Syracuse University

SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

11-30-2017

Multi-target Extension for Beacon Foraging Methods

Christopher Sanford
Syracuse University

Ziong Jiao
Syracuse University

Jae Oh
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs

6‘ Part of the Electrical and Computer Engineering Commons, and the Other Engineering Commons

Recommended Citation

Sanford, Christopher; Jiao, Ziong; and Oh, Jae, "Multi-target Extension for Beacon Foraging Methods
(2017). Electrical Engineering and Computer Science. 250.

https://surface.syr.edu/eecs/250

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.


https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=surface.syr.edu%2Feecs%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/315?utm_source=surface.syr.edu%2Feecs%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/250?utm_source=surface.syr.edu%2Feecs%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Syracuse University

SURFACE

College of Engineering and Computer Science -
Former Departments, Centers, Institutes and College of Engineering and Computer Science

Projects

11-30-2017

Multi-target Extension for Beacon Based Foraging
Methods

Christopher Sanford
Zilong Jiao

Jae Oh

Follow this and additional works at: https://surface.syr.edu/lcsmith other
b Part of the Artificial Intelligence and Robotics Commons



https://surface.syr.edu?utm_source=surface.syr.edu%2Flcsmith_other%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Flcsmith_other%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=surface.syr.edu%2Flcsmith_other%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

Multi-target Extension for Beacon Based
Foraging Methods

Zilong Jiao Christopher Sanford Jae Oh
November 20, 2017

Abstract

Robotic foraging is a complex problem that encompasses both the
problem of exploring an area and retrieval of targets. To solve this, bio-
logically inspired algorithms have been proposed that handle the scenario
when only one target exists, but requires extension to multiple targets.
In both scenarios there exists problems of robot allocation and conges-
tion, and we analyze ways of optimizing both allocation and minimizing
congestion for our algorithms. We demonstrate the results through pa-
rameterized metrics and compare the improvements in each scenario

1 Introduction

Multi-robot foraging has become an important problem in automated explo-
ration and retrieval, and combines multiple disciplines to achieve its goals. Au-
tomated foraging has two primary goals: exploration of an unknown area (i.e.
the entities/objects are unknown), and within that area find desirable resources
(e.g. food) so that they may be returned to the base. This problem and solu-
tions have been primarily inspired by biological examples, such as ant colonies.
Ants demonstrate a remarkable array of ability for exploration and retrieval;
They are able to separate in a chaotic manner to explore an area, and then
coordinate once they have found something of interest. This ability to quickly
communicate, and coordinate is a spectacular example to study to accomplish
our goal.

2 Related Work

Automated foraging has been studied by researchers in the past, and have de-
veloped a number of techniques to deal with different aspects of the problem.
Many of these techniques have been summarized by Hoff et al., and use a variety
of techniques, but have some shortcomings. Most techniques focusing on main-
tain pathing data in some manner; Many of of such are inspired from ant-like
structures.



e Physical markings are a simple way to navigate a terrain, and is a common
way we navigate ourselves (e.g. road signs). This technique has been used
by Svennebring and Koenig wherein they use visual marking to identify
explored terrain [?]

e Statically deployed networks can also be used as a landmarking technique
to guide robotic foragers in their exploration phase. O’hara et al. use this
technique in their G.N.A.T.S. system to create potential fields to guide
multi-agent systems perform distributed path planning [?].

e Deployable network have also been explored by Eric Barth [?], which al-
lows deployable beacons to be placed as the robots explore. This has the
advantage of not requiring knowledge of the area beforehand, allows for
more dynamic networks, but only searches for one target.

e Hoff et al. proposed two techniques to forage for a single target: A modi-
fied virtual pheromone and a multi-state beacon algorithm [?]. These two
algorithms take advantage of the ability of being able to deploy beacons
or pheromones to create a network in unknown area, and doesn’t require
the exploring robots to carry objects to act as beacons.

The above algorithm describe the progression of the solutions to single-target
foraging, however none of these algorithms can be used to find multiple targets
in an efficient manner. While one can always retrieve one target at a time
then redeploy each of these algorithm, this tactics becomes infeasible for two
reasons: Lack of efficiency for reployment and they cannot in a decentralized
manner choose which targets to ignore and only search for one at a time. The
first problem is something that can be addressed individually for algorithms for
dealing with redeployment, but the second issue requires more work. Supposing
there is more than one target to find, the system must agree upon which target to
ignore for the algorithms to work reliably. In this paper we propose an extension
to the cardinality algorithm proposed by Hoff et al. to handle multiple targets.

