
Syracuse University Syracuse University

SURFACE SURFACE

Physics College of Arts and Sciences

5-29-2003

The BaBar Mini The BaBar Mini

Duncan Brown
Department of Physics, Syracuse University, Syracuse, NY

Follow this and additional works at: https://surface.syr.edu/phy

 Part of the Physics Commons

Recommended Citation Recommended Citation
Brown, Duncan, "The BaBar Mini" (2003). Physics. 245.
https://surface.syr.edu/phy/245

This Article is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been
accepted for inclusion in Physics by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/phy
https://surface.syr.edu/cas
https://surface.syr.edu/phy?utm_source=surface.syr.edu%2Fphy%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=surface.syr.edu%2Fphy%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/phy/245?utm_source=surface.syr.edu%2Fphy%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

ar
X

iv
:h

ep
-e

x/
03

05
08

5v
2

 2
9

M
ay

 2
00

3
Computing in High Energy and Nuclear Physics, La Jolla, California, USA, March 24-28 2003 1

The BaBar Mini
David N. Brown, representing the BaBar Computing Group
Lawrence Berkeley National Lab, USA

BaBar has recently deployed a new event data format referred to as the Mini. The Mini uses efficient packing

and aggressive noise suppression to represent the average reconstructed BaBar event in under 7 KBytes. The

Mini packs detector information into simple transient data objects, which are then aggregated into roughly

10 composite persistent objects per event. The Mini currently uses Objectivity persistence, and it is being

ported to use Root persistence. The Mini contains enough information to support detailed detector studies,

while remaining small and fast enough to be used directly in physics analysis. Mini output is customizable,

allowing users to both truncate unnecessary content or add content, depending on their needs. The Mini has

now replaced three older formats as the primary output of BaBar event reconstruction. A reduced form of the

Mini will soon replace the physics analysis format as well, giving BaBar a single, flexible event data format

covering all its needs.

1. The BaBar Experiment

BaBar is a multi-purpose detector operating at the
PEP-II asymmetric B Factory. BaBar has been tak-
ing data at and near the Υ (4S) resonance since 1999,
and has accumulated roughly 110 fb−1 of luminos-
ity to date. BaBar is fairly typical of modern High
Energy Physics apparati, consisting of several quasi-
independent detector subsystems arranged roughly
concentricly about the e+e− interaction point. The
innermost subsystem is the Silicon Vertex Tracker
(Svt), with roughly 150K readout channels. Outside of
the Svt is the Drift Chamber (Dch), with roughly 7K
readout channels. Outside the Dch is the Cherenkov
Detector (Drc), with roughly 11K readout channels.
Outside the Drc is an Electromagnetic Calorimeter
(Emc), with roughly 7K readout channels. Outside
the Emc is the Instrumented Flux Return (Ifr), with
roughly 60K readout channels.

BaBar was an early adopter of C++ and OO pro-
gramming in HEP, and the vast majority of our soft-
ware is written in C++ [1]. BaBar has used Objectiv-
ity as the primary technology for storing event data
[2], however we are planning to change to a Root based
event store by the end of 2003 [3].

2. BaBar Event Data Format History

BaBar’s original software design [4] proposed sev-
eral complimentary event data formats, as described
in table 2. These formats were intended to satisfy dif-
ferent use cases, from quality control to reconstruction
to calibration to physics analysis, with each format op-
timized for some specific purposes. Each format was
written to separate Objectivity databases (files), so
that they could be accessed and managed indepen-
dently. The Raw format is an Objectivity transcrip-
tion of the raw data readout by the detector online
system, and was intended to be used as the input
to the reconstruction chain. The Rec format repre-

Format Design Size Actual Size Usage

Raw 25 KBytes 50 KBytes Unused

Rec 100 KBytes 120 KBytes Unused

Esd 10 KBytes 7 KBytes Unused

Aod 1 KBytes 3 KBytes Analysis

Tag 100 Bytes 1 KByte Selection

Hdr 0 4 KBytes Navigation

Table I BaBar Objectivity event data formats circa 2001.
Raw refers to raw data, Rec to reconstructed data, Esd to
event summary data, Aod to analysis data, Tag to event
selection data, and Hdr to event header data.

sents the reconstructed physics objects, and was in-
tended to be used for detector studies, for detailed
analysis, and for single event display. The Esd for-
mat is a summary of the reconstruction results, and
was intended to be the primary format used for high-
statistics physics analysis. The Aod format was in-
tended to store highly processed information specific
to physics analysis. The Tag format was intended to
store booleans to index and quickly select events. The
(Hdr) format allows events to ‘borrow’ some subsys-
tem data from other events, and was intended to sup-
port partial re-processing of individual subsystems.

