
Syracuse University Syracuse University

SURFACE SURFACE

Syracuse University Honors Program Capstone
Projects

Syracuse University Honors Program Capstone
Projects

Spring 5-1-2011

Color Image Noise Reduction with the Total Variation Model and Color Image Noise Reduction with the Total Variation Model and

Proximity Operators Proximity Operators

Aaron Katchen

Follow this and additional works at: https://surface.syr.edu/honors_capstone

 Part of the Applied Mathematics Commons

Recommended Citation Recommended Citation
Katchen, Aaron, "Color Image Noise Reduction with the Total Variation Model and Proximity Operators"
(2011). Syracuse University Honors Program Capstone Projects. 246.
https://surface.syr.edu/honors_capstone/246

This Honors Capstone Project is brought to you for free and open access by the Syracuse University Honors Program
Capstone Projects at SURFACE. It has been accepted for inclusion in Syracuse University Honors Program Capstone
Projects by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/honors_capstone
https://surface.syr.edu/honors_capstone
https://surface.syr.edu/honors_capstones
https://surface.syr.edu/honors_capstones
https://surface.syr.edu/honors_capstone?utm_source=surface.syr.edu%2Fhonors_capstone%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=surface.syr.edu%2Fhonors_capstone%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/honors_capstone/246?utm_source=surface.syr.edu%2Fhonors_capstone%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Color Image Noise Reduction with
the Total Variation Model and

Proximity Operators

A Capstone Project Submitted in Partial Fulfillment of the
Requirements of the Renée Crown University Honors Program at

Syracuse University

Aaron Katchen

Candidate for B.A. Degree
and Renée Crown University Honors

May 2011

Honors Capstone Project in Mathematics

Capstone Project Advisor:______________________________
Professor Lixin Shen

Honors Reader:______________________________________
Professor Yuesheng Xu

Honors Director:______________________________________
James Spencer, Interim Director

Date:__

1

Abstract

! The following paper discusses how efficient and effective color
image noise reduction may be achieved through the use of mathematic
numerical analysis. Digital image noise is a longstanding problem for
which efficient and effective solutions are critical to the advancement of
the field of digital imaging. Micchelli-Shen-Xu [3] used the Total Variation
Model in conjunction with proximity operators to propose a set of
algorithms to effectively and efficiently solve for noisy grayscale images.
They proposed the use of the proximity operator in anisotropic and
isotropic total variation in fixed point algorithms. The following paper will
discuss their algorithms as well as expand and implement these
algorithms to apply to color images as well. When reducing noise in color
images we may either apply the fixed point algorithm proposed by
Micchelli-Shen-Xu [3] to the luma channel of YCbCr colorspace or apply
the algorithm in parallel to the R G B channels of RGB colorspace. The
later algorithm will produce better results at the expense of efficiency.

2

Table of Contents

1. Overview

2. Introduction

3. Proximity Operator and Subdifferential

4. Formulation of Iterative Fixed Point Problem

5. Gradient, Adjoint, and Discrete Divergence
! Definitions for Algorithm Execution

6. Anisotropic Total Variation

7. Isotropic Total Variation

8. Redefining Terms for Non-Square Images

9. Multi-Dimensional Matrix Manipulation and
! Color Image Processing

10. Experiments and Outcomes

11. Conclusion and Further Research

12. Appendix

13. References

 Summary

3

6

6

9

11

13

15

16

17

21

25

30

31

43

44

Acknowledgements

! My journey to this capstone all began one afternoon in my middle-school hallway

in between classes in 8th grade. After a semi-dismal year of school I had signed up for

the normal incoming math class at Central High School for 9th grade, when I was

approached by Mr. Giotas, my math teach at the time, who persuaded and

recommended I take the honors math class the following year. With his support I began

what would turn out to be a nine-year roller coaster of an experience.

! From there I met many other teachers who pushed me to be my best, in not only

math, but in academics and life. For four years Frau Calvano and Mr. Sterling scolded

me when I didnʼt try hard enough and praised me when I did; Mrs. J introduced me to

applied math (horse betting based on statistics) and Mrs. Fallu somehow made calculus

fun.

! My interest in computational mathematics and numerical analysis was first

sparked my freshman year at Syracuse University as a young aerospace engineering

major. I quickly excelled in Professor Dannenhofferʼs ECS 104 class when I was first

introduced to MATLAB and the concept of numerical analysis. I used those skills to

acquire an internship at Zanaqua Technologies where Dave Dussault took me under his

wing and taught me everything there was to know about FORTRAN 90 and helped me

develop an advance sense of numerical analysis.

! Shortly after, I changed out of aerospace engineering to pursue photography, but

I kept my math with me. Professor Banerjee furthered my knowledge of numerical

analysis and suggested I pursue my capstone in the field. He introduced me with

Professor Shen, who generously donated three semesters of his time for one on one

4

lessons, paper reviews, tutorials, and ultimately proved to be my capstone advisor. I

studied his work with Professor Xu who generously agreed to be my honors capstone

reader.

! Of course, none of this would be possible without my parents and family who

supported me financially and emotionally the whole time and my wonderful girlfriend

Allana who has listened to me complain about anything and everything since we first

met. To everyone mentioned here and so many more who are not, I thank you for every

bit of help youʼve given and every bit of knowledge youʼve bestowed upon me.

5

1. Overview

! Efficient and effective noise reduction algorithms are essential to

modern science in a multitude of ways. They are regularly used in the

communications, medical, military, and scientific analysis fields. This paper

will explore fixed point algorithms using the Total Variation Model; both

anisotropic as well as isotropic total variation will be considered. We will

first consider these algorithms on grayscale square images, progress to

non-square grayscale images, and finally non-square multi-dimensional

color images. This paper will attempt to provide an efficient and effective

solution to non-square multi-dimensional color image noise reduction,

using isotropic total variation in a fixed point algorithm.

