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We report a measurement of the inclusive semileptonic branching fraction of the Bs; meson using
data collected with the BABAR detector in the center-of-mass (CM) energy region above the T(45)
resonance. We use the inclusive yield of ¢ mesons and the ¢ yield in association with a high-
momentum lepton to perform a simultaneous measurement of the semileptonic branching fraction
and the production rate of Bs; mesons relative to all B mesons as a function of CM energy. The
inclusive semileptonic branching fraction of the Bs meson is determined to be B(Bs — wX) =
9.5123(stat) "1} (syst)%, where £ indicates the average of e and .

—-1.9

PACS numbers: 14.40.Nd 13.20.He

Semileptonic decays of heavy-flavored hadrons serve
as a powerful probe of the electroweak and strong inter-
actions and are essential to determinations of Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements (see, for
example, “Determination of Vi, and V,;” in Ref. [1]).
The inclusive semileptonic branching fractions of the By
and B, mesons are measured to high precision by ex-
periments operating at the Y(4S) resonance, which de-
cays almost exclusively to BB pairs (here and through-
out this note, BB refers to ByBy and BUEU). How-
ever, lacking an analogous production mechanism, in-
formation on branching fractions of the Bs meson re-
mains scarce nearly two decades after its first observa-
tion [1]. Here we report a measurement of the inclusive
semileptonic branching fraction of the B; meson using
data collected with the BABAR detector at the PEP-II
asymmetric-energy electron-positron collider, located at
the SLAC National Accelerator Laboratory. The data

were collected in a scan of center-of-mass (CM) energies
above the T (4.5) resonance, including the region near the
B, B, threshold. As ¢ mesons are particularly abundant
in B decays due to the CKM-favored B; — D, transi-
tion, the inclusive production rate of ¢ mesons and the
rate of ¢ mesons produced in association with a high
momentum electron or muon can be used to simultane-
ously determine the B; semileptonic branching fraction
and the B, production fraction as a function of the CM
energy Ecowu-

The energy scan data correspond to an integrated lu-
minosity of 4.25 fb~! collected in 2008 in 5MeV steps
in the range 10.54 GeV < Ecy < 11.2GeV. In a previ-
ous study [2], we presented a measurement of the inclu-
sive b quark production cross section Ry = o(eTe™ —
bb)/o%(ete™ — ptp~) in this energy range, using this
same data sample (0¥ is the zeroth-order QED cross-
section). In the present study, we also make use of



18.55 fb™! of data collected in 2007 at the peak of the
Y(4S5) resonance, and 7.89 fb~! collected 40 MeV be-
low the T(45), to evaluate backgrounds from continuum
(ete™ — qq, ¢ = u,d,s,c quark production) and BB
events. We choose below-resonance data for which de-
tector conditions most closely resemble those of the scan,
and on-resonance data corresponding to roughly twice
the luminosity of the below-resonance sample. The sizes
of these samples are sufficient to reduce the correspond-
ing systematic uncertainties below those associated with
irreducible sources.

The BABAR detector is described in detail elsewhere [3].
The tracking system is composed of a five-layer sili-
con vertex tracker (SVT) and a 40-layer drift chamber
(DCH) in a 1.5-Tesla axial magnetic field. The SVT
provides a precise determination of the track parame-
ters near the interaction point and standalone tracking
for charged particle transverse momenta (p;) down to
50 MeV/e. The DCH provides a 98% efficient measure-
ment of charged particles with p, > 500MeV/c. The
p; resolution is oy, /pr = (0.13 - p, + 0.45)%. Hadron
and muon identification in BABAR is achieved by using a
likelihood-based algorithm exploiting specific ionization
measured in the SVT and the DCH in combination with
information from an instrumented magnetic-flux return
and the Cherenkov angle obtained from the detector of
internally reflected Cherenkov light. Electron identifica-
tion is provided by a combination of tracking and in-
formation from the CsI(T1) electromagnetic calorimeter,
which also serves to measure photon energies. For the
evaluation of event reconstruction efficiencies across the
scan range, simulated samples of ete™ — utpu™, con-
tinuum, and eTe™ — Bé*)Efl*), q = u,d,s events, cre-
ated with the kk2F [4], JETSET [5], and EVTGEN 6]
event generators, respectively, are processed through a
GEANT4 [7] simulation of the BABAR detector.

