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Abstract

! The following paper discusses how efficient and effective color 
image noise reduction may be achieved through the use of mathematic 
numerical analysis. Digital image noise is a longstanding problem for 
which efficient and effective solutions are critical to the advancement of 
the field of digital imaging. Micchelli-Shen-Xu [3] used the Total Variation 
Model in conjunction with proximity operators to propose a set of 
algorithms to effectively and efficiently solve for noisy grayscale images. 
They proposed the use of the proximity operator in anisotropic and 
isotropic total variation in fixed point algorithms. The following paper will 
discuss their algorithms as well as expand and implement these 
algorithms to apply to color images as well. When reducing noise in color 
images we may either apply the fixed point algorithm proposed by 
Micchelli-Shen-Xu [3] to the luma channel of YCbCr colorspace or apply 
the algorithm in parallel to the R G B channels of RGB colorspace. The 
later algorithm will produce better results at the expense of efficiency.
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1. Overview

! Efficient and effective noise reduction algorithms are essential to 

modern science in a multitude of ways. They are regularly used in the 

communications, medical, military, and scientific analysis fields. This paper 

will explore fixed point algorithms using the Total Variation Model; both 

anisotropic as well as isotropic total variation will be considered. We will 

first consider these algorithms on grayscale square images, progress to 

non-square grayscale images, and finally non-square multi-dimensional 

color images. This paper will attempt to provide an efficient and effective 

solution to non-square multi-dimensional color image noise reduction, 

using isotropic total variation in a fixed point algorithm.

2. Introduction

! Throughout this paper, we will represent images as matrices, 

wherein each matrix element represents a pixel of the image. Pixel values, 

(ui. j ), will be converted to

 {u :u ∈d ,  0 ≤ ui ≤ 1,  for i = 1,2,...,d}

where 0 is the darkest possible value and 1 is the brightest possible value. 

In the application of grayscale images, 0 would be black and 1 would be 

white. In the application of color images, 0 would be black and 1 would be 

the brightest possible value of that color dimension. All matrices will be 
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converted back to their original bit-depth and colorspace upon completion 

of the algorithm.

! We will use the Total Variation Model to solve for the noise matrix in 

the images. The Total Variation Model will filter using nodes compared to 

other models which may filter using edges. This means that when 

calculating gradient information at a particular location, the Total Variation 

Model will produce smoother gradients and less “gridding” than a method 

which utilizes edges. “Gridding” is the phenomenon of visible grids forming 

at gradient areas rather than smooth tonal transitions. The figure below 

shows how node (2,2) is ʻconnectedʼ and receiving gradient information 

from eight other surrounding nodes.

!
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When using the Total Variation Model,

 min{
1
2 u − x 2

2 +α u TV :u ∈
d}

where u  is the original noisy image, x  is the noise for which we wish to 

solve,  {α : 0 <α,α ∈} , and u TV is the total variation of the u , u TV may 

be defined quite a few ways. The algorithms in this paper will use both 

anisotropic (ATV) and isotropic (ITV) total variation. 

! The Total Variation Model, as described in statement (2), is a 

composition of a convex function ( 1  norm for anisotropic and  2 norm for 

isotropic) and a linear transformation (in this case the first order difference 

operator). The convex nature of the proposed Total Variation Model, when 

used in an iterative fixed point algorithm, should lead to convergence. The 

Total Variation Model uses gradient information of the image in an attempt 

to preserve hard edges during the noise reduction process. By using 

gradient information, the algorithm can then leave parts of the image alone 

where the gradient is high (hard edges) and smooth out parts of the image 

where the gradient is generally low (smooth areas). This method allows 

images to remain sharp after the algorithm has been applied.

!
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3. Proximity Operator and Subdifferential

! The proximity operator is a key element in the development of the 

iterative fixed point algorithm and the subdifferential is key to the 

execution of both ATV and ITV. These terms must be rigidly defined before 

continuing.

! The proximity operator is defined as follows:

Definition 3.1 Let ψ be a real-valued convex function on  d . The 
proximity operator of ψ is defined for  x ∈d  by

 
proxψ x := argmin 1

2{ u − x 2
2 +ψ (x) :u ∈d}

The subdifferential is defined as:

Definition 3.2 Let ψ be a real-valued convex function on  d . The 
subdifferential of ψ at  x ∈d  is defined by

 ∂ψ (x) := y : y ∈d{ and  ψ (z) ≥ψ (x) + y, z − x ∀z ∈d}

An example demonstrating how the subdifferential and proximity operator 

apply to a simple two-dimensional absolute value function ψ = 4
λ ⋅ , where 

λ > 0  may be as follows:

Example 3.3 If λ > 0  and  x ∈ then

∂ 4
λ ⋅( )(x) =

4
λ {sign(x)},  x ≠ 0

− 4
λ , 4

λ⎡⎣ ⎤⎦,  otherwise

⎧
⎨
⎪

⎩⎪

and
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prox 4
λ
x = max x − 4

λ ,0( )sign(x)

This example can be demonstrated visually by the figures below. The 

subdifferential, as stated in the example, is either 4λ  or − 4
λ  unless x = 0 , at 

which point it may be any value in between. This allows a derivative to be 

defined for non-continuous points on a function, such as the x = 0 value of 

y = x . The proximity operator acts as a threshold operator based upon a 

predetermined lambda value.