2. Introduction

! Throughout this paper, we will represent images as matrices,

wherein each matrix element represents a pixel of the image. Pixel values,

(ui. j), will be converted to

 {u :u ∈d , 0 ≤ ui ≤ 1, for i = 1,2,...,d}

where 0 is the darkest possible value and 1 is the brightest possible value.

In the application of grayscale images, 0 would be black and 1 would be

white. In the application of color images, 0 would be black and 1 would be

the brightest possible value of that color dimension. All matrices will be

6

(1)

converted back to their original bit-depth and colorspace upon completion

of the algorithm.

! We will use the Total Variation Model to solve for the noise matrix in

the images. The Total Variation Model will filter using nodes compared to

other models which may filter using edges. This means that when

calculating gradient information at a particular location, the Total Variation

Model will produce smoother gradients and less “gridding” than a method

which utilizes edges. “Gridding” is the phenomenon of visible grids forming

at gradient areas rather than smooth tonal transitions. The figure below

shows how node (2,2) is ʻconnectedʼ and receiving gradient information

from eight other surrounding nodes.

!

7

When using the Total Variation Model,

 min{
1
2 u − x 2

2 +α u TV :u ∈
d}

where u is the original noisy image, x is the noise for which we wish to

solve, {α : 0 <α,α ∈} , and u TV is the total variation of the u , u TV may

be defined quite a few ways. The algorithms in this paper will use both

anisotropic (ATV) and isotropic (ITV) total variation.

! The Total Variation Model, as described in statement (2), is a

composition of a convex function (1 norm for anisotropic and 2 norm for

isotropic) and a linear transformation (in this case the first order difference

operator). The convex nature of the proposed Total Variation Model, when

used in an iterative fixed point algorithm, should lead to convergence. The

Total Variation Model uses gradient information of the image in an attempt

to preserve hard edges during the noise reduction process. By using

gradient information, the algorithm can then leave parts of the image alone

where the gradient is high (hard edges) and smooth out parts of the image

where the gradient is generally low (smooth areas). This method allows

images to remain sharp after the algorithm has been applied.

!

8

(2)

3. Proximity Operator and Subdifferential

! The proximity operator is a key element in the development of the

iterative fixed point algorithm and the subdifferential is key to the

execution of both ATV and ITV. These terms must be rigidly defined before

continuing.

! The proximity operator is defined as follows:

Definition 3.1 Let ψ be a real-valued convex function on d . The
proximity operator of ψ is defined for x ∈d by

proxψ x := argmin 1

2{ u − x 2
2 +ψ (x) :u ∈d}

The subdifferential is defined as:

Definition 3.2 Let ψ be a real-valued convex function on d . The
subdifferential of ψ at x ∈d is defined by

 ∂ψ (x) := y : y ∈d{ and ψ (z) ≥ψ (x) + y, z − x ∀z ∈d}

An example demonstrating how the subdifferential and proximity operator

apply to a simple two-dimensional absolute value function ψ = 4
λ ⋅ , where

λ > 0 may be as follows:

Example 3.3 If λ > 0 and x ∈ then

∂ 4
λ ⋅()(x) =

4
λ {sign(x)}, x ≠ 0

− 4
λ , 4

λ⎡⎣ ⎤⎦, otherwise

⎧
⎨
⎪

⎩⎪

and

9

(4)

(5)

(3)

prox 4
λ
x = max x − 4

λ ,0()sign(x)

This example can be demonstrated visually by the figures below. The

subdifferential, as stated in the example, is either 4λ or − 4
λ unless x = 0 , at

which point it may be any value in between. This allows a derivative to be

defined for non-continuous points on a function, such as the x = 0 value of

y = x . The proximity operator acts as a threshold operator based upon a

predetermined lambda value.

Although this example demonstrates the two-dimensional case, these

principals may be applied to any m-dimensional case, where m ∈ .

10

4. Formulation of Iterative Fixed Point Problem

! Now that the proximity operator and subdifferential have been

defined, the formulation of the iterative fixed point algorithm that will be

used may be explained. First, an m × d matrix B, which will represent the

first order difference operator, as well as a convex function ϕ on m will

be used to define a function ψ :∀x ∈d such that

 ψ (x) := (ϕ B)(x) .

The new function ψ is convex, since it is the composition of a convex

function ϕ and the first order difference operator B; this will guarantee

convergence later. We now wish to develop an algorithm that will evaluate

 proxϕ B . We will define û ∈m such that

 û := proxϕ B (x)

where x ∈d . From the optimality condition in convex analysis it may be

concluded that

 0 ∈û − x + ∂ ϕ B() û()

which, by using the chain rule, may be rewritten as

0 ∈û − x + BT∂ϕ Bû() .

We now say there exists some vector b where

∃b ∈ 1
λ ∂ϕ Bû()

11

(9)

(10)

(6)

(7)

(8)

where λ > 0 . We may then conclude

0 = û − x + λBTb
−û = x − λBTb

.

Since (11) is true, we may combine this with Definition 3.1 to conclude

b ∈ 1
λ ∂ϕ(Bû)

b + Bû = prox 1
λϕ
(b + Bû) + b

b = (b + Bû) − prox 1
λϕ
(b + Bû)

.

By simply rewriting (12) we obtain

b = Ι − prox 1
λϕ() b + Bû()

By combining with (11) we conclude

b = Ι − prox 1
λϕ() b + B x − λBTb()()

This may be written as the fixed point problem which will be used in

calculations

b = Ι − prox 1
λϕ() Bx + Ι − λBBT()b() .

By using the Picard iterative process on equation (15), we may calculate

the vector, b , of the noisy image, x , for some λ > 0 . Once the vector, b ,

has been calculated, it can be used to correct for noise in a the noisy

image, x , as follows:

xclean = xnoisy − λBTb

12

(16)

(11)

(12)

(13)

(14)

(15)

5. Gradient, Adjoint, and Discrete Divergence Definitions for

Algorithm Execution

! This section will focus on methods of executing equation (15) using

both ATV and ITV. Before going any further, ∇u must be defined, where u

is a 2-dimensional N × N image. Later we will easily adapt this to include

3-dimensional M × N images. Our current definition of ∇u is based on [2]

Chambolleʼs definition and is as follows.

