
Syracuse University Syracuse University 

SURFACE SURFACE 

Electrical Engineering and Computer Science College of Engineering and Computer Science 

10-2014 

Instructions-Based Detection of Sophisticated Obfuscation and Instructions-Based Detection of Sophisticated Obfuscation and 

Packing Packing 

Moustafa Saleh 
University of Texas at San Antonio 

Edward Paul Ratazzi 
Syracuse University, epratazz@syr.edu 

Shouhuai Xu 
University of Texas at San Antonio 

Follow this and additional works at: https://surface.syr.edu/eecs 

 Part of the Other Computer Engineering Commons 

Recommended Citation Recommended Citation 
Saleh, Moustafa; Ratazzi, E.Paul; Xu, Shouhuai, "Instructions-Based Detection of Sophisticated 
Obfuscation and Packing," Military Communications Conference (MILCOM), 2014 IEEE , vol., no., pp.1,6, 
6-8 Oct. 2014 doi: 10.1109/MILCOM.2014.9 keywords: {Electronic mail;Encryption;Entropy;Feature 
extraction;Malware;Reverse engineering}, URL: http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=6956729&isnumber=6956719 

This Conference Document is brought to you for free and open access by the College of Engineering and Computer 
Science at SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an 
authorized administrator of SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=surface.syr.edu%2Feecs%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Instructions-based Detection of Sophisticated
Obfuscation and Packing

Moustafa Saleh
Department of Computer Science

University of Texas at San Antonio
San Antonio, Texas

Email: msaleh83@gmail.com

E. Paul Ratazzi
Information Directorate

Air Force Research Laboratory
Rome, New York

Email: edward.ratazzi@us.af.mil

Shouhuai Xu
Department of Computer Science

University of Texas at San Antonio
San Antonio, Texas

Email: shxu@cs.utsa.edu

Abstract—Every day thousands of malware are released on-
line. The vast majority of these malware employ some kind
of obfuscation ranging from simple XOR encryption, to more
sophisticated anti-analysis, packing and encryption techniques.
Dynamic analysis methods can unpack the file and reveal its
hidden code. However, these methods are very time consuming
when compared to static analysis. Moreover, considering the large
amount of new malware being produced daily, it is not practical to
solely depend on dynamic analysis methods. Therefore, finding an
effective way to filter the samples and delegate only obfuscated
and suspicious ones to more rigorous tests would significantly
improve the overall scanning process. Current techniques of
identifying obfuscation rely mainly on signatures of known
packers, file entropy score, or anomalies in file header. However,
these features are not only easily bypass-able, but also do not
cover all types of obfuscation.

In this paper, we introduce a novel approach to identify
obfuscated files based on anomalies in their instructions-based
characteristics. We detect the presence of interleaving instructions
which are the result of the opaque predicate anti-disassembly
trick, and present distinguishing statistical properties based on
the opcodes and control flow graphs of obfuscated files. Our
detection system combines these features with other file structural
features and leads to a very good result of detecting obfuscated
malware.

I. INTRODUCTION

Zero-day malware detection is a persistent problem. Hun-
dreds of thousands of new malware are produced and published
on the Internet daily. Although conventional signature-based
techniques are still widely relied upon, they are only useful for
known malware. Many research efforts have aimed at helping
flag and detect unknown suspicious and malicious files. All
of these techniques can be categorized into sandbox analysis,
heuristic static analysis or code emulation. Among the three,
heuristic static analysis is the fastest, yet the weakest against
obfuscation techniques. Code obfuscation includes packing,
protecting, encrypting or inserting anti-disassembly tricks, and
is used to hinder the process of reverse engineering and code
analysis. About 80% to 90% of malware use some kind of
packing techniques [1] and around 50% of new malware are
simply packed versions of older known malware according to
a 2006 article [2], and we believe it is more than that by now.
While it is very common for malware to use code obfuscation,
benign executable files rarely employ such techniques. Thus,

Approved for Public Release; Distribution Unlimited: 88ABW-2014-1216
Dated 20140326

it has become a common practice to flag an obfuscated file as
suspicious and then examine it with more costly analysis to
determine if it is malicious or not.