             

Although this example demonstrates the two-dimensional case, these 

principals may be applied to any m-dimensional case, where  m ∈ .
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4. Formulation of Iterative Fixed Point Problem

! Now that the proximity operator and subdifferential have been 

defined, the formulation of the iterative fixed point algorithm that will be 

used may be explained. First, an m × d matrix B, which will represent the 

first order difference operator, as well as a convex function ϕ  on  m  will 

be used to define a function  ψ :∀x ∈d  such that

 ψ (x) := (ϕ  B)(x) .

The new function ψ is convex, since it is the composition of a convex 

function ϕ  and the first order difference operator B; this will guarantee 

convergence later. We now wish to develop an algorithm that will evaluate 

 proxϕ B . We will define  û ∈m  such that 

 û := proxϕ B (x)

where  x ∈d . From the optimality condition in convex analysis it may be 

concluded that

 0 ∈û − x + ∂ ϕ  B( ) û( )

which, by using the chain rule, may be rewritten as

0 ∈û − x + BT∂ϕ Bû( ) .

We now say there exists some vector b  where

∃b ∈ 1
λ ∂ϕ Bû( )

11
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where λ > 0 . We may then conclude

0 = û − x + λBTb
−û = x − λBTb

.

Since (11) is true, we may combine this with Definition 3.1 to conclude

b ∈ 1
λ ∂ϕ(Bû)

b + Bû = prox 1
λϕ
(b + Bû) + b

b = (b + Bû) − prox 1
λϕ
(b + Bû)

.

By simply rewriting (12) we obtain

b = Ι − prox 1
λϕ( ) b + Bû( )

By combining with (11) we conclude

b = Ι − prox 1
λϕ( ) b + B x − λBTb( )( )

This may be written as the fixed point problem which will be used in 

calculations

b = Ι − prox 1
λϕ( ) Bx + Ι − λBBT( )b( ) .

By using the Picard iterative process on equation (15), we may calculate 

the vector, b , of the noisy image, x  , for some λ > 0 . Once the vector, b , 

has been calculated, it can be used to correct for noise in a the noisy 

image, x , as follows:

xclean = xnoisy − λBTb
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5. Gradient, Adjoint, and Discrete Divergence Definitions for 

Algorithm Execution

! This section will focus on methods of executing equation (15) using 

both ATV and ITV. Before going any further, ∇u  must be defined, where u

is a 2-dimensional N × N image. Later we will easily adapt this to include 

3-dimensional M × N  images. Our current definition of ∇u  is based on [2] 

Chambolleʼs definition and is as follows.

Definition 5.1 We denote X as the Euclidean space  NxN . If u ∈X , 

the ∇u  is a vector in Y = X × X given by

∇u( )i, j = ∇u( )i. j
1 , ∇u( )i. j

2( )

with

∇u( )i. j
1 =

ui+1, j − ui, j     if i < N
0                  if i = N

⎧
⎨
⎪

⎩⎪

∇u( )i. j
2 =

ui, j+1 − ui, j     if j < N
0                  if j = N

⎧
⎨
⎪

⎩⎪

for i, j = 1,...,N .
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This definition of ∇u  allows the computation of the gradient at all edges of 

the image, which allows flexibility during execution. We will now define an 

N × N  matrix DN  as follows

 

DN :=

0
−1 1
 

−1 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

We may then define the 2N 2 × N 2  matrix B , based upon Definition 5.1, 

as 

B :=
ΙN ⊗ DN

DN ⊗ ΙN

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

where F⊗G  is the Kronecker product of F  and G . It should be noted, 

that the matrix B  is an operator which determines the gradient of a N 2 ×1  

vector; this vector represents our image u . It should also be noted that 

BBT , as described in the fixed point problem (15), calculates the the 

adjoint of a N 2 ×1 vector.

14
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6. Anisotropic Total Variation

! Anisotropic total variation is a directionally independent version of 

the total variation. This means that the proximity operator will consider the 

i - directional gradient completely independent of the j - directional 

gradient. The anisotropic total variation term may be defined as

u TV := Bu 1 .

To implement this definition of total variation into the fixed point problem 

(15), we may define 

ϕ(z) := µ z 1

where  z ∈2N 2  and µ > 0 . This redefines the proximity operator for 

anisotropic total variation as prox µ
λ ⋅ 1

 and thus alters (15) to

b = Ι − prox µ
λ ⋅ 1( ) Bx + Ι − λBBT( )b( ) .

By applying Definition 3.1 to our new form of the proximity operator 

shown in (22), we will essentially just apply the same version of the 

proximity operator demonstrated in Example 3.3 to each element of the 

operand except we will now have µ
λ  instead of 1λ . 

Equation (22) may now be implemented into a working algorithm for input 

into a computer program (Appendix, §12). The implementation is not a 

straightforward interpretation of the fixed point problem, but rather a 
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program which interprets the meaning of each individual step due to 

memory restrictions. For example, instead of calculating Bx , which would 

be the multiplication of a 20,000 ×10,000matrix with a 10,000 ×1matrix for 

a 100 ×100 pixel image, we can easily just calculate the gradient of the 

image and never have to create a matrix larger than 100 ×100 .

7. Isotropic Total Variation

! Isotropic total variation is directionally dependent. This forces the 

row-directional and column-directional gradients to be codependent; in 

reference to Definition 5.1, ∇u( )i, j
1  and ∇u( )i, j

2  are codependent. This 

version of the total variation is more complex, as it attempts to solve a 

non-linear PDE, but it tends to produce better results. In this case, better 

results refers to less blurring while attaining the same level of noise 

reduction when compared to anisotropic total variation. The isotropic total 

variation may be defined as

u TV :=
Bu( )i
Bu( )N 2 + i

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
2

i=1

N 2

∑

thus defining our ϕ  for the proximity operator as

ϕ z( ) := µ
zi
z
N 2 + i

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
2

i=1

N 2

∑
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where  z ∈2N 2  and µ > 0 . Thus the proximity operator is written as prox 1
λϕ

 

and the fixed point problem is written as

b = Ι − prox 1
λϕ( ) Bx + Ι − λBBT( )b( ) .