Definition 5.1 We denote X as the Euclidean space NxN . If u ∈X ,

the ∇u is a vector in Y = X × X given by

∇u()i, j = ∇u()i. j
1 , ∇u()i. j

2()

with

∇u()i. j
1 =

ui+1, j − ui, j if i < N
0 if i = N

⎧
⎨
⎪

⎩⎪

∇u()i. j
2 =

ui, j+1 − ui, j if j < N
0 if j = N

⎧
⎨
⎪

⎩⎪

for i, j = 1,...,N .

13

(17)

This definition of ∇u allows the computation of the gradient at all edges of

the image, which allows flexibility during execution. We will now define an

N × N matrix DN as follows

DN :=

0
−1 1

−1 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

We may then define the 2N 2 × N 2 matrix B , based upon Definition 5.1,

as

B :=
ΙN ⊗ DN

DN ⊗ ΙN

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

where F⊗G is the Kronecker product of F and G . It should be noted,

that the matrix B is an operator which determines the gradient of a N 2 ×1

vector; this vector represents our image u . It should also be noted that

BBT , as described in the fixed point problem (15), calculates the the

adjoint of a N 2 ×1 vector.

14

(18)

(19)

6. Anisotropic Total Variation

! Anisotropic total variation is a directionally independent version of

the total variation. This means that the proximity operator will consider the

i - directional gradient completely independent of the j - directional

gradient. The anisotropic total variation term may be defined as

u TV := Bu 1 .

To implement this definition of total variation into the fixed point problem

(15), we may define

ϕ(z) := µ z 1

where z ∈2N 2 and µ > 0 . This redefines the proximity operator for

anisotropic total variation as prox µ
λ ⋅ 1

 and thus alters (15) to

b = Ι − prox µ
λ ⋅ 1() Bx + Ι − λBBT()b() .

By applying Definition 3.1 to our new form of the proximity operator

shown in (22), we will essentially just apply the same version of the

proximity operator demonstrated in Example 3.3 to each element of the

operand except we will now have µ
λ instead of 1λ .

Equation (22) may now be implemented into a working algorithm for input

into a computer program (Appendix, §12). The implementation is not a

straightforward interpretation of the fixed point problem, but rather a

15

(20)

(21)

(22)

program which interprets the meaning of each individual step due to

memory restrictions. For example, instead of calculating Bx , which would

be the multiplication of a 20,000 ×10,000matrix with a 10,000 ×1matrix for

a 100 ×100 pixel image, we can easily just calculate the gradient of the

image and never have to create a matrix larger than 100 ×100 .

7. Isotropic Total Variation

! Isotropic total variation is directionally dependent. This forces the

row-directional and column-directional gradients to be codependent; in

reference to Definition 5.1, ∇u()i, j
1 and ∇u()i, j

2 are codependent. This

version of the total variation is more complex, as it attempts to solve a

non-linear PDE, but it tends to produce better results. In this case, better

results refers to less blurring while attaining the same level of noise

reduction when compared to anisotropic total variation. The isotropic total

variation may be defined as

u TV :=
Bu()i
Bu()N 2 + i

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
2

i=1

N 2

∑

thus defining our ϕ for the proximity operator as

ϕ z() := µ
zi
z
N 2 + i

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
2

i=1

N 2

∑

16

(23)

(24)

where z ∈2N 2 and µ > 0 . Thus the proximity operator is written as prox 1
λϕ

and the fixed point problem is written as

b = Ι − prox 1
λϕ() Bx + Ι − λBBT()b() .

8. Redefining Terms for Non-Square Images

! All the theory thus far has been defined in relation to square N × N

images. In this section we will redefine terms and equations for non-

square M × N images. Everything up through Section 4 will remain the

same. We will first redefine the gradient, ∇u , Definition 5.1. This is a

simple definition to redefine for non-square images and the definition will

be as follows

Definition 5.1.A We denote X as the Euclidean space MxN . If

u ∈X , the ∇u is a vector in Y = X × X given by

∇u()i, j = ∇u()i. j
1 , ∇u()i. j

2()

with

∇u()i. j
1 =

ui+1, j − ui, j if i < M
0 if i = M

⎧
⎨
⎪

⎩⎪

∇u()i. j
2 =

ui, j+1 − ui, j if j < N
0 if j = N

⎧
⎨
⎪

⎩⎪

17

(25)

(26)

for i = 1,...,M and j = 1,...,N .

Clearly, all weʼve done to alter this definition is introduce the M

dimension and separate the i th row dimension from the j th column

dimension. The rest of the definition still applies as before, but now

the columns of the image may be a different size than the rows.

! In addition to our new definition of the gradient, we must

slightly alter our definitions of D and subsequently B , our

representation of the image u , and our definitions of our total

variation to fully implement non-square images into our fixed point

problem (15).

! Since we just redefined the gradient, ∇u , we should discuss

how this will apply to our fixed point problem (15). In Section 5,

matrices D and B were defined to implement our definition of the

gradient ∇u . It should be noted that for square images, matrix B

was of size 2N 2 × N 2 . This gradient operator was then applied to an

image b of size N × N in vector form; in vector form, image b was

of size N 2 ×1. After the application of matrix B , the gradient was of

size 2N 2 ×1 ; the first N 2 terms represented the i -directional

gradient, while the second N 2 terms represented the j -directional

gradient. Now we wish to apply all this theory

18

to an M × N image. Since the image u will now be of size M × N ,

its vector representation will be of size MN ×1 . Since itʼs vector

representation is of size MN ×1 , it only follows that our matrix B

should be of size 2MN × MN ; thus, after the application of B to our

image, the gradient will be of size 2MN ×1 , where the first MN

terms will represent the i -directional gradient and the second MN

terms will represent the j -directional gradient.

