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Abstract 

This paper extends Pesaran (2006) common correlated e¤ects (CCE) by allowing for endogenous 

regressors in large heterogeneous panels with unknown common structural changes in slopes and error 

factor structure. Since endogenous regressors and structural breaks are often encountered in empirical 

studies with large panels, this extension makes the Pesaran’s (2006) CCE approach empirically more 

appealing. In addition to allowing for slope heterogeneity and cross-sectional dependence, we find that 

Pesaran’s CCE approach is also valid when dealing with unobservable factors in the presence of 

endogenous regressors and structural changes in slopes and error factor loadings. This is supported by 

Monte Carlo experiments. 
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1 Introduction

This paper extends Pesaran (2006) and Baltagi, Feng and Kao (2016) (BFK hereafter)

by allowing for endogenous regressors in large heterogeneous panels with unknown com-

mon structural changes in slopes and error factor structure. Since endogenous regressors

and structural breaks are often encountered in empirical studies with large panels, this

extension makes the Pesaran�s (2006) CCE approach empirically more appealing.

Structural changes in time series regression models with endogenous regressors have

been recently studied by Boldea, Hall and Han (2012), Hall, Han and Boldea (2012), Per-

ron and Yamamoto (2014, 2015) and Chen (2015). An important �nding of Perron and

Yamamoto (2015) is that the ordinary least squares (OLS) estimates of break fractions

are still consistent even in the presence of endogenous regressors. The intuition is that

changes in the slope parameters imply changes in the probability limits of the OLS esti-

mates. We extend this intuition to heterogeneous panels with an error factor structure

when estimating common break points. In turn, the consistency of the OLS estimator

of the break dates, established in BFK, can be extended to the model with endogenous

regressors.

We show that the CCE approach is still valid when dealing with cross-sectional de-

pendence due to unobservable factors even in the presence of endogeneity and structural

changes in slopes and error factor loadings. As in Pesaran (2006), after the unobserv-

able factors are controlled for by cross-sectional averages of observable variables, common

break points can be consistently estimated using least squares as proposed by Bai (1997,

2010) even in the presence of endogeneity. Conditional on the estimated break points,

slope parameters can be consistently estimated by instrumental variable (IV) estimation

using augmented data in each regime de�ned by the estimated break point.

We also show that our break date estimator is robust to potential structural changes

in the factor loadings, a phenomenon recently considered by Stock and Watson (2009),

Breitung and Eickmeier (2011), Chen, Dolado and Gonzalo (2014), Yamamoto and Tanaka

(2015), Cheng, Liao and Schorfheide (2016), Bai, Han and Shi (2017) and Ma and Su

(2018), to name a few. Since the CCE approach used in this paper wipes out factors

instead of estimating them directly, structural changes in factor loadings do not a¤ect the

consistency of our estimators. In this sense, our methodology di¤ers from other papers on

1



structural changes in panels with interactive �xed e¤ects, see for example Li, Qian and

Su (2016).

The paper is organized as follows. Section 2 introduces a heterogeneous panel data

model allowing for endogenous regressors and structural changes. To estimate parameters

of interests, Section 3 starts with a simple case, followed by a formal discussion of the

general model with common correlated e¤ects. Section 4 provides concluding remarks.

The online Appendix contains all the proofs and the technical materials. Monte Carlo

simulations are also included to shed some light on the performance of the common break

point estimators.

2 Model

Consider a heterogeneous panel data model with a multifactor error structure, see Pesaran

(2006):

yit = x0it�i + eit; (1)

eit = 0ift + "it; (2)

i = 1; :::; N ; t = 1; :::; T . xit is a p � 1 vector of explanatory variables, and the error
term eit is cross-sectionally correlated, modelled by a multifactor structure, where ft is an

m� 1 vector of unobserved factors and i is the corresponding loading vector. "it is the
idiosyncratic error independent of xit. However, xit could be a¤ected by the unobservable

common e¤ects ft,

xit = �
0
ift + vit; (3)

i = 1; :::; N ; t = 1; :::; T; where �i is an m� p factor loading matrix. vit is a p� 1 vector
of disturbances. Given the correlation between xit and eit due to the unobservable factors

ft, OLS for each individual series could be inconsistent. Pesaran (2006) develops the CCE

estimator of �i by using cross-section averages as observable proxies for the ft.

Harding and Lamarche (2011) extend this model by allowing for endogenous regres-

sors and correlation between xit and the factor loadings i in errors in a homogeneous

panel data model. They �nd that the Pesaran�s CCE approach can be easily modi�ed

to accommodate these situations. Recently, Forchini, Jiang and Peng (2015) also study
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the case of endogenous regressors in Pesaran�s (2006) model of heterogeneous panels. In-

stead of using IV estimation, they control for endogeneity by considering reduced form

equations, in which the reduced form parameters can be consistently estimated by the

CCE approach. Then, the structural parameters �0is (and their mean �) can be inferred

from the estimated reduced form parameters. In addition, Neal (2015) extends the CCE

approach of Pesaran (2006) and Chudik and Pesaran (2015) in the dynamic heterogeneous

panels to the case of endogenous regressors using lags as instruments.

BFK extend Pesaran (2006) by allowing for structural changes in some or all compo-

nents of �i, which may be due to macro policy shocks or technological progress. Assume

a structural break at a common unknown date k0:

yit = x
0
it�i(k0) + eit; (4)

i = 1; :::; N ; t = 1; :::; T; where �i(k0) are di¤erent before and after the date k0, i.e.,�
�1i; t = 1; :::
�2i = �1i; t = k0

s in the time dimens

n be consistently est

l and a panel deter

ir cross-section mea

endogenous regress

t is allowed to be

on break in the erro

1i; t = 1; :::
2i = 1i; t = k1

e the same as or di

factor structure wh

nte Carlo experimen

ad to a spurious bre

ect the estimation p

u (2016) in which B

-sectional dependen

3

; k
�i(k0) =

0;
+ 1; :::; T:

In this model, there are two regime ion with a break at k0. BFK show

that the common break date k0 ca imated as in Bai (2010) and Kim

(2011) in a panel mean-shift mode ministic time trend model, respec-

tively. Also, the slopes �0is and the n can be consistently estimated by

the CCE approach in each regime.

In this paper, we consider both ors and structural changes in Pe-

saran�s model (1). Speci�cally, "i correlated with vit (thus xit). In

addition, we also allow for a comm r factor structure, i.e.,�
i(k1) =

; k1;
+ 1; :::; T;

where the common break k1 can b ¤erent from k0. It is important to

consider the instability of the error en the structural changes in slopes

are present. As indicated in the Mo ts in the online Appendix, a break

in the error factor loadings could le ak in slope parameters. Such error

factor structure instability could a¤ rocedure proposed in similar panel

change point models like Li, Qian, S ai�s (2009) interactive �xed e¤ects

approach is used to deal with cross ce in the errors.

6
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Thus, the model considered in this paper is�
x0 �

y = x0 � (k ) + e = it 1i + eit; t = 1; :::; k0;
it it i 0 it (5)

xit
0 �2i + eit; t = k0 + 1; :::; T;

eit = i(k1)
0ft + "it; xit = �

0
ift + vit;

where eit and xit are de�ned in (2) and (3), and Cov("it; vit) = 0. Assume there are q

instruments zit with q � p. zit could be a¤ected by ft.
The model (5) departs from BFK�s by allowing "it to be correlated with vit and break

in factor loadings. There are two sources of endogeneity in xit in this model: one is due

to common factors ft, and the other one is due to Cov("it; vit) = 0. In this way, this

model accommodates 4 important empirical features: slope heterogeneity, cross-sectional

dependence, structural breaks and endogeneity. Such rich empirical �exibility makes this

model more appealing in applied studies. In this model, the parameters of interest are

cross-sectional averages of the slopes �1i and �2i, and the common break k0.

6

6

3 Estimation Results

3.1 A simpli�ed case

In this section, to facilitate the discussion, we start with a simple case where there are no

unobserved common e¤ects ft in the errors. For i = 1; :::; N;�
x0 � + " ; t = 1; :::; k ;

yit = xit
0 �i(k0) + "it =

it 1i it 0 (6)
xit
0 �2i + "it; t = k0 + 1; :::; T:

xit is correlated with "it, and zit is the instrumental variable for xit. In this model, we

�rst estimate k0 and then �1i and �2i in each regime, respectively.

