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Methods for Reducing False Alarms in Searches for

Compact Binary Coalescences in LIGO Data
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Abstract. The LIGO detectors are sensitive to a variety of noise transients of non-

astrophysical origin. Instrumental glitches and environmental disturbances increase

the false alarm rate in the searches for gravitational waves. Using times already

identified when the interferometers produced data of questionable quality, or when

the channels that monitor the interferometer indicated non-stationarity, we have

developed techniques to safely and effectively veto false triggers from the compact

binary coalescences (CBCs) search pipeline.
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1. Introduction

In October 2007, the Laser Interferometer Gravitational-wave Observatory (LIGO) [1]

detectors completed a fifth data run over a two-year long period, denoted as S5, during

which one year of triple-coincidence data was collected at design sensitivity. During S5,

LIGO consisted of two interferometers in Hanford, Washington and one in Livingston,

Louisiana. In Hanford, the interferometers had arm lengths of 4 km and 2 km, referred

to as H1 and H2, respectively. In Livingston, there was a single 4 km interferometer,

referred to as L1. The LIGO detectors were sensitive to the coalescences of massive

compact binaries up to 30 Mpc for neutron stars [2, 3], and even farther for binary

black holes. Ongoing “Enhanced” LIGO upgrades, as well as the future “Advanced”

LIGO upgrades, are planned to increase the sensitivity significantly.

The LIGO Scientific Collaboration (LSC) performs astrophysical searches for

gravitational waves from compact binary coalescences (CBCs), including the inspiral,

merger, and ringdown of compact binary systems of neutron stars and black holes.

These searches use matched filtering with template banks that include a variety of

durations and frequency ranges for inspirals or ringdowns. When a LIGO interferometer

is locked and operational, data are recorded in what it is called “science mode.” In

order to confidently make statements on astrophysical upper limits and detections

from science mode data, characterization of the LIGO detectors and their data quality

is vital. The LIGO detectors are sensitive to a variety of noise transients of non-

astrophysical origin, including disturbances within the instrument and environmental

noise sources. Triggers generated by these disturbances may occur at different times

and with different amplitudes for each template, increasing the false alarm rate in the

searches for gravitational waves.

In this paper we discuss techniques for vetoing non-astrophysical transient noises

effectively, and thereby reducing their effect on searches for gravitational waves. These

methods were developed on searches for low mass CBCs in the first of the two years of

S5 as described in [2, 3], though they are applicable to future searches as well.

In Section 2 we present the broad range of data quality issues that were present in

LIGO data. In Section 3 we briefly review the search methods for which these techniques

were developed. The techniques that we have so far developed and implemented to

evaluate vetoes are explained in Section 4. The categorization and application of these

vetoes is described in Section 5. In Section 6 we describe proposed methods to extend

and automate our vetoes for use in future CBC searches. We present our conclusions in

Section 7.

2. Data Quality Studies

There are two broad categories of spurious transients in LIGO data: instrumental and

environmental noises. Within these two classes of noise sources, there are dozens of

identified phenomena that require vetoing. LIGO records hundreds of channels of data
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on the state of internal degrees of freedom of the interferometers, as well as the output

from environmental sensors located nearby.

When a set of transients effect the stability or sensitivity of the gravitational wave

data, members of the Detector Characterization and Glitch groups within the LIGO

Scientific Collaboration (LSC) work to determine the source of these transients, using

the auxiliary channel data [4]. When a given noise source is identified, it is documented

with sets of time intervals referred to as data quality flags, which begin and end on

integer GPS seconds. These data quality flags are discussed in Sections 2.1 and 2.2.

Alternatively, one can begin with the hundreds of data channels, and search

for correlations between the outputs of some algorithm on these channels and the

gravitational wave data channel. The “auxiliary channel” vetoes used by the CBC

search are described in Section 2.3.

2.1. Data quality flags from Instrumental noise transients

Each LIGO interferometer makes an extremely sensitive comparison of the lengths of its

arms. This necessitates the ability to sense and control minute changes in displacement

and alignment of the suspended optics, as well as intensity and phase in the laser [1]. The

control systems have both digital and analog components, as well as a variety of complex

filtering schemes. Instrumental noise transients, or glitches, sometimes correspond to

fluctuations of large amplitude and short duration in the control systems. While these

may be prompted at times by environmental effects, they can be identified and vetoed

by using the control channels alone, as they are well known failure modes of the control

systems. We describe some examples in the following paragraphs.