For this measurement, we present the scan data as a
function of Fcy in bins of 15 MeV. In each bin we
measure the number of BB-like events (defined below),
the number of such events containing a ¢ meson, and the
number of events in which the ¢ meson is accompanied by
a charged lepton candidate. The results are normalized
to the number of ete™ — pTp™ events in the same en-
ergy bin so that the luminosity dependence in each bin is
removed. These three measurements are used to extract
the fractional number of B,B, events and the semilep-
tonic branching fraction B(Bs — ¢vX). The procedure
is described in detail below.

To suppress QED background, events are preselected
with a multihadronic event filter optimized to select BB
and B,B; events. The filter requires a minimum number
of charged tracks in the event (3), a minimum total event
energy (4.5GeV), a well-identified primary vertex near
the expected collision point, and a maximum value of
the ratio of the second to zeroth Fox Wolfram moments
[8] (R2 < 0.2) calculated in the CM frame using both

charged tracks and energy depositions in the calorimeter,
where the latter are required not to be associated with a
track.

A different preselection is used to identify muon pair
events. Events passing this selection must have at least
two tracks. The two highest momentum tracks are re-
quired to be back-to-back in the CM frame to within
10 degrees, appear at large angles to the beam axis
(| cosBcm| < 0.7486), and have an invariant mass greater
than 7.5 GeV/c?. In addition, we require that less than
1GeV be deposited in the electromagnetic calorimeter.
This selection is 43% efficient for simulated u™ ™~ events
while rejecting virtually all continuum events.

Candidate ¢ mesons are reconstructed in the ¢ —
KTK~ decay mode, by forming pairs of oppositely
charged tracks that are consistent with the kaon hy-
pothesis. In each event, the ¢ candidate with the best-
identified K* daughters is selected by assigning a weight
to each K* based on the particle identification criteria.
The ¢ candidate with the largest sum of kaon weights is
selected. The invariant mass distribution of these can-
didates is used to determine the ¢ yield in a given Ecoum
bin using a maximum likelihood fit. Events containing ¢
candidates and an electron or muon candidate with a CM
momentum exceeding 900 MeV/c are used to determine
the yield of events with both a ¢ and a lepton (¢-lepton
events). The requirement on the lepton momentum sup-
presses background from semileptonic charm decays.

Figure 1 shows, as an example, the KT K~ invariant
mass distribution for (a) all ¢ candidates, and (b) ¢-
lepton candidates, in the energy bin 10.8275 < Ecym <
10.8425 GeV. These mass distributions are fit to the func-
tion

f(M;N,b,c) = NV(mgr;mg, Ly, 0)

9 2
—|—Nc(1—|—meK) 1—<ﬂ> s
MKK
(1)

with my the world-average mass value [1] of the K*.
V(mgk;me,I'e,0) is a Voigt profile (the convolution of
a Breit-Wigner function 1/((mgx —mg)? +Ty?/4) with
a Gaussian resolution function) normalized to unity, so
that N is the number of events in the peak. We fix the
mean (my) and Breit-Wigner width (I'y) to the world av-
erage values of the ¢ mass and natural width [1], and the
width of the Gaussian resolution (o) by first performing
all of the ¢ fits with the parameter left free, then fixing it
to the weighted mean of all of the values obtained across
the scan. The value in data determined by this method
is 0 = 1.6 + 0.04(stat) MeV/c2. The combinatoric back-
ground is modeled as the product of a linear term and a
threshold cutoff function parameterized by the slope of
the linear term (b) and a relative scaling (c).