Most current work of detecting obfuscated files is based
on executable file structure characteristics as we will show in
Section II. Many public packers, indeed, exhibit identifiable
changes in the packed PE file. However, this is not always
the case with custom packers and self-encrypting malware.
Moreover, packing is not the only obfuscation technique used
by malware writers. Malware can use anti-analysis tricks that
hinder the disassembly or analysis process. Such tricks can
leave absolutely no trace in the header as it is based on
obfuscating the instructions sequence and the execution flow of
the program. Other methods depend on detecting the signature
of known packers in the file. The drawback of this method is
obvious as it does not work with unknown and custom packers
and cryptors. It also fails if the signature is slightly modified.
Calculating the entropy score of the file is another method
of identifying packed and encrypted files. This method could
be effective against encryption or packing obfuscation, but
is ineffective against anti-disassembly tricks. In addition, the
entropy score of a file can be reduced to achieve low entropy
similar to those normal program.

In this paper, we present a new method for detecting
obfuscated programs. We build a recursive traversal disassem-
bler that extracts the control flow graph of binary files. This
allows us to detect the presence of interleaving instructions,
which is typically an indication of the opaque predicate anti-
disassembly trick. Our detection system uses some novel fea-
tures based on referenced instructions and the extracted control
flow graph that clearly distinguishes between obfuscated and
normal files. When these are combined with a few features
based on file structure, we achieve a very high detection rate
of obfuscated files.

More specifically, our contributions of the paper are:

• We leverage the fact that some advanced obfuscated
malware use opaque predicate techniques to hinder the
process of disassembly, and describe a technique that
turns this strength into a weakness by detecting its
presence and flagging the file as suspicious (Section
III).

• We identify distinguishing features between obfus-
cated and non-obfuscated files by studying their con-
trol flow graphs. These features help detect obfuscated



files while avoiding drawbacks of the other methods
that rely on file structure.

• We achieve a fast scanning speed of 12 ms per file on
average, despite the fact that our method encompasses
disassembly, control flow graph creation, feature ex-
traction, and file structure examination.

The rest of the paper is structured as follows: Section
II briefly review the related work. Section III discusses the
opaque predicate technique that can hinder the process of
disassembly. Section IV reveals the statistical characteristics
we identified for distinguishing obfuscated files from non-
obfuscated ones. Section V describes our experiments and re-
sults. Section VI discusses the results and potential limitations.
Section VII concludes the paper.

II. RELATED WORK

A. Entropy-based detection

Lyda and Hamrock presented the idea of using entropy
to find encrypted and packed files [1]. The method became
widely used as it is efficient and easy to implement. However,
some non-packed files could have high entropy values and
thus lead to false-positives. For example, the ahui.exe
and dfrgntfs.exe files have an entropy of 6.51 and 6.59
respectively for their .text section [3], [4]. (These two
example files exist in Windows XP 32-bit and are detected
by our system as non-packed.) In addition to entropy-based
evasion techniques mentioned in [5], simple byte-level XOR
encryption can bypass the entropy detection as well.

B. Signature-based detection

A popular tool to find packed files is PEiD, which uses
around 470 packer and crypter signatures [6]. A drawback
of this tool is that it can identify only known packers, while
sophisticated malware use custom packing or crypting routines.
Moreover, even if a known packer is used, the malware writer
can change a single byte of the packer signature to avoid being
detected as packed. In addition, the tool is known for its high
error rate [7].

C. File header anomaly detection

Other research such as [7]–[10] use the PE header and
structure information to detect packed files. These techniques
can get good results only when the packer changes the PE
header in a noticeable way.

Besides the shortcomings of every technique, notably, none
of the aforementioned techniques can statically detect the
presence of anti-disassembly tricks or other forms of control
flow obfuscation, yet these are now commonly used by a wide
range of advanced malware. In addition, our proposed system
does not depend on a coarse-grained entropy score of the file
or section, signature of packers, or file header features. Thus,
it is able to overcome these shortcomings.