• Overflows. The feedback control signals used to control the interferometer arm

lengths and mirror alignments are processed and recorded in digital channels.

When the amplitude of such a signal exceeds the maximum amplitude the channel

can accommodate, it “overflows”, and the signal abruptly flattens to read as

this maximum value, until the quantity falls back below this threshold. This

discontinuity in the control signal usually introduces transients at the time of the

overflow.

• Calibration line dropouts. Signals of single frequency are continuously injected

into the feedback control system to provide calibration. Occasionally, these signals

“drop out” for short periods of time, usually one second. This discontinuous jump

in the control signal produces artifacts in the data both when the calibration line

drops out and when it resumes.

• Light scattering. The two interferometers at the Hanford site share the same

vacuum enclosure. During times when one of the interferometers was locked and

in science mode, and the other was not locked, the swinging of the mirrors of

the unlocked interferometer scattered light into the locked interferometer. This

produced strong, short duration transients, though not necessarily overflows.
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• Arm cavity light dips. Brief mirror misalignments caused drops in the power in the

arm cavities, and thus transients in the data.

2.2. Data quality flags from environmental noise transients

Environmental noise transients correspond to the coupling of mechanical vibrations and

electromagnetic glitches that enter into the interferometer. Seismic motion, human

activity near the LIGO sites, and weather are the most common sources of mechanical

vibrations. Similarly to instrumental transients, we describe some examples that have

been identified by the LIGO detector characterization group in the following paragraphs.

• Electromagnetic disturbances. The electronic systems of the interferometers are

susceptible to electromagnetic interference, due both to glitches in the power lines

and electronics noise at both sites. Magnetometers arrayed around the detector are

used to diagnose these signals.

• Weather-related transients. The Hanford site is arid, with little to block the wind

from pushing against the buildings housing the interferometers. Times at Hanford

with wind speeds above 30 MPH are problematic. Weather and ocean waves also

contribute to ground motion in the frequency range 0.1 Hz to 0.35 Hz at both sites,

particularly Livingston.

• Seismic disturbances. Seismic activity from different noise sources have different

characteristic frequencies. Earthquakes around the globe introduce transient noise

in the frequency range 0.03 Hz to 0.1 Hz. Nearby human activities such as trucks,

logging, and trains, produce disturbances with frequencies greater than 1 Hz, and

can be so extreme that the interferometers often cannot stay locked. Even when

they remain locked, significant noise transients frequently occur.

The ground motion described in the latter two bullets above occurs at frequencies below

a few Hz, while the frequency range the interferometers are most sensitive in is from

100 Hz to 1000 Hz. There is non-linear coupling from the ground motion into the

interferometers, which results in increased glitching at higher frequencies during times

of high ground motion, and for this reason, these environmental effects are especially

important.

2.3. KleineWelle triggers from auxiliary channels

Data quality flags identify times affected by specific issues and use auxiliary channels

as appropriate to locate the problems. Rather than starting with a known or plausible

noise coupling, we search over hundreds of the auxiliary channels for transients that

are coincident between any of these channels and the gravitational wave channel. This

information can be used both for producing veto intervals, and for finding clues about

the problems left unflagged.

A wavelet based algorithm, KleineWelle (KW) [5], is used to analyze interferometer

control and environmental data. It is a valuable source of triggers for detector
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characterization because of its low computational cost allowing it to be applied to

many data channels. The algorithm produces trigger lists contains the peak time and

significance of the trigger. During S5, KW analyzed the gravitational wave channel

and a variety of important auxiliary channels for the three LIGO detectors, including

interferometer channels used in the feedback systems of the detectors and channels

containing data from the environmental monitors.

3. Searches for Gravitational Waves from CBCs

Matched filtering is the optimal method of finding known signals in data with stationary

Gaussian noise [6]. The searches for CBCs in S5 data used a matched filter method to

compare theoretically predicted waveforms with the LIGO gravitational wave channel

data [7]. Because the masses of the components of the binary determine both the

duration and the frequency profile of the gravitational radiation, template banks

consisting of many different waveforms are used [8].

