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ABSTRACT 

Electromagnetic coupling between a sphere and a semi-infinite substrate, and among several 

spheres present in the form of a composite were studied in this dissertation. Specifically, spheres 

made of noble metals such as Ag, Au and Cu and relatively high refractive index substrates and 

composite matrices. Such interactions need to be studied in order to understand and be able to 

design better devices such as plasmonic light devices as well as composites and fluids that have 

suspended plasmonic nanoparticles that have recently been shown to be technologically relevant 

in the context of device processing technologies and fluidic devices. For a sphere present near a 

relatively high refractive index substrate, coupling effects were found to significantly change the 

value of the induced electric dipole moment. It was found that the radiated power had a very strong 

dependence on the distance between the sphere and the substrate as well as the polarization and 

the angle of the incident plane wave. The wavelength dependence was also found to change 

significantly allowing access to regions of relatively larger values of the wavelength for the same 

material system and incident field as well as wavelength selective amplification of the response. 

The linear response of plasmonic composites was studied using an effective medium 

approximation. The effective permittivity was calculated using an effective medium model that 

was sensitive to a random composite’s radial distribution function. The effect of the size of the 

monodisperse spheres, their volume fraction and material constituents were studied. A strong 

dependence on the microstructure was found for composites made of a relatively large refractive 

index matrix. 
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1 INTRODUCTION 

 

1.1 INTRODUCTION 

Metals such as Al, Ag, Au and Cu have a relatively high conduction electron concentration 

that renders them good conductors of electricity even at frequencies that lie in the optical range 

(O(1014) Hz). The electrons in such materials can be, typically, modeled as a gas, i.e., electron-

electron correlations can be neglected [1]. The metal can be seen as plasma of positive ions and 

negative electrons. Nanoparticles of such metals can sustain a localized plasma resonance that, in 

some sense, results from a damped harmonic oscillator system made of electrons (mass), nuclear 

binding (harmonic force) and finite conductivity (damping). The metals’ electric permittivity D  

can be modeled with the Drude model as follows [1]. 

 .1
2

2

C

P
D

i





  (1.1) 

Here, ω is the angular frequency of incident radiation, P  is the plasma frequency of the metal and 

C  is the collision frequency that corresponds to resistive damping. The real part ]Re[ D  is a 

negative number for frequencies larger than the plasma frequency and the imaginary part ][Im D  is 

a positive in that range. For the metals considered here, this is valid for the ultraviolet-visible-near-

infrared region of the electromagnetic spectrum. The electric polarizability per unit volume of a 

nanosphere of such a material that is small compared to the wavelength of incident radiation 

(rigorously, 






 2
,0 **

m

p
kak   and a is the sphere radius [2]) is given by 
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
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where, p  is the permittivity of the material and m  is the permittivity of the embedding 

medium. A resonance can be seen in the   vs.   curve for Ag, Au and Cu nanospheres. Their 

permittivities are shown in Fig.1 and the calculated values of   are shown in Fig. 2. Ag has the 

least ][Im p  and consequently the most prominent values of  . Medium permittivity was 

assumed to be 7m  so that the resonance peak of ][Im   occurs approximately in the middle of 

the visible spectrum at 600 nm. Transparent high refractive index materials such as TiO2, 

ZnO, Si3N4, etc. have similar values of real permittivity. 
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Figure 1.1: Permittivity p  for various optical conductivity metals Ag, Au and Cu. Ag has the least 

imaginary permittivity over a broad range of wavelengths. Permittivity data was taken from an 

online resource [3]. 
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Figure 1.2:  for Ag spheres in a  medium. Resonance occurs for  nm and 

.  is a small number away from resonance and  changes sign from negative 

to positive on moving from blue to red regions about resonance. 

 

Electric field localization occurs at the poles outside a resonant sphere. A dipole resonance 

would lead to localization at the north and south poles for example. Inside, however, there is a 

uniform high energy density since the electric field inside small spheres is a constant vector as 

shown in Ref. [2]. The localized internal energy can be stored and/or transported. A ‘plasmon’ can 

store a quantum of energy for a period of time that is dependent on its plasmon decay time scale 

.2T  For Ag and Au nanoparticles, )1(2 OT  fs [4]. The energy can be released as radiation or heat 

depending on the experimental condition. Under steady state or for system time scales that are 

much larger than the plasmon lifetime, the energy transfer can be seen as a continuous process 

where there is no accumulation. Hence, a fraction of incident radiant energy can be dissipated as 

heat and the rest can be radiated away in a way that depends on the surrounding geometry. The 

 7m 600

i23 )( )(
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generated heat can be utilized for various applications where photo-thermal heating is required 

(see, for e.g. Ref. [5]). The radiatively dissipated energy can also be channelized into objects near 

such a nanoparticle. This is particularly interesting because the coupling of light that can be 

achieved through plasmonic nanostructures defies ray-optics and requires one to solve Maxwell-

equations in the “near-field” region of a source. In other words, the so-called “Near-field” optics 

or nano-optics based approaches become necessary. Another feature of nano-optics worth noting 

is that the involved length scales are generally much smaller than the wavelength of the involved 

light. One popular application is wave-guiding of light into solar energy harvesting devices such 

as a solar cell [6-8]. The inverse situation that involves light generation through Light Emitting 

Diodes etc. can also benefit from this kind of radiative coupling. As a consequence, solar cells can 

generate more current, and LEDs can radiate more light [9] etc. These applications, in principle, 

only need a single nanostructure to interact with the device. Recently, field-coupled plasmon 

resonance or radiant excitation of two or more plasmonic nanostructures that are close to each 

other has become important due to special lineshapes of their optical spectra that resemble Fano 

resonance [2, 10-12]. Moreover, several basic questions related to the linear optical response of a 

bulk composite of plasmonic nanoparticles are also of interest. These include modeling approaches 

based on effective medium theories [13]. The models are not only important to just study the 

interesting optical response of plasmonic composites but also as a prediction, design and 

measurement device for application of such composites as optical filters, reflectors, scatterers and 

reconfigurable opto-fluids [14, 15]. 

In this work, the optical properties of coupled plasmonic structures will be investigated 

using theoretical and numerical analysis. In particular, (1) noble metal nanoparticulate coatings on 

dielectric substrates and (2) composites of such nanoparticles embedded in a dielectric matrix. The 
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dissertation contains six chapters. Mathematical aspects of electromagnetic coupling are described 

in some detail in Chap. 2, Chap. 3 contains information about the permittivity of several relevant 

materials. Chap. 4 contains the work related to (1), Chap. 5 contains the theoretical framework, 

results and discussion related to (2). Conclusions are offered in Chap. 6.  
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2 ELECTROMAGNETIC INTERACTIONS 

 

2.1 INTRODUCTION 

Dielectric objects interact directly with an optical frequency electromagnetic field by 

becoming polarized. The resulting perturbed field can have very interesting properties that may 

result in the development of several potential applications besides just being non-trivial. In this 

section, the mathematical and numerical methods, and involved approximations that are 

applicable for electromagnetic interactions between dielectric objects and an applied field will be 

discussed. The problem of interest involves non-magnetic spheres and semi-infinite slabs subject 

to an externally applied optical electromagnetic field. 

 

2.1.1 Maxwell equations and plane waves 

Maxwell equations relate the electric field E, the electric displacement field D, the 

magnetic field H and the magnetic induction field B to charge and current sources. They 

represent existing phenomenological laws such as the Gauss’ law, Faraday’s law and Ampere’s 

law. The equations are given below. 

 ,f

ii D   (2.1a) 

 ,0 ii B  (2.1b) 

 ,itkjijk BE   (2.1c) 
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and 

 .f

iitkjijk JDH   (2.1d) 

The fields D and B, respectively, result upon the application of E and H. In an isotropic and local 

medium, i.e., a medium in which the applied field and its result are only related at specific point 

in space but can depend on values in the past, the material constants are called electric permittivity 

ε and magnetic permeability μ. This ε is not the same as the one in the Levi-Cevita symbol εijk. The 

magnetic response is assumed to be the same as that of vacuum for the purpose of this work. It is 

a good approximation for optical frequencies in case of the materials of interest since their 

magnetic permittivity is very close to that of vacuum in the optical wavelength range. The fields 

are interrelated through the following constitutive relationships:  

 ,)()()(  dEttD

t

ii 


  (2.2a) 

and 

 .0 ii HB   (2.2b) 

The subscript ‘0’ denotes vacuum. Eq 2.2a for D can be Fourier transformed to give the following 

linear relationship between the corresponding Fourier amplitudes:  

 ).()()(  ii ED   (2.3) 

In Eq 2.1a, the quantity ρf  is the free charge density. It does not have a magnetic dual 

because there are no real magnetic monopoles or sources. The quantity Jf is known as the free 
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current density. It can be made to have a magnetic dual Mf
  that can appear on the right-hand side 

of curl of E equation (Eq. 2.1c). Since the interest is only in situations where the magnetic response 

is that of vacuum and there are no free surface charges or currents present, the source terms are 

disregarded from the very beginning of the current analyses. The curl equations contain time 

derivatives—for which we will assume, without loss of generality, that all the fields F (= E, H, D 

or B) can be represented as function of the position r and time t. For a given angular frequency ω, 

it is given by: 

 ).exp()(),( tiFtF jj  rr  (2.4) 

Under the time-harmonic assumption, one can eliminate the time derivatives in Eqs. 2.1c and d to 

give the following set of curl equations: 

 ,0 jlkjkl HiE    (2.5a) 

and 

 .jlkjkl EiH    (2.5b) 

They can be further simplified by eliminating H in the following way: first, a curl operation can 

be performed on Eq. 2.5a to give lkjklnmlmnkjkl HiE 0  , followed by substitution of Eq. 

2.5b in it to give jnmlmnkjkl EE  0

2 . Using the identity )( kmjnknjmlmnjkl    along 

with the fact that in a source free medium 0 ii E , the following equation can be derived: 

0][ 0

2  ijj E . The wave number can be defined as  0

22 k  and the following wave 

equation can be derived: 
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 .0][ 2  ijj Ek  (2.6) 

It can be shown that Eq. 2.6 is valid for both E and H. Its solution in Cartesian co-ordinates will 

be briefly discussed here onward. Consider the following general solution: 

 ).exp(0

mmjj xikEE   (2.7) 

Here, k can be in any direction relative to E0. Even though it is required that ii E  equal zero for 

the derivation of Eq. 2.6, the condition needs to be re-applied to the general solution. Upon 

application, 0)exp()exp()( 00  mjmmmjmmjjjj xikxikExikEE , which simplifies to give the 

following relationship between E0 and k: 

 .00 ii kE  (2.8) 

At this point, it is not known which one of E0 and k is to be fixed. It can be shown that k is the 

one that needs to be fixed using the following argument. 

In order for the solution to be called a plane wave of radiation, it needs to carry 

radiation in a specific direction—the direction along which the energy is 

transported. The solution should be consistent with the concept of radiation: it 

must emanate from a source and move away from it. Such a condition cannot be 

imposed on the electric field. So, k needs to be that direction since there are only 

two characteristic directions. 

A relationship between the amplitudes of the H and E wave solutions can be further derived by 

substituting Eq. 2.7 into Eq. 2.5a to evaluate jH to be given by ).exp(
0

0

nn

mljlm

j xik
Ek

H



  The 
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amplitudes of the two fields can be related by a comparison with Eq. 2.7 to give the following 

expression: 

 .
1 0

0

0

ljijli EkH 


  (2.9) 

Similar to Eq. 2.9, it can also be shown that 00 ii kH and from it, it can be further inferred that 

000 ii HE  for such plane waves. 

 

2.1.2 Boundary conditions 

The boundary conditions for E and H can be derived from the Maxwell equations given 

in Eqs. 2.1. Using the divergence equations, one can show that for a a very small box whose two 

parallel sides are parallel to a boundary separating regions 1 and 2, the divergence theorem 

necessitates that 

 
21 iiii nDnD   (2.10a) 

and 

 
21 iiii nBnB   (2.10b) 

when the boundary contains no free charge. The curl equations, in conjunction with the Stokes’ 

theorem, can lead to the boundary condition for the tangential components of the fields. For a 

boundary that separates regions 1 and 2 and contains no free current sources, one can show that 

 
21

ˆˆ nEnE   (2.11a) 
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and 

 .ˆˆ
21

nHnH   (2.11b) 

Here, n̂  represents the unit normal that is ascribed based on a consistent convention. 

 

2.1.3 Energy in electromagnetic fields 

In this section, the energy balance in the context of classical electromagnetics is 

discussed. Energy balance equations can be derived from the Maxwell curl equations given in 

Eqs. 2.1 by performing the following algebraic procedure [16]. Noticing that 

 ,itikjiijk BHEH   (2.12a) 

 itikjiijk DEHE   (2.12b) 

and 

 ;kjiijkkjiijkkjiijk HEEHHE    (2.12c) 

it can be shown that 

 ],[ HEtii uuS   (2.13) 

where kjijki HES   is the Poynting vector, 
iiE DEu

2

1
  is the electric energy density and 

iiH BHu
2

1
  is the magnetic energy density. Here, S can be interpreted as the flux of energy that 
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balances the changes in the stored energies over time. Of course, a source term can be put on the 

left-hand side of Eq. 2.13, but for the purpose of this work, it won’t be considered. Further, here, 

we want to make all the variables time-harmonic in order to simplify Eq. 2.13 by eliminating the 

time dependence. The time dependence of S can be removed by integrating over a time period 

for a given angular frequency ω. Since time harmonic variables are complex, it is required that 

only the real parts be considered so that complex E and H can be related to real variables such as 

S. The integral equals zero if the fields are assumed to have complex values. It can be shown that 

]Re[]Re[ HES   can be analyzed since

][
2

1
][

2

1
]Re[]Re[ titititi eeee    HHEEHE  and eventually, after some 

rearrangement,   

 )].Re[(
2

1
])Re[(

2

1 2   HEHES
tie   (2.14) 

Integration over a time-period yields [17] 

 )].Re[(
2

1
)]Re[(

2

1
)(

2

1
2

0

HEHESS  







td  (2.15) 

Averaged Poynting flux S  will be denoted by F from here to differentiate between time-

averaged and actual fluxes. Using a similar algebraic procedure described as Eqs. 2.14, it can be 

shown that the energy balance equation for time harmonic fields is 

 }].{Im[
2

1   iiiiii DEBHF   (2.16) 
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It can further be found that only the electric term contributes to the divergence of F in a medium 

where there is no magnetic dissipation and that only the electric term remains nonzero because of 

the presence an imaginary part in a medium’s electric permittivity. Hence, 

 .]Im[
2

iiii EEF 


  (2.17) 

Since the imaginary part of the permittivity represents dissipation, a medium with such a 

permittivity behaves as a sink for the energy flux. In the presence of a source given by a current 

density iJ , Eqs. 2.14 can be adjusted to give the following equation: 

.0]Re[
2

1
]Im[

2

*  iiiiii JEEEF 


 

 

2.1.4 Interaction of plane waves with a semi-infinite dielectric interface 

In this section, the interaction of a plane with a semi-infinite plane made of a dielectric 

material will be analyzed in order to be able to calculate the values of the fields outside and 

within the dielectric. It will be assumed, without loss of generality, that the plane wave is 

incident from outside the dielectric. Further, the following steps are used to define the problem: 

 The plane interface has a unit normal m  that points away from the interface—in the 

half-space from which the plane wave is incident. We will set 1jm  and the 

incident wave’s wave vector as i
k . We need 01 

ik so that the wave is incident on to 

the dielectric half-plane located in 01 x . Since i
k  and 1x̂  form a unique plane, we 
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will let 
i

kxx ˆˆˆ
13   so that it points into the plane. 2x̂  Can be defined from this 

information. We will choose 02 
ik  without any loss of generality.   

 In order to satisfy the boundary condition at the interface, we need to put another 

wave solution in the 01 x  region. Since the plane waves contain a phase factor, the 

boundary conditions can be consistently satisfied only if 3,2|)exp( jxik jj  is the 

same on both sides of the interface and for both wave solutions. Further, all k s should 

lie in one plane—the plane containing i
k  and 1x̂ . We will denote the wave vector in 

the 01 x  region as t
k . We also require a third, reflected wave r

k  because tangential 

components of E and H cannot simultaneously be made equal across the interface 

without a third wave. Since all trijk j ,,&3,2,  
 are equal, it follows that the 

angles made with 1x̂ , ri,,  
 are also equal. The condition is called the Snell’s 

Law and can be expressed as: 

 1,  jkkk t

j

r

j

i

j  (2.18) 

for the current statement of the problem. 
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Figure 2.1: Orientations of the incident (i), reflected (r) and transmitted (t) wavevectors with respect 

to the axes, the interface with the dielectric half-plane and its normal. Only one polarization vector 

is shown since all other orientations can be found from its and the wavevector’s orientations. 

 

Fig. 2.1 shows how the 
k  are oriented with respect to the dielectric interface as well as 

the relative orientation of the coordinate axes. In order to evaluate the fields, they need to be 

represented in some orthonormal vector basis that is based on the geometry of the problem. One 

unique direction is the one perpendicular to the plane— 3x̂ . It can be called the transverse 

direction of polarization 
T

p̂ . An ‘in plane’ direction can be defined as 


kpp ˆˆˆ  TP
. The 

incident wave can be decomposed into two separate components based on which of E or H are in 

the 
T

p̂  direction. So, one has: 

 
),exp(ˆ

),exp(ˆ

0

0

0

rkpH

rkpE





iiPi
i

iP

iiTiiT

iE
k

iE



 (2.19) 

and, 
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)exp(ˆ

),exp(ˆ

0

0

rkpE

rkpH








iiPi
i

iP

iiTiiT

iH
k

iH



 (2.20) 

with  

 
.ˆcosˆsinˆ

,ˆˆ

21

3

xxp

xp

iiiP

iT

 


 (2.21) 

Reflection or transmission, it can be shown, cannot cause a TE wave to have a P component of E 

and vice versa so that the boundary condition is satisfied self-consistently for each type of wave. 

Alternatively, the T and P type decomposition of the waves remains valid for all waves in the 

problem—reflected and transmitted because of the uniqueness of the directions once i
k  is fixed. 

In general, for Eqs. 2.17 and 2.18, the origin needs to be moved such that the interface is at 

.01 x  In case this is not done, a phase factor that arises from the exponential term will have to 

be incorporated into the complex amplitudes 0E  and 0E . There is also a phase factor that will 

come about based on the location of the point of incidence on the (2,3)-plane representing the 

interface. The same argument, as before, can be used here since the parallel components of 
k  

are equal. So, the related phase factor can be thought as being incorporated into the complex 

amplitudes of the waves—making the representation of the waves independent of the location of 

the point of incidence.  

The reflected field is the following: 

 
),exp(ˆ

),exp(ˆ

0

0

0

rkpH

rkpE





rrPiT
r

rP

rrTiTrT

iER
k

iER



 (2.22) 
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and 

 
),exp(ˆ

),exp(ˆ

0

0

rkpE

rkpH








rrPiP
r

iP

rrTiPrT

iHR
k

iHR



 (2.23) 

with 

 
.ˆcosˆsinˆ

,ˆˆ

21

3

xxp

xp

rrrP

rT

 


 (2.24) 

The transmitted field is similarly given as: 

 
),exp(ˆ

),exp(ˆ

0

0

0

rkpH

rkpE





ttPiT
t

tP

ttTiTtT

iET
k

iET



 (2.25) 

and 

 
),exp(ˆ

),exp(ˆ

0

0

rkpE

rkpH








ttPiP
t

tP

ttTiPtT

iHT
k

iHT



 (2.26) 

With 

 
.ˆcosˆsinˆ

,ˆˆ

21

3

xxp

xp

tttP

tT

 


 (2.27) 

The coefficients 
PTPT TTRR &,,  are introduced for the reflected and transmitted wave so that 

they can change their magnitude in order to accommodate the boundary conditions on E and H. 
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The letter R represents reflection coefficient and T, the transmission coefficient. Their values can 

be evaluated by applying the boundary conditions in the following manner: 

Tangential E continuity for T waves 

 TT TR 1  (2.28) 

Tangential H continuity for T waves 

 
tT

S

Ti TR  cos]1[cos   (2.29) 

In a similar manner, 

Tangential E continuity for P waves 

 PP TR 1  (2.30) 

Tangential H continuity for P waves 

 tP

S

Pi TR 


 cos
1

]1[cos   (2.31) 

The parameter S  is the relative electric permittivity of the substrate. It appears in Eqs. 2.28 and 

2.30 because the ratios 
i

t

k

k
 and 

r

t

k

k
 are equal and have a value of S . The reflection angle 

r does not seem to appear because it is equal to i . Eqs. 2.27-30 can be solved to give the 

following relationships for 
PTPT TTRR &,, . 
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coscos

coscos

,
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t
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T


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









 (2.32) 

 

.
coscos

coscos

,
coscos

cos2

ti

S

ti

SP

ti

S

i

SP

R

T

















 (2.33) 

Using Eqs. 2.31 and 2.32, the incident, reflected and transmitted electric field can be written as 

 

).exp()ˆˆ(

),exp()ˆˆ(

),exp()ˆˆ(

00

00

00

rkppE

rkppE

rkppE







ttPPiPtTTiTt

rrPPiPrTTiTr

iiPPiiTTii

iETET

iERER

iEE

 (2.34) 
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2.2 SOLUTIONS FOR A SPHERE 

In this section the solution of Maxwell equations for a plane wave incident on a spherical 

particle made of a material that has a relative permittivity P  will be discussed. The solution 

requires working with spherical coordinate system for ease of analysis. Without loss of 

generality, we will have the sphere centered at the origin. Any effects of it not being at the origin 

will be accounted for by adjusting the phase and direction of the incident wave since the solution 

should only depend on the relative location of the sphere with respect to the wave. Moreover, it 

is rather difficult to work with spherical coordinates that are centered at a point that is not the 

centre of the spherical symmetry.  The sphere or the medium around it do not contain any free 

charge or current that can contribute at sources in the Maxwell equations given in Eqs. 2.1—in 

other words, 0 ii E  and so, one can work with 

 0][ 2  ijj Ek  (2.35) 

rather than .0][ 2  lliijj EEk  We can decompose E and H or any field F into the 

following independent scalar fields—which in the spherical coordinate system take the following 

form: 

 ).()(  rrF f  (2.36) 

Here, &,f are scalar fields. In the context of Maxwell equations given in Eqs. 2.1, if we let 

E=F, we get the following equation for f since E is divergence free: 

 .02  f  (2.37) 
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The other scalar fields can be shown to be the solutions of the Helmholtz equations given in Eq. 