III. ANTI-DISASSEMBLY TRICKS USED BY MALWARE
WRITERS

Malware writers use a variety of anti-analysis tricks to
protect against all kinds of analyses. One class of these is anti-
disassembly tricks. Anti-disassembly tricks hinder the process
of disassembly and hence reduce the effectiveness of static
analysis-based detection of malware. One of the most common
techniques is to use an Opaque Predicate. Although there are
legitimate reasons for including opaque predicate tricks, such
as watermarking [11] and to hinder reverse engineering, they
are commonly used in malware to prevent analysis.

Opaque predicate tricks [12] insert conditional statements
(usually control flow instructions) whose outcome is constant
and known to the malware author, but not clear in static
analysis. Thus, a disassembler will follow both directions of
the control flow instruction, one of which leads to the wrong
disassembly and affects the resulting control flow graph. As an
example, listing 1 shows an opaque predicate trick inserted on
lines 6 and 7 of the code snippet. Since the compare on line
6 will always evaluate to true, the fake branch will never be
taken at runtime. However, to a disassembler, this fact is not
apparent and it will evaluate both paths.

In this example, the disassembler will follow the target of
the jne instruction on line 7, which leads to a byte of data on
line 11. The disassembly will continue starting with this byte,
0F, resulting in decoding an instruction with opcode 0F9090
8BC9BA44. This incorrect instruction is SETO BYTE PTR
DS:[EAX+44BAC98B] as shown in figures 1 and 2 for two
common disassemblers, IDA Pro and OllyDbg, respectively.

We developed a recursive traversal disassembler that is able
to detect interleaving code and flag the corresponding basic
block as problematic, so an analyst could easily know where
to find these tricks. Figure 3 shows a portion of the control
flow graph output from our disassembler for this example. Two
blocks are shown in red to indicate that they are interleaving
and only one of them is correct.
1 xor eax, eax
2 nop
3 nop
4 L1:
5 push eax
6 cmp eax, eax
7 jne fake
8 add ecx, 333h
9 jmp skip

10 fake:
11 DB 0Fh
12 skip:
13 nop
14 nop
15 mov ecx, ecx
16 mov edx, 444h
17 push offset ProcName
18 push eax
19 call GetProcAddress

Listing 1. Opaque predicate trick snippet.

IV. INSTRUCTIONS-BASED DETECTION: TURNING
ATTACKERS’ STRENGTH INTO WEAKNESS

Due to obfuscation techniques such as opaque predicate,
the control flow graph (CFG) and the sequence of instructions



Fig. 1. Portion of IDA Pro graph for the example in listing 1.

Fig. 2. Portion of OllyDbg disassembly for the example in listing 1.

Fig. 3. Part of our disassembler’s output for the example in listing 1.

extracted from obfuscated programs are usually convoluted,
resulting in different sizes of basic blocks compared to a
normal program, a greater percentage of sink vertices of all
basic blocks, and other telltale features. In the following sub-
sections, we introduce interesting features that can effectively
identify an abnormal control flow graph and sequence of
instructions. We show how each of these features differs in
case of obfuscated and clean files. The illustrative statistical
distributions presented in this section are from representative
file sets that are also used in the experiments of Section V.

A. Percentage of sink vertices in CFG

The CFG of a given program is a digraph where each vertex
represents a basic block. Sink vertices in this context refer to
those vertices with zero out-degree. Sink vertices are usually
the exit point of the program, and since a typical program
has few exit points in the code, the number of sink vertices
is very small compared to other vertices. Obfuscated malware
that employ anti-analysis techniques lead to inaccurate static
disassembly of the file. Thus, the ratio of sink vertices to the

Fig. 4. Distribution of sink vertices to all vertices ratio for malicious and
clean file sets.