By 2001, these data formats and their usage in
BaBar had stabilized. As shown in table 2, many
of the data formats were not actually used. Addition-
ally, the Aod and Tag formats were considerably larger
than foreseen, and had taken on different roles than
originally intended. Subsequent sections explain why
the formats were not used according to the original
design, and how that led to the development of the
Mini.

2.1. The BaBar Persistence Design

BaBar’s original persistence design can be sum-
marized as translating transient objects and tran-

TUKT009

http://arXiv.org/abs/hep-ex/0305085v2

2 Computing in High Energy and Nuclear Physics, La Jolla, California, USA, March 24-28 2003

sient object relationships into equivalent persistent
objects and persistent references, as illustrated in fig-
ure 1 for the specific case of reconstructed tracks.
The persistent objects were clustered into the var-
ious databases according to how it was anticipated
they would be used. This design established the
now-standard transient → persistent → transient

paradigm in a straightforward way. This design al-
lowed analysis jobs running on (Esd) data to retrieve
reconstruction details about objects on demand, by
following a link back into the Rec database. This
was considered an important example of how an OO
database event store might provide significant new
functionality compared to sequentially organized data
storage technologies.

The literal translation of complex transient object
trees to persistent object trees resulted in a frag-
mented structure, where different parts of a single
physics object (a track in figure 1) were distributed
across several databases. This effectively coupled the
data formats and database files. For instance, a job
reading tracks from Esd depended on the Rec database
to provide the top level tracking persistent object.
This coupling added enormously to the IO burden and
the disk footprint of an analysis job running on Esd.

Similarly, the Rec format design required that tran-
sient objects be rebuilt from their constituent Raw
data. This coupled the Rec format to the Raw, and
required that a job reading Rec data pull in essentially
the entire reconstruction code base. A Rec job thus
consumed a similar amount of resources (cpu, mem-
ory, and disk) as the original reconstruction job.

An additional difficulty to accessing the Rec format
was that the large size of the Rec databases precluded
storing them on disk. Instead, they were accessible
only through staging. As the staging space at SLAC
was originally very limited, dynamic staging through
the Objectivity HPSS interface was disabled, forcing
users to stage Raw and Rec databases by hand. This
tedious and error-prone operation proved impractical
for the vast majority of BaBar physicists.

BaBar originally considered having the online sys-
tem write raw event data directly in Objectivity Raw
format. However, since OO database technology was
new and relatively untested, a more conservative ap-
proach was taken, where the online system writes a
flat file version of the raw data, which can then be
transcribed into Objectivity Raw format. It was then
found to be more efficient to reconstruct events by di-
rectly reading the online raw data. The Raw format
was thus recast as an output instead of an input of
reconstruction.

The Raw format was used to pass data between the
BaBar simulation executable and its reconstruction
executable. In 2002 BaBar developed a monolithic
simulation plus reconstruction executable, which elim-
inated the need for Raw as intermediate storage. This
monolithic simulation executable has been used for of-

ficial BaBar Monte Carlo generation since early 2003.

2.2. The Unused Formats

The poor performance of jobs reading the Rec for-
mat, coupled with the difficulty of accessing Rec and
Raw data, made them nearly impossible to use for
analysis or detector studies. Only a handful of physi-
cists on BaBar ever made use of either of these data
formats, and those uses typically involved very small
event samples. Instead, most calibration and moni-
toring tasks run on raw online data, invoking recon-
struction code as necessary to build objects, or on the
expanded Aod format.

The Esd format was not finished in time for BaBar’s
first data, partly because its development was given
lower priority compared to developing the Raw and
Rec formats. It was also felt that some experience with
the BaBar detector and data analysis was necessary
before the Esd could be correctly designed to meet
the needs of experiment. It was instead foreseen that
BaBar’s first data would be analyzed using the Rec
format, from which experience the Esd format could
be completed. Since BaBar never used Rec to analyze
first data (see section 2.3), the Esd format was never
completed and never used.

The capability of events to borrow content from
other events via the Hdr format was also never used,
mostly because BaBar never encountered a situation
which required partial re-processing. The problem of
managing the dependent event databases this would
have created was also never addressed. The large size
of the Hdr format was principly due to large string
arrays describing component names. The Hdr was re-
cently redesigned, greatly reducing its size (see [5]).

2.3. The Evolution of Aod and Tag

Since it was imperative that BaBar start develop-
ing its analysis procedures even before first data, and
since the formats originally intended to be used for
analysis were effectively unusable, BaBar decided to
expand the Aod format so that it could be used for
physics analysis. This was implemented by includ-
ing a ‘four-vector’ summary of the reconstruction re-
sults, together with ‘quality values’ to describe some
detector-specific details.