2.35 allowing F to be given by 

 ( ) ( ).   F r r  (2.38) 

It can further be observed that if one sets 

 ),()(  rrE  (2.39) 

 then, the equation for H is given by 

 ).(
1

)(
0

 rrH



i

i  (2.40) 

The scalar potentials are known as the toroidal and polodial potentials or Debye potentials 

depending on whether one is reading fluid-mechanics, hydrodynamics and/or plasma physics 

literature or electromagnetics literature. The solutions of the scalar Helmholtz equation in 

spherical coordinates can be found by separating the dependencies on .&, r  For  , the 

solutions are: 

 ,),()]()([),,(
0




 


n

n

nm

nmnnmnnm YkryBkrjAr   (2.41) 

Where 

 ).exp()(cos),(  imPY m

nnm   (2.42) 
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The functions nj  and ny  are, respectively, the regular and singular spherical Bessel functions, 

nmY  are the spherical harmonics and 
m

nP  are the associated Legendre polynomials. The 

representation in Eq. 2.42 allows m to take negative values by combining the )sin( m  and 

)cos( m  terms into a )exp( im  term. The amplitudes nmA  and nmB  are unknowns that need to 

be determined. Since the boundary conditions given in Eqs. 2.12 and 2.13 cannot be decoupled 

in terms of  and   for finite values of k, one has to work with the components of the E and H 

fields. The following components can be obtained from Eqs. 2.40 and 2.41[16]: 
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 (2.43) 

and 
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 (2.44) 

The incident field described by )exp(0

lljj xikEE  , has an arbitrarily oriented k. It can be fixed 

to be oriented along 1x̂  without loss of generality. Further, one can fix one of the polarization 

directions to be along 2x̂  and another along 3x̂ , again, without a loss of generality. The 

difference in the algebra created because of the choice 2x̂  or  3x̂  is minor. So, for now, only E 
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polarization along 2x̂ will be analyzed. The incident field given by )cosexp(0

2 ikrEE i   has a 

r- component given by )cosexp(cossin0  ikrEE i

r   that can be re-framed as: 

 )].cos[exp(
cos 0 


 ikrE

ikr
E i

r   (2.45) 

Thereafter, the following identity needs to be used: 

 ;)(cos)()12()cosexp(
0







n

nn

n Prjniir   (2.46) 

along with the fact that 

 ),(cos)(cos 1  nn PP  ),(cos)(cos 1  nn PP   (2.47) 

one can obtain the following equation for 
i

rE : 

 .)(cos)()12(
cos
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


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n

nn

ni

r PkrjniE
ikr

E 
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 (2.48) 

It can be observed that 
i

rE  arises only from   and not  . So, it is sensible to derive an 

expression for   from only Eq. 2.48. However, since )]([ 22 i

r

i

r rkE   as given in one of 

Eqs. 2.43, a r needs to be included in Eq. 2.48 in the following way 
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r PkrSniE
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 (2.49) 

with 
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 ).()( zzjzS nn   (2.50) 

The set of functions that are obtained by multiplying the spherical Bessel functions with their 

argument are known as the Riccati-Bessel functions. In general, the Riccati-Bessel functions are 

defined as )()( zzfzF nn   for all spherical Bessel functions )(zfn . Further, it can be observed 

that the following identity holds true for )(zFn  [16]: 

   ),(
)1(

)(
2

22 krF
r

nn
krFk nnr


  (2.51) 

and therefore, the following expansion for i  can be obtained: 
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)12(cos

1

10


 




n

nn

ni Pkrj
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 (2.52) 

It can be seen that i
H has only one component that is in the 3x̂ direction. The following 

equation that is similar to Eq. 2.45 can be derived for the r-component of i
H by noticing that for 

the incident field given by ),cosexp(0

3 ikrHH i  )cosexp(sinsin0  ikrHH i

r   can be re-

structured to give: 

 )].cos[exp(
sin 0 


 ikrH

ikr
H i

r   (2.53) 
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Using Eqs. 2.11, 0H  can be related to 0E  by 
00 1

EH


 . Here, 



   is a material property 

that is known as wave impedance.1 An expression for i  can be derived using arguments that 

are similar to those used for i . Noting that 
i

r

i

r EH


tan
 , the first equation in Eqs. 2.46 can be 

used to obtain the following equation for i : 

 .)()(
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)12(
sin

1

1

0




 




n

nn

ni Pkrj
nn

n
iE   (2.54) 

Eqs. 2.54 and 2.56 differ only slightly when the direction of polarization of i
E  is changed from 

2x̂  to 3x̂  since only the  -dependence of 
i

rE  and 
i

rH  change. The summed terms remain the 

same for both, i  and i .  

The fields inside the sphere can be constructed in a similar manner since modes with 

1m  cannot be excited by the given incident field. They can be expressed in the following way: 
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 (2.55) 

                                                 

1 We have 0   for materials of current interest as discussed in Sec. 1.1 of this chapter. So, one can set 

0

0

0



   and 

0

1


n
 , where  3771200   and n is the complex refractive indeed of a material 

defined by n .   denotes the relative permittivity of a material here. However, at some places in the document 

it denotes the actual permittivity ( 0 ) depending on the context of the discussion. It may seem confusing at first, but 

the reader will be able to appreciate the utility of such a denotation as they read further through the document.  
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For the perturbed or scattered field, the outward propagating nature of the solutions can only be 

captured with spherical Hankel functions of the second kind that are defined as nnn iyjh )2(
, 

where ny  are the spherical Bessel functions of the second kind, since an outward propagating 

wave, for the current convention, should contain an )exp(ikr  type term that can only come from 

the use of 
)2(

nh . Hence, the scattered fields can be defined in the following manner: 
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 (2.56) 

The boundary conditions can be applied to the tangential components of E and H at the spherical 

interface in the following way: 
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

 (2.57) 

The field components can be evaluated from   and  . Calling the coefficients of the incident 

fields nA ; nnn cba ,, and nd  can be evaluated to have the following values for a spherical particle 

with a relative permittivity p . However, it becomes simpler to solve if one decouples the two 

scalar fields by observing that Eqs. 2.45 and 2.46 can be used with Eqs. 2.59 to give the 

following boundary conditions: 
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 (2.58) 

The coefficients fall into the following simultaneous equations for a sphere of radius a by 

noticing that )]([
1

][ krkrj
k

nkr  is, essentially, )(krSn
 . 
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 (2.59) 

These equations can be solved to give the following expressions for the coefficients: 
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 (2.60) 

As discussed in the literature, a recurrence algorithm can be constructed from the derivation to 

find a solution for the case of several concentric-spheres [3]. 
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2.3 SOLUTION FOR A SPHERE IN THE LIMIT AS KA → 0 

Several problems of current interest involve situations in which the spheres of interest 

have radii that are significantly smaller than the length scale of the electromagnetic field 

disturbances 1k —the inverse of the medium dependent wavenumber that appears in Helmholtz 

type equations. Essentially, it translates to 0ka  for a sphere of radius a.  In such a situation, 

one can consider a as the representative length scale for the Maxwell equations. In the rescaled 

position variables, for the Helmholtz equation in one of the scalar potentials for E as given in Eq. 

2.39, we have 

 ,0])([ 22*  ka  (2.61) 

where, the superscript * denotes rescaled differentiation with respect to the variables .* axx ii   

From now on we will not continue to use the superscript * for aesthetic reasons. It will be 

assumed that whenever the Laplace equation is used as an approximation for the Helmholtz wave 

equation, it is the *’d position variables. A situation may arise where a problem contains multiple 

length scales—several radii and/or several 1k s. The maximum value of ka , max)(ka  should be 

made vanishingly small in order to have the Laplace equation approximation uniformly valid for 

the entire domain of the problem. Further, the rescaled position variable would be defined with 

respect to maxa  rather than a .  

In the limit as 0ka , the second term in the brackets of Eq. 2.61 would become 

vanishingly small, making the solution tend to that of a Laplace equation. One may want to 

resort to solving only the Laplace equations given by 02   and 02  , followed by the 

substitution of their solutions in Eqs. 2.39 and 2.40 to evaluate E and H. In general, the limit 
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behavior of   which is a solution of the Helmholtz equation can be expressed as a series given by 







0

)(
n

n

ni  such that 0,2

2   nnn
 with 0n

 for 0n . The non-dimensional 

parameter   is defined as ka .   can also be expanded in a similar manner. The far-field 

behavior of the solutions should coincide with the incident E and H fields given in Eqs. 2.8 and 

2.11. In order to do that, on can analyze Eqs. 2.54 and 2.56 keeping in mind that k should be 

replaced with   and that r is in radius a units. In the limit as 0  such that 0r  but r  

i.e., r is large but not large enough to make r  finite, the incident fields i  and i  can be 

expressed in the following form: 

 .)exp()(cos)()(
0




 


n

n

nm

nm

n

nm

i imPrfF r  (2.62) 

The radial dependence is of the form 
nr)(  rather than )( rjn   since, for small arguments,

!)!12(
)(




n

z
zj

n

n  [18]. The expression, essentially, represents the regular Laplace harmonics 

that allow one to begin with a leading order approximation of   to be given by just the regular 

harmonics that match with the coefficients given in Eq. 2.60. The coefficients nmf  can be 

evaluated from the incident field directly. Higher order terms are at least )(O —allowing one to 

disregard them while evaluating the leading order contribution from the boundary. Eventually, if 

higher order corrections are required, they can be evaluated by solving 0,2

2   nnn
 

successively for all values of n. In the case of n =1 as for the )(O  term, only the regular 

Laplace harmonics are necessary to express the far-field; however, such terms needs to match 

with higher order terms of the applied field’s expansion. It can be observed in Eqs. 2.54 and 2.56 
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that if the )(O  term is to be considered, it needs to match the incident field’s magnetic 

dominant component i . Essentially, 





0

2

2)(
n

n

ni  and 




 
0

2

12)(
n

n

ni  so that 

0,2

2   nnn
 and 0,2

2   nnn
. The next significant correction is the second term 

in the   series that is of )( 2O . It needs to be matched with next higher order term in the 

expansion of )( rjn  , that has a 2nz  dependence, of the incident electric field’s electric 

component i . Albeit, this cannot be known for a fact unless the algebra is worked out—it may 

very well be that the )( 2O term may correspond to several other higher order terms in the 

expansion of i . At this stage, the interest is only in the )(O  effects. It may suffice to say that 

the evaluation of higher   and   terms will require the solution of the eigenvalue problem 

given by the modified Helmholtz equations for  ,F given by 0][ 22  F —the solution 

of which can serve as an orthogonal basis for the solution of the Poisson equations for   and .  

Clearly, the solution of the modified Helmholtz equation for this case are known and are given in 

the previous section. They only need to be slightly adjusted to suit the particularities. The next 

task is to expand the inhomogeneous term in this basis, followed by term by term matching and 

evaluation of the required new coefficients. The task will amount to representing regular Laplace 

harmonics in terms of the Helmholtz basis that may or may not permit analytically evaluatable 

integrals. 

The solutions, for the case of one sphere and a layered sphere can be derived either by 

studying the limiting behavior of the solutions given in the previous section or by solving the 

differential equations subject to the boundary conditions in asymptotic limit of 0 . This 

would, eventually, amount to the analysis of the coefficients given Eqs. 2.62 in the limit. Such a 
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“shortcut” can be justified based on the consideration of the symmetry within the operations 

required to solve the problem in and not in the limit. All the coefficients given in Eqs. 2.62 can 

be evaluated in the limit as 0ka , and effectively, 0ak p  to give the asymptotic behavior 

of each nnn cba ,,  and nd . The small argument behavior of )(zyn  is given by 
1

!)!12(



nz

n
[18]. 

The small argument behaviors of )(zSn  and )()2( zhn  are consequently given by 
!)!12(
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z n

 and 
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


 n

n

z

n
i

n

z
 respectively. The small argument behaviors of the coefficients can be 

evaluated using the behaviors of the involved Bessel functions. Since one would expect that the 

higher order terms would have higher order dependence of  , it may be sensible to analyze only 

the n=1 coefficients’ asymptotic behavior. It can be found that the most significant dependence 

of the coefficients on ka  and p  are given by: 
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 (2.63) 

It may be tempting to think that when the material permittivity p  is made to tend to zero, 

internal field coefficients 1c and 1d blow up. It is, in fact, not true because the behavior for 

vanishingly small values of p  needs to be analyzed by incorporating it from beginning of the 

analysis. It can be clearly seen that the leading order size dependence of the scattered field is 
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through 1a . As a consequence, it seems that one can work with relatively large values of ka—

upto ~0.46 in order to have a 
3)(ka  that is ~0.1 and the next higher term is ~0.02. The ka that 

matters does not incorporate the permittivity of the sphere; rather, just the wavenumber in the 

medium along with the radius of the sphere. Any effect that may arise due to singular behavior in 

the term in the square bracket in the first expression in 2.65 is in addition to the “size effect” 

which may seem to operate independent of the “material effect”. They, however, are coupled and 

it may very well be possible that under certain special circumstances, a higher order terms 

becomes significant due only to the “material effect”. In general, though, the size effect would 

always try to reduce the influence of the higher order terms for ka values that are less that ~0.5. 

It may be safe to guess that in the presence of several other spheres that are small enough 

with respect to some relevant problem specific length scale, it would be sensible to analyze the 

problem of evaluating the electromagnetic fields for such a domain with the consideration of 

only the leading order effects, i.e., only solve the corresponding Laplace problem for the electric 

generating field  . However, the procedure for constructing the solution of the full wave 

equation under the perturbation is somewhat different than the refinement discussed above. The 

full details of the construction procedure will be discussed in the relevant chapter. Here, only 

certain significant details will be discussed. The solutions of the Laplace field that are obtained 

using the numerical method discussed in the following section will correspond to 0  in the 

perturbation series given by 





0

2

2)(
n

n

ni . The Helmholtz harmonics for the scalar fields 

permit non-wave-like r-dependent solutions )( rjn   and )( ryn   that can be replaced with 
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Laplace like terms 
!)!12( n

r nn
 and 11

!)!12(
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
nn r

n


 respectively while moving from the Helmholtz to the 

Laplace approximation. Similarly, Henkel functions )()1( rhn   are replaced by 
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!)!12( 




 nn

nn

r

n
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n

r




 which, for small arguments, are just 

11

!)!12(



nn r

ni


. Clearly, “going back” to 

Helmholtz from Laplace would require that the less significant term corresponding to the Hankel 

function be added so that the wave behavior can be incorporated into the non-wave-like solution. 

As an example, consider the a regular solution set for the Laplace problem given by 

 im

n

n

nm

p

nm ePrR )(1 . Since it is supposed to correspond to 
 imm

nnnm

p

nm ePrjC )()( , it 

can be seen that .
!)!12(

nmnnm R
n

C



  Similarly, the corresponding scattered field coefficients 

nmA  are related to the singular Laplace coefficients nmS  by .
!)!12(

1

nm

n

nm S
n

i
A





 E and H can 

be constructed, thereafter, using Eqs. 2.40 and 2.41. In a situation where only the leading order 

  behavior is to be studied, the expressions can analyzed by substituting the expression for 0

. Following the previously discussed argument about 0  being )(O , it is safe to disregard it, 

at least in the beginning of the analysis. The double curl term for E can be simplified in the 

following way: 

.)1(]2[)]([)()( 22  rrrrr ijjijjii rr

The first term can be disregarded since, in the near-field, at least, it is multiplied by two small 

numbers,   and r . The second term, in either situation, near or far-field, is an )1(O  constant 

times   which can be easily evaluated for, both, singular and regular Laplace harmonics. The 

singular and regular Laplace harmonics, respectively, simplify to the following expressions: 
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E  (2.64a) 

and 

 .)1(
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 
mn

R

nmnE  (2.64b) 

The magnetic field H corresponding to 0  doesn’t really simplify to such an expression, 

however, it does for 0 . The expression for H can be expressed in the following way: 

 .])1([
1
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

 rrrH 
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i
 (2.65) 

Clearly, because the last term in the square brackets is )(O , it has an )( 1O  effect—a material 

effect that is independent of the wavenumber .  Hence, the leading order effect of 0  for H is 

)1(O  permitting expressions similar to Eqs. 2.64. They are: 
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mn
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and 
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2.4 SOLUTIONS FOR SEVERAL SPHERES IN THE LIMIT AS KA → 0 

In the situation that several spheres comprise a domain in which the fields are to be 

evaluated, an analytical solution would not seem likely based on the fact that it is not possible to 

represent the field in such a domain with a unique set of orthogonal functions whole amplitudes 

need to be evaluated using the boundary conditions. Although, it clearly is possible to represent a 

given field in terms of the spherical Laplace harmonics about any point in the domain; be it the 

centre of the spheres, because there is a contribution that comes in from the interaction through 

the other spheres, the coefficients of the representation about the points of choice within the 

domain cannot be explicitly evaluated from the known incident or applied fields. An implicit 

evaluation of the harmonics amplitudes can be performed simply by solving a matrix equation 

for the form bxA   because of linearity. The vector x would contain unknown harmonics 

amplitudes, b would contain the known applied field harmonics amplitudes and the matrix A  

contains the information regarding the problem domain in terms of the linear coefficients of the 

simultaneous equations that connect the amplitudes. In general, for a Laplace field subject to 

some far-field boundary condition, the scheme, given below, can be used to evaluate the 

multipole coefficients corresponding to each sphere. 

The regular harmonics for the field inside the 
th  sphere can be expressed as: 

 ,)()(   im

nm

n

nm

R

nm ePrR r  (2.67) 

and the singular harmonics are: 

 .)()( 1   im
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n
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nm ePrS  r  (2.68) 
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Here, the position vector r is defined from the center of the 
th  sphere and is given by 


rRr  , where R denotes the position vector with respect to some origin and 

r  denotes the 

position vector pointing toward the center of the sphere with respect to the same origin. 

Similarly,  cos  and   are defined based on the angular displacements of r rather than any 

other position vector. For monodisperse spheres, one can work in non-dimensional units that 

were discussed before—it, essentially, amounts to setting the radius of the spheres equal to one. 

In the case of polydisperse spheres, a specific sphere radius, either some kind of average, largest 

or smallest, can be chosen to be the length scale with respect to which all lengths are normalized. 

The only place where the dispersity will figure in is in the expressions for the boundary 

conditions about the spheres where the values of the radii become important. In general, the 

sphere boundary conditions will form a set of )12(2 NNN p
 simultaneous linear equations, 

where the factor 2 accounts for the two boundary conditions that are required for second order 

differential equations, 
pN  is the number of spheres in the domain and N  is the global 

maximum number of multipoles that are used in the calculation. Since the multipole degrees m 

can have )12( N  values, a factor of )12( N  is also incorporated. On the surface of a sphere (r 

=1), depending on physics of the problem, i.e., whether it is the electromagnetic scalar field or a 

thermal field, different conditions need to be applied. Both conditions will be discussed here so 

that they can be related eventually to demonstrate the possibility of a one to one mapping among 

the resulting solutions. The continuity of scalar field boundary condition for a thermal field is 

given by: 

 ,}{
,

12 


 




nmnmnm

n

nm RFSaR  (2.69) 
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where, 
nmF  represents the applied or incident far-field expanded about center of the 

th  sphere 

and the last terms 
nmR  represent the regular contributions of the singularities present at other 

spheres that are labeled   such that   . To account for the presence of polydispersity, the 

factor of 
12}{  na
 is incorporated. a  Represents the dimensionless radius of the 

th  sphere 

based on some length scale associated with the polydispersity as was discussed before in this 

section. The electromagnetic scalar field   is not continuous and is given by the second equation 

in Eqs. 2.60. As a result, the conditions for the coefficients can be translated to the following 

equations: 

 ,}{
,

12 


 


 nmnmnm

n

nm RFSaR  (2.70) 

where the electric permittivity of the sphere under consideration is  relative to the embedding 

medium. The continuity of thermal flux results in the following set of equations 
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and the continuity of tangential E and H results in the fourth condition given in Eqs. 2.60 
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The re-expansion terms recur in all the boundary condition equations. Depending on the 

problem, the re-expansion term can be evaluated based the choice of representation of the  -

dependent term in the Laplace harmonics. For real valued functions, it makes sense to not use 

ime , but rather, two separate harmonics containing either msin  or mcos . Such would be the 
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case for dealing with thermal or time-stable fluid fields; where it is traditional to deal only with 

real quantities. However, in the literature related to electromagnetics and other field theories that 

build on it, such as quantum mechanics and quantum field theories, it is customary to use the 

complex representation—primarily to aid the incorporation of complex phase information into 

the amplitude of the wave type solutions. On may rationalize further by considering the fact that 

most thermal or time-stable fluid fields—unless there is an oscillatory flow—permit non-

wavelike solutions most of the time. In the case of oscillatory flows and the study of stability of 

non-linear and/or time-unstable flows, time harmonic complex term such as tie   are typically 

included to account for oscillations in time—making mode amplitudes complex quantities. Wave 

solution permitting differential equations have solutions that have an oscillatory nature, both, in 

space and time coordinates. So, the same phase can result in a change in either the space or time 

coordinate. In spherical harmonics that represent outgoing or incoming waves for a time 

harmonic solution, complex Hankel functions, that allow wavelike behavior, are used to 

represent the radial dependence. The,  -dependent, associated Legendre polynomials in cos  do 

not span a complete space—disallowing them to sustain a wave solution that can travel in space 

and time. Hence, there is always a standing wave in  . In  , however, a full circle is spanned. So, 

a travelling wave can be permitted. One can think of such a wave as circulating ripples on a 

closed loop of an elastic string. In dealing with the current problem, for the purpose of this work, 

the complex notations would be preferred even though they will, at some point, seem to 

complicate the algebra related to the re-expansion of the singular harmonics. 

Given a singular harmonic located at 
r , ,)()( 1 







 
im

nm

n

nm

S

nm ePrS  r  we wish to 

represent it with regular harmonics located at another point 
r , .)()( 





  il

kl

k

kl

R

kl ePrR r  The 

subscripted position vector represents the position vector emanating from the centre of the 
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sphere. Clearly, it can be expected that in a linear system,  
n m

nmnmkl SlkTR 



 ),|( rr . The 

coefficients need to be evaluated with the aid of certain algebraic properties of the harmonics 

[19, 20]. For the purpose of this work, the coefficients are not derived. The coefficients used by 

Mo and Sangani [20], although relatively more straightforward, need to be modified in order to 

accommodate the complex   term in the harmonics and the resulting negative values of the 

degree m. The modification, effectively, amounts to the results of the analysis presented by 

Epton and Dembart—they look less complicated and easier to approach [19]. The re-expansion 

coefficients are given below: 
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where 
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and 
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The associated Legendre polynomials, that are used here, are usually denoted by m

nP  rather than 

nmP , i.e., 
n

mn

mn
m
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 with nmn  [19]. Such 

a definition accommodates negative m values.  
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Laplace harmonics are scale independent, allowing them to be translated or re-expanded 

at any distance far away from a given singularity. Of course, there are certain mathematical 

constraints related to the quality of convergence of the re-expansion such as the distance between 

the two points and the related angles so that non-convergence can be avoided. A convergence 

may be induced in case of a slowly converging sequence however. Helmholtz harmonics, as one 

would expect, have a dependence on not just the length scale of the particles, but also the inverse 

wavenumber 
1 , making it necessary to incorporate a phase factor given by rie   when re-

expanding a Helmholtz harmonic as a Laplace harmonic in the far-field—in which case, only the 

n = 1 harmonic would remain significant and the phase factor would only affect its amplitude—

essentially, one would just be re-expanding a dipole into several near-field multipoles at the far-

field point. In the inner region, defined by 0r , the exponential would not matter and all re-

expansions with Laplace harmonics would remain valid. However, in the intermediate region, a 

re-expansion using Laplace approximation will not remain valid; even in the case where the re-

expansion is in the near-field, since, the Helmholtz harmonics behave significantly differently. It 

may be possible to work out such an expansion and other combinations involving near, 

intermediate and far fields, but, our current discussion will be restricted to near to far, far to near, 

near to near and far to far re-expansions that, essentially, correspond to a combination of either 

0r  or r  in the context of some origin. Full-wave potentials are needed to treat the 

intermediate region, even for a vanishingly small   because of the arguments in Bessel 

functions that depend on r . The intermediate region can be though to begin after r  becomes 

)1(O . Re-expansions involving vector Helmholtz harmonics require different operations due to 

the dependence on both displacement and orientation [19]. In case only scalar Helmholtz 
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harmonics are being used, the algebraic operations that can generate the harmonics form the 

Green’s function is are different than those needed for the Laplace equation [21]. 