8. Redefining Terms for Non-Square Images

! All the theory thus far has been defined in relation to square N × N  

images. In this section we will redefine terms and equations for non-

square M × N  images. Everything up through Section 4 will remain the 

same. We will first redefine the gradient, ∇u , Definition 5.1. This is a 

simple definition to redefine for non-square images and the definition will 

be as follows

Definition 5.1.A We denote X as the Euclidean space  MxN . If 

u ∈X , the ∇u  is a vector in Y = X × X given by

∇u( )i, j = ∇u( )i. j
1 , ∇u( )i. j

2( )

with

∇u( )i. j
1 =

ui+1, j − ui, j     if i < M
0                  if i = M

⎧
⎨
⎪

⎩⎪

∇u( )i. j
2 =

ui, j+1 − ui, j     if j < N
0                  if j = N

⎧
⎨
⎪

⎩⎪

17
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for i = 1,...,M  and j = 1,...,N .

Clearly, all weʼve done to alter this definition is introduce the M

dimension and separate the i th  row dimension from the j th column 

dimension. The rest of the definition still applies as before, but now 

the columns of the image may be a different size than the rows.

! In addition to our new definition of the gradient, we must 

slightly alter our definitions of D  and subsequently B , our 

representation of the image u , and our definitions of our total 

variation to fully implement non-square images into our fixed point 

problem (15).

! Since we just redefined the gradient, ∇u , we should discuss 

how this will apply to our fixed point problem (15). In Section 5, 

matrices D  and B  were defined to implement our definition of the 

gradient ∇u . It should be noted that for square images, matrix B  

was of size 2N 2 × N 2 . This gradient operator was then applied to an 

image b  of size N × N  in vector form; in vector form, image b  was 

of size N 2 ×1. After the application of matrix B , the gradient was of 

size 2N 2 ×1 ; the first N 2  terms represented the i -directional 

gradient, while the second N 2  terms represented the j -directional 

gradient. Now we wish to apply all this theory 

18



to an M × N  image. Since the image u  will now be of size M × N , 

its vector representation will be of size MN ×1 . Since itʼs vector 

representation is of size MN ×1 , it only follows that our matrix B  

should be of size 2MN × MN ; thus, after the application of B  to our 

image, the gradient will be of size 2MN ×1 , where the first MN  

terms will represent the i -directional gradient and the second MN  

terms will represent the j -directional gradient.

! Now we will redefine our matrices D  and B . Our top 

MN × MN  terms of our new matrix B  must apply the i -directional 

gradient, while our bottom MN × MN  terms must apply the j -

directional gradient. This leads us to the conclusion that we must 

adjust our matrix D . For the application of non-square images we 

will redefine the matrix D  in two ways, DM  and DN . Both these 

matrices will hold the same form as described in (18), but DM  will 

be of size M × M , while DN  will be of size N × N . Our new 

definition of matrix B  is very similar to the old definition (19), but it 

shall be changed to:

B :=
ΙN ⊗ DM

DN ⊗ ΙM

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.
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This new definition of B  will successfully apply both the i -

directional and j -directional gradients to any image of size M × N .

! Our definition of the ATV will only change very slightly. We 

will still define

u TV := Bu 1

as we did in (20), but now the proximity operator will be defined as

ϕ(z) := µ z 1

where  z ∈2MN  and µ > 0 . Notice that the only difference in the 

definition of the ATV is that  z ∈2MN  instead of  z ∈2N 2 . This is a 

very minor change that only affects the proper definition of the 

proximity operator, but does not affect its implementation.

! The definition of the ITV will change only slightly as well. We 

will now define the total variation as

u TV :=
Bu( )i

Bu( )MN + i

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
2

i=1

MN

∑ .

The subsequent changes to the proximity operator are

ϕ z( ) := µ
zi

zMN + i

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
2

i=1

MN

∑

where  z ∈2MN  and µ > 0 .
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! Although the most drastic change is of matrix B , these other small 

changes generalize the fixed point problem (15) to apply to both square 

and non-square images. This is essential, as most images will not be 

square.

9.Multi-Dimensional Matrix Manipulation and Color Image 

Processing

! The next challenge is to apply this theory to color, or multi-

dimensional, images. This is essential, since most digital images used in 

the modern world are not grayscale, but usually operate in either the RGB 

or YCbCr colorspaces. Both these colorspaces are 3-dimensional, but 

other multi-dimensional colorspaces exist, such as CMYK. For the sake of 

simplicity, we will focus on the more common RGB colorspace in this 

section.

! There are multiple ways to approach the issue of noise reduction in 

color images.  One method a.) suggests that we convert the color image 

to YCbCr color space, apply the algorithms to the Y, or luminance, channel 

and then recompose the image. Another similar method b.) suggests 

applying the algorithms to the B channel of an RGB image, since most 

digital noise is found in the blue channel anyway. A third method c.) 

suggests that we apply the algorithm to all three channels independently 

and upon completion recompose the image. Method a.) is efficient, since it 

only applies the algorithm to one channel, and fairly thorough, since a lot 

21



of noise is often found in the Y channel, but it only accounts for luminance 

noise and does not account for color noise, which is a common problem in 

low light image capture. Method b.) is also efficient, since it only applies 

the algorithm to one channel, and takes care of some luminance and color 

noise, but does not consider any noise in the red or green channels. 