Figure 1. Matched filtering an impulse in Gaussian noise, colored based on the LIGO

design sensitivity, using the CBC search with a single template. The result for two

templates, top consisting of a binary of 1 solar mass objects, and bottom a binary of

8 solar mass objects. The red dashed line is the search threshold ρ∗ of 5.5, and the

green circles indicate the positions of the resulting triggers.

When the signal to noise ratio ρ of a template rises above a pre-set threshold ρ∗,

a trigger corresponding to the time of coalescence for the binary system is recorded [7].

Single interferometer triggers are compared for coincidence in time and component mass

parameters between the different interferometers, to produce coincident triggers. These

coincident triggers are further subjected to signal consistency checks, for example a χ2

test in time/frequency bins between the template and the data [9]. In order to estimate

the accidental rate of the coincident triggers, the searches perform “time-slide” analysis,
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in which the data from the interferometers are offset by time shifts large compared to

the light travel time between the detectors, resulting in the production of coincident

triggers that can only be of instrumental origin. Knowing the accidental rate, we can

estimate the significance of unshifted coincidences. Those with the highest significance

are examined as candidate events and, in the absence of a detection, used to calculate

astrophysical upper limits [10, 2, 3].

Transients of non-astrophysical origin, as described in Section 2, often produce

triggers of large ρ, as there is significant power in these transients [11]. Even with

the signal consistency checks, disturbances of non-astrophysical origin increase the false

alarm rate in the time-slides, as well as producing accidental coincidences from non-

astrophysical events in the unshifted data. This has the effect of reducing the significance

of the loudest events which are not caused by these transients, as the rate of coincidences

in the time-slides is increased, and thus the measured false alarm rate of the events in

unshifted time is elevated. It therefore has the effect of “burying” good gravitational

wave candidates, as coincidences due to transient detector noises can produce significant

outliers. In order to reduce these effects, we have learned to define time intervals within

which triggers should not be trusted. These are called vetoes.

The CBC searches use banks of templates, each starting from a low frequency cutoff

of 40 Hz (defined by the detector sensitivity) and increasing in amplitude and frequency

until the coalescence time of the represented system. These templates have durations

of up to 44 seconds for the lowest mass templates (binary of 1 solar mass objects).

Figure 1 depicts the filtering of an impulse in Gaussian noise, colored to match

the LIGO noise spectrum, using the CBC search for a single template. We show the

result for two different templates, the top panel consisting of a binary of 1 solar mass

objects, and the bottom panel a binary of 8 solar mass objects. The dashed line is the

search threshold ρ∗ of 5.5, and the circles indicate the positions of the resulting triggers.

The response of the matched filter search to loud impulsive transients in the data is

complicated, with multiple simultaneous effects of the data and search code. While the

ρ time series of both templates have a clear peak near the time of the impulse, the peaks

do not perfectly overlap. The lower mass template has a long tail down from the peak,

and there is a plateau of high ρ extending 8 seconds before and after the time of the

impulse. Additionally, while filtering with both templates results in a trigger with a

large ρ value, the higher mass template results in many more triggers. While many of

the triggers shown would fail the χ2 test mentioned above, any that even marginally pass

this test will increase the rate of accidental coincidences in the time-slides, adversely

effecting the significance calculation of unshifted coincidences.

The difference in time and ρ of the peak occurs because ρ is recorded at the

coalescence time of the matching template, and frequencies in each template are

weighted by the frequency dependent noise spectrum of the detector. The time of the

top panel trigger is 0.66 seconds after that of the bottom panel, whereas their ρ values

are 5000 and 34000, respectively. For a broadband transient, the time between when the

transient occurs and when the coalescence time is recorded is determined by the time
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remaining in the waveform after its frequency content matches the sensitive frequency

band of the detector (40 Hz to 1 kHz). No transient is a perfect delta function, and there

are many transient types that have different timescales and frequency content. The ρ

tail visible in the top panel of Figure 1 occurs due to the aforementioned 44 second

template duration. When any part of the template is matched against the impulse, the

ρ is significantly above threshold. Rather than record a trigger for all times with ρ ≥ ρ∗,

a trigger is only recorded if there is no larger value of ρ within one template duration

of its coalescence time. The higher mass template therefore results in more triggers

because its duration is of order 3 seconds, while the plateau is 16 seconds long. The

plateau is not caused by any attribute of the waveform, nor by the data adjacent the

impulse, but rather is a phenomena intrinsic to the method used to estimate the power

spectral density of the data. This occurs in the presence of impulsive transients in the

data, as described in sections 4.6 and 4.7 of Ref. [12]. Vetoes of impulsive transients for

CBC searches must include this time.

