGFPaf vector has a unique AscI site that can be used as a 

cloning site.  So, pBS/2xAsc/Tc8-5-GFP#13 was digested with AscI to cut out the 

insert. Normally, I would also simultaneously treat with ScaI to cut up the 

pBS/2xAsc vector to prevent it from recircularizing.  However, because the     
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Fig. 25 
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Fig. 26 
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Tc8-5-GFP sequence contains a ScaI site, this was not feasible. The 

pB3xP3/EGFPaf vector was also cut with AscI to linearize it, and treated with 

SAP to prevent its recircularization. The DNAs were mixed, treated with DNA 

ligase, and trasnformed into E. coli.  Because the pBS/2xAsc vector DNA was 

present in the reaction mix, a large number of colonies were expected, with most 

coming from the recircularized pBS/2xAsc plasmid. These however should yield 

blue colonies when plated on X-gal, and so they could be distinguished from the 

desired clones which should give white colonies. 

 Transformation of the ligation reaction produced hundreds of colonies, both 

blue and white. Fourteen white colonies were picked, grown up in liquid culture 

overnight, and subjected to the plasmid miniprep procedure. The DNAs were 

initially cut with EcoRI to see if any looked like the desired pB3xP3/EGFPaf/Tc8-

5-GFP clone. This digest of a pB3xP3/EGFPaf/Tc8-5-GFP clone is expected to 

give four bands: 5.7 and 1.6 kb bands representing the cut vector and 1.9 and 0.3 

representing the cut Tc8-5-GFP insert. As shown in Fig 27, samples # 1, 2, 6, 9, 

10, 12, and 13 showed the correct banding pattern. Samples 10 and 12 were then 

further analyzed by cutting with AscI, PstI and NotI to confirm that they were 

correct. The results confirmed that both of these clones were the desired 

pB3xP3/EGFPaf/Tc8-5-GFP constructs, however they were different in that the 

inserted fragment was in opposite orientations in the two clones. Fig. 28 shows 

the restriction maps of these constructs.  
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Fig. 27 
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Fig. 28 
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CONCLUSIONS AND FUTURE DIRECTIONS 

 

This thesis describes the identification of a cluster of three genes that are 

candidates for encoding Tribolium protamines. In my work, I have used PCR to 

amplify these genes and have cloned two of them (Protamine-2 and Protamine-3) 

into a plasmid vector for further analysis. My initial efforts focused on the 

Protamine-2 gene. I have used site-directed mutagenesis to create a unique 

restriction site at the end of its coding region, and have inserted a GFP coding 

sequence, in-frame, to create a Protamine-2-GFP fusion gene. After confirming 

the identity and proper structure of this construct, I subcloned the fragment into a 

transformation vector that will allow it to be introduced into the Tribolium 

genome.  A very similar set of experiments can now be done to GFP-tag the 

Protamine-3 gene, carried on the pCR2.1 TOPO/Tc7-9 clone described above. 

The next step, which is beyond the scope of this thesis, will be to carry out 

germline transformation procedures, using these GFP-tagged protamine candidate 

genes to create transgenic beetles. Examination of the developing sperm will then 

be done to (1) see if the sperm heads are labeled with GFP (which will provide 

strong support for the hypothesis that this is a protamine gene) and (2) see if the 

timing of the histone-protamine transition is conserved between Drosophila and 

Tribolium. 

That these experiments will likely yield useful results is suggested by the 

experiments done by Dr. Belote with the Protamine-1 gene, amplified using the 

Tc2-4 primer set described above. In that case, a GFP-tagged Protamine-1 was 
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constructed and cloned into pB3xP3/EGFPaf using the same methods I describe 

here for Protamine-2.  Transgenic beetles were then generated and sperm 

examined for expression of the Protamine-1-GFP. As shown in Fig. 29, the sperm 

heads were labeled, providing strong evidence that this is indeed a protamine 

gene. Thus, it is highly likely that the similar Protamine-2 and Protamine-3 genes 

are also bona fide protamine genes. It will be of interest to see if there are any 

differences in the expression of these three genes. Ultimately it would be 

interesting to know whether these genes are functionally redundant, or if they are 

somehow different. 
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Fig. 29 
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WRITTEN CAPSTONE SUMMARY 

This thesis describes the identification of a cluster of three genes that are 

candidates for encoding Tribolium protamines. Protamine genes are small basic 

proteins, similar to histones, which work to condense DNA during 

spermatogenesis.  In my work, I have used PCR, Polymerase Chain Reaction, to 

amplify these genes. PCR is a useful tool that can be used in order to target and 

amplify a certain piece of genomic DNA using primers that flank the desired 

sequence. I have cloned two of the Tribolium protamine genes (Protamine-2 and 

Protamine-3) into a plasmid vector for further analysis. A plasmid vector is a 

small circular piece of DNA that is used commonly as a means to manipulate 

genes. My initial efforts focused on the Protamine-2 gene. I have used site-

directed mutagenesis to create a unique restriction site at the end of its coding 

region, and have inserted a Green Fluorescent Protein (GFP) coding sequence, in-

frame, to create a Protamine-2-GFP fusion gene. GFP originally comes from a 

jellyfish, and allows for the fluorescent visualization of a gene in which it is 

inserted into. After confirming the identity and proper structure of this construct, I 

subcloned the fragment into a transformation vector that will allow it to be 

introduced into the Tribolium genome.  The transformation vector is injected into 

the early Tribolium embryos. A very similar set of experiments can now be done 

to GFP-tag the Protamine-3 gene, carried on the pCR2.1 TOPO/Tc7-9 clone 

described above. 

Beyond the scope of this thesis, would be to carry out germline 

transformation procedures, using these GFP-tagged protamine candidate genes to 
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create transgenic beetles. Examination of the developing sperm will then be done 

to (1) see if the sperm heads are labeled with GFP (which will provide strong 

support for the hypothesis that this is a protamine gene) and (2) see if the timing 

of the histone-protamine transition is conserved between Drosophila and 

Tribolium. 

That these experiments will likely yield useful results is suggested by the 

experiments done by Dr. Belote with the Protamine-1 gene, amplified using the 

Tc2-4 primer set described above. In that case, a GFP-tagged Protamine-1 was 

constructed and cloned into pB3xP3/EGFPaf using the same methods I describe 

here for Protamine-2.  Transgenic beetles were then generated and sperm 

examined for expression of the Protamine-1-GFP. The sperm heads were labeled, 

providing strong evidence that this is indeed a protamine gene. Thus, it is highly 

likely that the similar Protamine-2 and Protamine-3 genes are also bona fide 

protamine genes. It will be of interest to see if there are any differences in the 

expression of these three genes. Ultimately it would be interesting to know 

whether these genes are functionally redundant, or if they are somehow different. 
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