Fig. 5. Distribution of referenced instruction size to section size ratio for
malicious and clean file sets.

total vertices becomes different from a normal file. Figure
4 compares the ratio of sink vertices in both clean non-
obfuscated and malicious obfuscated files, respectively.

B. Percentage of the size of referenced instructions to the
entire size of the section

Due to code obfuscation, encryption or packing, the size
of referenced instructions compared the size of the section is
relatively smaller than that of clean files. The decryption or
unpacking routine that exists in the same section of the en-
crypted or packed code occupies a much smaller size than the
actual payload of the file. This fact represents a distinguishable
feature between packed and non-packed files. Figure 5 shows
these values in different files in clean and malicious dataset.

C. Average number of instructions in basic blocks

After constructing the control flow graph of the program,
each basic block will represent a set of instructions with a
single entry and a single exit instruction. The exit instruction,
in most cases, is a control transfer that affects the flow
of the execution. If the disassembly was wrongly redirected
into disassembling packed or encrypted data due to anti-
disassembly tricks, false instructions will be decoded, which
will result in different characteristics of a typical control flow
graph of a normal application. One of these characteristics
is the average size of instructions in basic block. Figure 6



Fig. 6. Distribution of basic block average size for malicious and clean file
sets.

shows the average number of instructions in a basic block in
malicious and benign dataset respectively.

D. Entropy of referenced instructions opcodes

As discussed in Section II, entropy is a measure of ran-
domness which can sometimes be used to detect packed files.
Almost all techniques that use entropy to detect packed files
calculate the entropy of the entire file, a section, or the file
header. However, as explained earlier, an encrypted or packed
data can still exhibit low entropy if an entropy reduction
method is used. In addition, a normal program could contain
data of high entropy within the code. In this case, the entropy
of this data will be incorporated in the total entropy. This is a
major source of false positives.

On the other hand, if the program employs an anti-
disassembly technique that is able to deceive the disassembler
into decoding false instructions, the resulting opcodes of the
false instructions will have different statistical distribution than
those of real ones. If the entropy of only referenced instructions
is computed, we would have a more specific and accurate use
of the entropy metric. Thus, even if a normal program contains
data of high entropy within the code, the entropy of this
data will not be incorporated in the total entropy calculation,
because the flow of execution of a normal program ensures
jumping over this data during execution. Figure 7 shows the
distribution of file entropy when only referenced instructions
are considered, for both non-obfuscated clean and obfuscated
malicious files, respectively.

E. Existence of interleaving instructions

In our system we flag any file with interleaving instructions
as obfuscated, since unobfuscated applications do not usually
intentionally employ opaque predicate. Existence of such in-
terleaving instructions is a clear flag of obfuscation, unless it is
a bug or an artifact in an unobfuscated program. In Section V,
we show how our system found an artifact in non-obfuscated
Windows files when interleaving instructions were detected in
them.

F. Existence of unknown opcodes

If an unknown opcode is encountered while disassembling
the file, it means that the disassembly process is diverted

Fig. 7. Distribution of file entropy for referenced instructions only.

from the normal execution path, and the file is flagged as
obfuscated. It’s worth mentioning that our disassembler does
not make assumptions about indirect addressing. Assumption
in this case would be uncertain and following uncertain paths
would definitely lead to high false-positive rate. Therefore,
since the disassembler covers almost all opcodes of the x86 and
IA-64 architecture, even some of undocumented instructions,
finding an unknown opcode in the extracted instructions would
be a strong evidence of obfuscation.

V. EXPERIMENT AND EVALUATION OF OUR DETECTION
METHOD

We ran our proposed system on two sets of files. The first
set consists of 250 clean files taken from a clean Windows
XP 32-bit machine, all of them non-packed. The second
set consists of 250 malicious packed files, packed by both
commercial and custom packers. The ranges of values for the
features introduced in Section IV are shown in Tables I and II
for both clean and malicious sets, respectively. Based on the
result in Table I, we established six criteria to test if the file
is packed:

1) The sink vertices ratio lies outside the range of non-
packed files.