A slight change needs to be made to the coefficient in Eq. 2.73 in order to incorporate the 

fact that the quantity that is being re-expanded behaves differently than the actual physical 

quantity whose effect one is interested in determining at a point that is far away from a given 

singularity. Because the regular harmonics generate a field that is different from that generated 

by singular harmonics, the field-re-expansion coefficients differ from nmT . For a singular 

harmonic given by 
nm  that is located at a point  , the corresponding “electric field multipole” 

would be S

nmn   which needs to be re-expanded to regular field multipole at a point   given by 

R

klk  )1(  as discussed in Eqs. 2.66 in the previous subsection. Clearly, then, nmT  need to be 

modified to .
1

nmnm T
k

n


  The coefficients remain valid for the modified magnetic field 

given by i H  as can be gleaned from Eqs. 2.68. 

The singular and regular coefficients can be evaluated by solving the matrix equations 

given in Eqs. 2.72 and 2.74. For the purpose of numerical evaluation, here, the regular 

coefficients were eliminated to give a single equation in 
nmS  that can be structured as a 1-D 

matrix or higher dimensional matrix depending on the programming requirements. The equation 

in 
nmS  is: 
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The )1(   term is kept as it is to avoid division by zero in case a sphere has a relative 

permittivity equal to one. The second term on the left of the equal sign is also a linear operation 

on 
klS . All operations on the left side can be lumped into a matrix denoted by 

nmkl  that 

operates on 
klS . The vector on the right side of Eq. 2.76 contains information about the applied 

or incident field. The unknown coefficients can be obtained by, simply, solving the matrix 

equation. For the most part of this work, this has been accomplished using the MATLAB 

environment [22] —which, essentially, amounts to choosing the best possible method for 

solution based on the type of the matrix. The matrix 
nmkl , in case 

klS  is arranged as a vector, 

is a non-singular and  full-matrix in general—it does not expected to contain zeros. A problem 

specific condition may give rise to some elements within it to assume values that render the 

matrix ill-conditioned and, possibly, sparse—a situation in which one would be required to use a 

matrix regularization method such as the Tikhonov regularization in which problem of 

minimizing the residual is redefined [23]. 

The scalar field corresponding to the magnetic field will also fall into a similar algebraic 

structure as that for the electric scalar field. However, it is immediately clear that in non-

magnetic media, the permeability of all the media are the same—implying that, in Eq. 2.76, the 

vector 
klS  is identically zero. Since this is a leading order effect for H due to the  field, it may 

make sense to ask about the contribution due to the next higher order term in Eq. 2.65. Since the 

term is symmetric for regular and singular harmonics, it will also be affected by the same issue 

that the media are non-magnetic. Hence, the only magnetic field contribution, to the leading 

order in  , is due to the   field. The regular magnetic multipoles are not zero however. They 

are simply equal to those corresponding to the applied field. 
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An interesting concluding observation can be made regarding the fact that the solution to 

the thermal field problem that is given by: 
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can be adjusted to solve Eq. 2.76 for a given value of 
nmF  and setting .    Let such a 

constant be nmC  such that 
nmnmSC  solves Eq. 2.76. Substitution in Eq. 2.77 followed by equation 

of the left sides of Eqs. 2.76 and 2.77 yields the following relation for the constants: 
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 (2.78) 

From Eqs. 2.69, 2.71 and 2.70, 2.72, it can be found that the expressions for 
nmR  are identical 

for the thermal and electromagnetic case—implying that the regular harmonic amplitudes are all 

equal for the two problems. Clearly, the constants nmC  have to have the following values: 

n

n
Cnm

1
 . The two problems are the same except for a constant factor. 
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3 OPTICAL CONSTANTS OF MATERIALS 

 

3.1 INTRODUCTION 

The responses of materials to electromagnetic field are typically linear unless laser or 

other forms of relatively intense sources are used. Only linear properties of isotropic and 

homogenous materials are of interest here. Their electromagnetic constitutive relationships are 

defined separately for electric and magnetic fields since the fields only become coupled at non-

zero frequencies. Under the influence of a constant electric field, the following constitutive 

relation is valid: 

 .ED   (3.1) 

D is known as electric displacement, a consequence of polarization of a material under the 

influence of an applied electric field E. ε is the electric permittivity of a material. It represents 

the propensity of a material to become polarized under the effect of an applied field. Because of 

the way the units are chosen and due to the fact that a vacuum should have a zero polarization, D 

is further related to a quantity called polarization P through 

 PED  0  (3.2) 

where, 0 is a universal quantity representing the permittivity of vacuum. Because this quantity 

is non-zero, the polarization is accounted for separately. P depends linearly on the applied field 

as 
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 .0 EP   (3.3) 

Here,   is known as electric susceptibility. It is zero for vacuum.  

The magnetic field is a dual of the electric field, and so, it’s interaction with a materials 

have a similar set of constitutive relationships. The magnetic induction field B is related to an 

applied magnetic field H as 

 .HB   (3.4) 

In this work, the materials under consideration do not have a significant magnetic response to an 

applied field at optical frequency. Consequently, we don’t have to worry about the magnetization 

response of materials. We can set the magnetic permittivity to be that of vacuum. 

 .0   (3.5) 

The relations are defined for situations where the applied fields are constant and the polarization 

response of the material has achieved a steady state. While for the magnetic field, the linear 

response is related to the applied field through a universal material independent constant, in the 

case of the electric field the following convolution relationship is required to relate the 

polarization, susceptibility and the applied field. In case of a linear medium, it is 

 .)()()( 0  dtt

t




 EP  (3.7) 

Fourier transformation of the equations given above with the aid of the convolution theorem 

leads to 
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 ),()()( 0  EP   (3.7) 

and 

 )()()(  ED   (3.8) 

or, simply, 

 ED   with ].1)([, 0    (3.9) 

The expression ties in with time harmonic Maxwell equations discussed in Chap. 2 to give the 

following equations under no free charge and current conditions in a homogenous medium: 

 .)( 22
0E  k  (3.10) 

Here,  22 k . As a result, the propagation of light in a medium depends on its permittivity. 

At optical frequencies, it is impossible to disregard the wave nature of the fields. A material’s 

optical properties are usually measured by probing a material with light waves of different 

wavelengths. Reflection or transmission of the probe light is usually measured and the material 

properties are indirectly inferred from that information. The Fourier transformed permittivity is 

typically measured as a function of the frequency or wavelength of the incident light. 

A material can be seen as a collection of charged particles from the perspective of 

electromagnetics. The way those charges interact with one other decide the state, phase and, as a 

consequence, its electromagnetic response. Outside of the nucleus, the only force field that holds 

a material together is electromagnetic in nature. The mechanical response of a charge under an 

electromagnetic field is governed by the Lorentz force given by 
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 ].[ BvEF  q  (3.11) 

The magnetic field affects a moving charge through a normal force. In Eq. 3.11, v is the velocity 

of the charge under consideration. The relative strengths of the forces induced by the coupled 

fields E and B can be analyzed. The length scale for waves in homogenous material is inverse 

wavenumber 1k . So, the effect of a   is )( 1kO . Since, )( EH i , it can be said 

that 
E

H
 is )(O  such that 




  . Consequently, 

E

B
 has a magnitude of the order of 

  —the speed of light in that medium. Hence, unless charges in a medium move at 

relativistic speeds, the magnetic force is much smaller in comparison to the electric force for an 

applied electromagnetic wave. 
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3.2 PERMITTIVITY MODELS 

The electric response of several materials can be modeled using relatively simple models 

that are based only on the averaged behavior of electrons within the material. The way in which 

the electrons are bound would result in the type of balancing forces they would experience while 

under the influence of an applied field. In general, for an electron, a classical, linearized force 

balance equation is be given by 

 .Exxx em    (3.12) 

Here, m is the mass of an electron, β is the averaged drag to the motion created by the collisions 

within the material, η is a spring constant for the restoring forces with the material and e is the 

magnitude of an electron’s charge. 

Depending on the type of distribution of charge within a specific type of material, which could 

either have all electrons bound to nuclei through spring like forces or could contain electrons that 

are rather free to delocalize over the entire span of the material, the ηx term has to be excluded in 

Eq. 3.12.. In the case of a conducting material—a material that can permit electron 

delocalization—the dissipation term comes about because of the classical collisions among 

electrons and the lattice. In the case of materials that have bound electrons, dissipation may arise 

due to a coupling between lattice vibration modes and the vibrating electron-nucleus system. 

 

3.2.1 Metals 

One can set η = 0 for metals. The dielectric response of a material depends on how its 

electrons and ions respond to a time-varying applied electric field. Metals, at ordinary 
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temperatures and applied electric fields, can be thought of as a plasma made of an ordered crystal 

of positive ions and a fluid made of electrons. In a very simple approximation, one can see the 

electrons to resemble a gas wherein the inter-electron interactions are negligible. The ion lattice 

can be assumed to vibrate due to a finite temperature and impede the motion of electrons through 

collisions—leading to a finite conductivity.  

Let the number density of electrons in a gas be n, mass of an electron m, charge of an 

electron e and gas velocity u. The gas can be thought of as an incompressible, slow-moving, 

irrotational and invicid fluid in one dimension. It follows the following equation under the 

influence of an applied electric field E(t). 

 .&, Effv
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nenm
dt

d
   (3.13) 

The constant   represents dissipation due to collisions with the ion lattice. Fourier transformation 

leads to )())((  Ev nei  . Since the current density is defined as )()(  vJ ne , it 

can be seen that )(
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 . Further, since ),()()(  EJ   it can be shown 

that the Fourier transformed conductivity )(  is 
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  (3.14) 

The conductivity is complex valued with negative real part and positive imaginary part. In order 

to incorporate it into the permittivity, one can assume the current to be a free current for the 

vacuum that contains the material. Then, using Maxwell curl equation, it can be observed that 

).()()()( 0  EEH  i  The general complex relative permittivity can be defined 



51 

 

from here as .
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  A substitution of Eq. 3.14 leads to the following equation: 
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The permittivity is also complex valued with a negative real part and a positive imaginary part 

for intermediate values of frequencies. The model is generally referred to as the Drude model. It 

is known to fit the experimental data for high conductivity metals such as silver and aluminum 

very well. 

 

3.2.2 Insulators 

Materials that cannot sustain an electric current within them are known as insulators. 

This, typically, implies the presence of ‘bound’ electrons that cannot participate in the formation 

of a current. At low temperatures, the force balance equation for one electron-nucleus pair can be 

generalized to represent the bulk. This, of course, can be done under the assumption that the 

electron’s thermal energy and correlation length scales are, both, very small compared to the 

electrostatics-induced kinetic energy due to the displacement and mean inter-nuclear distance 

and electron’s mean free path. These assumptions can, in principle, be valid for solids whose 

electrons are very strongly correlated to their nuclei that lead to a negligible cross-atom 

interaction. The electron ‘fluid’ can now be seen to follow the following equation. 
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However, the absence of a current can be accounted for by re-writing the equation in terms of the 

displacement x. Eventually, the polarization of the material can be seen as arising from local 

dipoles that are created due a non-zero x. Fourier transforming the force balance equation leads 

to )())(( 2  Ex nei  . Since )()(  xP ne  and  )()()( 0  EP  , it can be 

shown that EE
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Calling  /  collision frequency C ,   /  the square of natural frequency 0  and 
0

22en  

the square of a plasma frequency P , 
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Such models are called Lorentz oscillator models. 
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3.3 PERMITTIVITIES OF MATERIALS OF INTEREST 

Most bulk materials, under the influence of small amplitude electromagnetic fields, can 

be modeled with either the Drude model or the Lorentz model or a combination of the two. In 

this section, the permittivity data of several metals (Ag, Au and Cu) and dielectric materials (Si 

and TiO2) are given. The data was taken from a public domain webpage, refractiveindex.info 

[24]. A brief discussion of the permittivities of the materials will also follow. Typically, the data 

is measured with an optical spectrometer or an ellipsometer and reported in the form of the 

refractive index rather than the permittivity. The permittivity and the refractive index are related 

through the following relationship when the quantities have complex values: 

 .2)( 222 nkiknikn   (3.19) 

Using the above equation, the refractive index data was converted to permittivity data. 

The range of interest for the purpose of this work is the UV-Vis-IR region that is dominated by 

the solar radiation. In terms of wavelength, the range approximates to 100-1200 nm. Even 

thought the visible region ends at about 800 nm, several semiconductors such as Si have their 

bandgaps at wavelengths that are larger. Since such materials are often used for manufacturing 

solar cells, it makes sense to extend the range of interest to the IR region upto 1200 nm. 

 

3.3.1 Ag, Au and Cu 

The permittivity of Ag in the visible range, 300-800 nm, is shown in Fig.3.1. The blue 

curve represents the real part ]Re[  and the green curve, the imaginary part ]Im[ . The real part 

reduces from a positive value of O(1) in the UV region, λ~300nm, to a relatively large negative 
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value of ~-30 in the red-IR region where λ > 700nm. The imaginary part tends to remain at a 

relatively constant value of ~2 for all λ > 350nm. The features for λ > 350nm are very similar to 

what would be expected for a Drude model given in Eq. 3.15. However, the features for λ < 350 

nm are not Drude like but rather resemble a Lorentz oscillator model given in Eq. 3.18. The main 

features of a Lorentz model are: (i) ]Re[  shows an inflection at the resonant wavelength about 

which its value changes from a relatively large value to a smaller value in the direction of 

increasing wavelength. At lower wavelengths, there is a larger polarization response to the 

applied field whereas, at larger values of λ, the polarization is diminished. However, at λ values 

that are far away, in either direction, the values of ]Re[  have equal asymptotes. (ii) ]Im[  has a 

similar asymptotic behavior, however their values are zero. Faraway from resonance, there is no 

loss in the material. At resonance, ]Im[  has a maximum. The Drude model, in contrast, has a 

monotonic behavior with an increasing, positive ]Re[  and decreasing and eventually negative 

]Im[  in the direction of increasing λ. 
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Figure 3.1: Complex permittivity of Ag as a function of wavelength of light in the visible range. 

The real part is negative and monotonically decreasing in magnitude for the most part of the range. 

The imaginary part has values in the range of 0 to 5 that become an order of magnitude smaller than 

the real part for λ > 750 nm. 

 

Figure 3.2: Complex permittivity of Au as a function of wavelength of light in the visible range. 

The real part is negative and monotonically decreasing in magnitude for the most part of the range. 

The imaginary part has values in the range of 0 to 10 that become an order of magnitude smaller 

than the real part for λ > 750 nm. 
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Figure 3.3: Complex permittivity of Cu as a function of wavelength of light in the visible range. 

The real part is negative and monotonically decreasing in magnitude for the most part of the range. 

The imaginary part has values in the range of 0 to 7 that become an order of magnitude smaller than 

the real part for λ > 750 nm. 

 

Lorentz oscillator, in case of a metal, represents the resonance of bound electrons that do not 

participate in conduction. Figs. 3.2 and 3.3 show the behavior of the complex permittivity of Au 

and Cu respectively. In contrast to Ag, several non-Drude-like features can be observed upto a λ 

< 650 nm for Au and Cu. 

 

3.3.2 Si and TiO2 

Semiconductors, typically, have a band-gap. The electronic structure of semiconductors 

is such that, unlike metals, most electrons that participate in optical interactions cannot possess 

all possible values of total energies that they may obtain from an incident photon. Instead, such 
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continua of energies are separated by a gap that is generally referred to as a band-gap. The 

continuum with the lower energy is called a valence band, mainly because it is supposed to 

represent only the most labile electrons in the atoms that can be easily ionized to form positive 

ions. The unoccupied, at least at low temperatures, continuum that has a higher minimum energy 

is called the conduction band since it represents a state in which electrons can assume unbounded 

kinetic energy—making them behave as if they are a part of a metal’s conducting electrons [25]. 

Some semiconductors have an indirect band-gap in their electronic structure which requires their 

valence electrons to have a specific crystal momentum in order to jump the energy gap. 

Effectively, it results in an extra energy requirement. The extra energy is, however, much smaller 

than that required for the energy corresponding to the gap. The transition is made less probable 

by the fact that the crystal momentum needs to be supplied by the lattice vibration states known 

as phonons. Of course, this means that at relatively large temperatures, the transition becomes 

more likely [25]. 

The permittivity of Si is shown in Fig. 3.4. The data was taken from an online resource 

[24]. Unlike metals, the relative permittivity of semiconductors has all positive values in the 

visible range due to the lack of free electrons. ]Re[  is relatively large for silicon compared to 

several other insulting materials such as TiO2, SiO2, Al2O3 and Si3N4. A relatively large value of 

]Re[  leads to a relatively strong plasmonic coupling between a nano-antenna and a planar 

device (discussed further in Chap. 4). As a result, Si is more relevant for the current study. 

Moreover, it is a very popular solar cell material because it is inexpensive and has relatively well 

established processing technology. The spectral permittivity of Si in the visible region shows two 

characteristic resonances that correspond to the two direct transitions at the   point of the 

valence band [25, 26]. The indirect gap corresponding to ~1100 nm that is not covered in the 
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range does not really show any specific spectral features since the corresponding absorption 

process is much less likely. 

 

 

Figure 3.4: Complex permittivity of Si as a function of wavelength of light in the visible range. The 

real part is positive and larger than 10 for the most part of the range shown here. The imaginary part 

is very close to zero until λ < 400 nm because the band-gap becomes direct only for relatively larger 

energies corresponding to ~400 nm. The real part shows a corresponding resonance in its values. 

The second resonance peak at ~300 nm corresponds to another direct transition with relatively larger 

band energy [25]. 

 

TiO2 is a popular electrode material for technologies for photocatalytic water-splitting [27, 

28]. It is a direct band-gap semiconductor that is known to perform better with plasmonic coupling. 

Hence, there is interest in studying the fields near a coupled nano-antenna. Although TiO2 can be 

found in one of several crystal structures, here, only one structure called Rutile will be considered 

to study how TiO2 couples with plasmonic nanospheres. Such a choice is justified, vaguely, since 

the relative permittivity data for the other phases—Anatase and Brookite—are rather difficult to 
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find. Moreover, the only difference between them arises near the wavelength corresponding to 

their optical absorption—which, only in the case of Anatase corresponds to an indirect bandgap. 

The values of   for the other parts of the spectrum must be similar for each phase since, to the 

leading order, the permittivity arises due to the dipole polarizability of each atom. Further, the 

polarizability has to come about from all electrons that do not interact to form bonds.  

Rutile is known to be a birefringent material. Here, only data for its larger value of relative 

permittivity that is known as the extraordinary permittivity in the birefringent optics literature is 

used. Since it was not possible to find data for the other, ordinary permittivity, Rutile is considered 

to be isotropic for the current calculations. The goal of the calculations is to get some idea about 

how a nanosphere couples to a slab made of TiO2. As shown in Fig. 3.5, there one distinct 

absorption peak around ~ 300 nm and a corresponding inflection in ]Re[ . Above λ = 400 nm, the 

behavior is predominantly similar to a transparent material with .7~]Re[  The increase in ]Im[  

is much sharper than that for Si because of a direct band-gap. 

In devices, typically, an inert spacer is put over the active semiconductor layer so that the 

active layer remains chemically and tribologically protected. Although the optical consequence 

of such spacers is to reduce the plasmonic coupling [29], hence, the optical properties of such 

materials are discussed here to develop a detailed understanding. 
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Figure 3.5: Complex permittivity of TiO2 as a function of wavelength of light in the visible range. 

The real part is positive and larger than 7 for the most part of the range shown here. The imaginary 

part is very close to zero until λ < 400 nm because the band-gap. The real part shows a corresponding 

resonance in its values [25]. 

 

3.3.3 SiO2 

One of the most popular transparent materials used in a laboratory is either pure SiO2 in 

the form of quartz, fused silica or a SiO2 based glass such as soda-lime glass. The additives in the 

glass make it less temperature resistant while giving it better flow properties that can help in low 

temperature processing. Here, we will just look at the relative permittivity of crystalline SiO2 

rather than its glassy versions. Their permittivities differ only slightly and all of them are 

transparent in the visible range of the spectrum. None of them undergoes any transitions to give 

rise to a non-zero ]Im[  in the visible region.  
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Figure 3.6: Permittivity of SiO2 as a function of wavelength of light in the visible range. The real 

part is positive and larger than 2 for the most part of the range shown here. The imaginary part is 

zero for practical purposes [25]. 

 

The relative permittivity of SiO2 is in between 2.1 and 2.35 for the wavelength range shown in 

Fig. 3.6. It is relatively lower than that of Si or TiO2. 

 

3.3.4 Ideal Drude Metals 

The Drude model given in Eq. 3.15 can be used to evaluate the relative permittivities for 

given values of the plasma frequency P  and the collision frequency C . Both frequencies are 

relatively large in the wavelength range of interest. Here, instead, the corresponding plasma 

wavelength 
P

P

c






2
  and collision energy CCE   will be used since their values, as will be 
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seen, are more tangible to deal with. As can be seen from Eq. 3.15, P  is the wavelength at 

which 0  for 0CE . Since we require 2~   near plasmon resonance in a medium with 

relative permittivity equal to one, it makes sense to choose a P  that lies in the lower end of the 

wavelength range of interest. We will set 290P nm. The collision energy CE  will be allowed 

to assume the following values: 0.1, 1 and 2 eV. The corresponding energy value for the plasma 

wavelength is 3.4~PE eV. 

An expression for ]Re[  can be derived from Eq. 3.15. After some simple algebra, one 

finds 
22

2

1]Re[
C

P







 . As shown in Fig. 3.7, the curves asymptote at 1]Re[   as CE . 

