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Doubly Perturbed S3 neutrinos and the s13 mixing parameter

Renata Jora a ∗, Joseph Schechter b †, and M. Naeem Shahid b ‡
a Grup de Fisica Teorica, Universitat Autonoma de Barcelona, E -08193 Belaterra (Barcelona), Spain and

b Department of Physics, Syracuse University, Syracuse, NY 13244-1130, USA,
(Dated: June 17, 2010)

We further study a predictive model for the masses and mixing matrix of three Majorana neu-
trinos. At zeroth order the model yielded degenerate neutrinos and a generalized “tribimaximal”
mixing matrix. At first order the mass splitting was incorporated and the tribimaximal mixing ma-
trix emerged with very small corrections but with a zero value for the parameter s13. In the present
paper a different, assumed weaker, perturbation is included which gives a non zero value for s13 and
further corrections to other quantities. These corrections are worked out and their consequences
discussed under the simplifying assumption that the conventional CP violation phase vanishes. It
is shown that the existing measurements of the parameter s23 provide strong bounds on s13 in this
model.

PACS numbers: 14.60.Pq, 12.15.F, 13.10.+q

I. INTRODUCTION

At present, the particle physics community is planning, as a follow-up to the enormously important experiments of
the last decade [1]-[7], an extensive program with the goal of more accurately understanding the neutrino masses and
mixings. There is really no accepted theory for an a priori prediction of these quantities. Hence it seems worthwhile
to investigate in detail various theoretical models to develop plausible scenarios which might be tested.
Here we look more closely at a particular model presented in [8] and further studied in [9] and in [10]. That model

assumed an initial permutation symmetry (S3) which is motivated by the fact that the 3 × 3 matrix which transforms
the defining representation to irreducible form is, up to a single parameter rotation, the same as the ”tribimaximal”
matrix, which is in, at least, rough agreement with the present experimental situation. The tribimaximal form is
taken to be:

KTBM =







−2√
6

1√
3

0
1√
6

1√
3

1√
2

1√
6

1√
3

−1√
2






≡ R. (1)

The assumption was also made that, at zeroth order, the three neutrinos are degenerate. It may be seen from Table
I of [8] that this is plausible for a large range of possible fits to the data. However such an assumption at first seems
inconsistent with permutation symmetry which suggests two of the three neutrinos to be degenerate (however not

the two ”solar” neutrinos) and different in mass from the third. The proposed solution to this problem called for
the introduction of a Majorana type phase, which does not affect the usual neutrino oscillations but does affect the
rate for neutrinoless double beta decay. The complications involved in obtaining a suitable Higgs scheme for both
the neutrino mass matrix and the charged lepton mass matrix (which can be arranged to be proportional to the unit
matrix) in this approach are discussed in some detail in [8].
Of course, many interesting different models for neutrinos based on permutation symmetry have been discussed

for a long time [11]- [17]. In addition, many interesting models with similar approaches to the tribimaximal mixing
matrix have been vigorously pursued [18] -[30].
In the model under present discussion, the zeroth order piece of the prediagonal Majorana neutrino mass matrix

has the well known S3 invariant form:

Mν = α





1 0 0
0 1 0
0 0 1



+ β





1 1 1
1 1 1
1 1 1



 ≡ α1+ βd. (2)
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Here α and β are, in general, complex numbers while d is usually called the “democratic” matrix. As discussed in
detail in [10] and [8], we take

α = −i|α|e−iψ/2, (3)

where the physical phase ψ lies in the range:

0 < ψ ≤ π. (4)

For the assumed initial degeneracy, |α| is related to β, assumed real, by:

|α| = 3β

2sin(ψ/2)
. (5)

The two zeroth order parameters are the degenerate neutrino masses, |α| and the phase ψ which contributes to the
neutrinoless double beta decay amplitude.
The first order perturbation treated in [9] and [10] is

∆ =





0 0 0
0 t u
0 u t



 (6)

where t and u are parameters. In general, t and u may be complex but they were assumed real for simplicity. This
perturbation is well known as the “mu-tau” symmetry [31]-[33]. The assumed zeroth order degeneracy (which actually
may be relaxed, if desired) forces us to use degenerate perturbation theory. Then ∆ turns out (eg, section II of [10])
to be the only possible choice which forces the desired tribimaximal form (as opposed to the generalized tribimaximal
form) of the first order mixing matrix.
Here we will choose for the second order perturbation, the matrix:

∆′ =





t′ u′ 0
u′ t′ 0
0 0 0



 . (7)

For simplicity we again consider the parameters, t′ and u′ to be real.
Note that this second order perturbation preserves the S2 subgroup which involves the 1-2 interchange. One might

wonder about also including a perturbation, ∆′′ which preserves the 1-3 S2 subgroup. However, that is not expected
to give anything new since the combination of Eqs.(2), (6) and (7) already has the same number of parameters as the
most general symmetric matrix, Mν .
The combination of Eqs.(2), (6) and (7) was motivated by the group theory treatment of the strong interactions

before QCD which led for example to the Gell-Mann Okubo mass formula [34]. In that case the initial term was
flavor SU(3) invariant, the next term was invariant under the SU(2) isospin subgroup while the smallest last term
was invariant under the SU(2) “U-spin” subgroup. In the present case the zeroth order term has the discrete group
S3 invariance and two different S2 subgroups are left invariant by the two perturbations.