! Now we will redefine our matrices D and B . Our top

MN × MN terms of our new matrix B must apply the i -directional

gradient, while our bottom MN × MN terms must apply the j -

directional gradient. This leads us to the conclusion that we must

adjust our matrix D . For the application of non-square images we

will redefine the matrix D in two ways, DM and DN . Both these

matrices will hold the same form as described in (18), but DM will

be of size M × M , while DN will be of size N × N . Our new

definition of matrix B is very similar to the old definition (19), but it

shall be changed to:

B :=
ΙN ⊗ DM

DN ⊗ ΙM

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.

19

(27)

This new definition of B will successfully apply both the i -

directional and j -directional gradients to any image of size M × N .

! Our definition of the ATV will only change very slightly. We

will still define

u TV := Bu 1

as we did in (20), but now the proximity operator will be defined as

ϕ(z) := µ z 1

where z ∈2MN and µ > 0 . Notice that the only difference in the

definition of the ATV is that z ∈2MN instead of z ∈2N 2 . This is a

very minor change that only affects the proper definition of the

proximity operator, but does not affect its implementation.

! The definition of the ITV will change only slightly as well. We

will now define the total variation as

u TV :=
Bu()i

Bu()MN + i

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
2

i=1

MN

∑ .

The subsequent changes to the proximity operator are

ϕ z() := µ
zi

zMN + i

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
2

i=1

MN

∑

where z ∈2MN and µ > 0 .

20

(28)

(29)

(30)

(31)

! Although the most drastic change is of matrix B , these other small

changes generalize the fixed point problem (15) to apply to both square

and non-square images. This is essential, as most images will not be

square.

9.Multi-Dimensional Matrix Manipulation and Color Image

Processing

! The next challenge is to apply this theory to color, or multi-

dimensional, images. This is essential, since most digital images used in

the modern world are not grayscale, but usually operate in either the RGB

or YCbCr colorspaces. Both these colorspaces are 3-dimensional, but

other multi-dimensional colorspaces exist, such as CMYK. For the sake of

simplicity, we will focus on the more common RGB colorspace in this

section.

! There are multiple ways to approach the issue of noise reduction in

color images. One method a.) suggests that we convert the color image

to YCbCr color space, apply the algorithms to the Y, or luminance, channel

and then recompose the image. Another similar method b.) suggests

applying the algorithms to the B channel of an RGB image, since most

digital noise is found in the blue channel anyway. A third method c.)

suggests that we apply the algorithm to all three channels independently

and upon completion recompose the image. Method a.) is efficient, since it

only applies the algorithm to one channel, and fairly thorough, since a lot

21

of noise is often found in the Y channel, but it only accounts for luminance

noise and does not account for color noise, which is a common problem in

low light image capture. Method b.) is also efficient, since it only applies

the algorithm to one channel, and takes care of some luminance and color

noise, but does not consider any noise in the red or green channels.

Method c.) is the most thorough and will solve both luminance and color

noise problems, but isnʼt efficient as it requires many extra iterations. A

fourth method may then be proposed; this method will apply the algorithm

to all three channels, to account for both luminance and color noise, but

will allow all three layers to work dependently upon each other, rather than

independently. This will ensure that each layer only have the minimal

amount of noise reduction applied to it and maximize results. It is still

unclear how to properly approach this method, but this is a future research

point.

! For all methods, we will first redefine our input image u as

u :=
u1
u2
u3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

where uk ∈
MN for k = 1,2,3 and u1,u2 ,u3() represent the RGB channels

respectively. The algorithm will run in parallel on the three separate

channels, but our total variation will be redefined as one term for simplicity.

22

(32)

 This may apply to both ATV and ITV. Our new definition of the ATV will be

u CATV := Bu1 1 + Bu2 1 + Bu3 1

where u ∈3MN . This new definition of the ATV applies the 2-dimensional

ATV to each channel of the color image. This method when applied to the

ITV appears as

u CITV :=

(Bu1)p
Bu1()MN + p

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2
p=1

MN

∑ +
(Bu2)p
Bu2()MN + p

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2
p=1

MN

∑ +
(Bu3)p
Bu3()MN + p

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2
p=1

MN

∑

where u ∈3MN . The same theory applies to the ITV as it did the ATV, we

just now consider a different type of total variation. From (33), the

definition of the color ATV proximity operator is

ϕ z() := µ z1 1 + µ z2 1 + µ z3 1

where z ∈3MN and µ > 0 . The definition for the ITV proximity operator is

then

ϕ(z) :=

µ
(z1)p
z1()MN + p

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2
p=1

MN

∑ + µ
(z2)p
z2()MN + p

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2
p=1

MN

∑ + µ
(z3)p
z3()MN + p

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2
p=1

MN

∑

where z ∈3MN and µ > 0 .

23

(33)

(34)

(35)

(36)

! The next step is to apply this knowledge to an algorithm. One way

to approach this is mentioned above as “Method C”. This would run the

algorithm proposed by [3] Micchelli-Shen-Xu on all three channels in

parallel, independently. The algorithm would then be

Given: Noisy Image x ; λ > 0;µ > 0

Initialization: υ 0 = 0
For n = 0,1,2,...

!

υ1
n+1 ← I − prox µ

λ
i 1

⎛

⎝⎜
⎞

⎠⎟
Bx1 + I − λBBt()υ1n()

υ2
n+1 ← I − prox µ

λ
i 1

⎛

⎝⎜
⎞

⎠⎟
Bx2 + I − λBBt()υ2n()

υ3
n+1 ← I − prox µ

λ
i 1

⎛

⎝⎜
⎞

⎠⎟
Bx3 + I − λBBt()υ3n()

End

Write the output of υ n =

υ1
n

υ2
n

υ3
n

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

 from the above loop as

υ∞ =

υ1
∞

υ2
∞

υ3
∞

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

 and compute

proxϕ Bx =
x1 − λBtυ1

∞

x2 − λBtυ2
∞

x3 − λBtυ3
∞

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

This algorithm could also be applied to the ITV. The ITV proximity operator

would just have to be switched in for the current ATV proximity operator.