Metals with a relatively large CE  have a relatively small value of ]Re[  and cross over from a 

positive value to a negative value at a relatively large  . Similar to ]Re[ , an expression for the 

imaginary part ]Im[  derived from Eq. 3.15 is given by 
22

2

]Im[
C

PC











 . It stays positive 

throughout the spectrum and seems to increase in value as the value of CE  is increased from 0.1 

to 2 eV as shown in Fig. 3.8. However, unlike ]Re[ , ]Im[  approaches zero, both, as 0CE  

and as CE ; implying that there is a maximum for a given P  and  . However, for 

applications of interest in the current work, a relatively small ]Im[  and a relatively large ]Re[  

are required, necessitating a situation where 0CE . 
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Figure 3.7: The real part of the relative permittivity of a hypothetical Drude metal that has a plasma 

wavelength 290P nm and collision energy CE  values 0.1 eV (blue), 1.0 eV (green) and 2.0 

eV (red). An increase in CE  leads to an increase in the magnitude of ]Re[ . The curve approaches 

1]Re[  as CE . 
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Figure 3.8: The real part of the relative permittivity of a hypothetical Drude metal that has a plasma 

wavelength 290P nm and collision energy CE  values 0.1 eV (blue), 1.0 eV (green) and 2.0 

eV (red). An increase in CE  leads to an increase in the magnitude of ]Im[  for the current values 

of CE . 
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4 METAL NANOPARTICLE NEAR A DIELECTRIC SLAB 

 

4.1 INTRODUCTION 

The electromagnetic interactions among several metal nanospheres are known to result in 

several interesting phenomena, physics and effects that are a part of the broad field of study that 

is known as plasmonics—a portmanteau similar to electronics for the quantized package of 

energy in oscillating electron plasma of metals [30]. Several researchers have hailed plasmonics 

as an important frontier in nanoscale optical science research [31]. One of the most significant 

applications is in the field of efficient energy harvesting in the context thin film photovoltaics; 

wherein the presence of such metal nanoparticles on the surface of a planar device can 

significantly improve the electronic current for a given amount of incident light fluence [6, 7]. 

Several researchers, who are primarily interested in the field of highly efficient light devices, 

have explored several geometries and designs that optimize the efficiency of the devices with the 

aid of plasmonic nanoparticles that are incorporated at various locations. The number of articles 

in the field is astronomical—it seems sufficient to just cite a popular review paper here. An 

interested reader can explore the internet for the articles cited in or those citing Ref. [6]. The goal 

of the present work is to study this class of problems by abstracting the nanoparticle and the 

device so that the fundamentals aspects of their interactions can be analyzed and new physical 

insights can be arrived upon. So, rather than worrying about several design related aspects of a 

device or the nanoparticle or its location with respect to the device, here, it is just assumed, for 

now, that the device is a semi-infinite slab made of a material that may be chosen to have the 

same properties as typical device materials such as semiconductors and the nanoparticle is 
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assumed to be spherical. The nanoparticles are thought to not exhibit any quantum-confinement 

effects—they can be thought to behave like the bulk materials even when their size is small 

enough to be similar to length scales of its crystal lattice, electron transport related length scales 

such as mean free path and other coupled scales relating the electrons to the lattice. The 

dielectric slab, which represents the device, is analyzed in the context of how much light energy 

flux is entrained within it due to the presence of the nanospheres. A connection can be made to 

observed electron current enhancements by arguing that the current, essentially, depends on the 

photon fluence rate in to the slab—disregarding possible interaction between the nanospheres 

and the substrate that could augment the substrate’s material character or any non-linear field 

couplings. Hence, in this “naïve” inquiry, improving the device is equivalent to increasing the 

light fluence rate into the slab—which, from now, will be called the Trapped Flux F. It will turn 

out that F is a function of several system parameters ip . The goal for this work is to study )( ipF  

using the methods of analyses and calculation of linear electromagnetic coupling discussed in 

Chap. 2; and to develop an insight in to the underlying numerical and physical artifacts of such 

coupling as well as tie them to useful concepts that will be important for the development of 

devices that use linear electromagnetic field coupling. Further, the full wave nature will be 

disregarded for the current problem so that the problem can be analyzed for nanospheres that 

only have strong near-field interactions. Such an assumption can be justified based on the 

observation that several experimental research groups have used very tiny particles for their 

devices, but, here, it is preferable because it makes most sense from the perspective of a rigorous 

mathematical analysis of problem. It may very well be possible that, under certain circumstances, 

large spheres or other relatively hard to analyze designs may be more efficient but this work is 
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focused on the numerical and theoretical analysis of the problem from the most elementary 

starting point to which complexities can be added eventually. 

 

4.1.1 Incident field’s interaction with the semi-infinite slab 

The electric and magnetic fields can be generated from scalar fields using the 

decomposition discussed in Chap. 2; even when the fields are described in the Cartesian 

coordinate system. Eqs. 2.40 and 2.41 can be modified by just replacing the position vector with 

a unit vector ip  such that 0iikp , where ik  is the wavevector. Since, the vector Helmholtz 

equation is a set of three equations, one would expect three scalar fields to completely represent 

them, but the perpendicularity condition, that is necessary for the solution to become a travelling 

wave, reduces the requirement to only two scalars. Further, a unique ik  is required to deem the 

solution a travelling wave. Eventually, only one unit vector need be multiplied to one solution of 

scalar wave equation to generate one solution for the vector equation. So, in some vague sense, 

studying only the scalar solution for the case of Cartesian Helmholtz equation is apriori to 

analyzing its effects on the vector solutions. The main argument here is that given any time 

harmonic function, a spatial Fourier transform can be performed on it to evaluate its constituent 

travelling wave modes making it possible to do something similar to the solution of the vector 

equations. In such a situation, the effects of the plane waves made of various ik  are the ones that 

are only required to analyze the problem since any other beam form can be reconstructed out of 

such solutions. Of course, one may inquire about complex ik  that are required in case of an 
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absorbing medium—unless a medium is not entirely absorbing it may be possible to account for 

imaginary part of ik s by keeping them as a part of the Fourier coefficients of the beam.  

The incident light will be considered to be a plane wave that is incident at various angles 

and polarizations upon the slab and given by )exp()ˆˆ( 00
rkppE  iiPPiiTTii iEE , as discussed in 

Chap. 2. The unit vectors and the superscripts carry the same meaning as in Chap. 2: i denotes 

incidence, T denotes transverse polarization with respect to the plane of incidence, P denotes 

polarization in the plane of incidence, 0 denotes the amplitude and p represents a vector in the 

direction of the polarization. The other symbols have their usual meanings. Similarly, the 

transmitted and reflected fields are given by ).exp()ˆˆ( 00
rkppE  ttPPiPtTTiTt iETET  and 

)exp()ˆˆ( 00
rkppE  rrPPiPrTTiTr iERER . The wavevectors can have a complex magnitude in 

case the medium they are travelling in is dissipative. Referring to figure 2.1 in Chap. 2, the 

relative orientations of 
k  with respect to the interface are such that the wavevectors can be 

treated as vectors that can have a complex amplitude but a real unit vector corresponding to 

them—a situation that is true only when medium that the wave transmits into has real 

permittivity, in which case, the amplitude is not complex anyway. In the presence of a dissipative 

medium, both, the amplitude and the unit vector components need to assume complex values so 

that the Snell’s law given in Eq. 2.18 of Chap. 2 can be satisfied while allowing 

iSSt kk   00
 to remain complex valued since the substrate’s relative permittivity 

S  is complex valued. The normal component 
tk1  is given by 

.)1(
2

1

22

3

2

2

22

1

iiSiiiSt kkkkkk    At any given point r, the total electric and magnetic 

fields can be represented as an expansion in r  dependent terms, where triak ,,,   
 and 
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a is some relevant length scale. The expansion can be further represented in terms of the 

amplitudes of some relevant harmonics that correspond to, say, the numerical method used for 

the solution of the problem. 

4.1.2 Calculation method for fields around spheres present in the vicinity of a 

semi-infinite plane slab 

The problem of field calculation for spheres present in the vicinity of semi-infinite slab is 

best analyzed, at least in the beginning, in the asymptotic limit as certain linear features within 

the system are small enough to neglect the wave effects corresponding to them—such a method 

of analysis allows one to build the problem from ground-up, addition of algebraic and numerical 

complexities is made in a systematic manner so that one can keep a track of the intricacies. At 

present, the analysis and calculations that lead up to the solution of the full problem are intended 

for discussion here. 
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Figure 4.1: The figure depicts the incident plane wave field and the relevant form of distribution of 

the spheres in the vicinity of the dielectric interface. The lower half space have an electric 

permittivity S relative to the upper space. The spheres are allowed to approach and almost touch 

the interface, but not be present in both media across the interface. The superscript  denotes the 

sphere count. Orientations of the incident (i), reflected (r) and transmitted (t) wavevectors with 

respect to the axes, the interface with the dielectric half-plane and its normal along with the 

corresponding angles are also included. Only one polarization vector is shown since all other 

orientations can be found from its and the wavevector’s orientations. 

 

Fig. 4.1 depicts the problem geometry of interest. The spheres are allowed to touch the 

interface from either side, but not cut across it since under such a circumstance, it would not be 

possible to solve using the multipole method discussed in Chap. 2. It would require the use of a 

method that allows piecewise or discontinuous boundary conditions to accommodate the change 

in the media. One may think of applying the conditions in a point-wise sense by discretizing the 

boundary, but even then, the discontinuity as a function of   would require the use of several 

harmonics that, eventually, amount to putting several points near the interface using some 

collocation scheme.  

The multipole method requires that the applied field is represented in terms of Laplace 

harmonics with origins that coincide with the center of each sphere. For a sphere located at 
r  
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such that 01 x , the driving electric field experienced by the sphere is the sum of the incident 

and reflected fields that is given by 

 )exp()ˆˆ()exp()ˆˆ()( 0000 
rkpprkpprE  rrPPiPrTTiTiiPPiiTTid iERERiEE  (4.1) 

as discussed in Chap. 2. Noticing that 
ir kk 11  , 3

ˆˆˆ xpp  rTiT
,  21

ˆcosˆsinˆ xxp
iiiP    and 

21
ˆcosˆsinˆ xxp

rrrP   : all from Chap. 2, one can simplify Eq. 4.1 to give the following set 

of equations for the driving electric field for the upper half-space: 

 

).1)(exp()(
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 (4.2) 

The driving magnetic field can also be calculated in a similar manner, albeit it would not 

eventually contribute significantly to calculated harmonic amplitudes since, as discussed in 

Chap. 2, the induced magnetic field is insignificant to the leading order in 
n  for field coupling 

among small non-magnetic spheres. A similar expression can be found for the driving field for 

the case when 01 x . 
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 (4.3) 
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)( 
rE

d
 can be  represented in terms of regular Laplace harmonics by using the second equation 

in Eqs. 2.66 in Chap. 2— .)1(



n

n

nm

R

nm

d n 
E   

Clearly, the exponential terms need to be taken care of. Here, the same argument, as 

always, would be used; it will be assumed that the distances r  are such that 

tii ,),exp(  
rk  approaches one. Vector 

r  can be represented as ),( 1

 x , where 

),( 32

 xx  so that the exponential is )exp()exp( 11





 kixik . The first term can approach 

one if the distance of the sphere from the interface is small enough: 01  hk . The second term, 

however, needs to be looked at as )exp()exp( 0







   kk ii , where the prefix   symbolizes 

a small change. Essentially, given any location on the interface, as long as region of interest 

represented by the span 
  is such that 



 k  is a small compared to one. The exponential 

multiplying the   term is just a constant that can be absorbed into the amplitude of the field. 

Several such regions can be considered as long as they form a set of islands that satisfy the 

condition within them and the distance between them is such that the condition is violated, i.e., 



 k  is at least O(1).  

Representation in terms of the Laplace harmonics reduces to the representation of 

constant vector )( 
rE

d
. The vectors in the basis ix̂  can be generated from regular harmonics 

through gradient operation in the following way: 
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 (4.4) 

The constants i  represent the reflection and transmission coefficient related factors that appear 

in Eqs. 4.2 and 4.3 respectively. The choice of their values depend on )sgn( h . The amplitudes 

of the Laplace harmonics 

mF1
 can be evaluated from Eq. 4.4. 
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Everything that is necessary for the evaluation of the scalar fields is in place except the 

incorporation of the effect of the semi-infinite slab. The method of images will be used here to 

take the effect into account. The main idea is to have the effect of an interface on a source be 

accounted for by another source. A source is a singularity that decays in the far-field. The field in 

the 01 x  region also needs to be represented using singularities such that, at the interface, the 

boundary conditions on E and H are satisfied. Given a S

nm  at 
r  such that 01 x , a singularity 

imS

nm

   in the 01 x  region is required to generate the reflection of S

nm  due to the interface. 

However, imS

nm

  is only meant as a source for the 01 x  region. For the lower half-space, a 

“ghost” or “virtual” source in the upper region given by gS

nm

  is used to generate the fields. 

Clearly, full-wave solutions cannot be dealt with using such a method since a change in a 
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medium would cause a phase mismatch at the interface. The only way would be to resort to the 

Fourier representation of the source in the upper region followed by simple application of the 

Fresnel relations for a given value of the wavevector to obtain the reflected and transmitted 

Fourier components. In the context of the current problem, it would require that the unknown 

multipole polarizabilities of each sphere be re-represented so that their interaction with the 

interface can be incorporated in the solution procedure. The reflected fields’ would need to be 

inverse transformed back into the multipole amplitudes followed by their coupling to the other 

spheres etc. The general scheme would be the following: 

1. Represent the scalar functions on each sphere using the Laplace approximation as far as 

the coupling among spheres is concerned based on the small argument arguments 

discussed before and in Chap. 2. 

2. Represent the plane wave using scalar wave functions using Eqs. 2.40 and 2.41 with the 

unit vector replaced with 1x̂ . The Fourier amplitudes of such a representation can be 

found in the literature [32]. The boundary conditions in terms of such functions can also 

be evaluated and their application would result in the Fresnel coefficients that relate the 

scalar incident, reflected and transmitted fields [32]. These fields need to be used as the 

driving fields for the spheres located near the interface as discussed in Fig. 4.1. Due to 

the Laplace approximation, the fields need only to be evaluated at the centers of the 

spheres—which, essentially, amounts exactly to what is discussed in the section previous 

to this one. The incident field vector can be populated thusly. 

3. Incorporating the interaction of the various multipoles located at the centers of the 

spheres with the interface would require the representation of the amplitudes as those of 

the Helmholtz equation as discussed in Chap. 2 followed by representation of outward 
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travelling wave solutions in terms of their Fourier amplitudes. For this, only the 

representation of the Green’s function would be necessary—other multipoles can be 

generated from it using certain derivative operations in a manner similar to those of 

Laplace harmonics [21]. For the scalar Green’s function given by 
r

ikr
g

4

)exp(
)( r  for a 

given medium with wavevector magnitude k,  



 3232 )exp(),()( dkdkikkgg rkr with 

k changing its value as one crosses the interface—the details are immaterial here [32]. 

Let a differential operation )( inm   be such that H

nmnmg  , where H

nm  is an outward 

propagating Helmholtz harmonic given by  im

nmnnm

H

nm ePkrhc )(cos)()1(  with nmc  as 

simple constants. So, the harmonics are:  

 





 3232

1
)]exp()[,( dkdkikkgc nm

H

nmnm rk  and the term in the square brackets 

would lead to an additional multiplier that is a linear combination of ik , 
jikk  and 

lji kkk  

where the indices indicate different components that arise from the operation depending 

on the value of n and m. Eventually, the all “plane waves” can be added together by 

converting the Fourier transformed harmonics into equivalent plane wave amplitudes [32] 

that are allowed to reflect followed by addition of the reflected field to the incident 

multipole field such that it affects all spheres. The translation, in such a case, would just 

lead to a phase factor as would be the case in case of plane waves. Thereafter, the Fourier 

amplitudes need to be integrated at the centre of each sphere followed by the evaluation 

of the corresponding Laplace harmonic amplitudes by using their orthogonality and that 

near a sphere, .0kr  It is not clear at the moment if the required integrals permit an 

analytical evaluation. 
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4. The resulting system of linear equations would have to be solved using numerical 

computations. 

In the integral representation picture, such as the one discussed by Lukosz and Kunz [32], 

the interaction occurs through the reflection of the component plane waves—something that is 

arrived upon by the application of the boundary conditions to the component scalar plane waves. 

For calculations involving several spheres, it seems more sensible to avoid the steps involving 

the evaluation of the integrals in order to populate the coefficient matrix—not just for 

computational efficiency, but also for analytic ease. Moreover, the integrals required for the 

evaluation of the fields don’t seem strictly analytic. As an example, one can consider the 

integrals in Eq. 2.37 and 2.39 of Ref. [32]. Here, instead, we incorporate the interfacial coupling 

effects in the relevant coupling region given by 0kr  using a self-consistent method that does 

not violate any boundary conditions required by the problem but just solves the problem in the 

limit. After the calculations are performed, one can use the calculated dipole moment as a source 

to evaluate the wave effects in the near and far-field using an integral representation similar to 

the one discussed above.  

Proceeding with the method of images for the current problem, let a scalar electric 

singularity S

nm  be located at 
r  such that 01 x . Let its image imS

nm

  be located at im
r  such 

that 


11 xx im   and 3,2,  jxx j

im

j


. Further, let its virtual image gS

nm

  be located at 
r . At 

the interface given by ,01 x  we want the corresponding 232 ,, HEE  and 3H  to be continuous 

across the interface. To the leading order in  , 
S

nmnm n E , so, the parallel components 

require continuity of 
S

nm , where   denotes surface operations. However, the leading order 
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contribution to H is )(O , given by ),( S

nmnm

i



 rH




 so its contribution needs to be 

considered. Again, its surface effects require the continuity of .)]([ 


 S

nmr  The term in the 

square brackets can be simplified further: 

].[][])()[()]([ 1111

S

nm

S

nm

S

nm

S

nm

S

nm    xxr The quantities r 

and   do not change sign upon moving from S

nm  to imS

nm

   while maintaining .01 x  Only, the 

quantity   does and consequently )(nmP  changes by 
mn )1( . The resulting equation 

connecting the image and virtual image amplitudes 
im

nm  and 
g

nm  is the following: 

 .)1(1 g

nm

im

nm

mn  
 (4.6) 

The second equation needs to be derived from the H boundary condition. The presence of 1-

components leads to a change of sign in both terms and consequently, the following equation is 

arrived upon: 

 .)1(1 g

nmS

im

nm

mn     (4.7) 

Here, S  is the permittivity of the substrate—the ratio between the pre-multiplier 



’s value 

upon moving from the substrate to the medium above it. Solving Eq. 4.6 and 4.7, the following 

equations can be found: 
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1

2

,
1

1
)1( 1







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S

g

nm

S

Smnim

nm







 (4.8) 

When making such an image system for a sphere embedded in the substrate, some simple 

changes need to be made along with the fact that the driving field is the transmitted field etc. The 

conditions given in Eq. 4.8 are identical to those that would be necessary for an equivalent 

thermal problem with continuity of temperature and heat flux boundary conditions. Essentially, 

then, one can just solve an equivalent thermal problem followed by an application of 

transformation constants discussed at the end of Chap. 2 to, effectively, solve the current 

problem. 
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4.2 ONE SPHERE ON SEMI-INFINITE SUBSTRATE 

Given an incident field i

iE  characterized by the polarization, amplitude and angle of 

incidence, here, the induced multipoles and, more specifically, the induced electric dipole 

moment ip  are the quantities of interest. Of course they are coupled linearly to one another. In 

the equivalent thermal problem, the applied thermal gradient iG  is coupled to i

iE  through 

i

jiji EFG  . And, eventually, 
i

kjkijjiji EFDGDp  . We wish to evaluate the coupling matrix 

ijD  here for several systems involving different metallic nanospheres coupled with various 

relevant substrates—all of whose optical constants are discussed in Chap. 3. 

Currently, we will assume the sphere to be present above the substrate since it seems 

more relevant from a practical stand point. The driving field, in such a case, is the sum of the 

incident field with the reflected field and is given by Eq. 4.2. In it, 






















Ti

iPi

iPi

i

i

E

E

E

E
0

0

0

cos

sin





 and 

r i

i ij jE R E , where 

0 0

0 0

0 0

P

P

T

R

R

R

 
 

  
  

R  is the matrix of reflection coefficients. The driving 

field is, therefore, given by ( ) .d i

i ij ij jE R E   The corresponding iG  need to be evaluated 

through on observation of their relation to the regular multipoles 

mF1
 for a 

th  sphere. Unlike 

d

iE  given by 



1

1

12
m

R

mi

d

iE 
, for iG , one has 




1

1

1

m

R

miiG 
—the difference is, essentially, 

a factor of 2. So, d

ii EG
2

1
  and the matrix 

ijF  is, hence, given by 
1

( )
2

ij ij ijF R  . As discussed 

in the previous section of this chapter, care must be taken to factor in the phase factor that 
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depends on the location of the 
th  sphere on the interface in to i

iE  from the beginning so that 

the exponential terms in Eq. 4.2 can be fully neglected. Within iG , one cannot really distinguish 

between 2G  and 3G  unless the coordinate system is fixed. One only needs to solve two problems: 

(1) The 1G  problem that solve the problem for a 11 G  and (2) The 2G  problem for which 

12 G . The 3,2i -redundancy can be resolved by modifying the solution of the 2G  problem to 

fit the fictitious 3G  problem followed by a multiplication of the amplitudes of iG  that are 

obtained from the incident field parameters. 

A time-harmonic electric dipole ip  that is assumed to have a direction p̂  will be 

considered here. The dipole moment of a charge density distribution )(r  is given by 




 rrr dVxxp iii ))(()(   for a region of space denoted by  . In a region of 3-dimensional 

space, if a charge density reduces at some point, then, it must increase at some other point so that 

the total charge is conserved. In addition, the charge needs to flow through that space from the 

point where its density is reduced to the point where its density increases; unless, of course only 

a lower dimensional space is being considered wherein the flow may occur in some other 

dimension. Essentially, it needs to satisfy continuity equation given by 0 iit J  or 

ii J
i





1

  for the entire space. As a result, 


 Vdxxp iii ))(()( rr  . Since a point dipole 

is located at a given point, one can do away with r  by considering it to coincide with the origin. 

Further, the distribution )(r  is such that 0)(lim
0






dV
V

r , where V  denotes the volume of 

the region  . The limit is such that the region is made to shrink to a point. Without loss of 
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generality, let us assume that p̂  is oriented along 1x̂ . As a result, 




 dVxp
V

1
0

)(lim r . Clearly, 

the only function that can satisfy such conditions is )()( 1 rr   p . More generally, 

)()( rrr   iip  for a point dipole ip  located at r . In order to find the corresponding 

current density, we require )(r iiii piJ  . Integrating both sides with respect to ,dVx j
 

one can see that pJ ˆˆ   and consequently, )(r ii piJ   for a point dipole located at the origin. 

Re-representation of a dipole in terms of a current, in some sense, simplifies the field evaluation 

since the current is a source in the Maxwell curl equations and, as a result, ties in smoothly with 

the rest of the current theoretical framework. 

The magnetic field of current )(riJ  can be evaluated with the following procedure [17]: 

The magnetic vector potential A can be evaluated from the given current since 

.)(),()( 


 Vdg rJrrrA  Here, the scalar Green’s function g is given by 

.
4

)exp(
),(

rr

rr
rr








ik
g Thereafter, H and E can be evaluated in the following way: 

 AH   (4.9a) 

and 

 ).(
1

0 AAE 



i

i  (4.9b) 
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Here, A is the solution of the Helmholtz equation given by JA  )( 22 k  [17]. For 

)(r ii piJ  , the integral for A results in 
r

ikr
pigpiA iii




4

)exp(
),(  0r . The magnetic 

field generated by it is given by )(
4

)]([
4
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0 krh
ik
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 ppH
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only r dependence, 
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field generated by outward radiative Helmholtz harmonics  im
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And eventually, )
2

,
2

1
,(

4
111,1111,110 iaa

i
aaa

k
pi  



 . The coefficients ma1  correspond to 

the representation in the Helmholtz harmonics—which, in the small argument limit converge to 
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the Laplace singular harmonics with a scaling factor of 
2i 
 (based on the analysis for 0ka   

situation discussed in Chap. 2). So, the singular Laplace coefficients are 1
21 ( )

m
m

ia
S

ka
  and as 

a result, 
2

10 1, 1 11 1, 1 11

4 1
( , , )

2 2
i

ka i
p S S S S iS

i




     .  