II. PERTURBATION ANALYSIS

In [10] we diagonalized the needed symmetric matrix:

RT (α1+ βd+∆)R =

α1+





t+ u
√
2
3 (t+ u) 0√

2
3 (t+ u) 3β + 2

3 (t+ u) 0
0 0 t− u



 . (8)

The diagonalization of this matrix gave the first order neutrino mixing matrix, K(1) as

K(1) = RR1, (9)

where,
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R1 ≈







1
√
2

9β (t+ u) 0

−
√
2

9β (t+ u) 1 0

0 0 1






. (10)

This results in a diagonalization with complex eigenvalues. To make these real positive we multiplied K(1) on the
right by a suitable diagonal matrix of phases.
To include the 2nd-order perturbation, Eq. (7), we must diagonalize,

H = RT1 R
T (αI + βd+∆+∆′)RR1

≡ H0 +H ′ (11)

where, after some computation and neglect of still higher order terms, we obtain:

H ′ = RT1 R
T∆′RR1 ≈







5
6 t

′ − 2
3u

′ − 1
3
√
2
(t′ + u′) 1

2
√
3
(t′ − 2u′)

− 1
3
√
2
(t′ + u′) 2

3 (t
′ + u′) 1√

6
(t′ + u′)

1
2
√
3
(t′ − 2u′) 1√

6
(t′ + u′) 1

2 t
′






. (12)

We introduced the notation H0 (Everything in Eq.(11) except for ∆′) and H ′ to indicate that, rather than making
an explicit diagonalization we will regard, the result to first order as a “zeroth order Hamiltonian”, the given second
order term, Eq.(7) as a “first order perturbation” and use ordinary quantum mechanics perturbation theory to proceed.
In that approach one has of course the corrections to the energies as:

E′
n =< ψn|H ′|ψn >, (13)

while the corrections to the eigenvectors are,

ψ(1)
m =

∑

n6=m

< ψn|H ′|ψm >

Em − En
ψn. (14)

A more general perturbation approach, which gives the same results, is discussed in the Appendix. The lepton mixing
matrix up to and including second order then reads:

K = RR1R2P = (ψ1, ψ2, ψ3)P, (15)

where the ψi are the columns of RR1R2 and furthermore P is the phase matrix needed for the neutrino masses to
be real positive; explicitly,

ψ1 =
1√
6







−2− 2 t+u9β + 2 t
′+u′

β

1− 2 t+u9β − 3 t
′−2u′

t−2u + t′+u′

9β

1− 2 t+u9β + 3 t
′−2u′

t−2u + t′+u′

9β






,

ψ2 =
1√
3







1− 2 t+u9β + t′+u′

9β

1 + t+u
9β − t′+u′

18β + t′+u′

6

1 + t+u
9β − t′+u′

18β − t′+u′

6






,

ψ3 =
1√
2







− 1
2
t′−2u′

t−2u − t′+u′

9β

1 + 1
4
t′−2u′

t−2u − t′+u′

9β

−1 + 1
4
t′−2u′

t−2u − t′+u′

9β






, (16)

and the phase matrix has the form,
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P =





e−iτ 0 0
0 e−iσ 0
0 0 e−iρ



 , (17)

wherein,

τ ≈ π

2
+

1

2
tan−1[

cot(ψ/2)

1− 2(t+u)
9β − 5t′

9β − 4u′

9β

]

σ ≈ π − 1

2
tan−1[

cot(ψ/2)

1 + 4(t+u)
9β + 4(t′+u′)

9β

]

ρ ≈ π

2
+

1

2
tan−1[

cot(ψ/2)

1− 2(t+u)
3β − t′

3β

]. (18)

Note that we are free to subtract (τ + σ + ρ)/3 from each of these three entries. Then the sum of the modified three
entries will vanish in accordance with the requirement that there be only two independent Majorana phases. The real
positive neutrino masses to second order are then:

m1 ≈ 3

2
βcsc

ψ

2
[1− 2

9β
(t+ u+

5

2
t′ − 2u′)sin2ψ

2
],

m2 ≈ 3

2
βcsc

ψ

2
[1 +

4

9β
(t+ u+ t′ + u′)sin2ψ

2
],

m3 ≈ 3

2
βcsc

ψ

2
[1− 2

3β
(t− u+

1

2
t′)sin2ψ

2
]. (19)