To determine the ¢ and ¢-lepton yields from B decays
in each Ecyr bin, the contribution of continuum events is
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FIG. 1. Invariant mass distribution of ¢ — KTK~ candi-
dates in the energy bin 10.8275 GeV < Ecm < 10.8425 GeV:
(a) inclusive ¢ candidates; (b) ¢-lepton candidates. The back-
ground shape is shown by the dashed curve and the total fit
by the solid curve.

subtracted. This is achieved by using the data collected
below the Y (4S5) described above. The event, ¢, and ¢-
lepton yields are measured in this dataset following the
same procedures described above. These yields are cor-
rected for the energy dependence of the reconstruction
efficiencies and are then subtracted from the scan yields
in each Ecy bin. This procedure neglects the different
energy dependence of a small component of the hadronic
and dimuon cross sections, primarily due to the presence
of initial state radiative (ISR) ete™ — Y (1S,285,359)
and two photon eTe™ — ete™v*v* — ete™ X}, events,
which do not scale according to 1/E2,;. The effect of
these contributions is to introduce a small energy depen-
dence on the amount to be subtracted from each bin. The
average size of this effect is estimated to be less than 2%
of the below-resonance event yield. The impact on the
result is taken as a systematic uncertainty.

The normalized event, ¢, and ¢-lepton yields after the
continuum subtraction are presented in Fig. 2. These
three quantities, denoted C}, Cy and Cy respectively,
can be expressed in terms of contributions from events
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FIG. 2. Relative (a) event, (b) ¢, and (c) ¢-lepton yields,
normalized to the u*u~ yields. Corrections for detector effi-
ciency have not been applied. The dotted vertical line indi-
cates the B;s production threshold.

containing BSZI and Bg*) events, the cross section ratio

Rp= Y olete” — BqEq)/ouﬂf, and the related

g={u,d,s}
reconstruction efficiencies, as follows:
Ch = Rp [fsej, + (1 = fs)en (2)
Cs=Rp [fsebe(BSES — ¢X)
+(1 = fs)ep P(BB — ¢X)] (3)
Cy= Rp [fsEfMP(BSES — Q%X)
+(1 = fs)epeP(BB — Q%X)] 4)

(with energy dependence implicit in all terms here and
elsewhere), where

Np

s = o 5
Y Np, + Np, + Np, 5)

and ex (€% ) is the efficiency for a B, 4 (Bs) pair to con-
tribute to the event, ¢ or ¢-lepton yield. The efficien-
cies are estimated from simulation, while P(BB — ¢X)



and P(BB — ¢¢X), which are the probabilities that a ¢
or a ¢-lepton combination is produced in an event with
a BB pair, are measured using the Y (45) data sample
described above. Specifically, we determine the ¢ and ¢-
lepton yields in the the Y(4S) data. We then apply Eqgs.
(2), (3), and (4) with f, = 0 to extract esP(BB — ¢X)
and ey P(BB — ¢¢X). Simulations are used to extrapo-
late the values of the efficiencies to other energies.
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FIG. 3. Results for the fraction fs as a function of Ecwm.
The inner error bars show the statistical uncertainties and
the outer error bars the statistical and systematic uncertain-
ties added in quadrature. The dotted line denotes the B
threshold.

The remaining unknown quantities of interest are the
probabilities P(BsBs — ¢X) and P(BsBs — ¢¢X) that
a B,B, pair will yield a ¢ or ¢-lepton event. To esti-
mate P(BsB, — ¢X) we use the current world averages
[1] of the inclusive branching fractions B(Bs; — DsX),
B(Ds — ¢X), and B(D — ¢X). Here and in the fol-
lowing D refers to the sum of D* and D° contributions.
Also needed are estimates of the unmeasured branching
fractions B(Bs — c¢¢) and B(Bs — DDsX). The former
quantity accounts for direct By — ¢ production, a sub-
stantial fraction of which arises from B, to charmonium
decays. We use the central value from the simulation,
1.7%, which is roughly consistent with charmonium pro-
duction in the B system. For the latter quantity we use
a naive quark model prediction of 15% for b — ccs.

The inclusive ¢ yield in By decays can be expressed as:

P(B, — ¢X) = B(B; = D X) B(D, — ¢X)
+ B(B, — cco) (6)
+ B(B; = DD,X) B(D — ¢X),

from which we determine

P(BsB; — ¢X) =2P(Bs — ¢X) — P(B, — ¢X)*. (7)

The unknown quantities in Eqgs. (2) and (3) are f, and
the common normalization Rp. The ratio fs can be de-
termined as a function of Ecy by eliminating Rp be-
tween the two equations. The result is presented in Fig.
3. The ratio fs peaks around the Y(55) mass. The to-
tal excess below the B, B, threshold and deficit above 11
GeV are consistent with zero within 1.5 and 1.3 standard
deviations, respectively.