The Aod format was spectacularly successful in en-
abling analysis of BaBar’s first data, allowing impor-
tant physics results to be produced in a timely way.
The Aod has since been BaBar’s primary physics anal-
ysis format, and it underlies all the physics results
published to date. This format does however have
several limitations. For one, the only track fit re-
sult stored in Aod assumes the particle which gen-
erated the track was a π (BaBar reconstruction pro-
vides all (5) stable particle track fit results). Because

TUKT009

Computing in High Energy and Nuclear Physics, La Jolla, California, USA, March 24-28 2003 3

Rawdigi

Reco Track
Kalman Fit
DC Hit Si Hit Si Hit

ClusterCluster
digi digi digi

Kalman Fit

Rec

Reco Track
Kalman Fit
DC Hit Si Hit Si Hit

Cluster
digi

Cluster
digi digi digi

Kalman FitEsd
Rec

Transient

Persistent

Figure 1: Diagram of the object tree representing a reconstructed track in BaBar, on the left in transient form, and on
the right converted to persistent objects according to BaBar’s original persistence model. The persistent objects are
grouped according to which database they were stored in (the database labels are explained in section 2).

the energy loss due to material interactions is mass-
dependent, this limitation introduces a small momen-
tum bias when the particle is not a π.

Another limitation of Aod is that it reduces the de-
tector information to ‘a set of numbers’ extracted from
reconstruction objects. This greatly reduces the bene-
fits which BaBar might have been obtained from from
using OO design and interfaces in analysis. It also ef-
fectively isolated BaBar analysis from reconstruction,
making it impossible to port code developments from
one side to the other.

The Aod format also provides a rigid persistent rep-
resentation of an event, with no way to tailor its con-
tents for specific use cases. Consequently, most BaBar
analyses operate by dumping the Aod format into an
ntuple, adding data content according to thier needs.
This effectively doubles BaBar’s analysis data storage
needs. It also decouples analyses from each other, as
different analysis working groups have developed dif-
ferent ntuple representations of the Aod format. The
redundency and inefficiency of this analysis method-
olgy was a strong motivation for BaBar’s new com-
puting model, described in section 8.

The Tag format also evolved when confronted with
first data. To provide more flexibility when selecting
events, the Tag format was expanded to include float-
ing point and integer values as well as booleans. Thus
the intent of the data formats was ‘pushed down’ one
level compared with the original design, with the Aod
taking the role intended originally for Esd, and Tag
taking the role intended for Aod.

By contrast with Raw, Rec, and Esd, the Aod and
Tag formats were developed to be completely inde-
pendent of the reconstruction objects. This avoided
the interdependency problems of the unused formats,
at the cost of allowing no way to navigate between
physics analysis objects and the reconstructed and/or
raw data from which they were derived.

2.4. The Data Format Gap

Because of the evolution of BaBar’s data formats, a
large gap had developed, with no practical way to ac-

cess information between raw online data and physics
4-vectors. This gap made performing routine func-
tions like calibrations and detector diagnostics diffi-
cult and time consuming. The gap also severely lim-
ited the ability to study detector effects in physics
analysis. This gap also prevented BaBar from devel-
oping a usable single event display. The data format
gap was first officially recognized in 2000 in the report
of an internal review of BaBar computing [6].

The Svt provides one example of how the data for-
mat gap caused problems. In order to obtain opti-
mal tracking resolution, the positions of the Svt wafers
(alignment) must be derived from the data. The Svt
alignment procedure needs both low-level data (hits)
and high-level data (tracks) to perform this task. Be-
cause of the data format gap, it was found that the
most efficient way of doing this was to read raw data,
and reconstruct the tracks in the alignment job. The
alignment job was therefore very slow, and the total
procedure had a turnaround time of roughly 1 month.
This was found to be longer than the time interval over
which the Svt wafer positions were stable. The long
turnaround time also stifled development of the align-
ment procedure, as it took too long to test changes.
The net result was that the BaBar used a poor align-
ment of the Svt in reconstruct early data, degrading
the effective resolution of the detector, and introduc-
ing sizeable systematic errors in many physics analy-
sis. Svt misalignment caused the dominant systematic
error in BaBar’s first sin2β publication [7].

2.5. The Origins of the Mini

To solve the Svt alignment problem, a new data
format was developed for storing tracks. This new
format stored tracks together with their hit data in
a compact, flexible, and efficient structure. This new
track persistence format was used to design a new Svt
alignment procedure, which reduced the turnaround
time to roughly 1 day, and which produced measur-
ably better physics results. The success of the new
track data format and the new alignment procedure
inspired a larger effort to develop a new data format

TUKT009

4 Computing in High Energy and Nuclear Physics, La Jolla, California, USA, March 24-28 2003

for all of BaBar based on the same basic design. This
new format was referred to as the Mini.