Notice that the zeroth order masses have the characteristic strength, β while the first order masses are suppressed
by (t, u)/β and the second order masses are suppressed by (t′, u′)/β.
Also notice that the absolute values of the neutrino masses depend on the Majorana phase, ψ. However, the lepton

number conserving neutrino oscillations can not depend on a Majorana phase [35]. As a check of this we see that the
phase ψ cancels out when one considers the mass differences ,

A ≡ m2
2 −m2

1 ≈ 3β(t+ u) +
9

2
βt′,

B ≡ m2
3 −m2

2 ≈ β(−5t+ u)− β(
7

2
t′ + 2u′),

C ≡ m2
3 −m2

1 ≈ 2β(−t+ 2u) + β(t′ − 2u′). (20)

Of course, A, B and C are not independent. There are two, presently unresolved, experimental possibilites:

Type1 : m3 > m2 > m1,

T ype2 : m2 > m1 > m3. (21)

.
The corresponding relations are:

Type1 : |C| = |B|+A,

Type2 : |C| = |B| −A. (22)

.
These relations were obtained by using the known positive sign of A and that only the two possibilities m2

3 > m2
2 >

m2
1 and m2

2 > m2
1 > m2

3 are allowed. In the literature some works specify A and |B| while others specify A and |C|.
The following best fit values for the perturbation parameters βt and βu were given in the first order treatment [10]:
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βt ≈ −4.13× 10−4eV 2,

βu ≈ 4.39× 10−4eV 2, T ype1 (23)

βt ≈ 4.21× 10−4eV 2,

βu ≈ −3.94× 10−4eV 2 Type2. (24)

III. ELEMENTS OF THE MIXING MATRIX

We employ the following parameterization [36] of the leptonic mixing matrix, K:

K =





c12c13 s12c13 s13e
−iγ

−s12c23 − c12s13s23e
iγ c12c23 − s12s13s23e

iγ c13s23
s12s23 − c12s13c23e

iγ −c12s23 − s12s13c23e
iγ c13c23



P, (25)

where c12 is short for cosθ12 for example. P is the diagonal matrix of Majorana type phases given in Eqs.(17) and
(18) for the present model. For simplicity we are presently neglecting the conventional CP violation and thus setting
γ = 0. To specify s12, s13 and s23, it is clearly sufficient to compare the (1-2), (1-3) and (2-3) matrix elements of K
in Eq.(25) with those calculated in Eq.(16). This yields:

s12c13 =
1√
3
− 2√

3

t+ u

9β
+

1√
3

t′ + u′

9β
,

s13 = − 1

2
√
2

t′ − 2u′

t− 2u
− 1√

2

t′ + u′

9β
,

s23c13 =
1√
2
+

1

4
√
2

t′ − 2u′

t− 2u
− 1√

2

t′ + u′

9β
. (26)

For an initial orientation we see that at zeroth order, s13 vanishes and also K has the tribimaximal form. When
the first order perturbation characterized by t and u is added, neither s13 nor s23 change. However s12 is somewhat
modified as discussed previously in section IV of [10]. When the second order perturbation characterized by t′ and u′

is added, s13 finally becomes non-zero while both s12 and s23 suffer further corrections.
But something unusual is happening; there are terms for s13 and s23 which behave like t′/t and are manifestly of

first order in strength. These arise from the energy difference denominator in Eq.(14). Since we had to use degenerate
perturbation theory at first order this denominator is proportional to the first order “energy” corrections rather than
the zeroth order energies. Keeping terms of actual first order in strength we find the interesting relation:

s13 ≈ −2δs23, (27)

where δs23 denotes the deviation of s23 from its tribimaximal value. Also the good approximation c13 = 1 was made.

IV. NUMERICAL ESTIMATES

Already, Fogli et. al. [37] and Schwetz et. al. [38] have pointed out that detailed analysis of existing neutrino
oscillation experiments gives some hint for non zero s13. Thus it seems interesting to see what predictions emerge
from Eq.(27).
Expanding s23 around its “tribimaximal value” as s23 = [s23]TBM + δs23, one gets:

(s23)
2 ≈ 1

2
+
√
2δs23. (28)

Comparing with the results of a global analysis of the oscillation data given in Table A1 of [38] one then identifies,
for respectively 1σ, 2σ and 3σ errors:

|δs23| = 0.05, 0.08, 0.11. (29)
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Note that the three cases are associated with the experimental data relating to the 2-3 type neutrino oscillations.
Using Eq.(27) then leads to the corresponding predictions,

|s13| < 0.025, 0.040, 0.055. (30)