2) The referenced instructions ratio lies outside the
range of non-packed files.

3) Average number of instructions in basic block lies
outside the range of non-packed files.

4) Entropy of referenced instructions lies outside the
range of non-packed files.

5) The code has one or more anti-disassembly tricks.
6) The code references an unknown opcode.

TABLE I. VALUE RANGES OF STATISTICAL FEATURES IN WINDOWS
XP CLEAN FILE SET.

Property Min Max

Sink vertices ratio 0.0260047 0.254545

Referenced instructions ratio 0.000544839 0.884181

Average number of instructions in basic block 2.3125 19.6357

Entropy of referenced instructions 3.38 5.61

Files with a referenced unknown opcode 0

Files with anti-disassembly trick 0



TABLE II. VALUE RANGES OF STATISTICAL FEATURES IN MALICIOUS
FILE SET.

Property Min Max

Sink vertices ratio 0.0 1.0

Referenced instructions ratio 1.89169 x 10−6 0.92139

Average number of instructions in basic block 1 2142

Entropy of referenced instructions 0 6.81

Number of referenced unknown opcode 0 5

Files with anti-disassembly trick 63

Based on these criteria, we achieved 100% correct de-
tection of the clean files as non-packed and 98.8% of the
malicious files as packed or obfuscated. This result is shown
in Table III. In addition, we found that by adding an extra
criterion by measuring the entropy of the entry point section
and marking files with entropy greater than 6.5 as packed,
we could achieve 100% detection of malicious files as packed,
i.e., 0% false negatives. However, this introduced a 14.8% false
positive rate as some of the clean non-obfuscated files were
flagged as obfuscated.

Although structural features of the files were not our main
concern in this paper, we added a few checks on the file
structure which further improved the result. The following list
of structural features were used to help identify obfuscated
files:

1) The entry point is in file header before any section.
2) There is no .text or CODE section in the file.
3) The entry point is in the last section while it is neither

.text nor CODE section.
4) SizeOfRawData = 0 and VirtualSize > 0 for

some sections.
5) Sum of SizeOfRawData field of all sections is

greater than the file size.
6) Two or more sections overlap.
7) The file has no imports at all or the import table is

corrupted.

The scanning result when using each detection features is
shown in Table III where FN and FP refer to false negative
and false positive rates, respectively.

We collected 423 clean non-obfuscated files from a clean
Windows 7 32-bit Home Basic Edition and scanned them
using only our instructions-based criteria. We used the ranges
mentioned in Table I as detection conditions. There was 7
out of the 423 files (1.64%) detected as obfuscated. Since we
know that those files are not obfuscated, we considered, at
the beginning, the result as a false-positive. However, after
manually reverse engineering the files, it turned out there is
an artifact of some incomplete code generation [13] in six of
them. The files have overlapped instructions that, if executed,
would likely crash the programs under certain conditions.
Although these conditions were not clear to us, based on the
instructions’ location in the file, we feel that is unlikely that
the execution of these faulty instructions would ever take place
[13]. The seventh file is sppsvc.exe that has Referenced
Instruction Ratio = 0.000273778, which is less than
the minimum boundary set in Table I. Therefore, since the first
six files contain an artifact, we could safely exclude them from

TABLE III. FILE SET ANALYSIS RESULTS.

FN FP Correctly detected Percentage %

Instructions-based features only

Clean files, WinXP 0% 0% 250 / 250 100%

Clean files, Win7 0% 0.1% 416 / 417 99.9%

Malicious files 1.2% 0% 247 / 250 98.8%

Instructions-based features with checking entropy of entry point section

Clean files, WinXP 0% 14.8% 213 / 250 85.2%

Clean files, Win7 0% 13.2% 362 / 417 86.8%

Malicious files 0% 0% 250 / 250 100%

Structural features only

Clean files, WinXP 0% 0% 250 / 250 100%

Clean files, Win7 0% 0% 417 / 417 100%

Malicious files 36.8% 0% 158 / 250 63.2%

Instructions-based with structural features

Clean files, WinXP 0% 0% 250 / 250 100%

Clean files, Win7 0% 0.1% 416 / 417 99.9%

Malicious files 0% 0% 250 / 250 100%

the set and consider that there was no false-positive in our
results except that corresponding to sppsvc.exe. Finally,
we note that when we used entropy for detection, it led to the
worst result as some non-obfuscated files show high entropy
in the code section. The full results of this analysis of the file
sets are shown in Table III.