24

(37)

10. Experiments and Outcomes

! This section will show some experimental outcomes of different

algorithms discussed in this paper. The algorithms will be applied to the

following noisy image:

For every experimental outcome we will also show a detailed shot to

examine the pixel structure and noise reduction more thoroughly.

25

One-Dimensional Algorithm Applied to the Luminosity Channel in YCbCr

with ATV

µ = 0.05

26

One-Dimensional Algorithm Applied to the Luminosity Channel in YCbCr

with ITV

µ = 0.05

27

Three-Dimensional Algorithm Applied to un-linked RGB channels with ATV

µ = 0.05

28

Three-Dimensional Algorithm Applied to un-linked RGB channels with ITV

µ = 0.05

29

11. Conclusion and Further Research

! After experimentation on color image processing, it appears that

applying ATV and ITV algorithms introduced by Micchelli-Shen-Xu [3] in

the one-dimensional case to the luminosity channel of YCbCr colorspace

is a quick and efficient way to reduce noise in an image and may remain

one of the best algorithms tested. Although this algorithm strictly focuses

on luminosity noise and therefore does not clean up color noise, it

converges quickly, leaves sharp edges, and generally produces desirable

results.

! Applying the algorithms to each color channel independently

produces sharp edges and solves for both luminosity and color noise, but

converges much more slowly than the one-dimensional algorithm applied

to the luminosity layer. It seems that if time is no issue this is the approach

to take, but for quick color image noise reduction results, one should use

the one-dimensional luminosity channel algorithm.

! For future research I would like to develop an algorithm which

allows quick convergence three-dimensional color image noise reduction

using a three-dimensional proximity operator.

30

12. Appendix

12.1 Standard Fixed Point Algorithm with ATV in MATLAB

function [CLNImg] = ImgDenoise_FPPO(Img, mu, beta)
%Denoising Program
%Theory by Lixin Shen, Yuesheng Xu, and Charles A. Micchelli
%Implementation by Aaron Katchen

%Fixed Point Algorithm Based on the Proximity Operator with ATV
(FP^20-ATV)

%---

%Setup

%Initialize count
count = 1;

%initialize argmin variable
argmin = 1;

%Determine information about noisy image
%Read Image and convert to double
temp_X = imread(Img);

%Determine if image is color
color = isrgb(temp_X);

%if color image convert to YCbCr and strip Y channel
%otherwise just run as normal
if (color == 1);

 temp_X = rgb2ycbcr(temp_X);
 X = temp_X(:, :, 1);

else

 X = temp_X;

end

X = im2double(X);

%Determine size of image
[M, N] = size(X);

%create and initialize v matrix
V = zeros(2*M,N);

%determine lambda
lambda = 1/4*(sin((N-1)*pi/(2*N)))^(-2);

%determine alpha
alpha = mu / lambda;

31

%---

%determine x and y differentials
BX = YXGradient(X);

%---

%Initialize BtV
BtV = zeros(M,N);

%Initialize BBtV
BBtV = zeros(2*M, N);

%---

%loop fixed point algorithm
while argmin>beta;

 %count
 count = count + 1

 %if there are more than 20 iterations, stop the code
 if count>20;
 break;
 end

 %Store old BtV for relative error calc
 BtV_Prev = BtV;

 %Calculate gamma
 gamma = BX + V - lambda * BBtV;

 %Calculate new V
 V = gamma - L1ProxOp(gamma, alpha);

 %Determine new B' of v
 BtV=CalcAdjoint(V);

 %Determine new BBtV
 BBtV=YXGradient(BtV);

 %Determine Relative Error
 argmin = norm((X - lambda * BtV) - (X - lambda * BtV_Prev)) /
norm((X - lambda * BtV));

end

%---

%Set Output image and convert to uint8
CLNDoubleImg = X - lambda * BtV;

if (color == 1);

 temp_X(:, :, 1) = im2uint8(CLNDoubleImg);
 CLNImg = ycbcr2rgb(temp_X);

32

else

 CLNImg = mat2gray(CLNDoubleImg);

end

end

12.2 Standard Fixed Point Algorithm with ITV in MATLAB

function [CLNImg] = ImgDenoise_FPPO_ITV(Img, mu, beta)
%Denoising Program
%Theory by Lixin Shen, Yuesheng Xu, and Charles A. Micchelli
%Implementation by Aaron Katchen

%Fixed Point Algorithm Based on the Proximity Operator with ITV
(FP^20-ITV)

%---

%Setup

%initialize count
count = 1;

%initialize argmin variable
argmin = 1;

%Determine information about noisy image
%Read Image and convert to double
temp_X = imread(Img);

%Determine if image is color
color = isrgb(temp_X);

%if color image convert to YCbCr and strip Y channel
%otherwise just run as normal
if (color == 1);

 temp_X = rgb2ycbcr(temp_X);
 X = temp_X(:, :, 1);

else

 X = temp_X;

end

X = im2double(X);

%Determine size of image
[M, N] = size(X);

%create and initialize v matrix
V = zeros(2*M,N);

%determine lambda

33

lambda = 1/4*(sin((N-1)*pi/(2*N)))^(-2);

%determine alpha
alpha = mu / lambda;

%---

%determine x and y differentials
BX = YXGradient(X);

%---

%Initialize BtV
BtV = zeros(M,N);

%Initialize BBtV
BBtV = zeros(2*M, N);

%---

%loop fixed point algorithm
while argmin>beta;

 %count
 count = count + 1

 %if there are more than 20 iterations, stop the code
 if count>20;
 break;
 end

 %Store old BtV for relative error calc
 BtV_Prev = BtV;

 %Calculate gamma
 gamma = BX + V - lambda * BBtV;

 %Calculate new V
 V = gamma - L2ProxOp(gamma, alpha);

 %Determine new B' of v
 BtV=CalcAdjoint(V);

 %Determine new BBtV
 BBtV=YXGradient(BtV);