The Mini development project was officially begun
in early 2001. A prototype of the Mini was produced
in a complete re-processing of the BaBar data sam-
ple started in 2001. The prototype Mini was used to
perform many detector studies, and to refine the Mini
design. Unfortunately the Mini prototype did not in-
clude any information from the Emc, and so was not
usable for physics analysis. The first complete version
of the Mini was released in early 2002. The design
and implementation of the Mini is described in the
remaining sections.

3. The BaBar Mini Design Goals

The main design goal of the Mini was to persist the
results of event reconstruction. To avoid the prob-
lems of the Rec format (which had the same goal), the
Mini was also required to be small (< 10 KBytes per
event), self-contained (no references to objects outside
the Mini), and fast (support reading at roughly 20 Hz,
equivalent to reading the Aod format).

Another goal of the Mini design was to provide ac-
cess to sufficient detector detail to support standard
calibration, alignment, diagnostics, and algorithm de-
velopment. This capability would also allow the Mini
to support a detailed single event display.

The Mini was required to be able to follow changes
in Conditions (alignment and calibration parameters),
so that users could benefit from improved parameters
without having to wait for data re-processing. This
requirement would also allow analysis users to eas-
ily propagate calibration and alignment uncertainties
to systematic errors in their analysis, by simply re-
running with altered parameters.

To maintain compatibility with reconstruction, The
Mini was required to provide access through the in-
terfaces of actual reconstruction classes, without any
significant loss in accuracy or content compared to the
original reconstruction results.

To support specialized use cases, the Mini was de-
signed to allow users to customize the persistent con-
tent according to their needs. This feature is relied on
heavily in BaBar’s new computing model, as a way of
reducing the need to dump data into ntuples in order
to do analysis.

To leverage BaBar’s huge physics analysis code
base, the Mini was required to be compatible with the
existing analysis framework. Explicitly, the goal was
that an average user be able to convert their analysis
job to read the Mini instead of Aod without chang-
ing any physics-related code, and that the results ob-
tained be equivalent (within floating point precision)
to those obtained with the original Aod format job.

4. Implementation of the Mini

The Mini design goals require both access to the
full detector detail through reconstruction interfaces,
together with full compatibility and similar perfor-
mance as the Aod (4-vector summary) format for
physics analysis. The Mini satisfies these contradic-
tory requirements by storing both high-level objects
(tracks, calorimeter clusters, Cherenkov rings, parti-
cle ID, etc), and the low-level objects (Dch hits, Emc
crystals, Drc phototubes, etc) from which they were
made. This results in some redundancy, as some con-
tent of the high-level objects can also be extracted
from their constituent low-level objects. Redundancy
is generally considered a bad idea in data storage, as
it can cause consistency problems. It was accepted
for the Mini design as it afforded a large (factor of
10) performance improvement when reading high-level
objects (see 7 for details), and because the Mini ac-
cess mechanism includes safeguards against inconsis-
tent data usage (see section 6 for details).

4.1. High-level objects in the Mini

High-level objects in the Mini store the set of ref-
erences to the low-level objects from which they were
built, thus preserving the essential information of the
pattern-recognition algorithm. High-level objects also
store references to the other high-level objects they
depend on. For instance, Drc rings store a list of Drc
hit references, plus a reference to the track used to
seed and fit the ring.

High-level objects also store the results of cpu-
intensive functions which their transient class sup-
ports. For instance, track objects store the results
of running the Kalman filter fit. Because these func-
tions use the associated low-level objects, these stored
results are redundant with the low-level objects them-
selves. Because these functions were invoked during
reconstruction, stored results implicitly depend on the
Conditions which were used when reconstruction was
run. Thus, stored results of high-level objects do not
follow changing Conditions. To follow new Condi-
tions, the stored results cannot be used, and the orig-
inal functions must be called on rebuilt transient ob-
jects. Details of how the Mini can be configured to use
(or not) stored function results is described in section
6.

4.2. Low-level objects on the Mini

Where possible, the low-level objects in the Mini
store raw detector readout information instead of
physical quantities. Thus Dch hits are stored as TDC
values and wire numbers instead of physical times and
positions. Physical quantities are then computed from
the raw data on the Mini using conversion algorithms

TUKT009

Computing in High Energy and Nuclear Physics, La Jolla, California, USA, March 24-28 2003 5

Aod Mini

Figure 2: Single event display of a typical BaBar multi-hadron event in Aod format on the left, and Mini format on the
right. In Aod, tracks are modeled as perfect helices, and neutral objects as 4-vectors.

and Conditions data, as implemented in the transient
low-level reconstruction class accessor functions. This
allows the Mini to follow Conditions changes, and to
provide consistent results with reconstruction.

For some subsystems, the raw detector data are
very large, and they must be compressed before being
stored on the Mini. In these cases, the compressed
information is still stored in detector units. For in-
stance, Svt hits are compressed to store the average
cluster position instead of all the individual strips in
a cluster, but the average position is expressed in strip
coordinates.