Since the thermal dipole amplitudes are evaluated later on, one needs to relate ip  to the 

thermal dipole amplitudes th

mS1
. The relation comes about because of the relationship between mS1  

and th

mS1
 discussed at the end of Chap. 2— th

mm SS 11 2 . Hence, 
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 (4.10) 

for a dipole present in vacuum. In case of a medium with relative permittivity m , the prefactor 

in Eq. 4.10 can be changed to
2

08 mia   .   

Going back to the previous topic of discussion—the relationship between ip  and iG —

the coefficients matrix 
ijD  should have the following form due to the orientation dependence: 

jiijij mmLLD 21   , where im  is the unit normal corresponding to the interface. One finds that, 

for 1x̂im , 1211 )( GLLp   and 212 GLp  . Calling ip  obtained for 11 G  and 12 G  as 
0

1p  and 
0

2p  

respectively, one obtains 0

21 pL   and .0

2

0

12 ppL   As a result, 
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4.2.1 The G1 problem 

One sphere of radius a and relative permittivity p  is considered to be present in the 

upper half-space of an interface located at 01 x , similar to the spheres in Fig. 4.1. The slab in 

the lower half-space, 01 x , is assumed to be occupied by a medium of permittivity S . It will 

be assume that the permittivities   can be interchangeably replaced with thermal conductivities

 , where Sp, . A constant thermal gradient 11 G  is applied in the upper half-space. As 

discussed before, the lengths are rescaled with respect to the sphere radius a. The temperature 

)(r  is assumed to be dimensionless. The induced multipoles at the center of the sphere 

),( hSn
 are a function of the height h of the center of the sphere above the interface and the 

thermal conductivities. The multipole order m is zero for the axisymmetric problem. In the limit 

as h , nS  are those corresponding to a sphere embedded in a medium without an interface. 

Further, only the n = 1 mode is present and consequently 
2

1
1






p

p
thS



  as can be derived from 

Eq. 2.77. The corresponding electromagnetic dipole amplitude is 
2

1
21






p

p

S


 . In the limit as 

0p , 11 S  and in the limit as p , 21 S .  In the context of plasmon resonance, 

the points at which )(1

pS   is singular are of more interest than its asymptotic behavior since it is 

rather physically difficult to have a material with either a zero or infinitely large real relative 

permittivity. It is reasonable, however, to ask at what points the induced dipole attains a large 
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value. Denoting 2p  with e, and the fraction 
2

1




p

p



  with  , one finds that 
e

3
1 . 

Further, allowing p  to be a complex number with a positive imaginary part, as would be the 

case for metals discussed in Chap. 3, ]Im[]Im[ ep  . Denoting the imaginary part with g and 

the real part with f, the real and imaginary parts of   can be evaluated to be 

22

3
1]Re[

gf

f


  and 

22

3
]Im[

gf

g


 . Assuming e  is a function of some parameter, say 

frequency  , unless the functional forms of g and f are known, their values that optimize either 

]Re[  or ]Im[  cannot be determined. However, if it is assumed that g and )(g  are 

relatively small compared to f and )(f  —as would be the case for most high optical 

conductivity metals suitable for plasmonics applications that were discussed in Chap. 2—then it 

can be found that ]Re[  is maximized when 0f  and ]Im[ , when 0g . 
f

3
]Re[   

near 0g  and 
g

3
]Im[   near 0f . Since g  can never really be equal to zero, it is assumed 

that resonance occurs when 0f  for materials with a relatively small values of 
f

g  and 
)(

)(





f

g




, 

in which case, 1]Re[  . The location of the resonance in such materials can help develop 

several physical insights into their interaction with their surroundings. An obvious potential 

application could be in the area of detection through the observation of clear shifts or changes to 

resonance peaks. Consider that the sphere is embedded in a medium with a relatively constant 

relative permittivity m . The resulting change in the location of the resonance in )(1

pS   can be 

found using the procedure discussed above. It will occur when 0f . However, since p  is 

normalized with respect to m , 0f  is equivalent to 
mp  2]Re[   and at resonance, 
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g

m 3
]Im[    and 1]Re[  . The effect of an optically dense medium is to not only shift the 

resonance peak toward larger negative values of ]Re[ p , but also to scale up the peak magnitude 

by a factor of m .  

Later in this section, the focus of interest is in studying the effects of the presence of a 

dielectric slab near a sphere. In the 1G  problem, this was studied by tracing of the location of 

)(1

pS   peaks for  ipp  ]Re[ . The parameter   was chosen to be sufficiently small so that 

the resulting peak broadening was not significant enough to envelope the neighboring peaks. The 

substrate permittivity was chosen to be S . The resulting problem can be analyzed analytically, 

especially in the 1G  condition since the multipole orders m equal zero. The following variables 

are defined for the ease of algebraic adjustments to Eq. 2.77: 
n
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


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S

S

S



 . The multipole 

amplitudes of the thermal problem are given by: 

 ][
1

1 





p

pnpnn t   (4.12) 

Upon noticing that the coefficients 
npt  have a )1(  pnd  dependence, where hd 2  and h  is the 

distance of the center of the sphere from the interface, it may make sense to expand n  in powers 

of 1d . It can be shown that  

 ].[1 11

3113

3

112112

2

11111

 dOttttttt  (4.13) 
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Similar expressions for 2 , 3  etc. can be found. However, the current interest is focused toward 

evaluating the resonance conditions that require 
n  to be singular. Clearly, then, it can’t be 

evaluated from a sum that contains several large positive and negative numbers that eventually 

add up to a large number. In order to evaluate the condition, say accurate upto ],[ 3dO one can 

write Eq. 4.12 as ...)1( 212111   tt  The last term is an ][ 8dO term. It will be assumed to 

remain relatively small even when the coefficient 12t  is relatively large. As a result, 1  can be 

allowed to be singular only as 0)1( 11  t . The condition can be put in a different form with 

more relevant quantities as follows: 

 
3

1

4
.

S

h



  (4.14) 

The condition can be further refined to include higher order terms by consequently subtracting 

out other 1  terms. So, ][)1( 9

1211211

 dOttt   etc. would result in the condition given by 

0)1( 211211  ttt  and in more relevant terms, 
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 
 (4.15) 

and so on. For large enough values of h , the condition 1  can be recovered. The series 

expansions for 
n , especially for the 1G  problem, suffers from slow convergence as 1h  since 

all terms in the series become potentially important when 1S  or, alternatively, S . 

Consider a case when 
610 Sp  . Converged answer accurate upto 4 decimal places requires 
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the use of increasingly larger number of harmonics as the gap 1 hg  is made to approach zero. 

Fig. 4.2 shows the behavior of the minimum required multipole harmonics 4N  for a four 

decimal place accuracy as the function of increasing g10log . The convergence of 1S  with 

respect to the number of harmonics N  for a given g was, almost always, monotonically reducing 

function that asymptotically converged to a constant 
1S  value. Reducing g sifted the point of 

convergence, within a defined neighborhood, to larger and larger values of 4N . The maximum 

value of g10log  in Fig. 4.2 corresponds to 4.2log10  g  or ,002.1h after which, the values 

of 4N  exceed 85. After 85N , the matrix condition number of the coefficient matrix reduces 

to a value lower than the machine precision for MATLAB, which is approximately .10 16  

             In order to circumvent the difficulty with the convergence, a nonlinear sequence 

acceleration transform, called the Shanks transformation, was used. For a sequence of 1S  values 

corresponding to a given N  denoted 
NS ,1

, one iteration of Shanks transform is equivalent to the 

following operation on NS1 : 

 ,
2

)(
11,1,11,1

2

,11,11,1

,1










NNN

NNN

N
SSS

SSS
SSh  (4.15) 

where Sh  denotes the transformation operator. The resulting sequence has )1(
2

1
mN  terms if 

mN  denotes the maximum value of the count N  which is assume to be an odd number. The 
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expected converged answer is found to be given by )( 1NSSh m  with )1(
2

1
 mm N . Further, the 

iterations can be represented by the count )1(
2

1
 N . 

 

Figure 4.2: Minimum number of Laplace multipoles required to achieve a 4 decimal point 

convergence in the calculated value of the dipole amplitude. Maximum number of multipoles after 

which calculations cannot be performed was found to be 85. The largest value on the x-axis 

corresponds to a height h = 1.001, the required number of multipoles for which exceed 85. 
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Figure 4.3: A comparison between the sequences of dipole amplitudes obtained with (circles) and 

without (dots) the application of Shanks transformations for h = 1.001. The N4 point (defined in the 

preceding text) for the raw data is larger than 85 but the transformed values have N4 = 39—a 

reduction by at least a factor of 2. 

 

Fig. 4.3 shows the improvement in convergence that can be achieved by the application 

of Shanks transformation for a situation when h = 1.001. Shanks transform converged values of 

the induced dipole moment can be evaluated for upto 4 decimal places for only upto h = 1.001 to 

give a value of 3.5765. For values of h that are even smaller, 
NS ,1

 does not seem to converge 

even after 85N . The values, however, seem to increase and remain finite. As 0g , one 

finds that the last iteration exceed a value of 4.00 when g  is reduced below a value of  0.0001. If 

1  and S  are set to equal one, 
NS ,1

 is, perhaps, expected to converge very slowly as 0g . 

The exact details of convergence are not of interest with respect to the current work. 
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Fig. 4.4 shows the calculated critical values of ]Re[ p , ]Re[ pc  for which a dipole, 

quadruple and octupole resonance occurs in 1S  for 1S . The locations of ]Re[ pc  were 

calculated by tracing the peaks in ]Im[ 1S  vs. ]Re[ p  curves for increasingly smaller values of g . 

The imaginary part of 
p  was chosen to be 0.001 for all calculations, except for some parts of 

quadrupole and octupole calculations for which, the values were increased to 0.01 followed by 

0.1 to suppress numerical oscillations without changing the peak location. The assumption is 

valid from the point of view of a preceding discussion, in which, it was showed that as long as 

0
]Re[

]Im[


p

p

d

d




 and 0

]Re[

]Im[


p

p




, the overall effect on the calculated ]Im[ 1S  values is to only 

broaden the peak and reduce its amplitude while maintaining the peak location. A similar 

calculation can be performed for higher order multipole amplitudes nS  with n > 1 to give the 

correspongding multipolar coupling effects. The induced dipole mode amplitude 1S  is the most 

relevant since it is the only mode that that is radiative—eventhough it can be argued that the near 

field coupling, that is significant at relatively small values of g, has several coupled resonances 

that may dictate how strongly the near-field couples to the substrate. It is observed that multipole 

peaks for all nS  are located at the same value of ]Re[ pc . The observation can be explained by 

looking at the fact that 





1

1

m

mnmnnn STS  , because of which, all nS  need to be singular 

simultaneously—making it only necessary of study one type of nS  for the purpose of locating 

critical values ]Re[ pc .  
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Figure 4.4: The critical values of the sphere’s permittivity for which the first three peaks were 

observed in the value of –Im[S1]. The peaks correspond to the dipolar, quardupolar and octupolar 

coupling with the substrate which is chose to have a εS = 106. The locations were found to 

asymptotically depend on g-1/2. The x-axis is, hence, chosen to represent g-1/2. For relatively large 

values of g, dipolar resonance occurs at –2, quadrupolar at –3/2 and octupolar at –4/3. As g → 0, 

the peak locations shift to large negative values. The dotted line represents the nth multipolar peak 

location for n → ∞—the upper bound Re[εpc] = –1. The relative separation between locations is 

larger for a lower value of n. The dipolar resonance is the most shifted under stronger coupling. 

 

An example of the various peaks present in the ]Im[ 1S  vs. ]Re[ p  curve is shown in Fig. 

4.5. In order to capture the octupolar resonance peak, it was necessary to use a relatively larger 

value of ]Im[ p , 0.1, for Fig. 4.5. The corresponding ]Re[ 1S  values are shown in Fig. 4.6. The 

inflection points correspond to the peaks in the imaginary part. The dipolar peak can is located at 

the farthest negative value and is most prominent. In a Drude permittivity material, as discussed 

in Chap. 3, a larger negative value corresponds to a relatively large wavelength that lies in the 

red- region of the spectrum. The quadrupolar and octupolar resonances occur at relatively 

smaller negative values and are relatively diminished. 
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Figure 4.5: Dipolar, Quadrupolar and Octupolar resonance peaks in the imaginary part of the 

induced dipolar amplitude. The gap has a value of g = 0.01. The dipolar coupling results in the most 

prominent peak that is left-most. It is followed by higher mulipolar peaks. The right-most peaks are 

a mix of several higher order multipolar peaks that are packed in a narrow region. 

 

The gap g has an effect of shifting the peaks. In the limit as g , the dipolar peak 

moves back to -2 and the other peaks become subdued and, eventually, disappear. In the opposite 

situation, when 0g , leads to the emergence of the peaks from near -1 followed by a shift 

towards the right—all the way upto -∞. In terms of the wavelength, there is an infinite red-shift 

in the location before disappearance. The peaks, however, become sharper as they shift away—

requiring relatively large values of ]Im[ p  for, both, peak resolution and the convergence of the 

calculation. The real part corresponding to the curve in Fig. 4.5 is given in Fig. 4.6. It also shows 

features that are inflection points rather than peaks, at the locations where there are peaks in the 

imaginary part. |S1| undergoes a resonance, just like Im[S1], but at the inflection point, the phase 

angle changes by an amount given by π. Overall, the induced dipole is at maximum at resonance.        
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Figure 4.6: The real part of the induced dipole for g = 0.01 and Im[εp] = 0.1. Inflection points mark 

the location of the resonance. |S1| undergoes a resonance, just like Im[S1], but at the peak point, the 

phase angle changes by an amount given by π. 

 

For infinitesimally small values of g, when all discernible peaks have shifted far away to 

large negative values, a continuum seems to appear near ]Re[ p = 0. As shown in Fig. 4.7, the 

peaks are missing even for a relatively large range of ]Re[ p . A relatively large value of 

2]Im[ p  was required so that converged results could be obtained, however, the trend seemed 

to be consistent with that observed for a case when ]Im[ p  was chosen to be much smaller. As 

0]Im[ p , the peak location seemed to shift toward −2 and the value seemed to increase 

asymptotically to ~10. In a similar manner, the ]Re[ 1S  curve seemed to show a relatively large 

magnitude negative peak that was located at ~−1.6 and had a magnitude that approached ~−10. 
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However, unlike ]Im[ 1S , the peak value approached its asymptotic value after going through a 

maximum in the magnitude. 

 

 

Figure 4.7: The real and imaginary parts of the induced dipole for a sphere that is touching (g = 0) 

an interface that has a permittivity given by εS = 106. Instead of several peaks, a continuum that is 

asymmetric with respect to a peak at ~−3.5 is observed for Im[S1]. A more subdued inflection that 

resembles a peak at ~ −0.9 is observed for Re[S1]. In order to get converged results, it was necessary 

to use a relatively large value of Im[εp] = 2. 

 

The trend of “peak disappearance” seems to remain valid even for materials with an ideal 

Drude permittivity that were discussed in Chap. 3, Figs. 3.7 and 3.8. The Drude permittivity as a 

function of wavelength is a monotonous map, although a nonlinear one. Hence, all shape features 

that appear for a linear map of the real part and a fixed imaginary part are present in the case of a 

Drude permittivity metal.  



96 

 

Substrate permittivity 
S  dependent 

S value affects the dipole resonance locations by 

shifting the locations not only toward negative values of ]Re[ pc , but also positive values. As 

shown in Fig. 4.8, there seems to be a resonance in the resonant values as a function of 
S  with 

the critical value 284.1Sc  for a given value of g = 0.1. Near the singular point, the critical 

values ]Re[ pc  reach large positive and negative values followed by an asymptotic behavior 

toward finite values. As 
S  is allowed to increase from 0, the dipolar peak tends to moves 

toward negative infinity from a finite negative value. After passing the critical value 
Sc , the peak 

reappears from positive infinity followed by a shift asymptotically toward a finite positive value. 

The asymptotic value and the value of 
Sc  are g dependent—they would change as g is allowed 

to assume different values. In general, 
S  is a complex number, which would require studying its 

behavior over not just positive real values, but also, negative real and positive and negative 

imaginary values. It seems sufficient to only analyze real positive values since real substrate 

materials have a permittivity 
S  that can assume any real value but only a small positive 

imaginary value. Away from a singular point in )( SS  and 1]Re[1  S , it can be seen that 

0]Re[ S  and that ]Im[ S  remains relatively small. The conditions are satisfied by most 

materials except certain metals that have a permittivity that satisfies 1]Re[1  S  for the 

wavelength range of interest. The presence of a relatively small ]Im[ S  is expected to shift the 

locations of 
Sc  and the asymptotic value for ]Re[ S . The singularity in 

S  corresponds to 

a substrate permittivity 042.8S —a value that can be realistically achieved by high optical 

conductivity metals such as Ag and Au in the visible range of wavelengths. Essentially, metal 

nanoparticles in the vicinity of metallic substrates can have dipole resonances that can be 
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significantly shifted in not only the large wavelength direction, but also toward relatively smaller 

wavelengths. 

 

 

Figure 4.8: The behavior of peak locations for dipolar resonance in S1 as a function of the substrate 

parameter βS for a gap given by g = 0.01. The imaginary part Im[εp] as set to equal 0.001. A 

singularity is observed for βS ≈ 1.284. The peak locations span large positive and imaginary values 

followed by an asymptotic behavior toward a finite positive Re[εpc] that is close to 1. 

 

Metals such as Ag, Au and Cu have a small enough imaginary part of permittivity that 

allows them to exhibit a peak value in the induced dipole moment. Out of them, Ag has the least 

value of ]Im[  that allows it to show a relatively large peak value as well as a narrower peak 

width. The peak location, as discussed in this section, is dependent on the gap distance g. The 

resulting shift in the peaks is in the direction of increasing λ. Figs. 4.9 and 4.10 show the effect 

of g on 1S  for a sphere made of a Drude metal that has a plasma wavelength p  290 nm and 
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collision energy CE  0.1 eV. The value of p  is such that the plasmon resonance for an isolated 

sphere occurs at 500R nm. The collision energy is chosen so that the imaginary part ]Im[ p  

remains O[0.1] resulting in a significantly sharp peak. As the sphere is made to approach the 

interface, several artifacts that result from the coupling effects are observed. 

 

 

Figure 4.9:.Re[S1] for g values including g = 0. The sphere is assumed to be made of a metal that 

has a Drude permittivity with a characteristic plasma wavelength λp = 290 nm and a collision energy 

EC = 0.1 eV. The substrate has a βS = 1. 
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Figure 4.10: Im[S1] for g values including g = 0. The sphere is assumed to be made of a metal that 

has a Drude permittivity with a characteristic plasma wavelength λp = 290 nm and a collision energy 

EC = 0.1 eV. The substrate has a βS = 1. 

 

The peak features in ]Im[ 1S  are easier to describe in comparison to the inflection features 

in ]Re[ 1S . In Fig. 4.10, one can see the following events as g is made to approach zero: (i) peak 

shift, (ii) peak birth and (iii) peak disappearance. The corresponding artifacts in fig. 4.9 are with 

regard to the location, the relative intensity and the relative width of the inflection features. The 

general form of the peak and the corresponding real part are a characteristic of an isolated sphere 

made of a Drude metal that corresponds to a Lorentzian response [2]. The presence of coupling 

seems to want to distort the response [2]. For g values of O[0.01], several peaks are observed, up 

to n = 4 coupling peaks are seen in Fig. 4.10. As the g value is reduced further, the peaks seem to 

want to disappear and give rise to a continuum as discussed previously in this section. The most 

interesting feature of the continuum is the complete absence of peaks. 
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In more relevant systems that consist of either Ag, Au or Cu nanospheres distributed on a 

substrate made of silicon or materials that have a similar dielectric function as silicon, the 

calculation of the 1G  dipole can be performed in a similar manner to those discussed previously. 

Since Ag, Au and Cu significantly resemble Drudian permittivity (see Figs. 3.1, 3.2 and 3.3), 

their interaction with a relatively high permittivity substrate such as Si can be expected to show 

trends that are similar to those seen Figs. 4.9 and 4.10—all features including peak shift, birth 

and disappearance, and the eventual peak-less continuum. However, as a result of the relatively 

larger collision energy CE of Ag, Au and Cu, one can expect all the features to occur but with 

relatively smaller peak values, peaks shift and birth rates with respect to g. The peak features are 

expected to be most prominent for a situation in which 0CE . Figs. 4.11- 4.16, show 

converged results for Ag, Au and Cu nanospheres on an infinitely thick Si substrate. The real and 

imaginary parts of the induced dipole moment S1 for several values of the gap g are shown. 
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Figure 4.11: Re[S1] for g values including g = 0 for an Ag sphere present near a semi-infinite Si 

substrate. 
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Figure 4.12: Im[S1] for g values including g = 0 for an Ag sphere present near a semi-infinite Si 

substrate. The dipole corresponds to the G1 problem. The peaks show (i) shift toward a larger λ, (ii) 

birth near ~350 nm and (iii) disappearance after a shift of ~300 nm. 
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Figure 4.13: Re[S1] for g values including g = 0 for an Au sphere present near a semi-infinite Si 

substrate. 
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Figure 4.14: Im[S1] for g values including g = 0 for an Au sphere present near a semi-infinite Si 

substrate. The peaks show (i) a relatively smaller shift toward a larger λ, (ii) birth near ~600 nm and 

(iii) disappearance after a λ value that is larger than 800 nm. 
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Figure 4.15: Re[S1] for g values including g = 0 for a Cu sphere present near a semi-infinite Si 

substrate. 
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Figure 4.16: Im[S1] for g values including g = 0 for an Cu sphere present near a semi-infinite Si 

substrate. The peaks show (i) a relatively smaller shift toward a larger λ, (ii) birth near ~600 nm and 

(iii) disappearance after a λ value that is larger than 800 nm. 

 

An Ag nanosphere present near an Si substrate leads to an induced dipole behavior that 

resembles that obtained for a Drudian metal with a relatively low CE  present in the vicinity of 

substrate with a relatively large wavelength independent permittivity. Au and Cu deviate from 

the expected behavior due to their relatively large values of CE  and the fact they both require, 

at least, one Lorentz oscillator to model them accurately. The presence of the non-Drude-like 

features leads to a relatively indistinct peak shift and the presence of relatively broad peaks in Au 

and Cu systems. As a result, the overall value of the induced dipole increases in magnitude as an 

Au or Cu sphere approaches a Si substrate. The effect of peak shift is eclipsed by the relatively 

broad spectrum. Moreover, a g-resonance occurs for a fixed value of λ. Such a resonance occurs 

even for the Ag-Si system, but it can be interpreted to result from the shifts in the peak locations 
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and the change in their relative width rather than to arise from a non-monotonic increase in the 

overall value of the induced dipole. The overall resonant response of an Au or Cu sphere seems 

to enhanced by a factor that varies non-monotonically with g—assuming a maximum value of ~4 

for Au and ~2.5 for Cu. 