3 Algorithm Description

Our algorithm is an extension of Hoff et al.’s cardinality algorithm algorithm
which allows for specific allocation to different targets. The original algorithm
method of storing cardinalities can be extended so that for each target there is
a different cardinality. This will create a tree-like structure reaching out to the
different targets, and handles the situations that Hoff et al.’s cardinality algo-
rithm could not when given multiple targets. The below figure shows the outline
of the structure for our robot. The important aspects are the assignment and
cardinalities fields. Robots will generally be deployed one at a time in a se-
quential order, and we will assume that is how this will be done in this paper,
but with some minor modifications robots can be activated simultaneously.



class Robot {
bool has_food ;
target assignment;
robot_state state;
map<target, index> cardinalities

function ROBOTATEACHITERATION()
if type = beacon then

Beacon();

else if type = explorer then
Explorer();

else if type = worker then
Worker();

The algorithm is organized as an iterative, state-based process where a given
state determines which functions shall be used. The three states are beacon,
explorer, and worker. Explorers are the initial state for the robots and are
the robot type which scour the environment to find targets and begin forming
the network.

The goal of the explorer is two fold: Expand the network and find targets.
The first robot to be deployed will become the first beacon; from there explor-
ers will only change their state if they move out of range of the center of the
network. This condition is detected when only one beacon is within range, sim-
ilar to Hoff et al’s walker state. The other condition for becoming a beacon is
when a target is detected and that target does not have a beacon dedicated to
guiding workers to that target.

This state is a factored version of Hoff et al. which only handles the explo-
ration part with food retrieval factored out into the worker state. To change
into being a worker, the explorer will detect the cardinality broadcasts, and
with a fixed probability, decided a priori, will become a worker. This probability
check happens each iteration, so high probability will force explorers to gather
very quickly, whereas low probability will allow explorers to continue exploring
for longer.



function EXPLORER()

Let robots < set of nearby robots;

Let bcasts < set of heard broadcasts;

Let targets « set of nearby targets;

Let map < Umebcasts m;

if (targets # 0 and 3t € targets, map[t] # START) or |bcasts| = 1 then
type + BEACON;

else if |keys(map)| > 0 then
With the probability of p, type + WORK FER,;

else
RandomWalk();

The beacon routine is the next possible state our robots can take during a
foraging run. Beacons maintain the network of communication, are an analo-
gous map of the world, and are responsible for making sure that workers cor-
rectly reach their targets. Beacons, unlike Hoff’s algorithm, will never change
to another state. Our conditions guarantee that no two start beacons will be
within communication range of each other. This helps prevent beacon conges-
tion around a target, and allows beacons to remain static. This lack of a state
change also prevent network disconnection; The condition that Hoff’s cardi-
nality algorithm allows beacons to leave if they hear too many beacons; This
condition isn’t sufficient to guarantee a path back to the nest should a beacon
leave.

function BEACON()
Broadcast cardinalities
Let becasts < set of heard broadcasts;
Let bots < set of nearby robots;
Let targets < set of nearby targets;
Let map < UmEbcasts m;
if targets # () and mapl[t] # START for some t € targets then
t < choose_one(targets) such that map[t] # START;
cardinalities|t] < START;
else
for (t — ¢) € map do
if ¢ & keys(cardinalities) then
cardinalities[t] + ¢+ 1;

Last we have the worker state; This state handles traveling back and forth
between the nest. This state is only activated when a worker hears a beacon
with target information. Upon changing to this state it will randomly select a
broadcasted target and begin its search towards that target. This state takes
advantage of several abstract functions: nest_search and target_search. Both
work as their names suggest, but are dependent upon implementation (virtual,



hardware), and assumed structure of the robots. Though we omit a specific
implementation they work by going to the next beacon in the chain; There is
always a next beacon to go towards, and generally one would choose the beacon
of lowest cardinality towards whichever target they wish to move towards.