Method c.) is the most thorough and will solve both luminance and color 

noise problems, but isnʼt efficient as it requires many extra iterations. A 

fourth method may then be proposed; this method will apply the algorithm 

to all three channels, to account for both luminance and color noise, but 

will allow all three layers to work dependently upon each other, rather than 

independently. This will ensure that each layer only have the minimal 

amount of noise reduction applied to it and maximize results. It is still 

unclear how to properly approach this method, but this is a future research 

point.

! For all methods, we will first redefine our input image u  as

u :=
u1
u2
u3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

where  uk ∈
MN  for k = 1,2,3  and u1,u2 ,u3( )  represent the RGB channels 

respectively. The algorithm will run in parallel on the three separate 

channels, but our total variation will be redefined as one term for simplicity.

22
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 This may apply to both ATV and ITV. Our new definition of the ATV will be 

u CATV := Bu1 1 + Bu2 1 + Bu3 1

where  u ∈3MN . This new definition of the ATV applies the 2-dimensional 

ATV to each channel of the color image. This method when applied to the 

ITV appears as

u CITV :=

 
(Bu1)p
Bu1( )MN + p

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 

2
p=1

MN

∑ +  
(Bu2 )p
Bu2( )MN + p

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 

2
p=1

MN

∑ +  
(Bu3)p
Bu3( )MN + p

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 

2
p=1

MN

∑

where  u ∈3MN . The same theory applies to the ITV as it did the ATV, we 

just now consider a different type of total variation. From (33), the 

definition of the color ATV proximity operator is

ϕ z( ) := µ z1 1 + µ z2 1 + µ z3 1

where  z ∈3MN  and µ > 0 . The definition for the ITV proximity operator is 

then

ϕ(z) :=

µ  
(z1)p
z1( )MN + p

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 

2
p=1

MN

∑ + µ  
(z2 )p
z2( )MN + p

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 

2
p=1

MN

∑ + µ  
(z3)p
z3( )MN + p

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 

2
p=1

MN

∑

where  z ∈3MN  and µ > 0 .
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! The next step is to apply this knowledge to an algorithm. One way 

to approach this is mentioned above as “Method C”. This would run the 

algorithm proposed by [3] Micchelli-Shen-Xu on all three channels in 

parallel, independently. The algorithm would then be

Given: Noisy Image x ; λ > 0;µ > 0

Initialization: υ 0 = 0
For n = 0,1,2,...

!

 

υ1
n+1 ← I − prox µ

λ
i 1

⎛

⎝⎜
⎞

⎠⎟
Bx1 + I − λBBt( )υ1n( )

υ2
n+1 ← I − prox µ

λ
i 1

⎛

⎝⎜
⎞

⎠⎟
Bx2 + I − λBBt( )υ2n( )

υ3
n+1 ← I − prox µ

λ
i 1

⎛

⎝⎜
⎞

⎠⎟
Bx3 + I − λBBt( )υ3n( )

End

Write the output of υ n =

υ1
n

υ2
n

υ3
n

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

 from the above loop as 

υ∞ =

υ1
∞

υ2
∞

υ3
∞

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

 and compute

 

proxϕ Bx =
x1 − λBtυ1

∞

x2 − λBtυ2
∞

x3 − λBtυ3
∞

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

This algorithm could also be applied to the ITV. The ITV proximity operator 

would just have to be switched in for the current ATV proximity operator.
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10. Experiments and Outcomes

! This section will show some experimental outcomes of different 

algorithms discussed in this paper. The algorithms will be applied to the 

following noisy image:

For every experimental outcome we will also show a detailed shot to 

examine the pixel structure and noise reduction more thoroughly.
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One-Dimensional Algorithm Applied to the Luminosity Channel in YCbCr 

with ATV

µ = 0.05
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One-Dimensional Algorithm Applied to the Luminosity Channel in YCbCr 

with ITV

µ = 0.05
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Three-Dimensional Algorithm Applied to un-linked RGB channels with ATV

µ = 0.05

28



Three-Dimensional Algorithm Applied to un-linked RGB channels with ITV

µ = 0.05
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11. Conclusion and Further Research

! After experimentation on color image processing, it appears that 

applying ATV and ITV algorithms introduced by Micchelli-Shen-Xu [3] in 

the one-dimensional case to the luminosity channel of YCbCr colorspace 

is a quick and efficient way to reduce noise in an image and may remain 

one of the best algorithms tested. Although this algorithm strictly focuses 

on luminosity noise and therefore does not clean up color noise, it 

converges quickly, leaves sharp edges, and generally produces desirable 

results.

! Applying the algorithms to each color channel independently 

produces sharp edges and solves for both luminosity and color noise, but 

converges much more slowly than the one-dimensional algorithm applied 

to the luminosity layer. It seems that if time is no issue this is the approach 

to take, but for quick color image noise reduction results, one should use 

the one-dimensional luminosity channel algorithm.