 

4.2.2 The G2 problem 

In the presence of a horizontally oriented thermal gradient G2, one would expect the 

induced dipole and higher order multipoles to be oriented parallel to the applied field. The degree 

of the induced multipoles has to reflect the direction by allowing non-zero values of m, 

specifically, 1m    multipoles that correspond to the horizontal orientation. In a manner similar 

to that discussed in the preceding section, an analytical expression for the induced multipole 

moments can be derived in the form of an implicit series that can be represented as a matrix. One 

can use Eq. 2.77 for the two values of m in the following way. For 1,m  the equation is given by 

n1n n np p n

p

S T S       and for 1,m    it is n1

1

2
n n np p n

p

S T S       . The singular 

coefficients 
th

nmS  are re-labeled with superscripts that correspond to the two different values of 

sgn(m) . The coefficients npT 
 are unrelated due to the fact that the associated Legendre 

polynomials , 2 (1)nP   are equal to zero and as a result, all the degrees have to be equal in values—

either 1  or 1 . Further, the equations can be put in the same form as in the previous section—
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. The singular 

coefficients can then be evaluated in the manner discussed in the previous section. Since the 

algebraic framework is made same as that for the G1 problem, the series corresponding to 1  in 

the previous section (Eq. 4.13) can be used here with some adjustments. 

 
2 3 11

1 11 11 12 21 11 13 311 [ ].t t t t t t t O d                 (4.16) 

The least value that the parameter d can take is 2, which represents the touching condition. The 

singular values of 1

 for the case when d   occurs when 1  is singular. However, to a first 

approximation, the resonance condition gets modified when as d is made to approach 2 to 

11(1 ) 0t   as in the case of the G1 situation. This condition, in general, represents two separate 

conditions for the G2 situation. However, since, the coefficients 11t   are identical and given by  

3

11 n St d    , the conditions become unique. Since 2d h , the following condition can be 

derived for dipolar resonance in the G2 situation: 

 
3
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8
.

S

h



  (4.17) 

In comparison to the corresponding condition for the G1 problem, the condition given in Eq. 4.17 

has a right-hand-side that is twice in value. The resulting resonance can occur for smaller values 

of sphere permittivity p  for given values of h and .S  In case of Drudian metals such as Ag, a 

consequence is resonance peaks that are relatively less red-shifted in comparison to the peaks in 
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the G1 problem. Addition of a higher order term can lead to the following expression for the 

resonance condition given by 
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 (4.18) 

which can be derived by setting equal the following condition which is similar to the one that 

was derived in the preceding section: 11 12 21(1 ) 0.t t t      As seen before, the refined resonance 

condition also contains terms that lead to relatively smaller corrections to Eq. 4.16. Overall, the 

value of dipole polarizability 1  remains relatively larger for the G2 problem. The peak shifts are 

expected to be less prominent as a result. 

 The calculated values of the induced dipole as the gap distance 0g   

do not suffer form any difficulties related to convergence unlike the G1 problem. When the 

sphere’s permittivity is set to equal 106 and substrate parameter 1S  , for a gap distance

1.001g  , one finds that the number of harmonics required to achieve a four decimal point 

convergence is 4 45N   multipoles—significantly lower in comparison to 4 85N   for the 

corresponding G1 problem. Not surprisingly, any acceleration leads only to a much faster 

convergence.  
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Figure 4.17: Number of iterations required to achieve a four decimal point convergence for the G2 

problem. The sphere permittivity is εp = 106 and substrate parameter is βS = 1. Unlike the G1 problem, 

the N4 values are much smaller. For g = 0.001, N4 = 46—a value that is less than the maximum 

number of multipoles Nmax = 85 that can be used for the calculations. 

 

The convergence rates only seem to reduce monotonically as 0g   for both problems. In 

addition, the inability to converge for 
610p   and 1S   was, in some sense, correlated to the 

convergence related difficulties for the resonance analysis when Re[ ] 0.p   One would expect 

that in the current problem, there shouldn’t be any convergence related difficulties when 

analyzing situations where the sphere’s permittivity is allowed to take negative real and positive 

imaginary values. Convergence, however, is not achieved for all values of Im[ ]p  for 0.001g  . 

Convergence can be forced just like in the G1 problem by increasing the value of Im[ ]p  to a 

larger value.  
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            The locations of the resonances peaks in 11Im[ ]S  were evaluated in a manner similar to the 

one used previously. The shift in the location was found to be very small in comparison to G1. 

Only dipole resonance peaks were traced since quadrupole and higher order peak locations were 

found to maintain their positional order under both kinds of excitations. The resonance shifts for 

the dipolar contributions to the induced dipole 11S  for G1 are given in Fig. 4.18. 

 

 

Figure 4.18: Locations of resonance peaks correspoinding to the dipolar contibutions to the induced 

dipoles for the G1 and G2 type excitations. The induced modes are S10 for the G1 problem and S11 

and S1,-1 for the G2 problem. Here, the values of S10 and S1,-1 were used for locating the resonance 

peaks. The G2 peaks shifts are approximately close to half of the G1 shifts as the gap is made to 

approach smaller values. Contributions from higher order multipolar couplings are not discussed 

here since, they maintain their positional order as well as their asymptotic behaviors in the limit as 

g → 0. They are expected to have relatively smaller shifts in comparison to their equivivalent G1 

multipoles. 

  

The terms in Eq. 4.16 seem to be symmetric in their indices n and p for the two allowable 

values of m. As a result, one may hypothesize and check numerically or perhaps prove using 
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induction that n n    and consequently, 11 1, 12th thS S   . The induced electric dipole moment’s 2-

component 
2p  depends on 

1, 1 11

1

2

th thS S   as given in Eq. 4.10 or, effectively, on just 1, 1

thS   because 

of their inter-relatedness. The induced equivalent electric dipole moment, hence, depends on the 

multipole amplitude of the equivalent electromagnetic problem 1, 1S  , which is related to 1, 1

thS   by 

1, 1 1, 12 thS S   . Hence, for the purpose of the G2 problem, only 1, 1S   is the relevant induced dipole 

amplitude.  

The overall shapes of the relevant 1mS  vs. Re[ ]p  curves for the G2 problem are similar 

to those for the G1 problem. Of course, the peak locations and the magnitudes of 1mS  do not 

coincide. The broad and asymmetric continuum that remains for the case when 0g   is 

narrower for G2 as shown in Figs. 4.19 and 4.20. The real part of the induced electric dipole 

given in Eq. 4.16 depends on 1Im[ ]mS  and its imaginary part depends on 1Re[ ]mS . As a result, 

features of the 1Im[ ]mS  vs. Re[ ]p  curve determine the real amplitude of the induced dipole 

Re[ ]p . The broad continua as well as the amounts of peak shifts are determined by the type of 

coupling between the sphere and the substrate. Horizontal or G2 coupling seems to be more 

wavelength specific since, eventually, p  can be mapped to wavelength or frequency with a 

permittivity model or data. Vertical coupling or G1 coupling leads to significant shifts and a 

relatively long tail when the sphere is made to touch the substrate.  The difference in the 

response can lead to a dependence on the angle of incidence i . 

Induced dipole moments for the case when the sphere was assumed to have a Drude 

model based permittivity and the substrate were assigned a relatively high permittivity such that 
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1S
  were not evaluated for the G2 problem. It was found that the overall shapes of the 

curves showed the same kind of features such as peak births, peak shifts, the broad continuum 

etc. The features, however, were found to be less pronounced. The peak shifts, for example, were 

relatively smaller etc. The effects of S values on the peak locations of the induced dipole 

moments, although of interest, were not calculated for G2. It was assumed that since the there is a 

singular dependence on several real parameters in both problems; one would expect to see a 

singular dependence on S even for the G2 problem. The asymptotes and the location of the 

singularities, of course, are not known and could be evaluated in a way similar to that used for 

G1. Instead, the dependence of mS1  for Ag, Au and Cu spheres present near a Si substrate on the 

wavelength of the incident light were evaluated to gain more insight into the G2 interactions 

among real materials that are frequently used in light trapping applications. 

The induced dipole amplitudes were calculated for several values of g for Ag, Au and Cu 

spheres present near a Si substrate. Figs. 4.21-4.26 show, respectively, the behaviors of 1, 1Re[ ]S   

and 1, 1Im[ ]S   values as functions of  . For the Ag-Si system, the dependence on g is similar to 

that in the case of 1G  excitation. It is, however, relatively less prominent. Specifically, the peak 

shift and broadening as 0g   is much less significant. The overall change in the spectral 

response as a function of g is relatively lower. For Au-Si and Cu-Si systems, there is an overall 

increase in the magnitude of the induced dipole amplitude that is of the order of 10 %. Again, 

this much smaller compared to the order 100 % increase in the magnitude that occurs during 

vertical excitation. Further, there are no obviously clear maxima in values of 
1, 1S 

 as a function 
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of g for a given value of  . It just seems to increase until the sphere is made to touch the 

substrate. 

 

 

Figure 4.19: The real parts of the induced dipole amplitudes for the two problems when g = 0. The 

imaginary part Im[εp] was set to a relatively large value of 1 in order to obtain conveged values. 
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Figure 4.20: The imaginary parts of the induced dipole amplitudes for the two problems when g = 

0. The imaginary part Im[εp] was set to a relatively large value of 1 in order to obtain conveged 

values. 
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Figure 4.21: The real parts of the induced dipole amplitudes for several values of the gap distance 

g for an Ag sphere in the vicinity of an infinitely thick Si substrate. The effect of the substrate is 

relatively less significant in comparison to the G1 problem. 
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Figure 4.22: The imaginary parts of the induced dipole amplitudes for several values of the gap 

distance g for an Ag sphere in the vicinity of an infinitely thick Si substrate. The effect of the 

substrate is relatively less significant in comparison to the G1 problem. The peak shifts are much 

smaller. The shifted peaks are eclipsed by the broad continuum as g → 0. The continuum is also 

different from that of the equivalent G2 problem, it is sharper and has a relatively shorter tail. 
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Figure 4.23: The real part of the induced horizontal dipole amplitude for an Au sphere present near 

a Si substrate. There is ~30% increase in magnitude for λ > 500 nm. 
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Figure 4.24: The imaginary part of the induced horizontal dipole amplitude for an Au sphere present 

near a Si substrate. There is an overall increase in value as the sphere is made to approach the 

substrate. 
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Figure 4.25: The real part of the induced horizontal dipole amplitude for an Au sphere present near 

a Si substrate. There is ~35% increase in magnitude for λ > 500 nm. 
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Figure 4.26: The imaginary part of the induced horizontal dipole amplitude for an Au sphere present 

near a Si substrate. There is an overall increase in value as the sphere is made to approach the 

substrate. 

 

4.2.3 Effect of Angle 

            The difference between the responses under G1 and G2 excitations points towards an 

angle dependence of the induced electric dipole p. Given an incident field i
E , the evaluation of 

the induced dipole requires two coupling matrices ijF  and ijD . The first relates the applied field 

to an ‘equivalent’ thermal gradient G and the latter connects the applied gradient to p. ijF  is 

given by 
1

( )
2

ij ij ijF R   where, 
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R   is a matrix of the reflection 
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0

1p  and 0

2p  are the the components of the induced dipole for 11 G  and 12 G  excitations 

respectively.  It turns out that 10

20

1 4 Saip   and 1,1

20

2 4  Saip  . The angle dependence gets 

into the calculation through the i  dependent components of the incident field and the angle 

dependent values of the reflection coefficients. For an in-plane incident field i
E , 03 

iE in the 

current coordinate system. The components are 











iPi

iPi

E

E





cos

sin
0

0

 and the resultant induced dipole 

is given by 

0

102

0

1, 1
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4
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i P i P

E S R
i a

E S R


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 
  

 
p . For a transverse incident field, there is only 

iE3  

and the induced dipole moment is given by 
2 0

3 1, 14 (1 )i T Tp i a E S R    . A more concise 

representation would be the following: 
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2
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p  (4.19) 

where, 

 ),1(sin1

Pi Ri    (4.20a) 

 )1(cos2

Pi Ri    (4.20b) 

and 

 ).1(2

TRi   (4.20c) 
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The calculated values of the incident angle dependent functions i  for Si are given in the 

following Figs. 4.27-4.31. The following equations for the reflection coefficients were used: 

ti

S

ti

SPR




coscos

coscos




  and 

t

S

i

t
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i

TR
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coscos

coscos




  with i

S

S

i

t

k

k



 sin

1
cos 2   to 

accommodate a complex value of 
S . The resulting coefficients are 
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124 

 

 

Figure 4.27: The dependence of the real part of the substrate material dependent angle function Θ1 

on the wavelength of the incident light. It is, for most part of the wavelength range of interest, a 

positive number of the order 0.01. The direct band gap of Si causes values to be relatively large for 

λ < 400 nm. 
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Figure 4.28: The dependence of the imaginary part of the substrate material dependent angle 

function Θ1 on the wavelength of the incident light. A strong nonlinear incident angle dependence 

can be seen. At close to grazing angles, the value approaches 2 monotonically from 0 at normal 

incidence. 
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Figure 4.29: The dependence of the real part of the substrate material dependent angle function Θ2 

on the wavelength of the incident light. It is, for most part of the wavelength range of interest, a 

negative number of the order 0.01. The direct band gap of Si causes values to be relatively large for 

λ < 400 nm. 
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Figure 4.30: The dependence of the imaginary part of the substrate material dependent angle 

function Θ2 on the wavelength of the incident light. A nonlinear incident angle dependence can be 

seen. At close to normal angle, the value approaches 2 monotonically from 0 at grazing incidence. 
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Figure 4.31: The Θ3 function’s dependence in the incident angle. The real part is equal to zero and 

there is no λ dependence. The incidence angle dependence is very close to being a linear relationship. 

The resulting dipole moment, p3 is largest for grazing angle of incidence and equals zero for a normal 

incidence. 

 

It can be observed from the figures that exciting a vertical dipole requires the use of in-

plane polarized light as well as a very wide angle of incidence. The relative value 
1

2

Im[ ]

Im[ ]




 

exceeds one only for i  that is very close 90°. For a randomly polarized light that is incident at 

angles that are close to normal, as would be the case for sunlight in the context of a solar cell, the 

induced vertical dipole moment can be expected to be very insignificant. The resulting effects 

corresponding to the 
1G  problem would not be present. The functions i  are only substrate and 

angle of incidence dependent allowing the possibility of tuning them in such a way that the 

vertical dipole is induced at angles that are not as wide as those that would be required for a bare 
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Si surface. The values 1mS  would also change in such a situation making that design problem 

somewhat more complicated that just thin-film design.  
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4.3 CONCLUSIONS 

            The dependence of the induced electric dipole on gap distance, polarization and the angle 

of incidence in the presence of a substrate was analyzed in this chapter. The most important 

aspect on the analysis was the use of the Laplace harmonics to describe the interaction or 

coupling in greater detail than using just a simple electrostatic dipole, a numerical method such 

as the finite difference time domain method or experiments to measure the response of 

nanoparticles present on a substrate to linear electromagnetic excitation [33-36]. The eventual 

goal was to be able to calculate the trapped light flux within the substrate. Calculations discussed 

in the literature do not seem to touch upon the fact the induced dipole has a significant 

dependence on the gap distance and the substrate material. Consider, for example, the work of 

Catchpole et al. in which the enhancement of photocurrent for a plasmonic solar cell is modeled 

by assuming that the metal nanoparticles are non-interacting ideal dipoles that radiate of scatter 

light into the substrate [37]. Interestingly, it was not possible to find, using scholar.google.com, 

any article within the list of articles citing this reference that discussed a situation where in the 

nanoparticle is considered to be not just simple radiating dipole source. In that sense, this work 

can be considered novel. There are several ways in which the trapped flux resulting from the 

presence of a dipole of an arbitrary orientation can calculated. For substrates that are thick 

enough to be considered semi-infinite the book by Novotny and Hecht can be used to calculate 

the exact values of the power that is trapped in the solid angles that are accessible with and 

without near-field optical effects [38]. For a layered substrate, the method used by Catchpole et 

al. can be used [37]. However, one has to keep in mind that their method is a concoction of 

several reported methods and hence needs to be carefully analyzed before trusting. In either case, 

there are several artifacts that need to be analyzed in order to develop an understanding of the 



131 

 

way the incident light and the location of a nanosphere relative to the substrate affect the amount 

of in-coupled light disregarding the effect of sphere diameter, especially when there is a finite 

dissipation in the substrate. In this work, only the induced dipole and its orientation are 

calculated with sufficient details with regard to the coupling with the substrate. The calculated 

values can be fed into another calculation framework that is capable to evaluating the trapped 

light fluence given an arbitrarily oriented electric dipole. The problem of the evaluation of fields 

given a current source in the vicinity of a layered medium is also an outstanding one because of 

the difficulties associated with the numerical evaluation of what is known as the ‘Sommerfeld 

integral’ that results from the integral representation of the fields—an electric dipole is the 

simplest case and hence allows for some simplification and permits some kind of numerical 

acceleration of the integration [39]. As discussed here, in case of a polarizable particle present 

near a substrate,  not only the effect of a dipole near an interface needs to be calculated but also 

the value of the dipole that is induced as a result of the interaction of the particle substrate system 

with an incident field. One may argue that the incident field has to emerge from a source, a plane 

source in case of plane waves or a point source with an infinite amplitude such that its far-field is 

an incident plane wave etc. In that case, the problem can become more complicated and incident 

plane wave excitation can be seen as an approximation of the problem. Further, if one thinks 

about a finite diameter beam as the incident excitation, the nature of its source not being known, 

then one has to re-represent the beam in terms of plane waves that can be treated as emerging 

from a sources whose far-fields are the constituent plane waves etc. This would take care of 

realistic effects such as the Goos-Hänchen shift in the reflected beam—the effect may be 

necessary to analyze problems in which small clusters of nanospheres are excited using a beam 

of light. Hence, in a way the problem of simultaneous excitation of a polarizable object or 
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antenna in the vicinity of a substrate that is potentially layered was partially studied here. All this 

assuming classical linear electromagnetic effects. The use of either intense light, diffuse light or 

very low photon rate light and, for that matter, very tiny particles such that effects of quantum 

confinement become significant, would require a very significant change in the way the problem 

is formulated. Of course, the main idea is that all those problems can be built from the current 

one as long as the “extra” effects are relatively “small”.  

            Here, it was found that, inclusion of up to O(ka) effects also leads to coupling effects that 

are rich in new physics and are inherently non-linear in terms of parameters such as the distance 

between the sphere are the substrate, sphere and substrate permittivities, wavelength and sphere 

diameter. There is a very clear polarization, and angle of incidence dependence. It is, perhaps, 

obvious from the point-of-view of basic optics of interfaces. Under differently oriented 

excitations, the induced electric dipole remains oriented in the same direction as the applied 

field, however, its complex valued amplitude changes. The total power radiated by a dipole p is 

given by 
1/2 3

2

3

012
P

c

 


 p  depends only on the amplitude of the complex vector amplitude. The 

amplitude p  undergoes a maximum in a manner similar to the peak in the imaginary part of the 

dipole amplitudes discussed in this chapter. Clearly, for a given distance between the sphere and 

the substrate, the effect of sphere-substrate coupling need to be considered. 

            The intrinsic resonant behavior of a sphere is also significantly affected by its presence 

near a substrate. The effects are highly non-linear. Due to multipolar coupling between the 

sphere and the substrate, several resonances are observed. The resonance locations occur for 

more and more negative real values of the sphere’s permittivity for a fixed small imaginary 

sphere permittivity. Eventually, as a sphere is made to approach the substrate, resonances shift 
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toward larger values of sphere’s negative real permittivity that correspond to a larger value of the 

wavelength for metals such as Ag, Au and Cu. The red-shifts seem to depend also on the 

permittivity of the substrate, or equivalently, through the quantity
S . This is consistent with the 

trend reported in literature [33].  

           A major consequence of the substrate coupling is the broadening of the otherwise 

relatively narrow wavelength dependent response of an Ag sphere when the sphere is made to 

touch a Si substrate. Of course, electrical insulation is implied. Such broadening is found to 

occur under both kinds of excitations. In case of metals that have relatively higher optical 

resistivity such as Au and Cu, the substrate coupling effect leads insignificant amounts of shifts 

and broadening. The responses seem to increase in an overall sense by O[10%] indicating that 

only Ag nanospheres seem to lead to a significant change in the spectral response. 
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5 SEVERAL NANOSPHERES IN A HIGH REFRACTIVE 

INDEX TRANSPARENT MATRIX 

 

5.1 INTRODUCTION 

Nanoparticulate plasmonic composite materials have recently become technologically 

important, especially in the growing interdisciplinary fields of plasmonics and meta-materials 

[40-45]. Fabrication of such plasmonic nanocomposites is accomplished through well-

established methods such as surfactant mediated self-assembly [14], laser dewetting of thin films 

[46], sol-gel assembly [47-49], ion-implantation [50, 51] and vacuum evaporation of thin films 

[8] among others. Technologically, such composites are important in the fields of energy 

harvesting [6, 14, 15, 52], random lasers [53], sensing [15, 54], photo-catalysis [55] etc. Free 

electrons in noble metal nanoparticles (NPs) give rise to a characteristic plasmon resonance 

wherein the NPs absorb and scatter radiation with a marked intensity [4, 30, 42, 56]. The linear 

optical response of such materials can be described by Maxwell equations in both the dispersed 

and continuous phases when the particle size is greater than a few nanometers. In the case of 

metal nanoparticles in a transparent medium, the matrix phase can be treated as a dielectric with 

real electrical permittivity  while the NPs should be treated as materials with complex, 

frequency-dependent permittivity . A plasmon resonance occurs for  in the 

case of spheres. The overall optical response of such composite materials can be determined by 

numerically solving Maxwell equations in both phases subject to the continuity of tangential 

components of magnetic and electric fields at the interface of the embedded particles and the 

m

p 2)/(  mp 
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surrounding matrix phase. Such calculations are possible by utilizing computational techniques 

such as the finite difference time domain method [57-59]. However, substantial computational 

effort is required especially near resonant frequencies where steep field gradients necessitate the 

use of very fine spatial resolution [59].  Hence, theories capable of accurately predicting the 

average optical properties of random composites could be a valuable tool in knowledge-based 

design of plasmonic composites. 

Composite media are inherently inhomogeneous. Hence, their average electromagnetic 

behavior depends on the permittivities and volume fractions of the constituent components. 

Effective medium theories have been used to parameterize the properties of such media [60]. In 

the case of monodisperse spherical particulate composites, where the particle radius a is much 

smaller than the wavelength of exciting radiation , the effective permittivity can be modeled 

under the quasistatic approximation wherein the wave nature of the EM fields can be neglected. 