It is amusing to note that these values range from about 1/4 to 1/2 of the “best fit” value |s13| = 0.11, which is also
presented in the first column of Table A1 in [38]. Of course, our estimates provide a test of the present theoretical
model for neutrino parameters and have no connection with experimental data on |s13|.
As discussed above, the theoretical estimate for |s13|, is of characteristic first order strength, appearing as a ratio

of a second order quantity divided by a first order quantity. Using Eq.(26) for s13 and neglecting the term of second
order strength we can get an estimate of the relative second to first order effects:

| t
′ − 2u′

t− 2u
| ≈ 2

√
2|s13| ≈ 0.071, 0.11, 0.16, (31)

wherein Eq.(30) was used. Evidently the second order effects seem to be suppressed by about 1/10 compared to
the first order effects. On the other hand, as seen in Eq.(20), the quantities t′ and u′ enter in the true second order
corrections for the neutrino mass differences. Thus those corrections are likely to be small– on the order of ten percent
of the first order mass splittings.

V. SUMMARY AND DISCUSSION

In this work, we designated the zeroth order parameter as β, the first order parameters as t and u and the second
order parameters as t′ and u′. The first order corrections to the neutrino masses were suppressed by (t, u)/β compared
to zeroth order. For the mixing angles, the first order corrections had a previously obtained piece proportional to
(t, u)/β as well as a new piece proportional to (t′, u′)/(t, u). The latter term arose because we are using degenerate
perturbation theory and is clearly important for s13 to be non-zero and correlated to corrections of s23.
Here, we have numerically neglected, for both masses and mixing angles terms proportional to (t′, u′)/β. In [10]

we considered (t, u)/β to be about 1/5. Here we found a characteristic strength of s13 to correspond to (t′, u′)/(t, u)
about 1/10. Both of these magnitudes are roughly similar.
Note that Eqs.(20) for the neutrino mass differences and Eqs.(26) for the mixing angles do contain pieces of actual

second order strength. These should be interesting to study in the future when more precise data becomes available.
The first order corrected formula for the neutrinoless double beta decay factor is given in Eq.(51) of [10]. This was

derived from Eq.(49) in which (s13)
2 was set to zero. Now s13 is not zero but its square contributes at a higher order.

Furthermore, it is easy to see, using Eqs.(16), that the first two terms in Eq.(49) do not have any contributions of
first order strength like (t′, u′)/(t, u). Hence that formula for mee still holds to first order.
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Appendix A: Alternative perturbation method

We present here an alternative approach which leads to results in perturbation theory order by order. This can be
applied to the case at hand or more generally when the mass matrix is invariant at zeroth order under a finite group
G0 and then we add perturbations of decreasing importance in the small parameter x such that for example the nth

perturbation is of order xn and is invariant under a smaller group Gn. The mass matrix can then be written as an
expansion in x,

M(x) =M0 + xM1 + x2M2 + ... (A1)

where M0 is invariant under G0, M1 under G1 and so on.
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The eigenvalues (diagonal) and eigenvector matrices can also be expanded as,

Md(x) =Md0 + xMd1 + x2Md2 + ...

R(x) = R0 + xR1 + x2R2 + ... (A2)

where,

RT (x)M(x)R(x) =Md(x) (A3)

is the eigenvalue equation.
If we differentiate Eq (A3) once we obtain:

RT ′MR+RTM ′R+RTMR′ =M ′
d (A4)

which can be written as:

[Md, R
TR′] +RTM ′R =M ′

d (A5)

Here we used the orthonormality condition for the eigenvector matrix:

RT ′R +RTR′ = 0 (A6)

Note that the matrix RT ′R which appears in what follows is antisymmetric (in each order of perturbation theory)
and in consequence all of its derivatives will be antisymmetric.
The second derivative and third derivative equations will read:

[M ′
d, R

TR′] + [Md, (R
TR′)′] + [RTM ′R,RTR′] +RTM ′′R =M ′′

d ,

[M ′
d, R

TR′] + 2[M ′
d, (R

TR′)′] + [Md, (R
TR′)′′] +

[[RTM ′R,RTR′], RTR′] + 2[RTM ′′R,RTR′] + [RTM ′R, (RTR′)′] +RTM ′′′R =M ′′′
d (A7)

All commutators of diagonal matrices give zero on diagonal and in consequence the mass eigenvalues are obtained
from the rest of the terms.
It is clear that by setting x = 0 one can associate the first derivative with the first order perturbation theory,

second with second order and so on. The mass eigenvalues and the matrix RTR′ can be extracted in each order from
equations like Eq (A5) and Eq(A7).
Then one should use the orthonormality condition to obtain the eigenvector matrix according to:

RT (x)R′(x) = RT0 R1 + x(RT1 R1 + 2RT0 R2) + .... (A8)

.
Using this method and G0 = S3, G1 = S23 and G2 = S12 one retrieves the eigenvalues and eigenvectors in each

order of perturbation theory. The results agree with those presented in the main text.
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