For dealing with some of the robots’ structure, such as detection distance and
obstacle avoidance, there are a couple details that will be generally need to be
dealt with. First to detect other robots while searching the distance between
beacons should be small enough so that the detection distance can detect the
next beacon as it arrives to its current one. Secondly for object avoidance,
since there is a requirement for following beacons object avoidance should allow
robots to orbit around beacons.

function WORKER()

if stuck() then
type < explorer;

else
Let bcasts + set of heard broadcasts;
Let map < Umecasts m;
if assignment is None then

target < choose_random(keys(map))

if lhas_food and on_target(assignment) then
collect(); > Routine for collection and deposition
else
if has_food then
nest_search();
attempt_food_drop();
else
target_search(assignment);

4 Experimental Analysis

In this section we outline the setup for analyzing the performance and capabil-
ities of our algorithm. We wish to provide an analysis on how the parameters
of the algorithm affect the performance by choosing a sufficiently reasonable
fixed set of world parameters. Since both Hoff’s algorithm and ours uses a
randomWalk() procedure, both algorithm will have explorers generating a disc
shaped network coverage on average, and thus we’ll be using a target distribu-
tion that maintains target locations in a general area on the periphery. This
means that given the known shape of the disc-like coverage, choose a distribu-
tion so that the targets like in a range that sits near the edge of that disc (both
within and without that disc).

We use a population of 100 robots for each test, as well as 10 targets. Our



goal is to see how many targets will be found given by the worker assignment
probability. We choose this due to how it can decide whether or not multiple
targets will be found or will many robots decide quickly to become workers.
We choose three different probabilities and measure the distribution of targets
found over numerous different environments given the same target distribution
parameters.

It is hypothesized that as p — 0 that more targets will be, though we wish
to to understand to what extent these values increase performance of targets
found. Figure la shows the distributions handled by each different worker prob-
ability parameters. None of the particular probabilities perform to maximum
performance in this metric, but it does show that that the best performance we
have observed occurred at p = 0.0001.

0.5¢ 05f
0.4} — 04} o
Iy 2
= 03} = 03}
= =
© [
'§ 02t '§ 02}
& A
01F 01f
01 2 3 4 5 6 7 8 9 01 2 3 4 5 6 7 & 9 10
Number of Found Targets Number of Found Targets
(a) Targets Distribution for p = 0.01 (b) Targets Distribution for p = 0.001
05t
04t
&
= 03}
O
o
'§ 02¢
=¥
0-1 _ ’_‘
0.0 h—F———— ’_"T‘ —
01 2 3 4 5 6 7 & 9 10

Number of Found Targets

(c) Targets Distribution for p = 0.0001

Figure 1: Target Distribution for p = 0.001,0.01,0.0001

We could go further and lower the probability, however it was observed that
while we do find more targets, we often have almost no workers (= 2 — 3) each



run. So the foraging aspect of the algorithm does fall short in the more opti-
mally parameterized exploration phase. This has to do with how exploration is
done; Since the shape of the region covered will on average be a disc, targets
which fall outside of that region will unlikely be found. Thus to find them more
workers are sacrificed to make the disc larger.

Another issue is to consider that, while less targets are found for p = 0.01
and more foraging is being done, the foraging tends to be to the first target
found, since rapid probability checks tend to converge to a guaranteed choice.
This leaves an issue of dealing with foraging viability and needs to be address
in future work.

5 Conclusion

In this paper we’ve proposed an extension of a beacon based foraging algorithm
to handle multiple targets. Our algorithm solves the issues that the single tar-
get algorithm have when encountering an environment with multiple targets.
Our algorithm factors out the states of the robots for a cleaner abstraction for
the work flow of the machines. Though while our algorithm is correct, there
exists issues to be resolved; Task allocation is handled in a probabilistic manner
which doesn’t allow fine-grained control of how robots are allocated. While the
parameter can be tuned for particular allocations, there are no guarantees for
any particular instance of the problem, and gives a wide distribution for the
number of targets that are found.

Furthermore, while we can measure performance in terms of targets found, the
performance in terms of foraging rate is either poor or ill-defined. When more
targets are found, the algorithm simply sacrifices foraging ability to do so, and
thus only accomplishes one of the tasks. Secondly, while we can measure the
rate at which targets are being collected, simply finding the near target will
yield biased results and not consider fairness; In future work this needs to be
addressed with possible solutions of utility-free metrics, or require that targets
have utility associated with them.



	Multi-target Extension for Beacon Foraging Methods
	Recommended Citation

	Syracuse University
	SURFACE
	11-30-2017

	Multi-target Extension for Beacon Based Foraging Methods
	Christopher Sanford
	Zilong Jiao
	Jae Oh

	tmp.1511899503.pdf.3XGKI