The Mini also stores a subset of low-level objects
not associated to any high-level object. Monte Carlo
and other studies have shown that many of the unas-
sociated low-level objects were generated by particles
produced directly or indirectly in the e+e− collision.

Unassociated low-level objects can be used to iden-
tify physics objects missed due to reconstruction in-
efficiency, or to search for unusual physics signals not
found by the standard reconstruction. Associated and
unassociated low-level objects can also be combined to
create a ‘complete’ set of low-level objects. This al-
lows the Mini to be used to develop and test pattern
recognition algorithms, or to be used as a source for
partial re-processing.

Unfortunately, most unassociated low-level objects
in a typical BaBar event do not come from the e+e−

collision. Storing all of them would therefore bloat the
Mini and degrade its contents. Instead, only unasso-
ciated low-level objects which pass stringent quality
cuts are stored on the Mini. For instance, only those
unassociated Svt hits whose arrival time is consistent
with the reconstructed event time are stored on the

TUKT009

6 Computing in High Energy and Nuclear Physics, La Jolla, California, USA, March 24-28 2003

Mini. This cut reduces the number of unassociated Svt
hits by roughly a factor of 20, while keeping roughly
90% of the ‘real’ unassociated Svt hits.

5. Mini Persistence

The Mini was first implemented using Objectivity
persistence, and it has recently been ported to use
Root persistence, as part of BaBar’s new computing
model (see section 8). A large part of the Mini’s suc-
cess was due to strict adherence to a few basic per-
sistence design principles, described in the following
sections.

The Mini persistence is controlled by the standard
BaBar persistence mechanism. A dedicated loader
module is run for each detector subsystem, which
creates the scribes responsible for translating specific
transient objects into their persistent counterpart.
The event key by which a scribe identifies its transient
object is configurable through the loader module Tcl
interface. Thus the user can control the content of
the Mini by choosing which loader modules to run,
which scribes to create, and which transient objects
the scribes should convert, configurable through con-
trol scripts on standard executables.

The configurability of Mini persistence was used to
improve the efficiency of the Svt alignment procedure
(see section 2.5). By reading a custom reduced Mini
holding just selected Svt track information, the itera-
tive part of the alignment procedure was sped up from
several hours to just 10 minutes per iteration. As con-
vergence required hundreds of iterations, this speedup
was essential for producing the 23 different Svt align-
ment sets used in the 2002 data re-processing.

For technical reasons, the Mini was not placed in a
new database. Instead, the Esd database was cleared
of all previous content, and the Mini was placed there.
The Mini thus completely replaced the original Esd
format.

5.1. The Persistent Composite Design

The Mini persistence design is based on the persis-
tent composite design pattern, in which a single persis-
tent object holds the data for a collection of transient
objects of a given type. Using this design, the Mini
stores the contents of a BaBar event in just 11 per-
sistent objects, minimizing the impact of the 12 bytes
per persistent object Objectivity overhead. A graph-
ical representation of the Mini persistence design is
shown in figure 3.

In the persistent composite design pattern, the con-
tents of a transient object collection are stored in per-
sistent arrays (ooVArrays for Objectivity) of embedded
objects, which have a one ↔ one relationship with
transient objects.

Embedded classes translate to and from their tran-
sient counterparts, but otherwise provide no interface.
They are implemented as simple structs of primitive
data types, with no dependence on any persistence
technology. Because they are persistence-free, the
same embedded classes can be used by different per-
sistence mechanisms, making it easy to port persistent
composite classes other persistence technologies.

Associations between objects on the Mini are stored
in the persistent composite objects as a single refer-
ence (OORef for Objectivity) to other persistent com-
posites. Specific objects in other composites are then
referenced as the index into the corresponding embed-
ded array. This results in much less overhead than
storing explicit references, as an index (typically 2
bytes) is much smaller than an OORef (12 bytes).

5.2. Data Packing on the Mini

To minimize the size of the Mini, its data contents
are packed, according to the following rules.

• Boolean data are stored as a single bit.

• Integer data are stored using as many bits as
required by their range.

• Float data are packed and stored as integers.
The Least Significant Bit of the packed data
(LSB) corresponds to roughly 1% of the in-
trinsic detector resolution of the quantity be-
ing stored. Float data with an extreme natural
range are packed logarithmically, using an al-
gorithm which is locally flat to avoid binning
artifacts in histograms (see figure 4).

• Packed integer and float values are truncated at
physically reasonable ranges, not ‘worst possi-
ble’ ranges. Values beyond the physically rea-
sonable range are flagged as under or overflows.

• Strings are stored as a key (integer) in a
string ↔ integer map. The map is stored outside
the Mini event data.

• Small data fields are combined (bitwise OR) to
fill a standard type (char, short, or long) word.

• Data members of embedded classes are all
aligned to either char, short, or long word
boundaries (one choice per class), to ensure that
embedded object arrays are compact in memory.