! For future research I would like to develop an algorithm which 

allows quick convergence three-dimensional color image noise reduction 

using a three-dimensional proximity operator.
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12. Appendix

12.1 Standard Fixed Point Algorithm with ATV in MATLAB

function [ CLNImg ] = ImgDenoise_FPPO( Img, mu, beta )
%Denoising Program
%Theory by Lixin Shen, Yuesheng Xu, and Charles A. Micchelli
%Implementation by Aaron Katchen

%Fixed Point Algorithm Based on the Proximity Operator with ATV 
(FP^20-ATV)

%-----------------------------------------------------

%Setup

%Initialize count
count = 1;

%initialize argmin variable
argmin = 1;

%Determine information about noisy image
%Read Image and convert to double
temp_X = imread(Img);

%Determine if image is color
color = isrgb(temp_X);

%if color image convert to YCbCr and strip Y channel
%otherwise just run as normal
if (color == 1);

    temp_X = rgb2ycbcr(temp_X);
    X = temp_X(:, :, 1);
    
else
    
    X = temp_X;
    
end

X = im2double(X);

%Determine size of image
[M, N] = size(X);

%create and initialize v matrix
V = zeros(2*M,N);

%determine lambda
lambda = 1/4*(sin((N-1)*pi/(2*N)))^(-2);

%determine alpha
alpha = mu / lambda;
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%-----------------------------------------------------

%determine x and y differentials
BX = YXGradient(X);

%-----------------------------------------------------

%Initialize BtV
BtV = zeros(M,N);

%Initialize BBtV
BBtV = zeros(2*M, N);

%-----------------------------------------------------

%loop fixed point algorithm
while argmin>beta;
    
    %count
    count = count + 1
    
    %if there are more than 20 iterations, stop the code
    if count>20;
        break;
    end
    
    %Store old BtV for relative error calc
    BtV_Prev = BtV;
    
    %Calculate gamma
    gamma = BX + V - lambda * BBtV;
    
    %Calculate new V
    V = gamma - L1ProxOp(gamma, alpha);
    
    %Determine new B' of v
    BtV=CalcAdjoint(V);
    
    %Determine new BBtV
    BBtV=YXGradient(BtV);
    
    %Determine Relative Error
    argmin = norm((X - lambda * BtV) - (X - lambda * BtV_Prev)) / 
norm((X - lambda * BtV));
    
end

%-----------------------------------------------------

%Set Output image and convert to uint8
CLNDoubleImg = X - lambda * BtV;

if (color == 1);
    
    temp_X(:, :, 1) = im2uint8(CLNDoubleImg);
    CLNImg = ycbcr2rgb(temp_X);
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else
   
    CLNImg = mat2gray(CLNDoubleImg);
    
end

end

12.2 Standard Fixed Point Algorithm with ITV in MATLAB

function [ CLNImg ] = ImgDenoise_FPPO_ITV( Img, mu, beta )
%Denoising Program
%Theory by Lixin Shen, Yuesheng Xu, and Charles A. Micchelli
%Implementation by Aaron Katchen

%Fixed Point Algorithm Based on the Proximity Operator with ITV 
(FP^20-ITV)

%-----------------------------------------------------

%Setup

%initialize count
count = 1;

%initialize argmin variable
argmin = 1;

%Determine information about noisy image
%Read Image and convert to double
temp_X = imread(Img);

%Determine if image is color
color = isrgb(temp_X);

%if color image convert to YCbCr and strip Y channel
%otherwise just run as normal
if (color == 1);

    temp_X = rgb2ycbcr(temp_X);
    X = temp_X(:, :, 1);
    
else
    
    X = temp_X;
    
end

X = im2double(X);

%Determine size of image
[M, N] = size(X);

%create and initialize v matrix
V = zeros(2*M,N);

%determine lambda

33



lambda = 1/4*(sin((N-1)*pi/(2*N)))^(-2);

%determine alpha
alpha = mu / lambda;

%-----------------------------------------------------

%determine x and y differentials
BX = YXGradient(X);

%-----------------------------------------------------

%Initialize BtV
BtV = zeros(M,N);

%Initialize BBtV
BBtV = zeros(2*M, N);

%-----------------------------------------------------

%loop fixed point algorithm
while argmin>beta;
    
    %count
    count = count + 1
    
    %if there are more than 20 iterations, stop the code
    if count>20;
        break;
    end
    
    %Store old BtV for relative error calc
    BtV_Prev = BtV;
    
    %Calculate gamma
    gamma = BX + V - lambda * BBtV;
    
    %Calculate new V
    V = gamma - L2ProxOp(gamma, alpha);
    
    %Determine new B' of v
    BtV=CalcAdjoint(V);
    
    %Determine new BBtV
    BBtV=YXGradient(BtV);
    
    %Determine Relative Error
    argmin = norm((X - lambda * BtV) - (X - lambda * BtV_Prev)) / 
norm((X - lambda * BtV));
    
end

%-----------------------------------------------------

%Set Output image and convert to uint8
CLNDoubleImg = X - lambda * BtV;
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if (color == 1);
    
    temp_X(:, :, 1) = im2uint8(CLNDoubleImg);
    CLNImg = ycbcr2rgb(temp_X);
    
else
   
    CLNImg = mat2gray(CLNDoubleImg);
    
end

end

12.3 Multi-Dimensional Fixed Point Algorithm with ATV in MATLAB

function [ CLNImg ] = MultiD_ImgDenoise_FPPO_ITV( Img, mu, beta )
%Denoising Program
%Theory by Lixin Shen, Yuesheng Xu, and Charles A. Micchelli
%Implementation by Aaron Katchen

%Fixed Point Algorithm Based on the Proximity Operator with ITV 
(FP^20-ITV)
%For the multi-dimensional case

%-----------------------------------------------------

%Setup

%initialize count
count = 1;

%initialize argmin variable
argmin = 1;

%Determine information about noisy image
%Read Image and convert to double
temp_X = imread(Img);