Specifically, for the case of plasmonic composites in the optical frequency range, the magnetic 

response in the optical range is the same as that of vacuum and the classical Maxwell-Garnett 

theory (MGT)  [61] can be used to predict the effective permittivity. Similarly, in the case 

 ray optics can be utilized. However, for nanoscopic plasmonic composites in the optical 

range,  can be O (a) or  is O(1). Hence, the effects of diffraction and scattering 

by the NPs become significant and simple models designed for either one of the extreme cases 

are not applicable. Extended Maxwell-Garnett theories have been developed in the literature for 

this regime [62-65]. However they are correct only up to  ( : volume fraction of the 

dispersed phase) and do not account for the effect of microstructure on the permittivity. In this 

work, we have developed a self-consistent theoretical framework for the prediction of the 

,a


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effective linear optical properties of dense random monodisperse spherical particulate plasmonic 

composites with particle size on the order of the exciting wavelength of radiation. This effective-

medium theory (EMT) is based a method employed for the accurate prediction of sound 

attenuation and phase speed in acoustically resonant monodisperse suspensions of microspheres 

by Spelt et al. [66]. The microstructure information is incorporated through the static structure 

factor S(0). It has been shown that the leading order correction term in terms of the particle 

volume fraction to the velocity field in Stokes flow, i.e., “slow” flow of a viscous liquid in which 

inertial forces are negligibly small, for infinite randomly distributed monodisperse spheres 

depends linearly on the static structure factor S(0) [67]. Both Stokes flow equations and Maxwell 

wave equations, take the form of a vector Helmholtz equation for the fluid velocity and electric 

field respectively. Hence, the methodology developed by Spelt et al. [66] can be adapted to 

derive an EMT for electromagnetic wave propagation problems in heterogeneous media. 

Specifically, the composite medium is represented by a layered structure in which the particle, in 

its immediate vicinity, is surrounded by the dielectric matrix up to a distance R which is a 

function of S(0). The structure is assumed to be embedded in an effective continuum whose 

permittivity  is determined by the self-consistent solution of Maxwell equations. The EMT is 

mathematically identical to the Maxwell-Garnett model in the limit as the particle diameter dp 

and volume fraction  approach zero. However, for finitely large volume fractions the variations 

in the permittivity with respect to   and dp are highly nonlinear.  

The chapter is organized as follows. Problem formulation is presented in §2. §2A 

contains the derivation of the ensemble averaged Maxwell equations and in §2B, the EMT is 

discussed. §3 contains a summary of the solution technique and computational methods used to 

calculate the conditionally averaged electric field. Analytical and numerical results are discussed 

eff
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in §4. Results of the scalar EMT is discussed in §4A and those of vector EMT in §4B. Ag 

nanoparticulate composite in an  dielectric is used as a model system. A discussion of the 

conditions under which the effective permittivity is resonant is presented in subsections §§4A 

and B. Effects of particle radius are also discussed in §4B. §4C contains a discussion of Fano-

resonance that results from particle-effective medium coupling. Conclusions are offered in §5. 

  

7m
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5.2 ENSEMBLE AVERAGED MAXWELL EQUATION 

We consider a random monodisperse, non-overlapping spherical particulate composite in 

which the electrical permittivity of the matrix is assumed to be real, positive and constant while 

that of the plasmonic particles is complex and frequency-dependent. Further, as mentioned in the 

Introduction, we assume that the magnetic permeabilities of the matrix and the particle phase to 

be equal to that of vacuum, i.e.,  This assumption is justified for dielectric matrices 

such as glass or water and particles of noble metals such as Ag or Au. The particle diameter is 

assumed to be much greater than the electron mean free path in the metal. Hence, quantum 

confinement effects are neglected. The embedding medium is isotropic and homogenous and 

could either be a liquid or a solid phase. For such a system, ensemble-averaged Maxwell 

equations can be derived as described below. 

Time-harmonic electric and magnetic fields in a source-free homogenous medium satisfy 

Maxwell’s wave equations. For the matrix these equations are given by 

  (5.1) 

where  and  are the amplitudes of the electric and magnetic fields respectively, ω is the 

frequency, μm and εm are the magnetic permeability and electric permittivity respectively, and the 

subscript m denotes the matrix medium. Similar equations apply in the particulate phase with the 

subscript m replaced by the particle phase subscript p.  

To obtain a macroscopic description of a random composite, we must first obtain 

ensemble-averaged equations. Let  denote an indicator function for the particle phase whose 

value at a point  is unity if that point lies inside a particle and zero otherwise. Note that an 
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ensemble-average of this function is equal to the volume fraction of the particles, i.e.,

, where the angular brackets denote an ensemble-averaged quantity. The ensemble-

averaged Maxwell’s equations for the random composites are obtained by multiplying the 

Maxwell’s equations for the particle phase by its indicator function  and those for the matrix 

phase by , and adding the two resulting equations:  

  (5.2a) 

  (5.2b) 

Note that  is zero at all points except at the matrix-particle interface where it is directed 

along the normal to the interface. Hence, its cross product with the difference in E or H across 

the interface is zero due to the fact that the tangential components of the electric and magnetic 

fields are continuous across the interface. Therefore, the second terms on the left-hand side of 

Eqs. 2a and 2b vanish. The term in square brackets on the right-hand side of Eq. 5.2b is 

represents the averaged electric displacement  in the medium. We let . Hence, 

the effective permittivity can be defined as 

  (5.3) 

The wavenumber, defined as , also obeys Eq. 3. Hence, the effective 

wavenumber is given by . Eqs. 2a, 2b and 3 can be combined using a curl 
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operation on Eq. 2a. The resulting  term can be shown to be equal to  

because  in the absence of free charge.  

The averaged field inside the particles, given by , is an unknown quantity defined 

as: 

  (5.4) 

Here, 
 
is the probability of finding a particle at ,  is the particle volume 

fraction, and  is the conditionally averaged electric field. Since the governing equations 

are linear and the medium is overall assumed to be macroscopically isotropic,  can be 

expressed as 

  (5.5) 

where  is a constant that depends on , ϕ and the microstructure. Combination of Eqs. 3 

and 5 gives or equivalently as follows: 

  (5.6) 

The ensemble averaged Maxwell equation given by 

  (5.7) 
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is obtained by eliminating H from Eqs. 2a and 2b followed by a substitution of  from Eq. 6. 

 can be evaluated by solving Eq. 7 followed by substitution of  and  into Eqs. 5 and 

6. However, because  is a function of , Eqs. 6 and 7 need to be solved by an iterative 

numerical method for the evaluation of the zeros of the following function: 

  (5.8) 

 

5.2.1 The effective medium model 

To determine  we must determine the conditionally averaged E with one particle fixed 

and then evaluate the integral in Eq. 4. We shall use an effective medium model that has been 

shown to provide excellent predictions, consistent with rigorous computations that take into 

account multi-particle interactions of the conditionally averaged field and effective properties 

such as elastic moduli, attenuation and speed of acoustic waves, hydraulic permeability, effective 

viscosity and particle diffusivity in suspensions [21, 66-70]. As illustrated in Fig. 1, in this 

model, the conditionally-averaged fields satisfy the governing equations for the suspending 

medium up to a distance R from the center of the particle and the governing equations for the 

effective medium beyond that distance. R is related to the static structure factor S(0) as  

  (5.9) 
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  (5.10) 

 

 

Figure 5.1: A schematic of the geometry considered for the EMT. The problem of finding the 

conditionally averaged field in a random medium was reduced to the problem of calculating the 

fields in this geometry. As , . The unconditionally averaged 

wave is assumed to be X-polarized in the present analysis. The choice of  is arbitrary for a given 

origin O. 

 

In Eq. 10,  is the conditional probability density of the spheres. The quantity  can 

be interpreted as the integral of excess probability with respect to the uniform distribution. It 

needs to be accounted for if the random medium is to be replaced with a homogenous effective 

medium. In Fig. 1, O denotes the origin and O’ denotes the centre of the particle and the particle 

is located at . Position vectors  originate at O’ such that .  
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As pointed out by Dodd et al. [68], the above choice of R is necessary to ensure that the 

conditionally averaged field has the correct behavior at large distances from the test particle for 

the problem of determining the averaged diffusivity of integral membrane proteins. Subsequent 

studies showed that the above choice also yields excellent estimates of the effective properties 

even when it has no rigorous basis (as e.g., see [66, 71]). Random suspensions with a hard-

sphere potential have a non-zero S(0) even in the dilute limit, which is accurately given by the 

Carnahan-Starling approximation [72] as: 

  (5.11) 

As , . On the other hand, well-separated dilute random arrays [41] 

have  for ,  and hence, . We study both cases to 

elucidate the differences between them. Our effective medium theory is used to evaluate 

 in Eq. 4. 
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5.3 SOLUTION TECHNIQUE 

This section is devoted to a discussion on the determination of  for , and 

subsequently, the numerical calculation of  We first show that for composites with spheres 

that are small compared to the wavelength of the exciting light (or equivalently, as ), 

 and hence  can be determined analytically by solving the electrostatic Maxwell 

equations (which is equivalent to setting ). Further, we show that both the electrostatic 

approximation and Maxwell wave equations can be reduced to Laplace equation for a scalar 

potential in the limit as However, the boundary conditions for these two problems are 

different from each other. Since only a scalar potential is necessary to describe a static E field, 

the resulting EMT is referred to as the ‘scalar EMT’. Thereafter, an iterative method for the 

numerical evaluation of  using Maxwell wave equations for arbitrary large values of ka is 

outlined. EMT based on Maxwell wave equations is referred to as the ‘vector EMT’ as it 

involves solution of a vector Helmholtz equation. The boundary conditions for these two 

problems differ from each other as explained below. 

 

5.3.1 Scalar EMT 

In this section, we will show that in the limit as  Maxwell wave equations 

given by  can be approximated by the electrostatic Maxwell equation given by 

 for which  even though these equations require different boundary 

conditions. The electrostatic approximation is valid only for problems with a spherical symmetry 

and hence is not applicable to systems involving multiple spheres or non-spherical particles.  
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The static electric field  obeys  and hence, can be represented as the gradient of a 

scalar potential  such that . Therefore, . Across an interface containing no free 

charge,  and the electric displacement  are continuous. Therefore, across a spherical 

interface between the particle and the medium shown in Fig. 1,  

  (5.12a) 

and 

  (5.12b) 

At an interface with no free charge and current, E and H are required to have continuous 

tangential components. A comparative analysis can be performed by decomposing E and H into 

toroidal and poloidal  scalar potentials in the following way [17, 66, 73]. Let   

  (5.13a) 

and 

  (5.13b) 

where and  are solutions to the scalar Helmholtz equation. Tangential components 

 and   can be expressed as follows [42-43]: 

  (5.14a) 
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  (5.14b) 

  (5.14c) 

and 

  (5.14d) 

Continuity of the above tangential components of E and H at the interface necessitate that 

  (5.15a) 

  (5.15b) 

  (5.15c) 

and 

  (5.15d) 

As   and . For a non-magnetic system, is an indeterminable constant 

that does not contribute to E as seen from Eq. 13a. Hence, although the governing equations for 

the electrostatic and wave problems are identical, their boundary conditions differ from each 

other. 
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As discussed in §2A, our EMT is based on estimating the conditionally averaged fields using an 

effective medium model shown in Fig. 1. Hence,  and  are obtained by the 

solution of Laplace equations for  and  subject to the boundary conditions given in Eqs. 13 

and 15 respectively. In order to solve the Laplace problem, the unconditionally averaged far-field 

given by  can be expressed in terms of the first Laplace harmonic in the 

following way. One may consider rotating the coordinate system in Fig. 1 about the y-axis such 

that  is replaced by  and hence E points in the direction of the zenith. Since, ,

 as . Hence, far field scalar potentials  and 

.  and  are given by  and  

respectively. We find that the coefficient of the first regular harmonic is identical for  and  

and consequently   

  (5.16) 

for a sphere in an infinite matrix. A similar procedure can be employed to show that 

  (5.17) 

for a sphere an effective medium shown in Fig. 1. The exponential term in Eqs. 16 and 17 is a 

phase factor that depends on the location of the sphere. Eqs 4, 5 and 6 can be used in that order 

to obtain an expression for . Required algebraic manipulations are discussed in §3B below. 

Exact expressions for  are presented §4A. 
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5.3.2 Vector EMT 

The determination of  for a finitely large value of ka requires the solution of the 

vector Helmholtz equation for a 2-layer sphere geometry shown in Fig. 1. E inside a particle can 

be found by utilizing a multipole expansion. The solution given by Hightower and Richardson 

[74] was adapted here to obtain the following relations for  for : 

  (5.18a) 

  (5.18b) 

and 

  (5.18c) 

In Eqs. 18a-c, primed coordinates  are with respect to the origin O’, n is the order of 

the multipole,  and  are the polar angle dependent functions 

related to the associated Legendre polynomials  of degree one,  are Riccati-Bessel 

functions associated with the spherical Bessel functions  and cn and dn are the corresponding 
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Mie coefficients [56]. The expressions of cn and dn  are given in Appendix A. In general, both cn 

and dn are functions of a and [56].  

Bessel functions and their derivatives were calculated using established iterative 

techniques [18]. The volume integral of  over the particle volume was determined to 

evaluate  and subsequently Ω using Eqs. 4 and 5. Phase factors  in Eqs. 18 

were expressed as  so that  in the right-hand side of Eq. 5 

would cancel out with the left-hand side. A two dimensional composite Simpson’s rule [75] was 

used since the analytical evaluation of the integral in Eq. 4 over r and θ was not possible due to 

the presence of the exponential term . Only the x-component of  was found 

to be non-zero, consistent with the isotropic nature of the effective medium.  and 

equivalently  were calculated by finding the zeros of Λ in Eq. 7 using Newton-Raphson 

iterations. Since, Λ was not necessarily analytic in the complex variable it was treated as a 

function of two variables which were the real and imaginary parts of  necessitating the use 

of a two dimensional Newton-Raphson method [76]. For large , Eq. 8 permitted multiple 

solutions that were close to one other. Hence, the solution corresponding to the limit as  

was traced by using zero order continuation. The procedure was repeated for λ values in the 

visible range (300-800 nm). Permittivity data for noble metals was obtained from Ref. [11]. All 

computations were performed using MATLAB.  
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5.4 RESULTS AND DISCUSSION 

5.4.1 Scalar EMT 

In the limit as , . Hence, due to the absence of particle-effective medium 

coupling,  is given by Eq. 16. The corresponding  is given by the following 

equation: 

  (5.19) 

Here,  is the electric polarizability per unit volume for a small sphere. As will be shown later 

in this section, the linear dependence shown in Eq. 19 is a general result that is independent of 

the mircostructure since  is a material property. In the case of a finitely large  and arbitrary 

,  is given by Eq. 17 for which  is found to be the following:  

  (5.20) 

For a well-separated system, , which in conjunction with Eq. 20 gives the following 

result: 

  (5.21) 

Eq. 21 is identical to the classical Maxwell-Garnett theory (MGT) which is also a scalar EMT in 

which the presence of other particles is accounted through the modification of the averaged far-
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field [61, 77]. The lower bound, 1 , can be substituted in Eq. 20 to give the well-known 

Bruggeman mixing rule (BMR): 
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that is based on a symmetric mixing approach for the inclusions and matrix phase. As a 

consequence, BMR can model percolation effects [60]. A similar concentric-shell model with a 

variable shell thickness was also proposed by Hashin and Shtrikman [60]. However, the 

dependence of the shell thickness parameter   on the microstructure was not demonstrated. MGT 

and BMR can be seen as the upper and lower Hashin-Strikman bounds of the scalar EMT. Garcia 

et al., among others, have derived self-consistent mixing rules for ternary plasmonic composites 

based on Hashin-Strikman formalism [13]. Within the framework of the EMT presented in this 

work,   is a physical parameter that can be determined from the structure factor (or equivalently 

the radial distribution function) of the composite. Conversely, if  were to be determined by 

fitting spectroscopic data to the EMT predictions, it can be used to glean microstructure 

information regarding the distribution of particles within the composite. 

For a random system,  can be expanded about  using Eqs. 9 and 11 to give 

. This can be substituted in Eq. 20 to obtain the following expansion for 

valid for :  

  (5.23) 

Note that all scalar EMTs based on Eq. 20 indeed yield  for . 
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5.4.1.1 Resonance conditions 

A particle undergoes an electric resonance when  is singular. For a finitely large 

, however, a different resonance condition that takes into account the particle-effective 

medium coupling effect will result. Hence, in this section, a discussion on the conditions under 

which scalar  shows a resonance is presented.  

Resonance of a single sphere requires that 

 , or equivalently,  (5.24) 

as can seen from Eqs. 16 and 19. Presence of an effective medium, on the other hand, leads to a 

condition that the denominator in Eqs. 17 and 20 vanish. Hence, one obtains a resonance 

condition given by: 

  (5.25) 

In the specific case of a well-separated system (or MGT), substitution of  in Eq. 25 gives 

the following resonance condition:  

  (5.26) 

The above equation can also be obtained by letting the denominator in Eq. 21 to be zero. Similar 

to the way by which Eq. 26 was obtained, a substitution of  in Eq. 25 under 
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the limit as , leads to the following resonance condition for random hard-sphere 

composites: 

  (5.27) 

As seen from Eqs. 26 and 27, for dense systems the resonance wavelength is different from that 

of a single particle. Hence, the scaling of  with  depends on the microstructure of the system 

through the static structure factor. This trend is consistent with the reported red-shift in plasmon 

resonance for ion-implanted composites [51]. We note that substitution of 1  in Eq. 25 in the 

limit as gives the resonance condition in the ‘Bruggeman limit’ as 



2

1 .   

Since the equations for dense systems (Eqs. 17, 20 and 24) include particle-effective 

medium coupling, they are implicit in . Conversely, the inverse problem, i.e. when  is 

given and  or  are unknown, is explicit in all cases. Hereafter, we only consider the solution 

of Eq. 20 that approaches unity as . 

5.4.1.2 Ag Plasmonic composite 

Resonant plasmonic nanospheres made of noble metals such as Ag, Au and Cu have an 

 that has a large negative real part and a small positive imaginary part for the visible range of 

the electromagnetic spectrum as shown in Fig. 2. Their  values show a resonance as a 

consequence. We consider Ag in our further discussion since it has the smallest ]Im[ p  over a 

broad wavelength range and hence the most prominent . Further, a medium with a relatively 

large  can shift this resonance to the red region and make it more prominent. For this work we 
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will consider . Semiconductors such as ZnO, Si, TiO2 etc. have similar values of . 

Values of  for Ag spheres in an  medium are shown in Fig. 3. 

 

 

Figure 5.2: Real and imaginary parts of the permittivity of high optical conductivity metals Ag, Au 

and Cu that are considered in this work. Permittivity data is taken from Ref. [11]. Ag has the lowest 

imaginary permittivity over a broad range of wavelengths. 
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Figure 5.3:  for Ag spheres in a  medium. Resonance occurs for  nm and 

.  is a small number away from resonance and  changes sign from negative 

to positive on moving from blue to red regions about resonance. 

 

The permittivity of high conductivity metals such as Ag can be evaluated approximately by using 

the Drude model given by  [1]. Here, plasma frequency Hz 

and collision frequency  Hz for Ag in the visible range [78]. The peak in 

 occurs at the resonance frequency given by or equivalently resonance 

wavelength  where c is the speed of light in vacuum. Hence, the resonance 

wavelength for small spheres scales as  resulting in a red-shift as  is increased. The 

peak value  at resonance is given by for a Drude metal. 

 7m 600

i23 )( )(

c

p

p
i







2

2

1
1510321.2 p

1210513.5 c

)(
12 


m

p

R





p

m

R

c






122 


12 m m

R
  2/312

3

12

1


















m

m

c

p

m

m
R i
















156 

 

The real and imaginary parts of  represent the reactive and dissipative components 

respectively. At resonance ( nm),  is a large positive number and as 

shown in Fig. 3. As , the dissipative term for all scalar EMTs is given by 

. The quadratic term for random systems is . As a result, 

 is highly non-linear in . For  shown in Fig. 3,  at 

resonance. In contrast, it is identically zero for a well-separated composite. Hence, quadratic 

coupling does not lead to any loss in a well-separated composite.  is identically one 

under resonance for a random system. Hence, the reaction originates only from the medium. For 

a well-separated system, quadratic and even powered coupling contributes to the reaction such 

that .  

At off-resonance,  is greater than zero for  and less than zero for . 

 is smaller in comparison for the most part. For instance, at  nm, 

; and at nm, . The red-regions exhibit a 

“concentration resonance” which occurs when the resonance condition given in Eq. 24 is 

satisfied. In case of a well-separated system, the condition is and for a random system, it 

is  as given in Eqs. 25 and 26. Fig. 4 shows  as a function of  for  

nm. A peak appears at  for a random system and at  for a well-separated 

system. The peak for a random system is less prominent compared to that for a well-separated 

system. The resonance concentration shifts to higher values of  as  is decreased.   
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Figure 5.4: predicted by the scalar EMT for random and well-separated microstructures. 

Here, nm and . 
 
has a resonance peak at nm as 

shown in Fig. 3. 

 

Fig.5.5 shows the effect of  on . It is evident that a well-separated system couples more 

intensely with the incident field as compared to a random one. Peaks corresponding to random 

systems occur for  values that are larger than those for well-separated systems due to the 

difference in the scaling of  with respect to  under resonance as shown in Eqs. 26 and 27. 

The quadratic coefficient for a random system is  (Eq. 22) in comparison to  (Eq. 

21) for a well-separated system. The coefficients of the cubic and higher order terms in  also 

depend on higher powers of  for a random system. Hence, the resonance condition for the 

coefficient of the quadratic term in the power series expansion of  will depend on that of 

the linear term while the resonance condition for cubic coefficient will depend on those of the 
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quadratic and linear terms, etc. As a consequence, the peak in  for random systems is not 

symmetric about its maximum and is broader in comparison to that for a well-separated system 

or a single sphere. 

 

 

Figure 5.5: for a composite with Ag NPs in an  medium calculated with the scalar 

EMT. Random (a, b) and well-separated random composites (c, d) for  (solid), 6% (dashed) 

and 10% (dotted) were considered. The resonance peak is more red-shifted and broad for a random 

system. A well separated system shows a more intense resonance with a symmetric peak in 

comparison. Stronger coupling in a random system leads to a tail in the blue region. 
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5.4.2 Vector EMT 

This section describes the effect of ka on numerically calculated values of . An 

analysis of vector EMT in the limit as  and  is first presented. Resonance analysis 

in the limit as  is presented in §4B-I followed by a discussion on the numerical results for 

finitely large  and  will follow in §4B-II.  

In the vector EMT,  is not a constant vector but depends on the toroidal 

(corresponding to coefficients cn) and poloidal (corresponding to coefficients dn) multipoles 

shown in Eqs. 18. Only poloidal modes are capable of generating   which only toroidal 

modes generate . Hence, we will refer to the poloidal modes as the electric modes and 

the toroidal modes as magnetic modes following the standard convention [17]. 