• To avoid the Objectivity overhead of storing
and retrieving virtual tables, embedded classes
have no virtual functions, including no virtual
destructor.

• Direct data members of persistent composite
classes are aligned to long word boundaries, to

TUKT009

Computing in High Energy and Nuclear Physics, La Jolla, California, USA, March 24-28 2003 7

digi

Track
Kalman Fit
Dch Hit Svt Hit Svt Hit

ClusterCluster
digi digi digi

Kalman Fit

Trk Array

Mini Tracks

Fit Array

TrackTrack

Svt Array

Dch Array

Figure 3: Diagram of the object tree representing a reconstructed track in BaBar, on the left in transient form, and on
the right converted to Mini persistent format. The Mini stores all tracks in an event in a single persistent object.
Track-specific details are described by the embedded objects stored in the different persistent arrays.

be consistent with Objectivity persistent object
alignment

• To avoid creating persistent memory fragments,
variable arrays (ooVArrays) are sized exactly
once, either on initialization or in the construc-
tor body.

6. Accessing Mini Data

As described in the previous section, the Mini per-
sists several levels of data which overlap in content.
The Mini is designed so that the user must decide
which level of detail is appropriate when reading back
the Mini. In making this decision, the user must bal-
ance the greater detail and (potentially) greater ac-
curacty which are available when reading low-level
data, against the greater speed possible when read-
ing high-level data. The Mini persistence provides a
very precise degree of access control, so that some ob-
jects may be read with high precision while others are
read with lower precision. Similarly, it is possible to
read an event initially at low precision, and later up-
grade some or all objects to higher precision once the
event or the objects in it pass cuts. Maintaining co-
herent and correct data contents under these general
conditions is however difficult, and involves a level of
expertise beyond that of the average user.

To make it easier for users to correctly configure
reading the Mini, a set of self-consistent access modes
are provided which roughly span the available options.
While some users may need to optimize their Mini
jobs by directly controling the persistent access, it is
expected that most Mini users will choose one of these
five access modes: micro, cache, extend, refit, and raw.
The access mode is set in a user job through the lev-
elOfDetail global Tcl variable, which is then used by
the sequences which read and prepare the Mini data
for analysis. The specifics of these different modes are
described below. A comparison of the access speed in
these different modes is given in table III.

The Mini user can also control how the
BaBarConditions Database [8] is accessed. For
instance, a user can configure their Mini job to use
the same Conditions as were used when the data were
originally processed, or the most recent Conditions,
or even to override the Conditions Database and
use explicitly-provided constants. Conditions access
configuration is most relevant to refit and raw modes.

6.1. Cache Mode

Cache mode refers to reading the Mini so that high-
level objects are built from the stored function results
instead of low-level data. Only a summary of the low-
level information can be obtained in cache mode. For
instance, in cache mode, the track transient object
can provide the number and logical identity of the
hits from which it was fit, but it cannot produce the
actual hit objects. Since a cache mode job doesn’t
read or process any low-level data, it is much faster
than a refit job run on the same data.

In cache mode, all the stored track fits can be used.
The default version of the mini stores all the unique
mass hypothesis Kalman fits, evaluated at their point
of closest approach to the Z axis, plus the π fit evalu-
ated where the track exits the tracking volume.

6.2. Micro Mode

Micro mode is a variant of cache mode where some
features are turned off, in order to make the Mini be-
have more like the Aod format. For instance, since Aod
stores only π track fits, in micro mode the Mini track
provides only the π fit. Micro mode is intended to
make it easy to compare and validate the Mini against
the Aod format. Since micro mode is no faster than
cache mode, and yet returns less accurate values, it is
not recommended for use in physics analysis.

TUKT009

8 Computing in High Energy and Nuclear Physics, La Jolla, California, USA, March 24-28 2003

 1e-05

 0.0001

 0.001

 0.01

 0.1 1 10 100

P
ac

ki
ng

 P
re

ci
si

on
 (

cm
)

Transverse Track Impact Parameter (cm)

Packing_Binsize(d)
Packing_RMS(d)

Figure 4: Resolution of the globally-logarithmic, locally flat packing algorithm used in the Mini, as applied to packing
the track transverse impact parameter. This quantity has a detector resolution of roughly 10 microns, and range of
values from 0 to 80 cm. The packing algorithm employed is extremely efficient to unpack, involving only 2 floating
point operations (one addition and one multiplication).

6.3. Extend Mode

Extend mode is a variant of cache mode in which
the validity range of a track is extended from the
range of the fit result stored on the Mini, up to the
first hit. Otherwise, extend mode behaves exactly
as cache mode. The persistent data read in extend
mode are exactly the same as in cache mode, but since
more tracking functions are called, extend is some-
what slower to read than cache.