In cases of extraordinarily powerful transients, we observe a second trigger slightly

more than one template duration from the trigger at the peak of the ρ timeseries, as is

the case in the top panel of Figure 1. Because the actual search is performed using a

bank of thousands of templates of different durations, a significant number of triggers

multiple seconds away from the impulse are recorded, as can be observed for the triggers

with ρ ∼ 100 to the right of the peak ρ triggers in Figure 2.

For all these reasons, intervals containing transients of non-astrophysical origin

often must be padded with extra duration to make them into effective vetoes for the

CBC searches. This is done by examining the falloff of the triggers in ρ before and after

the transients in vetoed times, in order to include those triggers associated with the

transient while working to minimize the deadtime by not padding more than necessary.

For the S5 searches, this was determined by examining plots of the maximum and

median amplitude transients, as measured by the peak trigger ρ. Efforts to automate

this decision process are ongoing, as discussed in Section 5.2.

Prior to S5, all CBC searches used a single set of veto definitions [5, 13]. During S5,

CBC searches extended over a broad range of component masses. The wide distribution

in the template durations of the waveforms caused the triggers associated with transients

in the data to appear at different times, and be sensitive to different frequency ranges.

Thus veto window paddings must be defined based on template waveforms included in

each search, which are determined by the possible component masses of the binaries.

4. Established Veto Techniques

In this section we discuss techniques for using the aforementioned detector

characterization work to create vetoes for matched filter CBC searches. We illustrate

our methods with examples from CBC searches in the first year of LIGO’s fifth science

run, on which they were developed and implemented [2, 3]. This work was done

simultaneously and in consultation with the veto efforts for the searches for unmodeled
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gravitational wave bursts [14]. The veto techniques discussed in this section are

implemented by creating lists of times during which triggers from a search are suspected

of originating not from gravitational radiation, but from instrumental or environmental

disturbances.

When deciding to use sets of time intervals as vetoes, we need to include all of

the bad times of the interferometers, and as little of the surrounding science mode as

possible. Since not all vetoes are well understood, we need to create figures of merit, or

metrics, to evaluate the effectiveness of the vetoes. These veto intervals are derived both

from data quality flags (Section 4.3) and disturbances in auxiliary channels (Section 4.4).

We then classify these vetoes into categories (Section 5).

The safety of the veto intervals must also be ensured. A veto is unsafe if it could be

triggered by a true gravitational wave. In order to insure that our instrumental vetoes

are safe, we investigate their correlation with hardware injections, intentional transients

introduced into the interferometer in order to properly tune the various searches in LIGO

for gravitational wave signals. The signals are injected directly into the gravitational

wave channel itself, the differential arm length servo, to simulate the effect that a

gravitational wave would have on the detector. Since these hardware injections are

intentional and controlled, they exist entirely within known time intervals.

4.1. Veto metrics

Veto metrics were developed on single-interferometer triggers, from CBC searches in

the first year of LIGO’s S5 science run, as well as previous runs. For this purpose, the

triggers were clustered by keeping a trigger only when there are no triggers with larger

value of ρ within 10 seconds. With this clustering, all the triggers from a single loud

transient occurred in one, or at most two, clusters. This had the effect of making the

figures of merit independent of the number of waveforms in the template bank of the

search. Different searches may still use different clustering times, based on the different

waveform durations. A minimum ρ of 8 for the clustered triggers was chosen in order

to be sensitive to glitches that produce loud triggers from the template bank. This

threshold applies to the clusters used to measure the metrics, but the resulting vetoes

are applied to all triggers falling in vetoed times.