When xit = 1, (6) reduces to Bai�s (2010) panel mean-shift model. When N = 1, (6)

is the time series model considered in Boldea, Hall and Han (2012), Hall, Han and Boldea

(2012), Perron and Yamamoto (2014, 2015), with one change point. With endogenous

regressors, Hall, Han and Boldea (2012) use IV estimation and show that break fractions

and slopes can be consistently estimated in a time series setup. However, Perron and

Yamamoto (2015) �nd that the OLS estimator of break fractions is still consistent even

in the presence of endogeneity, and that OLS is better than IV in terms of e¢ ciency, and

avoids potential weak identi�cation problems due to weak instruments. Conditioning on

4



the OLS estimate of change points, slope parameters can be consistently estimated by IV

regression in each regime.

In our panel data setup, following Perron and Yamamoto (2015), we use OLS to

estimate k0, and use IV to estimate the slope parameters. Let bi = (�01i; �
0
2

0
i) ; i =

1; :::; N . For every i, and k = 1; :::; T � 1, de�ne X1i(k) = (xi1; � � � ; xi;k)0 ; X2i(k) =

(xi;k+1; � � � ; xiT )0. Similarly, de�ne Y1i(k) = (yi1; � � � ; yi;k)0, Y2i(k) = (yi;k+1; � � � ; yiT )0.
Let Yi = (yi1; � � � ; yiT )0 and "i = ("i1; "i2; � � � ; "iT )0 denote the stac�ked data and erro�rs

X (k) 0
over time, thus Y = (Y (k)0; Y (k)0)0. Using the notation X (k) = 1i

i 1i 2i i ,
0 X2i(k)

equation (6) can be written in matrix form as

Yi = Xi(k0)bi + "i; i = 1; :::; N: (7)

Given any k = 1; :::; T � 1, the least squares estimator of bi is� �
�̂^ 1i(k)

bi(k) = = [Xi(k)0Xi(k)]�1Xi(k)0Yi, i = 1; :::; N: (8)
�̂2i(k)

The corresponding sum of squared residuals is given by

SSRi (k) = [Yi � X ^
i(k)bi(k)]

0[Yi � X ^
i(k)bi(k)], i = 1; :::; N:

As in Bai (2010), Kim (2011) and BFK, the least squares estimator of k0 is de�ned asXN
k̂ = arg min SSRi(k): (9)

1�k�T�1
i=1

Di¤erent from BFK, here "it is allowed to be correlated with xit. Following Perron

and Yamamoto (2015), we can project "i on the column space spanned by Xi(k0) such
that the new error term "�i (de�ned below) is uncorrelated with Xi(k0). Rewrite equation
(7) above as:

Yi = Xi(k0)��iT (k0) + "�i ; (10)

where "�i = (I � PX)"i = ("�i1; :::; "
�
iT )

0 and PX is the projection matrix based on Xi(k0),
and � �

��
��iT (k0) =

1i 1
= bi + [Xi(k0)0Xi(k0)]

� Xi(k0) "i:
��2i

0

As argued by Perron and Yamamoto (2015) in a time series model, a structural change

in the original parameter �i(k0) implies a shift in the new parameter �
�
i (k0),

��
1

i (k0) = p limT �� (k ) = b + p lim [X (k )0X (k )]� X (k ) " ;!1 iT 0 i T!1 i 0 i 0 i 0 0 i

5



at the same break date k0, except for a knife-edge case.1 Since the new errors "�it are

uncorrelated with xit, (10) becomes BFK�s Model 1. Following the same lines of proof

as in BFK�s Theorem 1, it can be shown that k̂ is consistent for k0, i.e., k̂ � k0 = op(1),
under appropriate assumptions.

Given the estimated break date k̂, regimes 1 and 2 are de�ned. In each regime, �1i
and �2i can be consistently estimated by IV regression using instruments zit, as suggested

by Hall, Han and Boldea (2012), Perron and Yamamoto (2015) for a time series setup.

3.2 The general case

Next, we consider the case with common correlated e¤ects (5) in the errors: for i =

1; :::; N , �
xit
0 �1i + eit; t = 1; :::; k ;y 0

it = xit
0 �i(k0) + eit = x0it�2i + eit; t = k0 + 1; :::; T:

where eit = i(k1)
0ft + "it. Besides nonzero Cov(vit; "it), this model has an additional

source of endogeneity due to the unobservable common factors ft that a¤ect both xit =

�0ift + vit and eit.

Even with endogenous regressors xit, this general model with a multifactor error struc-

ture could still be �t into the simpli�ed case discussed in the previous subsection. Hence,

we could still use OLS to estimate k0. However, due to the common ft, errors eit are

no longer cross-sectionally independent. This is a major concern in the general case con-

sidered here. As pointed out by Kim (2011), the cross-sectional correlation in the errors

could o¤set the information across the cross-sectional dimension under the common break

assumption. Thus, k̂ � k0 = op(1) is not necessarily achieved without controlling for ft.
It depends on the magnitude of the cross-sectional correlation governed by the unobserv-

able loadings. This �nding is also con�rmed in BFK�s Figure 7 in the case of exogenous

regressors xit.

As in BFK, to control for the cross-sectional dependence due to ft, we partial out ft

�rst. We show that the CCE approach is still valid in the presence of endogeneity (and a

common break point). Let F = (f 1
1
0 ; f2

0 ; � � � ; fT0 )0 and Mf = IT � F (F 0F )� F 0. (5) can be
1This �nding also explains why the consistency of the pooled OLS estimator of change point is still

achieved in a panel data �xed e¤ects model considered in Feng, Kao and Lazarova (2009), Baltagi, Kao
and Liu (2017), Boldea, Gan and Drepper (2016). In these models endogeneity arises when the potential
correlation between regressors and �xed e¤ects is ignored in the pooled OLS.

6



written in matrix form as

Yi = Xi(k0)bi + Fi(k1) + "i; i = 1; :::; N: (11)

Since ft are unobservable, we follow Pesaran�s (2006) idea of using the cross-sectional

averages of yit and xit as proxies for ft. Combining (3) and (5) yields� �
y

wit = it = Ci(k0; k1)
0 ft + uit(k0); (12)

(p+1)�1 xit (p+1)�m m�1 (p+1)�1

where � � � �
1 0 "it + v

0 � (k0)
Ci(k0; k1) = (i(k1);�i) and uit(k

it i

� (k ) I 0) = :
� p( i 0m p+1) vit

In the case that the instruments zit are a¤ected by ft, zit can be included in the vector

wit. Note that like �i(k0), the slope Ci(k0; k1) in (12) also shifts at k0, and k1. Without

loss of generality, we assume k1 > k0.2 Thus,8< C1i = (1i + �i�1i; �i); t = 1; :::; k0;
Ci(k0; k1) = C2i = (1i + �i�2i; �i); t = k0 + 1; :::; k: 1; (13)

C3i = (2i + �i�2i; �i); t = k1 + 1; :::; T:P
Let w�t =

N
i=1 �iwit be the cross-sectional average of wit using weights �i, i = 1; :::; N .

In particular,
�w�t = C(k0; k1)

0ft + u�t(k0) (14)

where 8 P< � NP C1 =
N Pi=1 �iC1i; t = 1; :::; k0;

�C(k0; k1) = � C (k ; k ) = �C = N
i=1 i i 0 1 2 i=1 �iC2i; t = k0 + 1; :::; k1; (15): P�C3 =

N
i=1 �iC3i; t = k1 + 1; :::; T;

and 8 � P �
�"<>> N
t +

0P i=1 �ivit�1i
N ; t = 1; :::; k ;

v� 0

u�t(k0) = �iuit(k0) = � P t

i=1 >>: �"t +
N

� (16)
i=1 �ivit

0 �2i ; t = k +
v 0 1; :::; T;
�tP

where �"t =
N PN
i=1 �i"it, v�t = i=1 �ivit.