In extend mode, the fit results stored on the Mini
are interpreted as a multi-dimensional ‘hit’, constrain-
ing all the track parameters to the stored fit values.
These ‘constraint hits’ are used to create a Kalman
track fit object, which is an instance of the same
Kalman fit class used to fit tracks in BaBar recon-
struction. The Kalman fit adds the effects of passive
material and magnetic field distortions as the track
traverses the the detector, extending the range over
which the stored track can provide physically accu-
rate parameters. Since hits are not read in extend
mode, extended tracks are valid from the origin out
to the first hit.

An example where extend mode is useful is recon-
structing long-lived particles which decay outside the
beampipe, such as K0. In cache mode (and when us-
ing the Aod format), these particles are vertexed using
fit results measured inside the beampipe. In extend
mode, track fit results are measured at the decay ver-
tex, so that the reconstructed parameters of the K0

are more accurate and less biased.

6.4. Refit Mode

In refit mode, the function results stored with the
high-level objects are ignored, and high-level tran-
sient objects are rebuilt from constituent low-level
objects. Because refit mode involves reading more

data and performing more computation to create the
high-level objects, it is substantially slower than ei-
ther cache or extend mode. Because new Conditions
are read and used when rebuilding the transient ob-
jects, a refit mode job can follow changing Conditions,
or even changes in some reconstruction algorithms.
Refit mode is intended to support detector studies,
single event display, specialized analyses that depend
on low-level data, and analyses that need to use new
Conditions or algorithms.

6.5. Raw Mode

In raw mode, high-level objects stored on the Mini
are ignored. Both assigned and unassigned low-level
objects are are read and combined together into ‘com-
plete’ lists, and the reconstruction pattern recognition
algorithms are run on those. Raw mode is intended
to support development of pattern-recognition recon-
struction algorithms, to support re-processing, and to
support event mixing studies. Because raw mode in-
vokes pattern recognition algorithms, it is slower than
refit mode.

While the high-level objects created when reading
the Mini in raw mode are similar to those read in
the other modes, they are not necessarily identical, as
the initial sets of low-level objects are not exactly the
same as those used when running reconstruction on
raw online data.

Raw mode is still under development as a user op-
tion, though it has been tested in a limited form.

7. Performance of the Mini

General performance numbers for the Mini, such as
size on disk and read speed under various conditions

TUKT009

Computing in High Energy and Nuclear Physics, La Jolla, California, USA, March 24-28 2003 9

Data Generic Multi-hadron

Mini 6.4 KBytes 10.0 KBytes

analysis reduced Mini 1.8 KBytes 3.2 KBytes

Aod 1.8 KBytes 2.7 KBytes

Table II The average (compressed) size of BaBar events
stored in Mini, analysis reduced Mini and Aod formats.
Results for the analysis reduced Mini are based on a
prototype.

mode Generic Multi Hadron

micro 45 Hz 24 Hz

cache 45 Hz 22 Hz

extend 28 Hz 14 Hz

refit 5.3 Hz 2.4 Hz

raw 3.3 Hz * 1.0 Hz*

Aod 246 Hz 173 Hz

analysis reduced Mini 96 Hz -

Table III The event rate reading the Mini in different
modes on an 1.4 GHz Pentium III Linux machine. The
times for raw mode were estimated using the BaBar
reconstruction executable, as this Mini mode has not yet
been fully implemented. Results for the analysis reduced
Mini are based on a prototype.

are listed in tables III and II. Performance of the Aod
format is given for comparison. As efforts to optimize
the read speed of the Mini have only just begun, these
numbers should be considered provisional. Table IV
gives a breakdown of where time is currently spent in
a typical Mini analysis job. This clearly shows that
unpacking data plays a very minor role in the perfor-
mance.

8. BaBar’s New Computing Model

In April 2002 BaBar computing was reviewed by a
combined internal and external review board. Among

Operation % time

Reconstruction transient creation + deletion 35

Objectivity data read 25

Physics interface adapter 20

Event loop overhead 10

Data unpacking 0.1

Table IV The fraction of time spent in various
operations when reading the Mini in cache mode in a
standard physics analysis job.

other recommendations, the report of this commit-
tee [9] suggested that BaBar reconsider its Analy-
sis Model in light of the opportunities offered by the
Mini. In response to these recommendations, a new
Computing Model was adopted by the collaboration
in December 2002. This model introduces two ma-
jor changes, first that the BaBar event store be con-
verted to use Root persistence instead of Objectivity,
and second that the existing physics analysis format
(Aod) be replaced with a new format more consistent
with the Mini. After some discussion, a reduced Mini
customized for analysis has been chosen as the Aod
format replacement.