 %Determine Relative Error
 argmin = norm((X - lambda * BtV) - (X - lambda * BtV_Prev)) /
norm((X - lambda * BtV));

end

%---

%Set Output image and convert to uint8
CLNDoubleImg = X - lambda * BtV;

34

if (color == 1);

 temp_X(:, :, 1) = im2uint8(CLNDoubleImg);
 CLNImg = ycbcr2rgb(temp_X);

else

 CLNImg = mat2gray(CLNDoubleImg);

end

end

12.3 Multi-Dimensional Fixed Point Algorithm with ATV in MATLAB

function [CLNImg] = MultiD_ImgDenoise_FPPO_ITV(Img, mu, beta)
%Denoising Program
%Theory by Lixin Shen, Yuesheng Xu, and Charles A. Micchelli
%Implementation by Aaron Katchen

%Fixed Point Algorithm Based on the Proximity Operator with ITV
(FP^20-ITV)
%For the multi-dimensional case

%---

%Setup

%initialize count
count = 1;

%initialize argmin variable
argmin = 1;

%Determine information about noisy image
%Read Image and convert to double
temp_X = imread(Img);

%separate the R, G, and B channels and convert to double

r = temp_X(:, :, 1);
g = temp_X(:, :, 2);
b = temp_X(:, :, 3);

r = im2double(r);
g = im2double(g);
b = im2double(b);

%Determine size of image
[M, N] = size(r);

%create and initialize v matrices
Vr = zeros(2*M, N);
Vg = zeros(2*M, N);
Vb = zeros(2*M, N);

%determine lambda
lambda = 1/4*(sin((N-1)*pi/(2*N)))^(-2);

35

%determine alpha
alpha = mu / lambda;

%---

%determine x and y differentials
Br = YXGradient(r);
Bg = YXGradient(g);
Bb = YXGradient(b);

%---

%Initialize BtV
BtVr = zeros(M,N);
BtVg = zeros(M,N);
BtVb = zeros(M,N);

%Initialize BBtV
BBtVr = zeros(2*M, N);
BBtVg = zeros(2*M, N);
BBtVb = zeros(2*M, N);

%Initialize Terms for Error Calculation
Curr_Term = zeros(M,N,3);
Prev_Term = zeros(M,N,3);

%Initialize Clean Double Image Out
CLNDoubleImg = zeros(M,N,3);

%---

%loop fixed point algorithm
while argmin>beta;

 %count
 count = count + 1

 %if there are more than 10 iterations, stop the code
 if count>10;
 break;
 end

 %Store old BtV for relative error calc
 BtVr_Prev = BtVr;
 BtVg_Prev = BtVg;
 BtVb_Prev = BtVb;

 %Calculate gamma
 gamma_r = Br + Vr - lambda * BBtVr;
 gamma_g = Bg + Vg - lambda * BBtVg;
 gamma_b = Bb + Vb - lambda * BBtVb;

 %Calculate individual proximity operators
 ProxOp_r = L1ProxOp(gamma_r, alpha);
 ProxOp_g = L1ProxOp(gamma_g, alpha);
 ProxOp_b = L1ProxOp(gamma_b, alpha);

36

 %Calculate new V
 Vr = gamma_r - ProxOp_r;
 Vg = gamma_g - ProxOp_g;
 Vb = gamma_b - ProxOp_b;

 %Determine new B' of v
 BtVr = CalcAdjoint(Vr);
 BtVg = CalcAdjoint(Vg);
 BtVb = CalcAdjoint(Vb);

 %Determine new BBtV
 BBtVr = YXGradient(BtVr);
 BBtVg = YXGradient(BtVg);
 BBtVb = YXGradient(BtVb);

 %Calc Error terms
 Curr_Term(:,:,1) = r - lambda * BtVr;
 Curr_Term(:,:,2) = g - lambda * BtVg;
 Curr_Term(:,:,3) = b - lambda * BtVb;

 Prev_Term(:,:,1) = r - lambda * BtVr_Prev;
 Prev_Term(:,:,2) = g - lambda * BtVg_Prev;
 Prev_Term(:,:,3) = b - lambda * BtVb_Prev;

 %Determine Relative Errors
 argmin_r = norm(Curr_Term(:, :, 1) - Prev_Term(:, :, 1)) /
norm(Curr_Term(:, :, 1));
 argmin_g = norm(Curr_Term(:, :, 2) - Prev_Term(:, :, 2)) /
norm(Curr_Term(:, :, 2));
 argmin_b = norm(Curr_Term(:, :, 3) - Prev_Term(:, :, 3)) /
norm(Curr_Term(:, :, 3));

 %take infinity norm of argmins
 argmin = norm([argmin_r; argmin_g; argmin_b], inf);

end

%---

%Set Ouput image and convert to uint8
CLNDoubleImg(:,:,1) = r - lambda * BtVr;
CLNDoubleImg(:,:,2) = g - lambda * BtVg;
CLNDoubleImg(:,:,3) = b - lambda * BtVb;

CLNImg = im2uint8(CLNDoubleImg);

end

12.4 Multi-Dimensional Fixed Point Algorithm with ITV in MATLAB

function [CLNImg] = MultiD_ImgDenoise_FPPO_ITV(Img, mu, beta)
%Denoising Program
%Theory by Lixin Shen, Yuesheng Xu, and Charles A. Micchelli
%Implementation by Aaron Katchen

%Fixed Point Algorithm Based on the Proximity Operator with ITV
(FP^20-ITV)
%For the multi-dimensional case

37

%---

%Setup

%initialize count
count = 1;

%initialize argmin variable
argmin = 1;

%Determine information about noisy image
%Read Image and convert to double
temp_X = imread(Img);

%separate the R, G, and B channels and convert to double

r = temp_X(:, :, 1);
g = temp_X(:, :, 2);
b = temp_X(:, :, 3);

r = im2double(r);
g = im2double(g);
b = im2double(b);

%Determine size of image
[M, N] = size(r);

%create and initialize v matrices
Vr = zeros(2*M, N);
Vg = zeros(2*M, N);
Vb = zeros(2*M, N);