2Theorem 1 below still holds when k1 � k0. As shown in Figure A3 in the online Appendix, a di¤erent
break point in factor loadings could lead to a spurious break in slopes if we ignore the unbserved factors
in errors.
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For equation (14), when �C(k0; k1) is of full rank, ft can be written as� �
� � 1 �ft = C(k0; k1)C(k0; k1)

0 � C(k0; k1)(w�t � u�t(k0)): (17)

For simplicity, we assume that the rank condition is satis�ed. If the rank condition is not

satis�ed, additional variables like zit that are also a¤ected by ft can be included in wit in

(12) to proxy ft, as in Chudik and Pesaran (2015).3

As shown in Lemma 1 of Pesaran (2006), in (16), the cross-sectional averages of thePN P
errors �"t, v�t, i=1 �ivit

0 �1i and
N
i=1 �ivit

0 �2i all vanish as N !1, thus

p
u�t(k0)! 0

in both regimes as N !1, regardless of the correlation between "it and vit, yielding� �
� � � 1 � p

ft C(k0; k1)C(k0; k1)
0 � C(k0; k1)w�t ! 0: (18)

This suggests that it is asymptotically valid to use w�t as observable proxies for ft. This

�nding also shows that the CCE approach proposed by Pesaran (2006) is robust to endo-

geneity and structural changes in slopes and factor structures.4

Let �W = (w�1
0 ; w�2

0 ; � � � ; w�T0 )0 denote the T � (p+ 1) matrix of cross-sectional averages.
Denote the T � T matrix Mw by �Mw IT � � � �= W (W 0W )�1W 0: Premultiplying (11) by Mw,

we obtain

MwYi =MwXi(k0)bi +MwFi(k1) +Mw"i; i = 1; :::; N: (19)

By de�ning ~ ~Yi =MwYi, Xi(k0) =MwXi(k0) and ~"i =Mw"i, (19) becomes

~ ~Yi = Xi(k0)bi + ~"0i ; i = 1; :::; N; (20)

where ~"0i =MwFi(k1) + ~"i.

3From equation (15), under random coe¢ cient assumptions, matrix �C(k0; k1) is not of full rank as-
ymptotically when the means of �i (and /or 1i; 2i, �1i; �2i) are zero. Compared with the case of no
break considered in Pesaran (2006), the rank condition here needs to hold in each of the 3 regimes split by
k0 and k1. Thus, it is more restrictive than Pesaran (2006). In addition, when the number of unobserved
factors exceeds the number of regressors and dependent variable, i.e., m > p + 1, the rank condition is
not satis�ed.

4As shown by Breitung and Eickmeier (2011), ignoring breaks in the factors leads to doubling the
number of factors. Hence, as long as the rank condition holds with increased number of factors, the CCE
approach is robust to breaks in the factor structure. In the case where the e¤ective number of factors is
greater than p + 1, the loadings in the errors need to be independent of the loadings in the regressors.
We would like to thank one of our referees for pointing this out.
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Like Lemma 6 in BFK in the case of exogeneity, the online Appendix shows that each

element of MwFi(k1) is of order O p1p( ) and vanishes as (N; T ) ,
N

! 1 implying that

~"0i can be treated as ~"i asymptotically in the case of endogeneity. This implies that the

partition regression (19) wipes out the unobserved factors F asymptotically regardless of

structural changes in factor loadings i(k1) and that breaks in i can be ignored.
5 The

Monte Carlo experiments in the online Appendix also con�rm that a common break in

loadings i(k1) does not a¤ect the consistency of the break date estimator and the slope

parameters estimator asymptotically. Therefore, for simplicity we use the notation i and
�C(k0) instead of i(k1) and � �C(k0; k1) in the rest of paper, where C2 includes two values

over the span of k0; :::; T:

Hence, the general case (11) considered here can be treated as the simple case (7)

using the transformed data f ~ ~Yi;Xi(k0); i = 1; :::; Ng. Similarly, for any possible change
point k = 1; :::; T � 1, the least squares estimates of bi are

~ ~bi(k) = [X ~ ~ ~
i(k)

0Xi(k)]�1Xi(k)0Yi

for i = 1; :::; N , and the corresponding sum of squared residuals is

S] ~SRi (k) = [Yi � X~ ~ ~ ~ ~
i(k)bi(k)]

0[Yi � Xi(k)bi(k)]:

The estimator of k0 is de�ned similarly as P~k = arg min i S
]SRi(k): (21)

1�k�T�1

As in BFK, it can be shown that the estimator ~k is still consistent in the general case

with endogenous regressors and structural break in factor loadings, i.e., ~k � k0 = op(1).

Theorem 1 Under Assumptions 1-11 in the online Appendix, ~lim(N;T ) P (k = k!1 0) = 1.

In order to save space, all assumptions and proofs are provided in the online Appendix.

Given the consistency of ~k, we can estimate the slope parameters in (11). De�ne C� =� � �
� � 1 �

0
C(k0)C(k0)

0 � C(k0) in (18). Equation (11) can be written as

Yi = Xi(k0)bi + Fi + "i = X ~ � 0
i(k)bi +WCi + "i ; (22)

5It is important to note that the break k1 in factor loadings cannot be ignored even when the factors
are observed and treated as regressors when k1 = k0:6
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where 0 X � X ~ � �"i = "i + [ i(k0) i(k)]bi + (F WC)i:
Di¤erent from Pesaran (2006) and BFK, the CCE estimators of bi are inconsistent due

to the correlation between X ~
i(k0) and "i (or between Xi(k) and "0i ). This is also the case

in equation (20) using transformed data. As in Hall, Han and Boldea (2012), Perron and

Yamamoto (2015) in the time series setup, we obtain IV estimators for individual slope

parameters and their cross-sectional means.

Similar to the case of exogenous regressors considered by BFK, the nature of super

consistency of ~k allows us to estimate bi in the regimes split by ~k as if k0 were known. The

impact of the di¤erence between ~k and k0 can be ignored asymptotically, i.e., [Xi(k0) �
X ~
i(k)]bi = op(1). As discussed above, the cross-sectional averages of the data w�t can be

used to proxy the unobservable factors ft, i.e., (F � �WC)i = op(1).
In the presence of endogenous regressors, we run an augmented IV regression with

extra regressors �Wt. Given that
p

u�t(k0) ! 0 in equation (16), the correlation between

xit (or and vanishes in when is large. This implies that �vit) "it w�t N W can be treated

as exogenous asymptotically, and can be included as the �rst-stage regressors along with

i�nstruments. Simi�lar to the de�nition of Xi(k), we de�ne the instrument matrix Zi(k) =
Z1i(k) 0

where Z1i(k) = (zi
0
1; � � � ; zik0 )0 and Z2i(k) = (zik0 +1; � � � ; ziT0 )0. Denote0 Z2i(k)

�Z+i (k) = (Zi(k);W ). The predicted value of X ~ ~ ~
i(k) is bXi(k) = P + ~Z (k)Xi(k). Using ~k, thei

IV estimator of bi is given by

~ ~ ~ bX ~ 0 bX ~ �1bX ~bi;IV = bi;IV (k) = [ i(k)Mw i(k)] i(k)
0MwYi; (23)

i = 1; :::; N .

Compared with equation (23) in BFK in the case of exogeneity, the key di¤erence here

in (23) is replacing endogenous regressors X ~
i(k) with their predicted values bX ~

i(k) using

instruments Z ~
i(k) and �W . As in Pesaran (2006) and BFK, the mean group estimator of

b, the cross-sectional mean of bi, i = 1; :::; N , is de�ned as:

N
1 X 1 XN~ ~ ~ ~ ~ bX ~ 0 bX ~ �1bX ~bMG = bMG(k) = bi;IV (k) = [ i(k)Mw i(k)] i(k)

0MwYi: (24)
N N

i=1i i=1

Proposition 1 Under Assumptions 1-11 in the online Appendix,

p
~N(bMG �

d
b)! N (0;�b) :

10



As in Pesaran (2006), one of the advantages of the mean group estimator is that �b

can be consistently estimated by

N
1 X

~(b
N � i;IV

1
i=1

� ~ ~bMG)(bi;IV � ~bMG)
0:

4 Monte Carlo Simulations

In this section we examine the properties of the break point estimator using Monte Carlo

simulations. Due to space limitations the design as well as Monte Carlo results are rele-

gated the online appendix which is not intended for publication. Brie�y, the data gener-

ating process (DGP) is a modi�ed design of BFK�s Model 2 and is similar to Pesaran�s

(2006). The main di¤erence is that xit (or vit) and "it are correlated in the DGP,

xit = ai + 2ift + vit

eit = 1i(k
2 1=2

1)ft + �e;ivit + (1� �e) "it

We check the impact of endogeneity on the consistency of the break point estimator

using various experiments. The results indicate that Theorem 1 is supported in the sense

that the empirical distribution of the break point estimator tends to collapse to k0 as N

increases.