Using Eq. (4), a x? is constructed from the measured
and expected values of P(BsB; — ¢£X) across the entire
scan. The x? is minimized with respect to B(Bs — (v X).
The following processes contribute to Cg, from BB,
events: primary leptons originating from a B, semilep-
tonic decay, secondary leptons resulting from semilep-
tonic decays of charmed mesons, and 7+ or K* misiden-
tified as e* or u*. The contribution from primary lep-
tons arises from events where one or both B, mesons
decay semileptonically, and we determine the ¢-lepton
efficiency for each case (denoted €4 for one semileptonic
decay and €5, for two). It is found that €4 Tanges from
8.5% — 10% and €, is about 10%.
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FIG. 4. x? formed from the measured and expected yields,
as described in the text, as a function of the semileptonic
branching fraction. Note that since we express the branching
fraction as the average of the e and u channels, the physical
bound is 50%.

For the secondary lepton contribution, we consider
events with up to two leptons coming from D* D° or
DF decays. The selection efficiency in this case is esti-
mated as the product of the ¢ reconstruction efficiency in
BB, events in which neither B, decays semileptonically
but a lepton candidate is identified (referred to below as

eé’ ), and a lepton detection efficiency determined from

simulation (ef”). It is found that e} lies in the range

15% — 16.5%, and €/ in the range 8% — 9.5% per lepton.
The contribution from hadrons that are misidentified as
leptons is estimated from simulation to be 3.3% of the
¢-lepton candidates in By B events.

For the expected and measured ¢ yields, we find:



€50 P(BsBs = ¢(X )primary = (2654 — €500)B(Ds = ¢X) [-2 + B(Ds — ¢X)] [B(Bs — (vX))?

+ B(B, — (wX)ey [B(Ds — ¢X) + [1 — B(Dy — ¢X)|P(Bs — ¢X)|,

€50 P(BsBs — ¢lX )secondary = 265’65{ {B(Ds — lvp) + B(Ds — tvX)B(Ds — ¢X)

— B(D, — tv$)B(Ds — qu)} [B(B, — tvX)]?

+ [P(BS — 6X)(B(Dy — twd) — B(Dy — (X)) — B(Dy — lvd)

— B(Bs = D X)B(Ds — tvg) — B(Bs — D; X)B(Ds — v X)B(Ds — ¢X)
+ B(Bs = D;X)B(Ds — tvd)B(Ds — ¢pX)

+(B(Ds = ¢X)=2) 3 B(Bs — DI~ Di(X))B(D; — M)}B(Bs = wX)
i€u,d,s

(Bs = DsX)P(Bs — ¢X) [B(Ds = vX) — B(Ds — Lvg)]

(Bs = Ds X)B(Ds — Lvg)

[B(Bs = ¢X) + B(Ds — ¢X) — P(Bs = ¢X)B(Ds — ¢X))]

+B
+B
4

9)

x Y B(B,— D7 Di(X))B(D; — KVX)},

i€u,d,s

€50 P(BsBs = ¢(X )Expected = {€5p X 0.591 x B(Bs = v X) — (2¢5, — €54y) X 0.289 x (B(By — (vX))?

10

+elep [0.1375 — 0.2721 x B(Bs — (wvX) + 0.1339 x (B(B, — (vX))?]}, (10)

Eéép(Bs-Es N QS[X)Measured — (1 _ 0033) (C¢€ fsei +f(1c(_ fs)eh o (1 - fs)&i?fpf(BB — ¢€X)) , (11)
sVh s

where that Eq. (10) is the sum of Egs. (8) and (9) after
substituting the values of known quantities. The first
line in Eq. (10) expresses the contribution from primary
leptons and the second that from secondary leptons.

The expression in Eq. (10) for the expected value
of E;ZP(BSES — ¢¢X) is quadratic in the unknown
B(Bs — (vX), and so a x? formed from the deviation
of the expected from the measured values (Egs. (10) and
(11)), summed over all bins above the B,B, threshold,
is quartic in this unknown. Minimizing the x? with re-
spect to the By semileptonic branching fraction we find
B(Bs — wX) = 9.5722%. Figure 4 shows the depen-
dence of x? on B(Bs — (v X).