We ran another test on a larger set of 10,171 malicious files.
The set is a collection of live malware given to us by a security
firm. Unfortunately, we have not been given details about the
set in terms of packing/obfuscation. Although we admit that
scanning result of this set is not a concrete measure of the
effectiveness of the system since we cannot give a confirmed
value of false-positive or false-negative, we opted to show the
result for the sake of illustration. Table IV shows the value
ranges of each criteria, while Table V shows the result of
scanning the large malware set.

For all of our experiments, we observed that the system
was able to process files at an average rate of 12 ms each.

TABLE IV. VALUE RANGES OF STATISTICAL FEATURES IN LARGE SET
OF MALICIOUS FILES.

Property Min Max

Sink vertices ratio 0.0 1.0

Referenced instructions ratio 0.62 x 10−6 1.0

Average number of instructions in basic block 1 69600

Entropy of referenced instructions 0 7.23

Number of referenced unknown opcode 0 163

Files with anti-disassembly trick 1835

TABLE V. ANALYSIS RESULTS FROM THE LARGE SET OF MALWARE.

Detected as packed Percentage %

Instructions-based features only 9982 / 10171 98.1418%

Instructions-based with structural features 10161 / 10171 99.9%



VI. DISCUSSION AND LIMITATIONS

We can summarize the features used in our system into two
categories. Instructions-based statistical features, and structural
features. The file structure features have the same advantages
and limitations of the previous research discussed in Section II.
The major contribution of the paper are the instructions-based
method of detection.

All the features mentioned in Section IV except the one
in Subsection IV-B are useful metrics when the file under
consideration has features to intentionally deceive the disas-
sembler into decoding wrong execution paths. This is due
to existence of anti-disassembly tricks or other control flow
obscuring techniques.

On the other hand, if the file is packed or encrypted with no
control flow obfuscation, the feature discussed in Subsection
IV-B (Referenced Instruction Ratio) comes into
play. It can detect that just a small portion of the section is
executed, which is typically the case when a small routine is
responsible for unpacking or decrypting the relatively large
remainder of the file. However, the limitation in this case is
when this small routine exists in a separate section from the
code to be unpacked. In this case, the section containing the
unpacking routine would contain just the referenced instruc-
tions of the unpacking routine, and thus its ratio will be high.
Hence, our detection would likely be evaded if a file is packed
such that the unpacked routine and the packed code exist in
two different sections, the file does not affect the header in a
distinguishable way, and does not have anti-disassembly tricks.

Finally, the proposed system cannot yet analyze .NET and
Java files because these are represented by an intermediate
language which needs other methods of disassembly. The
system was developed in C++ and it uses the BeaEngine library
[14]. The experiment was conducted under Windows 7 64-bit
on a notebook with Intel Core i5 processor and 8GB of RAM.
The average execution time was observed to be around 12 ms
per file.

VII. CONCLUSION

Due to the high number of malware being produced every
day, the need for a fast and efficient system detection persists.
If there is an efficient, fast way to detect the presence of
obfuscation in a sample and then move it to a more rigorous
test, this would reduce some of the burden on the more costly
methods and help keep up with the big number of samples.

This paper presents a generic heuristic method to detect
obfuscation based on both the structural and instructions-based
features of the file. We built a complete recursive traversal
disassembler for x86 and IA-64 binary files. We were able
to detect the instructions overlapping trick and presence of
unknown opcodes, which are mainly symptoms of opaque
predicate or a bug in the code. In addition, a number of
statistical features based on the control flow graph and the
instructions that help distinguish malicious and benign files
have been presented. When measuring those features combined
with structural features of a sample, we achieve very high
detection result of obfuscated files with a very fast scanning
time of 12 ms on average per file.