Figure 1 reports the case of rank de�ciency. By changing the distribution of 2i from

N(0:5; 0:5) considered in Figure A2 in the online appendix to �N(0; 0:5), the matrix C(k0)

is not of full rank asymptotically. The �rst panel of Figure 1 shows that the consistency

of ~k remains in the case of rank de�ciency. As N increases, the probability of choosing

the true value k0 increases.

In Figure 2, we also compare the e¢ ciency of the proposed OLS and IV estimators

of k0. An IV estimator is used in the �rst step, instead of OLS, in a simpli�ed case

without an error factor structure. The DGP is similar to the one used in Figure 1 except

that an instrument is introduced and regressor xit is generated in a slightly di¤erent way,

similar to Hall et al. (2012). As expected, the IV estimator �k is also consistent, and its

probability of choosing the true value k0 increases with N (and T ). However, comparison

between the histograms of k̂ and �k suggest that OLS yields more accuracy in terms of the

probability of �nding the true value k0 than the IV estimator.

11



5 Conclusion

In empirical studies with long panel data sets using the CCE approach, endogenous re-

gressors and structural change are two main concerns. This paper extends Pesaran (2006)

and BFK by allowing for endogenous regressors and unknown common structural changes

in slopes and error factor loadings in large heterogeneous panels. This paper can also be

considered as an extension of the time series regression models studied by Boldea, Hall

and Han (2012), Hall, Han and Boldea (2012), Perron and Yamamoto (2014, 2015) to

heterogeneous panels with an error factor structure.

We show that the model considered in this paper can be estimated by combining

Pesaran�s CCE approach and the least squares method proposed by Bai (1997, 2010).

The paper also shows that the CCE approach is still valid to control for cross-section

dependence due to error factors even in the presence of endogeneity and structural changes

in slopes and error factor loadings. Common break points can be consistently estimated

by least squares even in the presence of endogeneity. Monte Carlo experiments here and

in the online Appendix are used to verify the consistency of common break estimators in

various cases.
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Figure 1: Histograms of 𝑘�  and 𝑘� in the general case with rank deficiency (T =50)  
 N =10 N =50 N =200 
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Note: The DGP is a modified design of Model 2 in BFK (2016). The regressors 𝑥𝑖𝑖  are correlated with 𝑒𝑖𝑖.     

𝑦𝑖𝑖 = 𝛼𝑖 + 𝛽𝑖(𝑘0)𝑥𝑖,𝑖 + 𝑒𝑖𝑖 , 𝑖 = 1, … ,𝑁; 𝑡 = 1, … ,𝑇. 𝛼𝑖~𝑖𝑖𝑖𝑁(1, 1), 𝛽𝑖(𝑘0) = � 𝛽1𝑖 ,              𝑡 = 1, … , 𝑘0,
𝛽2𝑖 = 𝛽1𝑖 + 𝛿𝑖, 𝑡 = 𝑘0 + 1, … ,𝑇.   𝑘0 = 0.5𝑇, 𝛽1𝑖~𝑖𝑖𝑖𝑁(1, 0.04), 𝛿𝑖~𝑖𝑖𝑖𝑁(0, 0.04). 

𝑥𝑖𝑖 = 𝑎𝑖 + 𝛾2𝑖𝑓𝑖 + 𝑣𝑖𝑖; 𝑒𝑖𝑖 = 𝛾1𝑖𝑓𝑖 + 𝜌𝑒,𝑖𝑣𝑖𝑖𝑖 + �1 − 𝜌𝑒,𝑖
2 �1/2𝜀𝑖𝑖 , 𝛾1𝑖~𝑖𝑖𝑖𝑁(1,0.2), 𝜌𝑒,𝑖~𝑖𝑖𝑖𝑖(−0.5, 0.5). 𝑓𝑖 = 𝜌𝑓𝑓𝑖−1 + 𝑣𝑓𝑖 , 𝑡 = −49, … ,0,1, …𝑇, 𝑣𝑓𝑖~𝑖𝑖𝑖𝑁(0, 1 − 𝜌𝑓2), 𝜌𝑓 = 0.5, 

𝑓−50 = 0. 𝜀𝑖𝑖~𝑖𝑖𝑖𝑁(0,𝜎𝑖2), 𝜎𝑖2~𝑖𝑖𝑖𝑖(0.5, 1.5), 𝛾𝑖1~𝑖𝑖𝑖𝑁(1, 0.2), 𝑣𝑖𝑖~𝑖𝑖𝑖𝑁(0, 1 − 𝜌𝑣𝑖2 ), 𝜌𝑣𝑖 = 0.5. These variables are mutually independent. The replication number is 1000. 

𝑇 = 50, 𝑘0 = 25. Different from the design of Figure A2 in the online appendix, the means of 𝛾𝑖2 and 𝑎𝑖 change to zero, i.e., 𝛾𝑖2~𝑖𝑖𝑖𝑁(0, 0.5), 𝑎𝑖~𝑖𝑖𝑖𝑁(0, 0.5), so the rank 

condition is not satisfied asymptotically.  

𝑘�: The OLS estimator of the change point after removing the common correlated factors. 𝑘�: The OLS estimator of the change point without removing the common correlated factors.  
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Figure 2: Histograms of the OLS estimator 𝑘� and IV estimator 𝑘�  in a simplified case without a factor structure in the errors (T =50) 
 N =10 N =50 N =200 
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Note: In this simplified case, there is no factor structure in the errors. The instrument 𝑧3𝑖𝑖  is introduced and regressor 𝑥𝑖𝑖  is generated in a slightly different way (similar to Hall et al., 

2012). 𝑧3𝑖𝑖 = 2𝑎𝑖 + 𝛾3𝑖𝑓𝑖 + 𝑣2𝑖𝑖  where 𝛾3𝑖~𝑖𝑖𝑖𝑁(1, 0.5), 𝑣2𝑖𝑖~𝑖𝑖𝑖𝑁(0, 1), and 𝑣2𝑖𝑖  is independent of 𝑣𝑖𝑖  and 𝜀𝑖𝑖.  

𝑥𝑖𝑖 = 0.5𝑧3𝑖𝑖 + 𝑣𝑖𝑖; 𝑒𝑖𝑖 = 𝜌𝑒,𝑖𝑣𝑖𝑖 + �1 − 𝜌𝑒,𝑖
2 �1/2𝜀𝑖𝑖 , 𝜌𝑒,𝑖~𝑖𝑖𝑖𝑖(−0.5, 0.5). 𝜀𝑖𝑖~𝑖𝑖𝑖𝑁(0,𝜎𝑖2), 𝜎𝑖2~𝑖𝑖𝑖𝑖(0.5, 1.5), 𝛾1𝑖~𝑖𝑖𝑖𝑁(1, 0.2), 𝛾2𝑖~𝑖𝑖𝑖𝑁(0.5, 0.5), 𝑎𝑖~𝑖𝑖𝑖𝑁(0.5, 0.5), 

𝑣𝑖𝑖~𝑖𝑖𝑖𝑁(0, 1 − 𝜌𝑣𝑖2 ), 𝜌𝑣𝑖 = 0.5. These variables are mutually independent. The replication number is 1000. 𝑇 = 50, 𝑘0 = 25. 

𝑘�: The OLS estimator of the change point.  

𝑘�: The IV estimator of the change point: the IV estimator is used in the first step, instead of OLS. 
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Online Appendix (not for publication):

Structural Changes in Heterogeneous Panels with Endogenous
Regressors

by Badi H. Baltagi, Qu Feng, Chihwa Kao

A1 Online Appendix 1: Mathmetical Proofs

This online Appendix 1 includes the assumptions required in the text and the proofs

of Theorem 1 and Proposition 1.

A1.1 Assumptions

To estimate the common change point k0, we need the following assumptions:

Assumption 1 k0 = [� 0T ], where � 0 2 (0; 1) and [�] is the greatest integer function.

This assumption is standard in the literature, including Bai (1997), Bai (2010), Kim

(2011) and BFK. It assumes that there are enough observations to consistently estimate

the slopes in each regime. P
De�ne ��i = �2i � �

N
1i and �N = i=1��

0
i��i. For series i, ��

0
i��i measures the

magnitude of the structural break, thus �N is an indicator of the break magnitude for all

N series sharing a common break.

Assumption 2 �N !1 and � T
N N

!1 as (N; T )!1.