%separate the R, G, and B channels and convert to double

r = temp_X(:, :, 1);
g = temp_X(:, :, 2);
b = temp_X(:, :, 3);

r = im2double(r);
g = im2double(g);
b = im2double(b);

%Determine size of image
[M, N] = size(r);

%create and initialize v matrices
Vr = zeros(2*M, N);
Vg = zeros(2*M, N);
Vb = zeros(2*M, N);

%determine lambda
lambda = 1/4*(sin((N-1)*pi/(2*N)))^(-2);
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%determine alpha
alpha = mu / lambda;

%-----------------------------------------------------

%determine x and y differentials
Br = YXGradient(r);
Bg = YXGradient(g);
Bb = YXGradient(b);

%-----------------------------------------------------

%Initialize BtV
BtVr = zeros(M,N);
BtVg = zeros(M,N);
BtVb = zeros(M,N);

%Initialize BBtV
BBtVr = zeros(2*M, N);
BBtVg = zeros(2*M, N);
BBtVb = zeros(2*M, N);

%Initialize Terms for Error Calculation
Curr_Term = zeros(M,N,3);
Prev_Term = zeros(M,N,3);

%Initialize Clean Double Image Out
CLNDoubleImg = zeros(M,N,3);

%-----------------------------------------------------

%loop fixed point algorithm
while argmin>beta;
    
    %count
    count = count + 1
    
    %if there are more than 10 iterations, stop the code
    if count>10;
        break;
    end
    
    %Store old BtV for relative error calc
    BtVr_Prev = BtVr;
    BtVg_Prev = BtVg;
    BtVb_Prev = BtVb;
    
    %Calculate gamma
    gamma_r = Br + Vr - lambda * BBtVr;
    gamma_g = Bg + Vg - lambda * BBtVg;
    gamma_b = Bb + Vb - lambda * BBtVb;
    
    %Calculate individual proximity operators
    ProxOp_r = L1ProxOp(gamma_r, alpha);
    ProxOp_g = L1ProxOp(gamma_g, alpha);
    ProxOp_b = L1ProxOp(gamma_b, alpha);
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    %Calculate new V
    Vr = gamma_r - ProxOp_r;
    Vg = gamma_g - ProxOp_g;
    Vb = gamma_b - ProxOp_b;

    %Determine new B' of v
    BtVr = CalcAdjoint(Vr);
    BtVg = CalcAdjoint(Vg);
    BtVb = CalcAdjoint(Vb);
    
    %Determine new BBtV
    BBtVr = YXGradient(BtVr);
    BBtVg = YXGradient(BtVg);
    BBtVb = YXGradient(BtVb);
    
    %Calc Error terms
    Curr_Term(:,:,1) = r - lambda * BtVr;
    Curr_Term(:,:,2) = g - lambda * BtVg;
    Curr_Term(:,:,3) = b - lambda * BtVb;
    
    Prev_Term(:,:,1) = r - lambda * BtVr_Prev;
    Prev_Term(:,:,2) = g - lambda * BtVg_Prev;
    Prev_Term(:,:,3) = b - lambda * BtVb_Prev;
    
    %Determine Relative Errors
    argmin_r = norm(Curr_Term(:, :, 1) - Prev_Term(:, :, 1)) / 
norm(Curr_Term(:, :, 1));
    argmin_g = norm(Curr_Term(:, :, 2) - Prev_Term(:, :, 2)) / 
norm(Curr_Term(:, :, 2));
    argmin_b = norm(Curr_Term(:, :, 3) - Prev_Term(:, :, 3)) / 
norm(Curr_Term(:, :, 3));
    
    %take infinity norm of argmins
    argmin = norm([argmin_r; argmin_g; argmin_b], inf);
    
end

%-----------------------------------------------------

%Set Ouput image and convert to uint8
CLNDoubleImg(:,:,1) = r - lambda * BtVr;
CLNDoubleImg(:,:,2) = g - lambda * BtVg;
CLNDoubleImg(:,:,3) = b - lambda * BtVb;
    
CLNImg = im2uint8(CLNDoubleImg);

end

12.4 Multi-Dimensional Fixed Point Algorithm with ITV in MATLAB

function [ CLNImg ] = MultiD_ImgDenoise_FPPO_ITV( Img, mu, beta )
%Denoising Program
%Theory by Lixin Shen, Yuesheng Xu, and Charles A. Micchelli
%Implementation by Aaron Katchen

%Fixed Point Algorithm Based on the Proximity Operator with ITV 
(FP^20-ITV)
%For the multi-dimensional case
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%-----------------------------------------------------

%Setup

%initialize count
count = 1;

%initialize argmin variable
argmin = 1;

%Determine information about noisy image
%Read Image and convert to double
temp_X = imread(Img);

%separate the R, G, and B channels and convert to double

r = temp_X(:, :, 1);
g = temp_X(:, :, 2);
b = temp_X(:, :, 3);

r = im2double(r);
g = im2double(g);
b = im2double(b);

%Determine size of image
[M, N] = size(r);

%create and initialize v matrices
Vr = zeros(2*M, N);
Vg = zeros(2*M, N);
Vb = zeros(2*M, N);

%determine lambda
lambda = 1/4*(sin((N-1)*pi/(2*N)))^(-2);

%determine alpha
alpha = mu / lambda;

%-----------------------------------------------------

%determine x and y differentials
Br = YXGradient(r);
Bg = YXGradient(g);
Bb = YXGradient(b);

%-----------------------------------------------------

%Initialize BtV
BtVr = zeros(M,N);
BtVg = zeros(M,N);
BtVb = zeros(M,N);