A key advantage of our method is that it is not limited
to a certain type of packers or a specific obfuscation tech-
nique. In our future work, we plan to add more instructions-
based features and incorporate machine learning techniques
to classify different packers. We believe that if these future
goals are accomplished and the limitations mentioned in VI
are overcome, they would lead to more accurate results with
less margin of error.

ACKNOWLEDGMENT

We thank Peter Ferrie, principal anti-virus researcher at Mi-
crosoft, for answering our questions as well as his comments
and feedback on our Windows files analysis. We thank Xabier
Ugarte-Pedrero, a security researcher, for his explanations and
informative discussion of his paper [5]. We thank Qingji Zheng
for useful discussion.

This paper was partly supported by NSF under Grant No.
1111925 and ARO under Grant No. W911NF-12-1-0286. Any
opinions, findings, conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the position of the NSF, the US Army, or the US Air
Force.

REFERENCES

[1] R. Lyda and J. Hamrock, “Using entropy analysis to find encrypted
and packed malware,” Security Privacy, IEEE, vol. 5, no. 2, pp. 40–45,
2007.

[2] A. Stepan, “Improving proactive detection of packed malware,” Virus
Bulletin, pp. 11–13, March 2006.

[3] VirusTotal.com, “ahui.exe.” http://goo.gl/kbbJKi. Accessed: Feb.
7th, 2014.

[4] VirusTotal.com, “edfrgntfs.exe.” http://goo.gl/XCqUcF. Ac-
cessed: Feb. 7th, 2014.

[5] X. Ugarte-Pedrero, I. Santos, B. Sanz, C. Laorden, and P. Bringas,
“Countering entropy measure attacks on packed software detection,” in
Consumer Communications and Networking Conference (CCNC), 2012
IEEE, pp. 164–168, 2012.

[6] aldeid.com, “PEiD.” http://www.aldeid.com/wiki/PEiD. Accessed: Feb.
8th, 2014.

[7] M. Shafiq, S. Tabish, and M. Farooq, “PE-probe: leveraging packer
detection and structural information to detect malicious portable exe-
cutables,” in Proceedings of the Virus Bulletin Conference (VB), pp. 29–
33, 2009.

[8] R. Perdisci, A. Lanzi, and W. Lee, “Classification of packed executables
for accurate computer virus detection,” Pattern Recogn. Lett., vol. 29,
pp. 1941–1946, Oct. 2008.

[9] S. Treadwell and M. Zhou, “A heuristic approach for detection of
obfuscated malware,” in Intelligence and Security Informatics, 2009.
ISI ’09. IEEE International Conference on, pp. 291–299, June 2009.

[10] I. Santos, X. Ugarte-Pedrero, B. Sanz, C. Laorden, and P. G. Bringas,
“Collective classification for packed executable identification,” in Pro-
ceedings of the 8th Annual Collaboration, Electronic Messaging, Anti-
Abuse and Spam Conference, CEAS ’11, (New York, NY, USA), pp. 23–
30, ACM, 2011.

[11] G. Myles and C. Collberg, “Software watermarking via opaque pred-
icates: Implementation, analysis, and attacks,” Electronic Commerce
Research, vol. 6, no. 2, pp. 155–171, 2006.

[12] E. Eilam, Reversing: Secrets of Reverse Engineering. Wiley & Sons,
2008.

[13] P. Ferrie, “Principal anti-virus researcher at Microsoft.” Personal Com-
munication. Jan. 22nd, 2014.

[14] BeaEngine, “BeaEngine.” http://www.beaengine.org/. Accessed: Apr.
3rd, 2014.


	Instructions-Based Detection of Sophisticated Obfuscation and Packing
	Recommended Citation

	tmp.1449689352.pdf.qxHZf