Assumption 3 (i) The disturbances "it; i = 1; :::; N; are cross-sectionally independent;

(ii) "it is a stationary process with absolute summable autocovariances,

P
"it =

1
l=0 ail� i;t�l

where f� it; t = 1; :::; Tg are independent and identically distributed (IID) random variablesP
with �nite fourth-order cumulants. Assume 0 < V ar("it) =

1
l=0 a

2
il = �

2
i <1. Also, for

the T � 1 vector "i = ("i1; "i2; � � � ; "iT )0, V ar("i) = �";i:
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Assumption 4 Common factors ft; t = 1; :::; T; are covariance sationary with absolute

summable autocovariances, independent of the errors "is and vis for all i; s; t:

Assumption 5 vit can be correlated with "it. vit, i = 1; :::; N; are linear stationaryP
processes with absolute summable autocovariances, vit =

1
l=0 Sil�i;t l; where (� it; �

0
� it )

0

are (p+ 1)� 1 vectors of IID random variables with variance-covariance matrix Ip+1 and

�nite fourth-order cumulants, and

P
V ar(vit) =

1
l=0 SilSil

0 = �i;v, and 0 < k�i;vk <1:

Let i = (01i; 
0
2i)

0 for i = 1; :::; N , in the case of a break in error factor loading.

Otherwise, i is de�ned as 1i = 2i.

Assumption 6 Factor loadings gi and �i are IID across i, and independent of "jt; vjt and

ft for all i; j; t. Assume i =  + �i; �i � IID(0;
�) and �i = � + �i; �i � IID(0;
�),

i = 1; :::N; where the means , � are non-zero and �xed, and the variances 
�; 
� are

�nite.

Compared with Assumptions 1-3 of Pesaran (2006), Assumptions 3, 4, 5 and 6 allow

for correlation between vit (xit) and "it. In addition, the restrictions  = 0 and � = 0 are

required to exclude the case of de�cient rank.

Under a random coe¢ cient model considered in Pesaran (2006) and BFK:

Assumption 7 For i = 1; :::; N ,

bi = b+ vb;i; vb;i � IID(0;�b);� � � � � �
�

where b = 1 v
, vb;i =

�1;i �
and � �1 0

� v b ,
2 �2;i

�
0 ��2

kbk and k�bk < 1, and

the random deviations vb;i are independent of j; �j; "jt; and vjt for all i; j and t.p
For any matrix or vector A, the norm of A is de�ned as kAk = tr(AA0). UnderP

Assumption 7, bi is independent of �j, implying that as N ! 1, �C1 = N p

i=1 �iC1i !
� p � p

E(C1i) = (1 +��1; �); C2 ! E(C2i) = (1 +��2; �) and C3 ! E(C3i) = (2 +��2; �).

2

6 6



Assumption 8 � � �Rank(C1) = Rank(C2) = Rank(C3) = m � p+ 1:

Di¤erent from BFK�s Theorem 1, to accommodate the correlation between "it and

xit, heterogeneity and also lagged dependent variables, we follow Assumption 4 of Perron

and Yamamoto (2015) and require an additional assumption. Let x~0it and ~"it be the t
th

elements of X~ i(k0) and ~"i, respectively.

r
P P

Assumption 9 Let the L -norm of a random matrix A be de�ned by kAk = ( E jA jr)1=rr i j ij

for any r � 1. With fFt : t = 1; 2; :::g a sequence of increasing �-�elds, we assume that

fxit"it;Ftg, fx~it~" r
it;Ftg form an L -mixingale sequence with r = 2 + � for some � > 0 for

each series i.

Let x~0it be the t
th element of matrix X~ i(k0), i = 1; :::; N . As in Perron and Yamamoto

(2015), de�ne ~hit = (x~0it; zit
0 )0.

P P P
Assumption 10 For ~ ~ ~ ~ ~ ~i = 1; :::; N , (1=j) j T k0

t=1 hith
0
it, (1=j) t=T j+1 hith

0
it, (1=j)� t=k0�j+1 hith

0
itP

and (1=j) k0+j ~ ~
t=k hith0+1

0
it are stochastically bounded and have minimum eigenvalues boundedP

away from zero in probability for all large j. In addition, for each i, ~ ~(1=T ) T
t=1 hith

0
it con-

verges in probability to a nonrandom and positive de�nite matrix as T !1.

P P
Assumption 11 For any positive �nite integer s, the matrices 1 N k0 ~ ~

i=1 t=k h�s+1 ithN 0

0
it

and 1
PN Pk0+s ~ ~

N i=1 t=k +1 hith0

0
it, i = 1; :::; N , are stochastically bounded, with minimum eigen-P

values bounded away from zero in probability for large N . In addition, for each t, (1=N) N ~ ~
i=1 hith

0
it

is stochastically bounded as N !1.

To identify the cross-sectional means of slopes, as in Pesaran (2006), we assume:

Assumption 12 For i = 1; :::; N , matrices 1 bXi(k0)0M b
wXi(k0)T

are nonsingular, and their

inverses have �nite second-order moments.
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A1.2 Proof of Theorem 1

In the general case with a factor structure in the error term,

Yi = Xi(k0)bi + Fi + "i; i = 1; :::; N;

as shown in Section 3.2, the CCE approach proposed by Pesaran (2006) is still valid in

the presence of endogeneity and structural changes in slopes and factor structures. The

unobserved common factors F can be proxied by the cross-sectional averages of the data.

In the transformed model (20)

~ ~Yi = Xi(k0)bi +MwFi + ~"i;

~k is the least squares estimator of k0:

To show ~k � k0 = op(1), we can follow the same way of proving BFK�s Theorem 1 in

the case of exogeneity. The complication comes from endogenous regressors. We need to

show that:

(i) the magnitude of the extra term MwFi is una¤ected by endogeneity; and that

(ii) the consistency of the least squares estimator ~k still holds in the presence of

correlation between X~ i(k0) and ~"i as in the simpli�ed case (7) in Section 3.1.

The key step of proving part (i) is to show that BFK�s Lemma 4 still holds in the

presence of endogeneity. If so, BFK�s Lemmas 5 and 6 remain unchanged. This implies

that each element of M p1wFi is of order Op( ), vanishing as N . Thus, the extra
N

! 1

term MwFi can be ignored asymptotically, and k0 can be estimated by least squares

using transformed data as in the simpli�ed case.

For part (ii), we follow Perron and Yamamoto (2015) and project ~"i on the column

space spanned by X~ i(k0) such that the resulting new error term ~"�i is uncorrelated with

X~ i(k0). After controlling for the endogeneity, BFK�s Lemmas 7, 8, 9 still hold, therefore,

~k � k0 = op(1) can be shown similarly. In this way, Theorem 1 is proved.
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In what follows, we prove that BFK�s Lemma 4 still holds under endogeneity. To

proceed, we follow BFK�s notation. Since xit = �0ift + vit in (3), we write

Xi = F �i + Vi ;
T�p T�mm�p T�p

where Vi = (vi1; � � � ; viT )0. Denote F0 = (0; � � � ; 0; fk0+1; � � � ; fT )0 and V0i = (0; � � � ; 0; vi;k0+1; � � � ; vi;T )0.

Thus,

X0i = (0; � � � ; 0; xi;k0+1; � � � ; xi;T )0 = (0; � � � ; 0;�0ifk0+1 + vi;k0+1; � � � ;�0ifT + vi;T )0

= F0�i + V0i: � P �
�" + N
t i=1 �ivit

0 �For the error term (16), denote u� i
t = and

v�t8 � �>> 0< ; t = 1; :::; k ;
0 0

�u�t(k0) = � P>> N
�: i=1 �ivit

0 ��i ; t = k
0 0 + 1; :::; T:

P
Thus, �u�t(k0) =

N
i=1 �iuit(k0) = u�t +�u�t(k0): Denote U = (u�1; :::; u�T )

0 and�� � � � � P
0 0 N

� � P ��0
i=1 �ivi;k

0 N

0+1
��i i=1 �ivi;T

0 ����U(k ; � � � ; ; � � � i
0) = ; ; :

0 0 0 0

Thus, stacking cross-sectional averages �w�t = C(k0)
0ft + u�t(k0), we obtain

�W = (w�1; :::; w�k
� 0 ; w�k0+1;

T (p+1)
� � � ; w�T )0

� � � �= (C1
0f1 + u�1; :::; C1

0fk0 + u�k0 ; C2
0fk0+1 + u�k0+1; � � � ; C20fT + u�T )0

� �= FC1 + F0(C2 � � � �C1) + U +�U(k0):

Denote F = (F; F0) and U� � �=U +�U(k0). Therefore,
T�2m T�(p+1)

�W = F �(C1
0 �; (C2 � �C1)

0 �)0 + U: (25)

Lemma 1 Under Assumptions 1-11, uniformly on the set
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K(Ck) = fk : 1 � jk � k0j < Ck; aT < k < (1� a)Tg, where Ck is a �nite large num-

ber and a < � 0 is an arbitrarily small positive number.