%Initialize BBtV
BBtVr = zeros(2*M, N);
BBtVg = zeros(2*M, N);
BBtVb = zeros(2*M, N);
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%Initialize Terms for Error Calculation
Curr_Term = zeros(M,N,3);
Prev_Term = zeros(M,N,3);

%Initialize Clean Double Image Out
CLNDoubleImg = zeros(M,N,3);

%-----------------------------------------------------

%loop fixed point algorithm
while argmin>beta;
    
    %count
    count = count + 1
    
    %if there are more than 10 iterations, stop the code
    if count>10;
        break;
    end
    
    %Store old BtV for relative error calc
    BtVr_Prev = BtVr;
    BtVg_Prev = BtVg;
    BtVb_Prev = BtVb;
    
    %Calculate gamma
    gamma_r = Br + Vr - lambda * BBtVr;
    gamma_g = Bg + Vg - lambda * BBtVg;
    gamma_b = Bb + Vb - lambda * BBtVb;
    
    %Calculate individual proximity operators
    ProxOp_r = L2ProxOp(gamma_r, alpha);
    ProxOp_g = L2ProxOp(gamma_g, alpha);
    ProxOp_b = L2ProxOp(gamma_b, alpha);
    
    %Calculate new V
    Vr = gamma_r - ProxOp_r;
    Vg = gamma_g - ProxOp_g;
    Vb = gamma_b - ProxOp_b;

    %Determine new B' of v
    BtVr = CalcAdjoint(Vr);
    BtVg = CalcAdjoint(Vg);
    BtVb = CalcAdjoint(Vb);
    
    %Determine new BBtV
    BBtVr = YXGradient(BtVr);
    BBtVg = YXGradient(BtVg);
    BBtVb = YXGradient(BtVb);
    
    %Calc Error terms
    Curr_Term(:,:,1) = r - lambda * BtVr;
    Curr_Term(:,:,2) = g - lambda * BtVg;
    Curr_Term(:,:,3) = b - lambda * BtVb;
    
    Prev_Term(:,:,1) = r - lambda * BtVr_Prev;
    Prev_Term(:,:,2) = g - lambda * BtVg_Prev;
    Prev_Term(:,:,3) = b - lambda * BtVb_Prev;

39



    
    %Determine Relative Errors
    argmin_r = norm(Curr_Term(:, :, 1) - Prev_Term(:, :, 1)) / 
norm(Curr_Term(:, :, 1));
    argmin_g = norm(Curr_Term(:, :, 2) - Prev_Term(:, :, 2)) / 
norm(Curr_Term(:, :, 2));
    argmin_b = norm(Curr_Term(:, :, 3) - Prev_Term(:, :, 3)) / 
norm(Curr_Term(:, :, 3));
    
    %take infinity norm of argmins
    argmin = norm([argmin_r; argmin_g; argmin_b], inf);
    
end

%-----------------------------------------------------

%Set Output image and convert to uint8
CLNDoubleImg(:,:,1) = r - lambda * BtVr;
CLNDoubleImg(:,:,2) = g - lambda * BtVg;
CLNDoubleImg(:,:,3) = b - lambda * BtVb;
    
CLNImg = im2uint8(CLNDoubleImg);

end

12.5 ATV Proximity Operator

function [ Y ] = L1ProxOp( X, alpha)
%Calculate the L1 Proximity Operator of input matrix X
%   Calculate the Proximity Operater of Input Matrix X

%-----------------------------------------------------

Y=max(abs(X)-alpha,0).*sign(X);

12.6 ITV Proximity Operator

function [ Y ] = L2ProxOp( X, alpha)
%Calculate the L2 Proximity Operator of input matrix X
%   Calculate the Proximity Operator of Input Matrix X

%-----------------------------------------------------
%determine size of X
[F, N] = size(X);

%Set M equal to half the size of X's rows
M = F / 2;

%initialize X2
X2=zeros(F,N);

%take the norm of corresponding pixels
for i=1:M;
    for j=1:N;
        X2(i,j)=norm([X(i,j); X(i+M,j)]);
    end
end
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%copy top part of X2 to bottom part
X2(M+1:F, :)=X2(1:M, :);

%create index of where zeros are in X2 to avoid division by zero
Index = (X2 == 0);

%create Denominator Matrix Term
Denom = (1 - Index) .* X2 + Index * (10e-10);

%Calculate ProxOp and set Output
Y = max(X2-alpha,0) .* (X ./ Denom);

12.7 Adjoint Calculator

function [ Y ] = CalcAdjoint( X )
%This function calculates the adjoint of input matrix X
%Input argument is of size 2M x N
%Output argument is of size M x N

%-----------------------------------------------------

%Determine amount of columns in X
[F, N] = size(X);

M = F/2;

%-----------------------------------------------------

%split X into two matrices
X1 = X(1:M, :);
X2 = X((M+1):2*M, :);

%-----------------------------------------------------

%Calculate Y1 and Y2

%initialize Y1 and Y2 matrices
Y1 = zeros(M, N);
Y2 = zeros(M, N);

%setup the rows of Y1 and the columns of Y2
Y1(M,:) = X1(M-1,:);
Y2(:,N) = X2(:,N-1);

Y1(1, :) = -X1(1,:);
Y2(:, 1) = -X2(:,1);

Y1(2:(M-1),:) = X1(1:(M-2),:) - X1(2:(M-1),:);
Y2(:,2:(N-1)) = X2(:,1:(N-2)) - X2(:,2:(N-1));