The percentage of triggers vetoed defines the efficiency of the veto E = Nvt

Nt

· 100%,

where Nvt is the number of clustered triggers vetoed and Nt is the total number of

clustered triggers. If all outliers came from a single source, then the ideal veto would

have 100% efficiency, especially at large ρ. In reality, there are many different sources

of transient noise, as detailed in Section 2, and each may be responsible for only a

few percent of the clustered triggers, and only in some specific range of ρ values.

The efficiency quantifies the effectiveness of the veto for removing clusters, but more

information is required to determine whether this removal is warranted. Because the

clustering is by loudest ρ, veto efficiency as a function of ρ can be used to learn more

about what population of clusters correspond to the transient event being vetoed.
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To determine the statistical significance of the efficiency, we need to compare it with

the deadtime. The percentage of science mode contained in a set of veto intervals defines

the deadtime D = Tv

T
· 100%, where Tv is the time vetoed and T is the total science

mode time, including the vetoed time. If the veto only includes truly bad times, then

by vetoing triggers within these times we are not reducing our chance of detection, as

the noise transients already polluted this data. In practice, the integer second duration

of data quality flags, as well as the need for padded veto windows due to the nature

of the CBC search (described in Section 4.2), limits how small the deadtime can be

for veto intervals that remove common transient noises. It also adds to the probability

that a true gravitational wave event, occurring when the detectors are in science mode,

will be missed if these times are vetoed. Most vetoes have deadtimes of at least several

tenths of a percent of the science mode time, although less understood or longer duration

disturbances may lead to vetoes with larger deadtime percentages.

Important to the determination of what vetoes are effective is the ratio of the

efficiency over the deadtime. Effective vetoes have a deadtime small compared to the

efficiency, indicating that many more clusters are vetoed than one would expect by

random chance. This ratio is unity for ineffective vetoes, and large for effective vetoes,

and can be expressed as

RED =
E

D
=

Nvt · T

Nt · Tv

. (1)

The percentage of veto intervals that contain at least one clustered trigger defines

the used percentage such that U = Nwt

Nw

· 100% where Nwt is the number of veto windows

that contain at least one cluster and Nw is the total number of windows. For an ideal

veto, every vetoed interval should contain at least one cluster, corresponding to one or

more loud transient noises. For vetoes with short time spans compared to the clustering

time, it is more common to obtain values of the used percentage of less than 100%, even

for effective vetoes. The statistical significance of this metric is made by comparing the

used percentage for a veto to that expected if its intervals are uncorrelated with the

triggers. This expected used percentage is obtained by multiplying the length of a given

veto interval Tw by the average trigger rate, given by dividing the number of triggers

by the available science mode time. The ratio behaves similarly to RED, and can be

expressed as

RU =
U

Tw
Nt

T
· 100%

=
Nwt · T

Nw · Tw ·Nt

=
Nwt · T

Nt · Tv

. (2)

In the S5 run, there was a clustered trigger on average every 6 to 17 minutes, depending

on interferometer. Effective vetoes have an expected used percentage small compared

to the actual used percentage, indicating more intervals contain clusters than one would

expect by random chance.

To evaluate the safety of each veto, the percentage of hardware injections that

are vetoed is compared to the veto deadtime. If veto intervals are correlated with the

hardware injections, as indicated by a RED for injections significantly greater than 1, the

veto could be generated by an actual gravitational wave signal. Such a veto is therefore
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“unsafe” and is not used. In S5, zero data quality flags, and only one auxiliary channel,

that were considered were found to be unsafe.

4.2. Vetoes from data quality flags

Figure 2. A pair of overflows in the length sensing and control system of H2. At

left, a time-frequency representation [5]. At right, the effect of the transient on the

production of unclustered triggers for the CBC search with total mass between 2 and

35 solar masses (dots), the 10 second clusters of these raw triggers (circle), the original

Data Quality flags (dashed lines), and the expanded data quality veto after duration

paddings are applied (solid lines).