%determine lambda
lambda = 1/4*(sin((N-1)*pi/(2*N)))^(-2);

%determine alpha
alpha = mu / lambda;

%---

%determine x and y differentials
Br = YXGradient(r);
Bg = YXGradient(g);
Bb = YXGradient(b);

%---

%Initialize BtV
BtVr = zeros(M,N);
BtVg = zeros(M,N);
BtVb = zeros(M,N);

%Initialize BBtV
BBtVr = zeros(2*M, N);
BBtVg = zeros(2*M, N);
BBtVb = zeros(2*M, N);

38

%Initialize Terms for Error Calculation
Curr_Term = zeros(M,N,3);
Prev_Term = zeros(M,N,3);

%Initialize Clean Double Image Out
CLNDoubleImg = zeros(M,N,3);

%---

%loop fixed point algorithm
while argmin>beta;

 %count
 count = count + 1

 %if there are more than 10 iterations, stop the code
 if count>10;
 break;
 end

 %Store old BtV for relative error calc
 BtVr_Prev = BtVr;
 BtVg_Prev = BtVg;
 BtVb_Prev = BtVb;

 %Calculate gamma
 gamma_r = Br + Vr - lambda * BBtVr;
 gamma_g = Bg + Vg - lambda * BBtVg;
 gamma_b = Bb + Vb - lambda * BBtVb;

 %Calculate individual proximity operators
 ProxOp_r = L2ProxOp(gamma_r, alpha);
 ProxOp_g = L2ProxOp(gamma_g, alpha);
 ProxOp_b = L2ProxOp(gamma_b, alpha);

 %Calculate new V
 Vr = gamma_r - ProxOp_r;
 Vg = gamma_g - ProxOp_g;
 Vb = gamma_b - ProxOp_b;

 %Determine new B' of v
 BtVr = CalcAdjoint(Vr);
 BtVg = CalcAdjoint(Vg);
 BtVb = CalcAdjoint(Vb);

 %Determine new BBtV
 BBtVr = YXGradient(BtVr);
 BBtVg = YXGradient(BtVg);
 BBtVb = YXGradient(BtVb);

 %Calc Error terms
 Curr_Term(:,:,1) = r - lambda * BtVr;
 Curr_Term(:,:,2) = g - lambda * BtVg;
 Curr_Term(:,:,3) = b - lambda * BtVb;

 Prev_Term(:,:,1) = r - lambda * BtVr_Prev;
 Prev_Term(:,:,2) = g - lambda * BtVg_Prev;
 Prev_Term(:,:,3) = b - lambda * BtVb_Prev;

39

 %Determine Relative Errors
 argmin_r = norm(Curr_Term(:, :, 1) - Prev_Term(:, :, 1)) /
norm(Curr_Term(:, :, 1));
 argmin_g = norm(Curr_Term(:, :, 2) - Prev_Term(:, :, 2)) /
norm(Curr_Term(:, :, 2));
 argmin_b = norm(Curr_Term(:, :, 3) - Prev_Term(:, :, 3)) /
norm(Curr_Term(:, :, 3));

 %take infinity norm of argmins
 argmin = norm([argmin_r; argmin_g; argmin_b], inf);

end

%---

%Set Output image and convert to uint8
CLNDoubleImg(:,:,1) = r - lambda * BtVr;
CLNDoubleImg(:,:,2) = g - lambda * BtVg;
CLNDoubleImg(:,:,3) = b - lambda * BtVb;

CLNImg = im2uint8(CLNDoubleImg);

end

12.5 ATV Proximity Operator

function [Y] = L1ProxOp(X, alpha)
%Calculate the L1 Proximity Operator of input matrix X
% Calculate the Proximity Operater of Input Matrix X

%---

Y=max(abs(X)-alpha,0).*sign(X);

12.6 ITV Proximity Operator

function [Y] = L2ProxOp(X, alpha)
%Calculate the L2 Proximity Operator of input matrix X
% Calculate the Proximity Operator of Input Matrix X

%---
%determine size of X
[F, N] = size(X);

%Set M equal to half the size of X's rows
M = F / 2;

%initialize X2
X2=zeros(F,N);

%take the norm of corresponding pixels
for i=1:M;
 for j=1:N;
 X2(i,j)=norm([X(i,j); X(i+M,j)]);
 end
end

40

%copy top part of X2 to bottom part
X2(M+1:F, :)=X2(1:M, :);

%create index of where zeros are in X2 to avoid division by zero
Index = (X2 == 0);

%create Denominator Matrix Term
Denom = (1 - Index) .* X2 + Index * (10e-10);

%Calculate ProxOp and set Output
Y = max(X2-alpha,0) .* (X ./ Denom);

12.7 Adjoint Calculator

function [Y] = CalcAdjoint(X)
%This function calculates the adjoint of input matrix X
%Input argument is of size 2M x N
%Output argument is of size M x N

%---

%Determine amount of columns in X
[F, N] = size(X);

M = F/2;

%---

%split X into two matrices
X1 = X(1:M, :);
X2 = X((M+1):2*M, :);

%---

%Calculate Y1 and Y2

%initialize Y1 and Y2 matrices
Y1 = zeros(M, N);
Y2 = zeros(M, N);

%setup the rows of Y1 and the columns of Y2
Y1(M,:) = X1(M-1,:);
Y2(:,N) = X2(:,N-1);

Y1(1, :) = -X1(1,:);
Y2(:, 1) = -X2(:,1);

Y1(2:(M-1),:) = X1(1:(M-2),:) - X1(2:(M-1),:);
Y2(:,2:(N-1)) = X2(:,1:(N-2)) - X2(:,2:(N-1));

Y = Y1 + Y2;

12.8 Gradient Calculator

function [Matrix_Out] = YXGradient(Matrix_In)

41

%This function takes in an argument of Matrix_In Size N x N and
outputs
%a gradient of size 2N x N with the first N x N elements
representing the
%Y gradient and the second N x N elements representing the X
gradient

%---

%Determine size of Matrix_In
[M, N] = size(Matrix_In);

%---

%Determine X Differential
diffx=[diff(Matrix_In, 1, 2) zeros(M,1)];

%---

%determine y differential
diffy=[diff(Matrix_In, 1, 1); zeros(1, N)];
%---

%restructure into output matrix
Matrix_Out = [diffy; diffx];

end

42

13. References

[1] P. Blomgren and T. Chan, “Color TV: Total Variation methods for
restoration of vector valued images,” IEEE Transactions on Image
Processing, Vol. 7, No. 3, pp. 304-309, Mar. 1998.