Y = Y1 + Y2;

12.8 Gradient Calculator

function [ Matrix_Out ] = YXGradient( Matrix_In )
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%This function takes in an argument of Matrix_In Size N x N and 
outputs
%a gradient of size 2N x N with the first N x N elements 
representing the 
%Y gradient and the second N x N elements representing the X 
gradient

%-----------------------------------------------------

%Determine size of Matrix_In
[M, N] = size(Matrix_In);

%-----------------------------------------------------

%Determine X Differential
diffx=[diff(Matrix_In, 1, 2) zeros(M,1)];

%-----------------------------------------------------

%determine y differential
diffy=[diff(Matrix_In, 1, 1); zeros(1, N)];
%-----------------------------------------------------

%restructure into output matrix
Matrix_Out = [diffy; diffx];

end
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Summary

! Efficient noise reduction algorithms for digital image processing 

have been sought after for as long as digital imaging has existed. The 

problem lies in digital image sensors, whether that be a point and shoot 

digital camera, an MRI machine, or satellite imaging equipment, all digital 

image capture devices must approximate any information which it 

receives. When a lot of information is available, say a bright sunny day 

when a lot of light would flood the image sensor, the capture device is 

much less likely to create noise, however if information is scarce, say a 

photo outdoors at night, the device must make its best approximation as to 

what the missing information should look like; this is comparable to grainy 

photos in the days of film. Although digital image sensors have improved 

drastically over the years, there still remains a need for noise reduction 

algorithms to clean up any remaining noise in certain applications; for 

instance, it may be crucial to reduce the noise in an MRI image to obtain a 

clear image for patient diagnosis.

! This paper discusses how efficient and effective noise reduction 

may be achieved through the use of mathematic numerical analysis. 

Numerical analysis is a branch of applied mathematics which uses 

computers and algorithms to solve problems. Often, real world problems 

are not explicitly defined functions, meaning there is usually not only one 

independent variable, and this can create problems when trying to solve 
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these problems outright. Mathematicians may then employ the power of 

numerical analysis.

! Numerical analysis, first developed in ancient Babylonia, is a form 

of mathematics used to find approximations of solutions as often the exact 

solution may be impossible to solve for. Instead of attempting to solve 

directly for a problem, mathematicians instead create algorithms which 

approximate the solution within a given tolerance. These algorithms tend 

to work in an educated ʻguess and checkʼ methodology. Often, the 

algorithms will ʻcheckʼ to see if they are within a given tolerance to the 

answer, if theyʼre not, they will make a calculated ʻguessʼ as to what the 

answer may be based on the previous ʻguessʼ. Once this new ʻguessʼ is 

checked the process either stops if it is within the tolerance or continues 

until it is. Occasionally, the algorithm may not ʻconvergeʼ. This means that 

the algorithm is stuck in an infinite loop and will never find the 

approximated answer. It is thus important for mathematicians to create 

algorithms which guarantee convergence as well as converge in an 

efficient and timely manner. Luckily, due to the modern age and super 

computers, efficiency is less of an issue than it used to be, as computers 

can run much more quickly than they used to, but nonetheless it is still a 

top priority of mathematicians to create efficient algorithms.

! The algorithms discussed in the paper are either algorithms created 

by [3] Micchelli-Shen-Xu or extensions thereof. These algorithms are 

concerned with reducing the noise in both grayscale (black and white) as 
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well as color (red, blue, green) images. The basic grayscale algorithm 

works by first analyzing the image. When first analyzing the image, the 

algorithm calculates the luminosity (brightness) differences between each 

pixel. The algorithm does this to find what may be noisy pixels. For 

instance, if the image only sees very small changes in luminosity between 

pixels, we can assume this to be a smooth area of the image, with no 

sharp edges or noise; if the image sees a large change in luminosity 

between pixels then we have either discovered a sharp edge or a noisy 

pixel. By comparing the results with pixels around it, the algorithm can 

determine if that is likely an edge or a noisy pixel; if itʼs an edge, then all 

the other pixels along that edge would likely experience a similar change, 

if itʼs a noisy pixel then itʼs likely that that large change would only be 

experienced by the sole pixel under analysis. If the pixel is indeed 

considered to be noisy, the algorithm attempts to select a new, less noisy, 

value for the pixel based on the surrounding pixel values. This algorithm 

should ensure optimal noise reduction while retaining sharp edges.

! The original algorithm, proposed by Micchelli-Shen-Xu [3], is then 

slightly modified to apply to color images. The paper discusses a few 

different ways this may be achieved. First, it should be understood that all 

color images can be broken apart into different colorspaces, or primary 

components. We are often taught that red, yellow, and blue are the 

primary colors, but that is just in one specific color model. Color may also 

be broken into cyan, magenta, yellow, and black (CMYK); red, green, and 
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blue (RGB) which is how the human eye and computer monitors interpret 

color; luminosity, red-difference chroma, and blue-difference chroma 

(YCbCr) often used in video; and so forth. The paper deals primarily with 

RGB and YCbCr colorspaces as these are usually the only colorspaces 

used in digital imaging. One algorithm applies the basic grayscale 

algorithm to the luminosity channel of a YCbCr image while another 

algorithm applies the basic grayscale algorithm to each channel of the 

RGB colorspace individually. Both algorithms provide acceptable, though 

slightly different, results.

! The algorithms were implemented using MATLAB script and 

experiments were ran to test their effectiveness. The algorithms and 

experimental outcomes may be found toward the end of paper in sections 

12 and 10 respectively.

!
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