For subsequent analysis, the following expansion is used to express the dependence of  on    

  (5.28) 

As in §3A, only the linear and quadratic coefficients are of interest here. Coefficients A and B in 

Eq. 28 depend on ka, , and . Riccati-Bessel functions in Eqs. 18 can be expanded into a 

Taylor series as  where , where  denotes the 

gamma function. Hence, as  or equivalently , the terms corresponding the  

mode in Eqs. 18 are , while those corresponding to the  mode are . As a result, only 

the  term contributes significantly as . In the limit as , only the linear coefficient A 
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in Eq. 28 is relevant irrespective of the microstructure.  from Eqs. 18 can be used 

together with Eq. 4 and 5 to obtain the parameter . It can be shown that  and as 

, where  is given by . Subsequently, A can 

obtained by using Eq. 6 as: 

  (5.29) 

where, . Note that as ,  and hence,  can be modified appropriately 

in the dilute limit. Mallet et al. [62] have recently re-derived MGT for finitely large particles that 

can exhibit scattering using rigorous Foldy-Lax multiple scattering equations (see Eq. 22 in 

[62]). The linear term is identical to the one obtained here in Eq. 29. The cubic dependence on 

the particle radius implies that the size effect becomes significant only when  is . 

Since  is a large negative number at resonance as shown in Fig. 3 inset, size effects become 

significant even for relatively small radii for resonant systems. For example  at 

resonance for an Ag sphere shown in Fig. 3. Hence,  for . Here, 

since nm-1, a relatively small radius of nm can significantly affect 

  even in the dilute limit. 

5.4.2.1 Resonance conditions 

Resonance occurs when  given by Eqs. 18 is singular. In turn, this requires that 

the coefficients cn and dn are singular. Magnetic resonances represented by singular cns do not 
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occur in plasmonic systems since . Vector EMT exhibits only electric multipole 

resonances that correspond to dn that are given in Appendix A. The conditions are complicated 

for Helmholtz multipoles as they involve the Riccati-Bessel functions. However, the underlying 

physical aspects can be appreciated by utilizing the simpler Laplace multipoles [79]. The nth 

Laplace multipole has a size independent polarizability  defined as: 

  (5.30) 

A dipole resonance requires that  or equivalently ; quadrupole resonance 

occurs when  or  and so on [53]. Hence, higher order multipoles become 

resonant at smaller negative values of , or equivalently for smaller values of  as inferred 

from the -  curve shown in Fig. 2. Mie coefficients An, an and dn are polynomials of k*a and 

 in the limit as  such that higher order  become significant only for an  k*a 

[2, 56]. For an arbitrary k*a, Helmholtz multipole electric polarizabilities  depend on k*a [2] 

such that their resonance peak red-shifts with k*a. Hence, both A and B red-shift as k*a increases.  

The above mentioned physical trends in the resonance conditions are also seen in the numerical 

results obtained for the vector EMT. Fig. 6 shows A as a function of  for diameters dp = 10, 30, 

50 and 100 nm. Here, , where dp and  are in nm. A was calculated by fitting 

the data for  obtained for  to Eq. 28 as: 
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  (5.31) 

For a small value of dp such as 10 nm, only the dipole mode is significant. Hence, . 

Relatively larger particles, e.g. dp = 50 nm, show a significant quadrupole resonance. The dotted 

curves in Fig. 6 shows a quadrupole peak at  nm. A further larger dp = 100 nm results in 

an octupole peak as depicted in the insets of Fig. 6. Each peak red-shifts for larger dp. For example, 

the quadrupole peak for dp = 100 nm occurs at  nm. E becomes highly localized at the 

particle surface for relatively large  values.  Consequently, the magnitude of A and  are 

diminished for relatively large dp values as shown in Fig. 6. In the large size limit ( ), A 

= 0. Further an inspection of Eqs. 3 and 18 shows that  for arbitrarily large , in the limit 

as . This is consistent with the ray optics scenario. 
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Figure 5.6: Linear coefficient A for composites in an  matrix with Ag NPs with diameters 

10 (solid), 30 (dashed), 50 (dotted) and 100 nm (inset). Here, 

 

only for 

the blue curve. Quadrupolar and octupolar resonance peaks are present for large particles as seen in 

the curves in the insets. Dipole resonance is most prominent and red-shifts as  is increased. The 

linear coefficient becomes less significant for large particles as they screen most of the E field from 

their interior. 

 

By neglecting cubic and higher order terms in Eq. 28, the coefficient B was obtained using the 

following expression with : 

  (5.32) 
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Fig. 7 shows the values of B calculated for random (  given by Eqs. 9 and 11) and well-

separated ( ) random systems. B represents the strength of interparticle coupling. Hence, 

random systems have a larger B.  The nth multipole decay as  in general. Hence, dipoles 

can couple most strongly due to a  dependence while higher order multipoles such as 

quadrupole and octupole couple weakly. The dotted ( 30 nm) and dashed ( 50 nm) 

curves and the solid curve in the inset ( 100 nm) in Fig. 7 have a lower magnitude in 

comparison to the solid curve as a result. In fig. 7b, the solid curve for 10 nm shows a 

prominent radiant peak for  nm with . For larger particles such as the 

ones with  30 and 50 nm, peak values of  are greatly diminished due to reduced 

coupling. Hence, the dashed curves in Fig. 7b, have a peak at ~  and the dotted curve at ~

. The corresponding A values do not vary proportionately as can be seen from Fig. 6. 

Hence, linear approximation is appropriate only for large  values. This is not surprising since 

for a given , increasing  results in reducing particle number density, and consequently 

interparticle coupling. The linear approximation is also applicable to well-separated systems 

since they have small values of B in comparison to a random system. A maximum in  also 

occurs upon increasing dp while keeping  and λ constant leading to a size resonance. Thus, 

 exhibits resonances as a function of all system parameters. 
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Figure 5.7: Quadratic coefficient B calculated for random (a, b) and well-separated random (c, d) 

composites in an  matrix containing Ag NPs with diameters 10 (solid), 30 (dashed), 

50 (dotted) and 100 nm (inset). Here,  is less than one only for the solid 

curve that is given by  for (a) and (b); and  for (c) and (d). Weak coupling in 

well-separated random systems leads to a smaller B in comparison to random systems. 

 

5.4.2.2 Fano Resonance 

High conductivity metals are typically described by adding to the Drude model a number 

of Lorentz oscillators that capture effects of lattice polarizability and inter-band and intra-band 

electron transitions [80]. The Lorentz model is based on a damped harmonic oscillator with finite 
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mass. The Drude model, however, does not include the harmonic force and hence is able to 

model free electrons well. The Lorentz model predicts a symmetric profile for the intensity vs. 

frequency curve for systems with a small damping. Interestingly,   that is based on a Drude 

model for  has a lineshape of a Lorentz oscillator. Hence, a single plasmonic particle is a 

Lorentz oscillator. In the limit as , the susceptibility of the effective medium is given by 

. Hence, the effective medium is also a Lorentz oscillator in the 

limit as . However, the coupling between the particle and the effective medium becomes 

stronger, i.e., for large  or small ,  can be expected to possess the characteristics of a 

coupled oscillator system which deviates from the Lorentzian symmetric lineshape. It is well-

known that an unusual lineshape that is asymmetric about the extremum, known as Fano 

resonance, is observed in resonant coupled oscillator systems such as plasmonic nanostructures 

[10-12, 81]. 

Within the framework of the EMT presented here, for a given ,  represents the extent 

of coupling between the particle and the effective medium. Consequently, -  curves show 

unusual resonance shapes for relatively small values of . Fig. 8 shows a plot of  for Ag NP 

composite in an  matrix for . The scalar EMT was used in the calculations. Hence, 

the results are representative of those for small particles. For random systems,  has two 

bounds: an upper bound given by  for a system with well-separated particles and a 

lower one given by  representing a locally dense composite, which we refer to as the 

Bruggeman limit. Close to the upper bound, the particle-effective medium coupling is relatively 

weak resulting in a symmetric Lorentzian  even for relatively large . This can be seen in the 

p

0

)(31/ 2 Omeffeff 

0

eff



eff 


eff

7m %5



3/1

1

eff 



167 

 

shape of the solid curve in Fig. 8. The dashed curve in Fig. 9 is the locus for the upper bound in 

the -  space. Black circles in Fig. 9 denote the locations at which the shape of -  curve is 

Lorentzian. As  is reduced, the shapes of the curves become distorted due to increased 

coupling. The resonance location shifts to larger values of  and the resonant peak becomes 

broader.  has an asymmetric shape for intermediate values of  as shown in dashed 

curves in Fig. 8. The -  space locations for which an asymmetric response is predicted are 

shown in Fig. 9 as grey circles. For  values that are close to unity,  curve becomes 

very broad as can be seen from the dotted lines in Fig. 8. Unfilled circles in Fig. 9 represent this 

type of response. The trends in Figs. 8 and 9 are also present in composites with a finitely large 

ka.   

Fano resonance can also be understood as the interference between the absorbing and 

radiating modes in plasmonic structures [10, 81]. Our analysis in the limit as  suggests 

that the interference manifests through the Taylor coefficients of . A negative extreme in the 

imaginary quadratic coefficient  (Fig. 7b and d), for example, represents a coupled 

“radiating mode” that is present in conjunction with the “absorbing mode” of a single particle 

given by a positive  (Fig. 6b). 
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Figure 5.8: Effect of  on  for . Microstructures with 71.23/1    (solid 

curve), 75.1  (dashed curve) and 25.1  (dotted curve). Small values of  lead to a 

stronger coupling that distorts the Lorentzian shape of  even for relatively small values of  

such as 5%. Calculations were performed with the scalar EMT. 
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Figure 5.9: Characterization of the dielectric response of a random plasmonic composite in the 

-  space. The dashed line represents the upper bound for a random composite with well-separated 

particles and the grey dotted line represents a random hard sphere composite. Locations of 

Lorentzian and Fano responses are shown in black and grey circles respectively. Unfilled circles 

denote locations in which broad lineshapes are observed. 
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5.5 CONCLUSIONS 

Plasmonic nanoparticles undergo an electric resonance when their electric dipole 

polarizability  is a large positive imaginary number. As a result, the particles absorb intensely. 

For a relatively large volume fraction  and/or when particle size is comparable to that of the 

exciting wavelength, interparticle coupling becomes important. Consequently, the effective 

permittivity  can no longer be treated as the sum of the polarizabilities of the individual 

particles and, hence does not vary linearly with .  Hence, quadratic and higher order effects in 

 on the polarizability have to be determined to obtain accurate predictions of .  

In this work, we have developed an EMT to account for such nonlinear effects on the 

effective permittivity of dense random dispersions of equi-sized spheres of high optical-

conductivity metals such as Ag, Au and Cu. The EMT is based on the idea that the region 

surrounding a given particle in a composite can be modeled as an effective continuum that 

begins after a distance R=κa from the centre of the particle (κ >1). Within this framework, κ is 

interpreted as a microstructure parameter that correlates with the static structure factor of the 

composite. For a homogenous random composite, κ is bounded such that 
3/11   . The upper 

bound corresponds to a well-separated random system that can be modeled as a Maxwell-Garnett 

composite. The lower bound corresponds to Bruggeman’s mixing rule which, as in the case of 

MGT, is based on the electrostatic approximation [60]. In general, a random hard-sphere 

microstructure would have a κ value that lies in between these two bounds, which, in principle 

can be determined from the knowledge of the radial distribution function. Hence  is a physical 

rather than an adjustable fitting parameter. Conversely, if  were to be determined by fitting 
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spectroscopic data to the EMT predictions, it can be used to better understand the internal 

microstructure of the composite.  

The scalar (electrostatic) approximation is valid only for particles much smaller than the 

exciting wavelength. The EMT presented here takes into account both the microstructure and 

finite size effects in a self-consistent fashion. Specifically, two scenarios were examined, one in 

which 0ka  in which the conditionally averaged electric field can be obtained by the solution 

of the Laplace equation for the electrostatic potential (Scalar EMT) and a more general case for 

finitely large spheres for which a solution of vector Helmholtz equation for E is required (Vector 

EMT). 

Resonance conditions for individual particles were found to depend on  and  . In the 

limit as ,0ka the scaling of the particle polarizability at resonance with    depends on the 

microstructure. A well-separated random composite has an 
eff  resonance when  /1 . In 

contrast, for random hard-sphere composite the resonance condition is given by  /2 . 

Hence, for a given , the resonance peak is more red-shifted for random systems. For finite sized 

spheres, the vector EMT problem was solved numerically to obtain the a quadratic 

approximation for as a function of . As the particle size is increased, 
eff  

vs.  curve exhibit 

multiple peaks corresponding to quadrupolar, octupolar, and higher order resonances in addition 

to the dipolar resonance. Size effect on 
eff becomes significant when  is O(1). Hence, 

for composites consisting of high conductivity metals such as Ag in a medium with large 

refractive index in the visible range such as TiO2, ZnO and Si, size effects could manifest even 

for particle diameters of a few 10s of nm.   
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Particle-effective medium coupling gives rise to a non-Lorentzian resonance behavior in 

. In order to characterize the resonant optical response in the -  space, a “phase diagram” 

was constructed. Three regions were identified based on the lineshape of :)( eff (i). Lorentzian 

(symmetric peak), (ii). Fano (distinctly asymmetric peak), and (iii). Bruggeman (broad). For an 

Ag NPs in a high refractive index medium, Fano resonance region is enveloped by the 

Lorentzian (large  or large ) and  Bruggeman (small  or small ) regions. Overall, the 

predictions of the EMT are in qualitative agreement with experimental trends observed for 

plasmonic composites [51]. This work motivates experimental investigations to quantify the 

effect of volume fraction on the optical response of plasmonic nanocomposites with well-

characterized microstructures. As discussed in Appendix B, the EMT presented here can be 

extended to describe linear optical response of polydisperse and multiple species systems by 

adapting the methodology described by Koo and Sangani [71]. Further, extension of the EMT to 

predict non-linear optical properties could be done by utilizing the approach adopted by Garcia et 

al. [82]. 
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APPENDIX 5A: CN AND DN 

Mie coefficients, cn and dn, for E inside a particle in a layered sphere geometry shown in 

Fig. 1 are discussed in §3. Hightower and Richardson showed that they can be calculated in the 

following fashion [44].  

 

  (5.33a) 

and 

  (5.33b) 

   

Here,  denotes the wavenumber in the particle, medium and effective medium 

respectively. Particle radius is a and R is the shell radius as shown in Fig. 1. Riccati-Bessel 

functions ,  and  are defined as: 

  (5.34a) 

  (5.34b) 

and 

  (5.34c) 
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Here, ,  and , respectively, are the regular, singular and outward propagating spherical 

Bessel functions. Note that spherical Hankel functions of the first kind are defined as: 

 [45]. The coefficients An and Bn have the following form: 

  (5.35a) 

and 

  (5.35b) 

The primes in Eqs. A3 denote a differentiation. The coefficients an and bn in Eqs. A1 have the 

following form: 

  (5.36a) 

and 

  (5.36b) 
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APPENDIX 5B: EXTENSIONS TO POLYDISPERSE AND/OR MULTIPLE 

SPECIES COMPOSITES 

Let the composite be made of N different types of spherical particles. Particle type q has a 

radius 
qa , permittivity 

q  and occupies a volume fraction 
q . Note that mq   1  where m  

is the volume fraction of the matrix. Further, let indicator functions )(rqg  indicate the locations 

of the 
thq  type of particles. The effective permittivity of such a composite can be expressed as: 

  .)(
1





N

q

qmqmeff g E  (5.37) 

The averaged field inside a 
thq  type particle, )(rEqg , can be evaluated using Eq. 4 by 

replacing the subscript p with q and particle centre locations 1r  with 
qr . Eq. 8 can be modified in 

a manner similar to Eq. B1 to give the following objective function )( 2

effk : 

  ,)()()(
1

222222 



N

q

effqmqqmeffeff kkkkkk   (5.38) 

where, the constants 
q  need to be evaluated. The conditionally averaged field in the integral 

of Eq. 4 should be evaluated for each 
thq  type of particle. For this purpose, 

qrrE )(  can be 

evaluated by solving Eq. 7 simultaneously for all q spheres. The effective medium model of Fig. 

1, will now have q+1 layers for each 
thq  particle. The layers arise from the terms in the 

summation in Eqs. B1 and B2.  
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A bidisperse system is considered here to demonstrate the abovementioned methodology. 

In this case, a st1  type particle is surrounded by a medium with permittivity m  up to a radius 

11R  followed by an effective medium with permittivity 
1111, )(  mmeff   up to a 

radius 12R  followed by the gross effective medium with permittivity 

222111 )()(  mmmeff  . For a nd2  type particle, the layered structure has the 

radii and permittivity values of m , 21R , 
2,eff , 22R  and 

eff . The non-dimensional radii can be 

defined as 
qqrqr aR  for the thr  layer around the 

thq  particle (q = 1, 2). The radii are related 

to the static structure factors )(0qrS  through an expression similar to Eqs. 9 and 10 given by 

[71]: 

 .
)( 3

1


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





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 
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q

qrqr

qr

S






0
 (5.38) 

In Eq. B3, 
qr  is the Kronecker delta. The structure factors are defined in the following manner: 

   .),(),,(  rr0r dVaPaaPS qrqqr
 (5.39) 

Here, ),,( rq aaP 0r  is the probability density of finding a 
thq  type particle at r given an thr  type 

of particle at the origin 0. However, evaluation of )(0qrS  is rather complicated even for a 

bidisperse system as discussed in Ref. [71]. We will note that for hard-sphere random systems, in 

the limit as 021  , 
33 /)( qrqqqrqr aaaS   . 
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6 CONCLUSIONS 

            In this dissertation, two simple problems related to the analysis of interaction among 

metallic nanospheres that undergo a plasmon resonance under optical electromagnetic excitation 

were studied from the perspective of developing fundamental numerical and theoretical insight 

into the problem of modeling “plasmon enhanced” devices that very a hot research topic at the 

time of the beginning of the author’s doctoral work. Several papers on the topic of how metal 

spheres interact under the influence of an externally applied optical field, with one another and 

with substrate, motivated this work. Specifically, the experimental and analytical work of Pillai 

et al. [8] and Catchpole et al. [37], respectively, in which it was shown that the presence of noble 

metal nanoparticles on the surface of a Si device, thin film or wafer, lead to an increase in the 

photocurrent under the influence of the same amount of light fluence; and the analytical work of 

Garcia et al. [13] in which it was shown that relatively simple effective medium theories or 

“mixing rules” can be used to model the optical transmittance of space filling composites of 

plasmonic metal nanoparticles embedded in a transparent dielectric matrix. 

            The simplest version the nanoparticle coated device is assumed here to be that 

comprising of a sphere present in the vicinity of a dielectric slab. Further, in order to break the 

problem down to its bare fundamentals, it was assumed that the diameter of the sphere is such 

that wave effects can be neglected for the calculation of the effects of field coupling. However, 

the problem was solved not in the electrostatic condition but rather in the limit as the 

dimensionless wavenumber in the full wave equation’s solution tended to zero. Interestingly, the 

problem is somewhat comparable to the electrostatic problem and it can be mapped onto the 

solution of the electrostatic or static heat conduction problem with the use of a linear 

transformation on the multipole coefficients. A general MATLAB program was developed to 
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evaluate the field values for a system comprising of several spheres that have different diameters 

and permittivities. Further, a MATLAB program was developed to visualize the field represented 

by a set of multipole coefficient. In light of time constraints, neither the general code nor the 

visualization program were utilized for the purpose of this work. Instead, the specific problem of 

sphere-semi-infinite slab coupling was studied in detail. There also, the calculations related to 

the evaluation of the fields on the substrate side were not possible during the course of this 

doctoral work. Several interesting physical artifacts were uncovered in the seemingly simple 

problem of sphere-slab coupling. The induced dipole and its resonances as a function of 

wavelength of incident light were studied in detail. Effects all parameters on the induced dipole 

were studied. Several new insights into the problem were inferred. These included the events 

associated with the peak, i.e., peak birth, peak motion and peak disappearance as the sphere was 

moved closer to the substrate; the fact that horizontal excitation lead to the same effects that were 

relatively less prominent as compared to the effects associated with vertical excitation; the 

resonances completely disappeared when the sphere was made to touch the substrate; and that 

the relatively high optical resistivity of Au and Cu showed almost not peak motion but only an 

overall increase in the magnitude of the induced dipole moment. It was found a substrate with a 

relatively large permittivity was required for a stronger coupling in addition to the fact that a 

relatively large imaginary permittivity of the sphere reduced the special effects. Certain 

wavelength regions that did not seem accessible for Ag nanospheres seem to become accessible 

as a result of coupling in conjunction with the angle of incidence. The relative increase in the 

radiated power of the induced dipoles scales as 

2

1 0

2

1

m g

m g

S

S






 due to the substrate effect. The 

effect of the distance g on the in-coupled in the limit as 0ka   is negligible since it is expected 
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to contribute through an exponential term given by exp[ (1 )]ika g . The change in the induced 

dipole, however, has a finer scale of dependence on g allowing for a (g, )   factor of change in 

the in-coupled or trapped power. This very significant for the design of devices in with molecular 

spacers are used to stabilize the nanospheres prior to their deposition on the substrate [7]. The 

presence for such spacers in the eventual processed device need to be accounted for with the aid 

of (g, )  . 

            The problem of several spheres present as inclusions in a 3-dimentional matrix was 

studied to develop an understanding of how such composites respond to linear electromagnetic 

excitation. The problem was analyzed, again, in the simplest possible way to develop basic 

insights into the optical response and resonances within such composites. In addition, a goal was 

to reconcile several effective medium theories (EMTs) in one fairly general framework under 

which the structural information of the composite could be incorporated and adjusted. Several 

EMTs that were and are used in the plasmonics literature were based on the Maxwell-Garnett 

EMT. The microstructural information, it was found, is actually implicitly incorporated in the 

Maxwell-Garnett EMT. Two special cases corresponding to a random distribution of the 

nanospheres were studied in the limit as the spheres were assumed small and when they had a 

finite radius. The structural information was incorporated using a layered-sphere geometry in 

which the radii and the constituents of the layers were assigned values based on the radial 

distribution function of the composite. The composite was such that it filled 3-dimensional 

space, without an end or boundary. This way, the issues related to the edge effects such as 

reflection and deviation from the asymptotic behavior of the ensemble averaged fields was 

avoided. For such a composite, only bulk effective permittivity could be evaluated. It was found 

that the dimensionless layer radius could be throttled to generate a rich variety of behaviors for a 
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fixed material system and volume fraction. Because of its connection with the radial distribution 

function, the generated effective permittivities represented a range in which an actual value may 

found. One of the bounds of this range corresponded to the Maxwell-Garnett EMT and the other 

the Bruggeman EMT. These results were succinct only for the ‘Scalar EMT’ that corresponded 

to small sphere composite. Finite size effects were incorporated in what was called ‘Vector 

EMT’. First few coefficients in the Taylor expansion of the effective permittivity were evaluated 

numerically. Optical attenuation was found to become broadband for relatively dense composites 

for other parameters held fixed. The dependence was found to be highly non-linear for 

composites in which a single sphere’s response was strong. A stronger response required 

sufficient permittivity contrast by having a relatively high medium permittivity. 
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