(i) u� p1t = Op( ); �u�t(k0) = Op(
1

N
p );
N

(ii) 1U� 0U� = O 1
p( ); 1F0U� = O 1

p(p
1 ), Vi

0F = Op( 1
T N T NT T

p );
T

(iii) 1 0U� 1 1 � �Vi = Op( )+Op(p ); 1 "0 O p1
iU = Op( 1 )+ p( ), 1 V0

0
iU = O ( 1 )+O 1

p p(T N NT T N NT T N
p );
NT

(iv) 1Xi
0U� = Op( 1 �) +Op(

1 ); 1X = O 1 ( 1
p( ) +Op ):

T N
p

T 0
0
iNT
U

N
p
NT

Now we verify that this lemma holds in the case of endogeneity, i.e., V ar("it; vit) = 0

(but V ar("it; vjt) = 0 for i = j). We need to check the terms a¤ected by V ar("it; vit) = 0,

but not those under V ar("it; vjt) = 0 for i = j.

Consider (i): � P �
�"t +

N
i=1 �iv= it

0 �
u� i
t v�t P

V ar("it; vit) = 0 only a¤ects the 1st component �"t +
N
i=1 �ivit

0 �i. But if we look at

these two terms separately, their orders of magnitude are not a¤ected by V ar("it; vit) = 0.

Thus, u�t = O 1
p(p ) remains unchanged. (�u�t(k0) is dominated by u�t.)N

(ii) Consider the �rst part:

1 1 2 1
U� 0U� � �= U 0 � � �U + U 0 ��U(k0) + �U(k0)

0�U(k0):
T T T T

Since the 2nd and 3rd terms are dominated by the 1st one, we only need to consider

T
1 XT1 X h i1 P P�U 0 �U = u�0tu�t = (�"t +

N �iv
T T i=1 �ivit

0 �i)(�"t +
N

T i=1 it
0 �i) + v�t

0v�t
t=1 t=1

T
1 Xh iP P

= �"2t + 2�"
N

t i=1 �iv
0 � 2
it�i + (

N
i=1 ivit

0 �i) + v�
0

T tv�t :
t=1 P P

Notice that V ar("it; vit) = 0 only a¤ects the 2nd term 1 T
t=1 �"

N
tT i=1 �ivit

0 �i. Now we

check whether endogeneity changes the resultOp( 1 )N . For simplicity, assume �i = 1=N and

6

6 6

6

6

6

6

6



p = 1.

T
1 X P 1 XT XN XN

�" N
t i=1 �iv

0
T it�i = "itvjt�

TN2 j

t=1 t=1 i=1 j=1

T N T N N
1 XX 1 XXX

= "itvit�
TN2 i + "itvjt�

TN2 j

t=1 i=1 t=1 i=j j=1P P P
The 2nd term above 1 T N N

TN2 t=1 i=j j=1 "itvjt�j is not a¤ected by endogeneity. We onlyP P
consider the �rst term 1 T N

2 t=1 i=1 "itvit�TN i. It is easy to verify that it is bounded by

Op(
1

P P
). (Note: 1 T N

2 t=1 i=1 "itvit�i = O p1p( )
N TN

under exogeneity.) Thus, we have
TN

veri�ed that 1 �U 0 �U = Op(
1 )

T N
. Thus, 1 �

T
U0U� =Op( 1 )N .

(ii) 2nd part 1
T
F0U� and the third part 1 V

T i
0F are not a¤ected by endogeneity since no

product of vit and "it appears in these two parts. Thus, the results still hold, and ii) is

satis�ed under endogeneity.

(iii) Consider the �rst part 1 V
T i

0U� = 1 �V 1 �
T i

0U+ V
T i

0�U(k0). The 2nd term above 1 0 �V
T i�U(k0)

is dominated by the �rst term 1 V
T i

0 �U , so we only consider

T
1 1 X 1 XT P�V U = N

i
0 vitu�

0
t = vit(�"t + �iv

0 � ; v�0)
T T T i=1 it i t

t=1 t=1

T T
1 X 1 XT P 1 X

= ( v N
it�"t + vit i=1 �ivit

0 �i; vitv�t
0):

T T T
t=1 t=1 t=1P P P

Since the endogeneity does not a¤ect terms 1 T
T t v N

=1 it i=1 �ivit
0 �i and

1 T
T t=1 vitv�t

0, we

need to verify the �rst term

T
1 X XT N

1 X
vit�"t = vit"jt

T TN
t=1 t=1 j=1

T N
1 X XT1 X

= vit"it + vit"jt:
TN TN

t=1 t=1 j=i

1
PT P P

Since the 2nd term above N
t=1 j=i vit" V 1

jt ar("it; vit) = 0
T vit"it =TN

is not a¤ected by .
TN t=1

Op(
1 )
N
(instead of Op(p1 ) under exogeneity). Therefore, the �rst part 1 V 0 � 1

i = Op( )+
TN T

U
N

Op(p
1 ) holds.
NT

6

6

6

6 6
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(iii) 2nd part: 1 "i
0U� �= 1 �"0 � �

i(U+�U(k0)) =
1 "

T T
0
iU+

1 "
T

0
i�U(k0)T

. The 2nd term 1 "
T

0 �
i�U(k0)

is dominated by the �rst term

T
1 1 X T N

1 X X
"0 �iU = "itu�t

0 = "it(�"t + �jv
T T T j

0
t�j; v�t

0)
t=1 t=1 j=1XT XT XN XT1 1 1

= ( "it�"t + "it �jv
0 "itv�

T T jt�j; T t
0):

t=1 t=1 j=1 t=1P P P
Among these three terms, 1 T T

t " N 1
=1 it j=1 �jvj

0
t�j and t=1 "itv�T T t

0 are a¤ected by endo-

geneity.

T
1 X P XT N

" N 1 X
it

T j=1 �jvj
0
t�j = "itv

0
TN jt�j

t=1 t=1 j=1

1 XT T N
1 XX

= "itv
0 � +

TN it i "itv
0

TN jt�j:
t=1 t=1 j=iP

The term 1 T PN "itv � = Op(
1

P
)

TN t=1 j=i j
0
t j

p is not a¤ected by endogeneity, and 1 T "itv � =
NT TN t=1 it

0
i

Op(
1 )
N
(the bound under exogeneity is Op( 1 ) + Op( 1 )

N
p , thus having endogeneity does
NT

not change the bound.)

T T
1 X 1 XXN 1 1

"itv�t
0 = "itv

0 O ) +Op(
T jt = p( ).

T N N
t=1 t=1

p
T

j=1

Combining these three terms, we obtain 1 "0 �iU = Op(
1 ) + Op(N

p1 )
T

, which is the same
NT

under exogeneity.

(iii) third part 1 U�00 �V i is dominated by the �rst part 1 V
T T i

0U by the de�nition of V0i

(setting 0 for the �rst k0 rows of Vi). Thus,

1 V
T 0

0
iU� = Op( 1 ) +Op(p1 )

N
unchanged under endogeneity.

NT

(iv) The 2nd part 1X
T 0

0 �
iU is dominated by the �rst part 1X

T i
0U� , so we only consider

1 1 1 1
Xi
0U� U�= (F�i + Vi)

0 = �
T i

0 U�F 0 + V 0 �
T T T iU:

By (ii) and (iii), 1�0iF
0U� � �=O 0 1

p(p
1 ) and 1 ViU =Op( )+Op(

1 ) 1X =O ( 1p )+
T NT T N

p , therefore,
T i

0
NT

U
N

Op(p
1 ), and 1X

T 0
0 U�i =Op(

1 ) +Op(
1

N
p ) remain unchanged under endogeneity.