Systematic uncertainties are summarized in Table I
and include the contributions described below.

e Uncertainties for branching fractions, which are ei-
ther taken from Ref. [1] when known, or assumed
to be 50% for B(Bs; — cc¢) and B(Bs — DD X).
These are separately listed in Table I, as is B(Bs; —
D,X), which contributes a very large uncertainty
compared to the other branching fractions.

e Requirements used in the event preselection, in-
cluding the lepton momentum requirement. The
uncertainty due to the lepton momentum require-
ment dominates in this group, and reflects the de-
pendence of the result on the decay model used to

simulate By semileptonic decays.

Fixed parameters used in the fits to mgk, includ-
ing mg, I'y, 0.

The parameterization of the background and ab-
sence of a term in the fit corresponding to threshold
contributions from light scalars.

Uncertainties in particle identification (PID) effi-
ciencies and hadron misidentification probabilities.
The determination of P(BB — ¢X) and P(BB —
@lX) in Y(4S) data (these quantities are deter-
mined to 1% and 1.8% relative uncertainty).
Sensitivity of efficiencies to differences in branching
fractions implemented in simulation compared to
their measured values.

Uncertainties in the continuum-subtracted number
of events due to ISR and two photon events, which
do not follow a 1/E2,, energy dependence.

A correction made to the continuum subtraction
of the number of BB-like events due to an over-
subtraction found in simulation studies. The size
of this correction is about 1% of the amount to be
subtracted; we use £100% of this correction as a
systematic uncertainty.

Possible bias in the x? minimization technique at
low statistics. Firstly, evaluating the behavior of
the x2 function for many pseudo-data samples de-
rived from the simulated dataset gives evidence for



TABLE I. Relative multiplicative and additive systematic un-
certainties for the measurement of B(Bs — (v X).

Multiplicative Systematics Relative
Uncertainty (%)
B(B. — DV X) +8.72/—13.58
B(Bs — c¢¢) (Unmeasured) £3.20
B(Bs — DD,X) (Unmeasured) +1.12/-1.16
Other Branching Fractions +0.52/-0.54
Event and Lepton Selection +1.99/-2.85
Fixed Fit Parameters +0.49/-0.15
Background Parameterization +0.93
PID and Lepton Fake Rate +3.21
P(Bu,aBu,a — ¢) +1.47/-1.69
Simulation Branching Fractions +2.59
ISR and 2v Background +1.57/-7.14
Correction to Event Subtraction +1.88/—4.59
Technique bias +0.39/—10.00

Total Multiplicative
Additive Systematics

(+10.87/-19.92)%
Uncertainty (x107%)
+0.56/—0.64
+4.30/—-3.90
(+4.34/-3.95) x 1073
(+11.20/-19.34)x1073

Other Branching Fractions
P(Bu,d.gu,d — (]5(7/)

Total Additive

Total Systematic

a small bias at low statistics. Secondly, it was found
that the analysis performed in high statistics sim-
ulation tends to overestimate B(Bs — fvX) by an
amount corresponding to half the statistical error
reported.

To determine whether the uncertainties from these
sources scale with the result or not, each was evaluated in
a simulation sample with a higher semileptonic branching
fraction and compared with the result in the normal sim-
ulation sample. It was found that the uncertainty from
the determination of P(BB — ¢£X) in T (4S5) data does
not scale with the branching fraction, nor does the uncer-
tainty contributed by several of the input branching frac-
tions. These are thus separated in Table I. The remain-
ing uncertainties are found to scale with B(B; — (vX)
and thus to be multiplicative.

Our final result for the inclusive semileptonic branch-
ing fraction is 9.5755%10%, which is the average of the
branching fractions to e and u.

In conclusion, we performed a simultaneous measure-

ment of the B, semileptonic branching fraction and its
production rates in the CM energy region from 10.56 GeV
to 11.20 GeV. The semileptonic branching fraction is con-
sistent with theoretical calculations [9]. Our measure-
ment of the By production rates are consistent with the
predictions of coupled channel models [10], in which Bj
production peaks near the T (55) and is vanishingly small
elsewhere.
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