[2] A. Chambolle, “An Algorithm for Total Variation Minimization and
Applications,” Journal of Mathematical Imaging and Vision 20, pp.
89-97, 2004.

[3] C. A. Micchelli, L. Shen, and Y. Xu, “Proximity Algorithms for Image
Models: Denoising,” 27 (2011) 045009 (30 pp).

[4] S. G. Nash and A. Sofer, Linear and Nonlinear Programming, McGraw-
Hill, 1996.

[5] M. A. Pinsky, Partial Differential Equations and Boundary-Value
Problems with Applications, Waveland Press, Inc., 1998.

43

Summary

! Efficient noise reduction algorithms for digital image processing

have been sought after for as long as digital imaging has existed. The

problem lies in digital image sensors, whether that be a point and shoot

digital camera, an MRI machine, or satellite imaging equipment, all digital

image capture devices must approximate any information which it

receives. When a lot of information is available, say a bright sunny day

when a lot of light would flood the image sensor, the capture device is

much less likely to create noise, however if information is scarce, say a

photo outdoors at night, the device must make its best approximation as to

what the missing information should look like; this is comparable to grainy

photos in the days of film. Although digital image sensors have improved

drastically over the years, there still remains a need for noise reduction

algorithms to clean up any remaining noise in certain applications; for

instance, it may be crucial to reduce the noise in an MRI image to obtain a

clear image for patient diagnosis.

! This paper discusses how efficient and effective noise reduction

may be achieved through the use of mathematic numerical analysis.

Numerical analysis is a branch of applied mathematics which uses

computers and algorithms to solve problems. Often, real world problems

are not explicitly defined functions, meaning there is usually not only one

independent variable, and this can create problems when trying to solve

44

these problems outright. Mathematicians may then employ the power of

numerical analysis.

! Numerical analysis, first developed in ancient Babylonia, is a form

of mathematics used to find approximations of solutions as often the exact

solution may be impossible to solve for. Instead of attempting to solve

directly for a problem, mathematicians instead create algorithms which

approximate the solution within a given tolerance. These algorithms tend

to work in an educated ʻguess and checkʼ methodology. Often, the

algorithms will ʻcheckʼ to see if they are within a given tolerance to the

answer, if theyʼre not, they will make a calculated ʻguessʼ as to what the

answer may be based on the previous ʻguessʼ. Once this new ʻguessʼ is

checked the process either stops if it is within the tolerance or continues

until it is. Occasionally, the algorithm may not ʻconvergeʼ. This means that

the algorithm is stuck in an infinite loop and will never find the

approximated answer. It is thus important for mathematicians to create

algorithms which guarantee convergence as well as converge in an

efficient and timely manner. Luckily, due to the modern age and super

computers, efficiency is less of an issue than it used to be, as computers

can run much more quickly than they used to, but nonetheless it is still a

top priority of mathematicians to create efficient algorithms.

! The algorithms discussed in the paper are either algorithms created

by [3] Micchelli-Shen-Xu or extensions thereof. These algorithms are

concerned with reducing the noise in both grayscale (black and white) as

45

well as color (red, blue, green) images. The basic grayscale algorithm

works by first analyzing the image. When first analyzing the image, the

algorithm calculates the luminosity (brightness) differences between each

pixel. The algorithm does this to find what may be noisy pixels. For

instance, if the image only sees very small changes in luminosity between

pixels, we can assume this to be a smooth area of the image, with no

sharp edges or noise; if the image sees a large change in luminosity

between pixels then we have either discovered a sharp edge or a noisy

pixel. By comparing the results with pixels around it, the algorithm can

determine if that is likely an edge or a noisy pixel; if itʼs an edge, then all

the other pixels along that edge would likely experience a similar change,

if itʼs a noisy pixel then itʼs likely that that large change would only be

experienced by the sole pixel under analysis. If the pixel is indeed

considered to be noisy, the algorithm attempts to select a new, less noisy,

value for the pixel based on the surrounding pixel values. This algorithm

should ensure optimal noise reduction while retaining sharp edges.

! The original algorithm, proposed by Micchelli-Shen-Xu [3], is then

slightly modified to apply to color images. The paper discusses a few

different ways this may be achieved. First, it should be understood that all

color images can be broken apart into different colorspaces, or primary

components. We are often taught that red, yellow, and blue are the

primary colors, but that is just in one specific color model. Color may also

be broken into cyan, magenta, yellow, and black (CMYK); red, green, and

46

blue (RGB) which is how the human eye and computer monitors interpret

color; luminosity, red-difference chroma, and blue-difference chroma

(YCbCr) often used in video; and so forth. The paper deals primarily with

RGB and YCbCr colorspaces as these are usually the only colorspaces

used in digital imaging. One algorithm applies the basic grayscale

algorithm to the luminosity channel of a YCbCr image while another

algorithm applies the basic grayscale algorithm to each channel of the

RGB colorspace individually. Both algorithms provide acceptable, though

slightly different, results.

! The algorithms were implemented using MATLAB script and

experiments were ran to test their effectiveness. The algorithms and

experimental outcomes may be found toward the end of paper in sections

12 and 10 respectively.

!

47

	Color Image Noise Reduction with the Total Variation Model and Proximity Operators
	Recommended Citation

	Title_Page_1
	Abstract_2
	TOC_3
	Acknowledgement_4
	Body_5
	Summary_6