NT NT

6

6
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A1.3 Proof of Proposition 1

Under the random coe¢ cient Assumption 7, by plugging in equations (22) and (23),

the mean-group estimator (24)

N
1 X N

1 X~ ~ ~ ~ ~ ~bMG = bi;IV (k) = [bX (k)0M b
i wXi(k)]�1bXi(k)0MwYi

N N
i=1 i=1

N
1 X� �b bX ~ 0 X ~ �1bX ~ 0 X ~= [ ( b b

i(k)Mw i(k)] i(k)Mw i k)bi + [bX ~
i(k)

0M 0
wX ~

i(k)]
�1X ~

i(k)
0Mw"

N i

i=1

N
1 X N

1 X ~ ~= b+ v b 0
b;i + [b bX ~ 1

i(k)
0MwXi(k)]� Xi(k)0Mw"

N N i ;
i=1 i=1

where "0 ~
i = "i + [Xi(k0)� Xi(k)]bi + (F � �WC)i. We obtain

p
~N(bMG � b)
N

1 X XN1 bp p X ~ 0 ~= v k)]�1b;i + [ i(k)M b b
wXi( X ~

i(k)
0Mw"i

N N
i=1 i=1

N
1 X

+ b bp [bX ~
i(k)

0MwX ~ ~
i(k)]

�1Xi(k)0Mw[Xi(k0)� X ~
i(k)]bi

N
i=1

N
1 X

+p ~ ~[bX 1
i(k)

0M b b ~
wXi(k)]� Xi(k)0MwFi:

N
i=1

By Assumption 7, the limiting distribution of the �rst term is N(0;�b). The second

and fourth term above are Op(p1 ) and Op(p1 ) +Op(p1 ), respectively, as in the proof ofT N T

Proposition 2 of BFK�s Supplementary Appendix. In addition, by Theorem 1, P (j~k�k0j �

1)! 0, it can be shown that the third term

N
1 X bp X ~ 0 bX ~) � ~[ i(k Mw i(k)]

1bX ~
i(k)

0Mw[Xi(k0)� Xi(k)]bi = op(1):
N

i=1

Therefore, as (N; T )!1,

p N
1 X

~N(bMG � b) = p d
vb;i + op(1) :

i=1

! N(0;�b)
N

9



In the simpli�ed case:

Yi = X ^
i(k0)bi + "i = Xi(k)bi + "0i ;

where "0i = [Xi(k0)�X ^
i(k)]bi+"i. As in the exogenous case in BFK, the super-consistency

of k̂ above allows us to treat k0 as known. Due to the correlation between xit and "it, the

OLS estimator ^ ^ ^ ^ ^ ^bi = bi(k) = [Xi(k)0Xi(k)]�1Xi(k)0Yi is inconsistent.

Instead, bi can be consistently estimated by the IV estimator:

^ ^ ^bi;IV = bi;IV (k) = [X ^
i(k)

0 ^P 1 ^
Z ^ ^
i(k)
Xi(k)]� Xi(k)0PZi(k)Yi

where the projection matrix ^P 1
^(k) = Z ^

i(k)[Z ^
i(k)

0Z ^
i(k)]i

� Zi(k)0. And b, the cross-sectionalZ

mean bi under the random coe¢ cients Assumption 7, can be consistently estimated by a

mean group (called MG-IV) estimator:

N
1 X^ ^ ^ ^ ^bMG IV = bMG�IV (k) = b� i;IV (k) (26)
N

i=1

For the purpose of comparison in the empirical example in Section 5, we de�ne the mean

group (MG) estimator using the OLS estimator b̂i as follows:

N
1 X 1 XN^ ^ ^ ^ ^

G = X ^bM bMG(k) = bi(k) = [ i(k)
0X ^ ^
i(k)]

�1Xi(k)0Yi:
N N

i=1 i=1

10



A2. Online Appendix 2: Monte Carlo Simulations

In this Appendix, we examine the properties of the break point estimator and check

whether there is support for Theorem 1 using Monte Carlo simulations. The DGP used

here is a modi�ed design of BFK�s Model 2 and is similar to Pesaran�s (2006). The

main di¤erence is the correlation between xit (or vit) and "it. We check the impact of

endogeneity on the consistency of the break point estimator using various experiments.

A2.1 Designs

The DGP:

yit = �i + �i(k0)xi;t + eit; i = 1; :::; N ; t = 1; :::; T

There is a common break k0 = 0:5T in the slopes �i:

�
�

� (k ) = 1i; t = 1; :::; k0;
i 0 �2i = �1i +��i; t = k0 + 1; :::; T:

where ��i is the jump in the slope for each series. In addition, xit = ai + 2ift + vit is

correlated with eit:

eit = 1i(k1)ft + �
2

e;ivit + (1� �e)1=2"it (27)

where �e;i denotes the correlation between xit and eit. We also allow a break in the factor

loading 1i(k1) at a di¤erent time point k1 = [0:7T ]:�


1i(k1) =
1i; t = 1; :::; k1;
1i +�1i; t = k1 + 1; :::; T:

We set the intercepts �i � iidN(1; 1), the slopes �1i = 1 + �i; �i � iidN(0; 0:04)

and ��i � iidN(0; 0:04). In the process generating xit, ai � iidN(0:5; 0:5), 2i �

iidN(0:5; 0:5) and vit � iidN(0; 1 � �2vi); with �vi = 0:5. The factor ft is generated

by the stationary process:

ft = �fft 1 + vft; t = �49; :::; 0; 1; :::; T ;�

�f = 0:5; vft � iidN(0; 1� �2f ); f�50 = 0:

11



In the process generating eit, the loadings 1i � iidN(1; 0:2), �1i � iidN(0:5; 0:5),

�e;i � iidU(�0:5; 0:5) and "it � iidN(0; �2i ) with �2i � iidU(0:5; 1:5).

Several experiments are run by modifying the values of the parameters above in Figures

A1-A5.

A2.2 Findings

In the error structure (27), there are two sources of endogeneity due to the unobserved

factor ft and the random component vit. To mute the correlation between xit and eit due

to ft, we �rst consider the simpli�ed case without the factor structure in the errors, or

factor loadings 1i = 0 in Figure A1. The �rst panel of Figure A1 reports the histograms

of k̂ for T = 20 and N = 1; 10; 50; 200. As in BFK, the distribution of k̂ tightens with

N in the presence of endogeneity. The frequency of choosing the true value k0 increases

from 6% to 58% when N increases from 1 to 200. The second panel of Figure A1 reports

the case of T = 50 and shows that the frequency of choosing the true value k0 improves to

almost 80% for N = 200. This �nding con�rms the message delivered in Section 3.1 that

the consistency of the OLS estimator of the break point k̂ is not a¤ected by endogeneity

as N increases.

In Figures A2-A5, we consider the general case (11). For simplicity, we assume that

there is no break in factor loading 1i, i.e., �1i = 0; in Figures A2, A4, A5. As pointed

out by Perron and Yamamoto (2015), the break fraction � 0 = k0=T can be consistently

estimated by OLS even in the presence of correlation between xit and eit in a time series

regression. However, in a panel data setup, the cross-sectional correlation in the errors due

to the common ft could fail to improve the accuracy of the OLS estimator of k0, as pointed

out by Theorem 1A(iii) of Kim (2011) and Figure 7 in BFK. Thus, the transformation

(19) using cross-sectional averages of yit and xit is needed to remove ft before conducting

least squares.

The �rst panel of Figure A ~2 presents the histograms of the estimated change point k

12



for T = 50. It replicates the pattern in Figure A1, showing that after the transformation,

the frequency of choosing the true value k0 increases signi�cantly with N . It con�rms

Theorem 1 that the distribution of ~k collapses to k0 as N ! 1. The second panel of

Figure A2 also reports the histograms of the estimated change point k̂ without conducting

the CCE transformation (19). It indicates that in the presence of common correlated

e¤ects, cross-sectional information using multiple series fails to improve the accuracy of

the estimated change point.

Figure A3 presents the case when there is a common break in the factor loading 1i(k1),

with . Consistent with our theory, ~k1 = [0:7T ] > k0 k, our estimator of the break point in

the slope parameters is robust to a break in the error factor loadings 1i: This holds since

ft is asymptotically removed by the CCE transformation (19). However, as shown in the

second panel of Figure A3, the break point in factor loadings could lead to a spurious

break in the slope parameters if we ignore the unobserved factors in the errors.