To replace the Aod format, the analysis reduced
Mini must have a similar size on disk and read-back
speed as Aod. The starting point for achieving this
is to store only those quantities referenced in cache
mode. Performance results from a prototype analy-
sis reduced Mini are given in tables III and II, show-
ing that it is similiar to Aod. A major effort is now
underway at BaBar to improve the read-back perfor-
mance. Based on profiles of a standard analysis job,
the largest time sinks come from inefficiency in the
reconstruction code invoked when reading the Mini,
and in the analysis interface to the Mini (see table
IV). Based on the problems already identified, the
read speed is expected in increase by between a factor
of 2 and 10.

In the new BaBar Computing Model, the analysis
reduced Mini will store only the cache mode informa-
tion. The remainder of the Mini information will be
stored in a separate file. The complete Mini will be
accessed by reading both the reduced and remainder
information. Thus BaBar will store event data in a
coherent format, split into pieces specialized for anal-
ysis and detector studies, with no redundancy and
easy navigation between the two pieces.

A requirement of the new computing model is that
the Aod replacement be accessible interactively. As
part of satisfying this requirement, BaBar has chosen
Root as the persistence technology for the Aod re-
placement, since it has been shown to work as a HEP
event store technology both at BaBar and elsewhere,
and because the Root/CINT interface is a standard
interactive access mechanism. To satsify this require-
ment, the Mini is being ported to Root persistence.
The Mini Root persistent implementation uses base
classes developed at BaBar which allow interactive ac-
cess to packed data contents of embedded objects, by
dynmaically linking class functions into Root [10].

A key feature of the new computing model is the
ability to create custom output streams for physics
groups, by exploiting the configurability of the Mini.
Coupled with the interactive access capabilty afforded
by Root persistence, it is hoped that custom streams
can replace the Aod format dump ntuples used in most
analyses. This will substantially reduced the comput-
ing and human resources used in analysis.

TUKT009

10 Computing in High Energy and Nuclear Physics, La Jolla, California, USA, March 24-28 2003

Because BaBar is a functioning experiment, the new
computing model must be introduced in a way that
does not disrupt ongoing efforts, and quickly enough
that its benefits can be exploited before the experi-
ment ends. The plan is to develop and deploy the
new computing model within calendar year 2003.

9. Conclusions

BaBar has introduced a new event data format ref-
ered to as the Mini. This format addresses deficiencies
in BaBar’s older formats.

BaBar has just completed a full data re-processing,
in which the complete Mini replaced the unused Raw,
Rec, and Esd formats. This reduced the volume of
data produced in reconstruction by a roughly factor of
10, significantly improving the efficiency of the event
reconstruction farm, and requiring half as many data
servers compared to previous processings. BaBar’s
data storage costs were also cut by roughly the same
factor of 10.

BaBar is now starting to use the Mini for physics
analysis. An ambitious new computing model has
been adopted, in which a reduced form of the Mini will
replace the current physics analysis format. When the
new computing model is deployed in late 2003, BaBar
will have a coherent event data format covering most
of the needs of the experiment, finally satisfying the
intent of the original format design.

Acknowledgments

The authors wish to recognize the achievements of
the BaBar offline software developers who designed
and implemented the BaBar reconstruction frame-
work and event persistence, which has been spectac-

ularly successful in enabling BaBar to produce high
quality physics results, and which laid the foundation
for developing the Mini.

References

[1] B. Jacobsen et al, Applying Object-Oriented Soft-
ware Engineering at the BaBar Collaboration
Proceedings of CHEP 1997, paper 372.

[2] D. Quarrie et al, First Experience with the BaBar
Event Store Proceedings of CHEP 1998, contri-
bution 33.

[3] T. Adye et al, Kanga(Roo): Handling the micro-
DST of the BaBar Experiment with ROOT Com-
put. Phys. Commun.150:197-214,2003

[4] D. Quarrie, The Design of the BaBar Event
Store June 1997 (BaBar computing internal doc-
ument).

[5] A. Adesanya et al, The Redesigned BaBar Event
Store - Believe the Hype Proceedings of CHEP
2003, contribution TUKT008.

[6] BaBar Computing Model Working Group Report
September 2000 (BaBar computing internal doc-
ument).

[7] Measurement of CP-violating asymmetries in B0
decays to CP eigenstates Phys. Rev. Lett. 2001
86 2515-2522.

[8] A. Trunov et al, Operational aspects of dealing
with the large BaBar data set Proceedings of
CHEP 2003, contribution TUKT006.

[9] Report of the Review Committee on BaBar Com-
puting April 2002 (BaBar computing internal doc-
ument).

[10] Upgrading BaBar’s use of Root Per-
sistence to Support Interactive Access
http://www.slac.stanford.edu∼echarles/work/Kanga
.

TUKT009

http://www.slac.stanford.edu~echarles/work/Kanga

	The BaBar Mini
	Recommended Citation

	tmp.1323708127.pdf.VVW5N