In Figure A4, the cross-sectional dependence is reduced by changing the distribution

of 1i from iidN(1; 0:2) in Figure 2 to iidN(0:5; 0:2). Di¤erent from Figure A2, the

histograms of k̂ in the second panel of Figure A4 show that the OLS estimator of the break

point becomes more accurate as N increases even without conducting the transformation

(19). However, this is not the case in Figure A5 when we reduce the correlation between

xit and eit by changing the distribution of the loading 2i from N(0:5; 0:5) to N(0:1; 0:1).
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Figure A1: Histograms of the OLS estimator 𝑘� in a simplified case without a factor structure in the errors 
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Note: The DGP is a modified design of Model 2 in BFK (2016). In this simplified case, there is no factor structure in the errors. The regressors 𝑥𝑖𝑖  are correlated with 𝑒𝑖𝑖.     

𝑦𝑖𝑖 = 𝛼𝑖 + 𝛽𝑖(𝑘0)𝑥𝑖,𝑖 + 𝑒𝑖𝑖 , 𝑖 = 1, … ,𝑁; 𝑡 = 1, … ,𝑇. 𝛼𝑖~𝑖𝑖𝑖𝑁(1, 1), 𝛽𝑖(𝑘0) = � 𝛽1𝑖 ,              𝑡 = 1, … , 𝑘0,
𝛽2𝑖 = 𝛽1𝑖 + 𝛿𝑖, 𝑡 = 𝑘0 + 1, … ,𝑇.   𝑘0 = 0.5𝑇, 𝛽1𝑖~𝑖𝑖𝑖𝑁(1, 0.04), 𝛿𝑖~𝑖𝑖𝑖𝑁(0, 0.04). 

𝑥𝑖𝑖 = 𝑎𝑖 + 𝛾2𝑖𝑓𝑖 + 𝑣𝑖𝑖; 𝑒𝑖𝑖 = 𝜌𝑒,𝑖𝑣𝑖𝑖 + �1 − 𝜌𝑒,𝑖
2 �1/2𝜀𝑖𝑖 , 𝜌𝑒,𝑖~𝑖𝑖𝑖𝑖(−0.5, 0.5).  

 𝑓𝑖 = 𝜌𝑓𝑓𝑖−1 + 𝑣𝑓𝑖 , 𝑡 = −49, … ,0,1, …𝑇, 𝑣𝑓𝑖~𝑖𝑖𝑖𝑁(0, 1 − 𝜌𝑓2), 𝜌𝑓 = 0.5, 𝑓−50 = 0. 𝜀𝑖𝑖~𝑖𝑖𝑖𝑁(0,𝜎𝑖2), 𝜎𝑖2~𝑖𝑖𝑖𝑖(0.5, 1.5), 𝛾1𝑖~𝑖𝑖𝑖𝑁(1, 0.2), 𝛾2𝑖~𝑖𝑖𝑖𝑁(0.5, 0.5), 𝑎𝑖~𝑖𝑖𝑖𝑁(0.5, 0.5), 

𝑣𝑖𝑖~𝑖𝑖𝑖𝑁(0, 1 − 𝜌𝑣𝑖2 ), 𝜌𝑣𝑖 = 0.5. These variables are mutually independent. The replication number is 1000. 
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N =10 

Figure A2: Histograms in the general case (T =50) 
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Note: The DGP is a modified design of Model 2 in BFK (2016). The regressors 𝑥𝑖𝑖  are correlated with 𝑒𝑖𝑖.     

𝑦𝑖𝑖 = 𝛼𝑖 + 𝛽𝑖(𝑘0)𝑥𝑖,𝑖 + 𝑒𝑖𝑖 , 𝑖 = 1, … ,𝑁; 𝑡 = 1, … ,𝑇. 𝛼𝑖~𝑖𝑖𝑖𝑁(1, 1), 𝛽𝑖(𝑘0) = � 𝛽1𝑖 ,              𝑡 = 1, … , 𝑘0,
𝛽2𝑖 = 𝛽1𝑖 + 𝛿𝑖, 𝑡 = 𝑘0 + 1, … ,𝑇.   𝑘0 = 0.5𝑇, 𝛽1𝑖~𝑖𝑖𝑖𝑁(1, 0.04), 𝛿𝑖~𝑖𝑖𝑖𝑁(0, 0.04). 

𝑥𝑖𝑖 = 𝑎𝑖 + 𝛾2𝑖𝑓𝑖 + 𝑣𝑖𝑖; 𝑒𝑖𝑖 = 𝛾1𝑖𝑓𝑖 + 𝜌𝑒,𝑖𝑣𝑖𝑖𝑖 + �1 − 𝜌𝑒,𝑖
2 �1/2𝜀𝑖𝑖 , 𝛾1𝑖~𝑖𝑖𝑖𝑁(1,0.2), 𝜌𝑒,𝑖~𝑖𝑖𝑖𝑖(−0.5, 0.5). 

 𝑓𝑖 = 𝜌𝑓𝑓𝑖−1 + 𝑣𝑓𝑖 , 𝑡 = −49, … ,0,1, …𝑇, 𝑣𝑓𝑖~𝑖𝑖𝑖𝑁(0, 1 − 𝜌𝑓2), 𝜌𝑓 = 0.5, 𝑓−50 = 0. 𝜀𝑖𝑖~𝑖𝑖𝑖𝑁(0,𝜎𝑖2), 𝜎𝑖2~𝑖𝑖𝑖𝑖(0.5, 1.5), 𝛾𝑖1~𝑖𝑖𝑖𝑁(1, 0.2), 𝛾𝑖2~𝑖𝑖𝑖𝑁(0.5, 0.5), 𝑎𝑖~𝑖𝑖𝑖𝑁(0.5, 0.5), 

𝑣𝑖𝑖~𝑖𝑖𝑖𝑁(0, 1 − 𝜌𝑣𝑖2 ), 𝜌𝑣𝑖 = 0.5. These variables are mutually independent. The replication number is 1000. 𝑇 = 50, 𝑘0 = 25. 

𝑘�: OLS estimator of change point after removing common correlated factors  

𝑘�: OLS estimator of change point without removing common correlated factors  
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Figure A3: Histograms of 𝑘�  and 𝑘� in the general case with a structural change in the error factor loading (T =50) 
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Note: The DGP is the same as the one in Figure A2 above except that there is a common break in the error factor loadings 𝛾1𝑖 

𝑒𝑖𝑖 = 𝛾1𝑖(𝑘1)𝑓𝑖+𝜌𝑒,𝑖𝑣𝑖𝑖 + (1 − 𝜌𝑒,𝑖
2 )1/2𝜀𝑖𝑖 , 𝛾1𝑖(𝑘1) = � 𝛾1𝑖,                     𝑡 = 1, … , 𝑘1,

𝛾1𝑖 + 𝛥𝛾1𝑖 , 𝑡 = 𝑘1 + 1, … ,𝑇.   𝑘1 = [0.7𝑇] 

𝛾1𝑖~𝑖𝑖𝑖𝑁(1,0.2) and 𝛥𝛾1𝑖~𝑖𝑖𝑖𝑁(0.5,0.5) 

𝑇 = 50, 𝑘0 = 25 

𝑘�: OLS estimator of change point after removing common correlated factors 

𝑘�: OLS estimator of change point without removing common correlated factors 
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Figure A4: Histograms of 𝑘�  and 𝑘� in the general case with reduced cross-sectional correlation (T =50) 
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Note: The DGP is the same as the one in Figure A2 above, except for reducing the cross-sectional correlation by changing the distribution of the error factor loading 𝛾1𝑖 from 𝑖𝑖𝑖𝑁(1, 0.2) 

to 𝑖𝑖𝑖𝑁(0.5, 0.2) 

𝑇 = 50, 𝑘0 = 25 

𝑘�: OLS estimator of change point after removing common correlated factors 

𝑘�: OLS estimator of change point without removing common correlated factors 
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Figure A5: Histograms of 𝑘�  and 𝑘� in the general case with reduced endogeneity (T =50) 
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Note: The DGP is the same as the one in Figure A2 above, except for reducing the correlation between 𝑥𝑖,𝑖 and 𝑒𝑖,𝑖 by changing the distribution of the loading 𝛾2𝑖 from 𝑖𝑖𝑖𝑁(0.5, 0.5) to 
𝑖𝑖𝑖𝑁(0.1, 0.1) 

 𝑇 = 50, 𝑘0 = 25 

𝑘�: OLS estimator of change point after removing common correlated factors 

𝑘�: OLS estimator of change point without removing common correlated factors 
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