We apply our veto metrics and window paddings to data quality flags created by the

Detector Characterization and Glitch groups within the LSC, as mentioned in Section

2. A concrete example of a veto based on a data quality flag marking instrumental

transients can be seen by examining the case of identified intervals containing an overflow

in the length sensing and control loops for the H2 interferometer. These overflows cause

severe glitches, and are identified within a second of their occurrence. The overflows

themselves are caused by other disturbances to the control systems such as seismic

motion, but irrespective of the physical origin, the overflow itself produces glitches in

the gravitational wave channel. Figure 2 shows a time-frequency representation [5] of

the gravitational wave channel, as well as a plot of the unclustered triggers as a function

of time, for the CBC search with total mass between 2 and 35 solar masses, around

two typical transients caused by a type of overflow. The data quality flag intervals

start and stop on GPS seconds, and have a minimum duration of two seconds, centered

around the times of the overflows, to ensure the glitches are not too close to the edges of

the intervals. The loudest raw triggers occur near the transients, corresponding to the

clustered trigger. Raw triggers subsequently fall off in ρ over the next several seconds

after the data quality interval.

As shown in Figure 3, this flag has a used percentage of 62% for a typical month

during the first year of S5, indicating that these veto segments are well suited to vetoing

triggers from transients. These data quality veto segments have efficiency on all triggers

of 1.4%, and deadtime of 0.0037%. The ratio of the efficiency to the deadtime is more

than 300. This indicates a veto with a statistically significant correlation to the triggers,
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as the expectation for random chance would be a ratio of 1. The efficiency is strongly

dependent on the ρ of the clustered triggers; for clusters with ρ ≥ 50 it is 14%, while for

clusters with ρ ≥ 1000, the efficiency is 64%. Two thirds of the loudest triggers found

from the H2 interferometer in this month were due to overflows.

To attempt to account for as many triggers as possible associated with this

transient, the veto interval is given 1 second of padding prior to the data quality

interval, and 4 seconds after. This alters the metrics, leading to a deadtime of 0.013%,

an efficiency for all clusters of 1.7 %, a used percentage of 78 %, and an efficiency to

deadtime ratio of 130. The expected used percentage from the trigger rate was only

0.58 %, giving RU of slightly over 130. For veto intervals with duration equal or less

than the clustering time, only one cluster can be vetoed per interval, thus the number

of veto windows used Nwt approaches the number of triggers vetoed Nvt. Comparing

Eqns 1 and 2, this means we expect RED ≈ RU , as we see in this example with a value

of 130.

For such loud transients, we expect all veto intervals to be used, but even for the

loudest intervals we have tens of percent of the intervals that contain no cluster, as is the

case with the aforementioned overflow flags. Of the 22% of the overflow veto intervals

that are unused, 20 % are within a clustering time of a clustered trigger. These intervals,

therefore, may well have many raw triggers, as the overflow on the lefthand side of Figure

2 did, but only the overflow with the loudest raw trigger was marked by a clustered

trigger. Future efforts to automatically classify the effectiveness of vetoes (Section 5.1)

would likely be sensitive to the anomalously low used percentages mentioned above,

but for future searches the problem is significantly mitigated by employing a clustering

window of 4 seconds rather than 10 seconds.

The efficiency versus ρ of the veto interval is shown in Figure 3. This rises rapidly

with the minimum ρ of the clustered triggers, and the efficiency to deadtime ratio reaches

1300 for clusters with ρ above 50 and over 5000 for clusters with ρ above 500. Efficiency

and used percentage would be independent of ρ if the times vetoed were random and

uncorrelated with transient noises.

An example of a data quality flag for an environmental transient that we used

to make a veto was the flag marking the times of elevated seismic motion due to

trains passing through Livingston. Early in S5, investigations of loud noise transients

in L1 indicated that many such transients occurred in the minutes preceding loss of

interferometer lock due to the passage of trains near the detector. At each LIGO site,

seismometers are located in each major building. Since the trains pass closest to the

end of the “Y” arm, the seismometer located there is most sensitive to the trains.

Specifically, the train-induced seismic motion was most pronounced along the direction

of the arm in the 1-3 Hz frequency band. Seismic disturbances due to trains were visible

upon examining the 1-3 Hz band limited root mean square (BLRMS) value for minutes

of the aforementioned seismometer channel. Setting a minimum seismic threshold in

that channel of 0.75µm/s in the 1-3 Hz BLRMS to identify times of passing trains, the

two to three trains per day that passed the interferometer were identified. Studies of
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Figure 3. The left plot shows the efficiency and used percentage as a function of

a minimum threshold single-interferometer cluster ρ for the H2 Length Sensing and

Control Overflow veto. The dashed lines are the values for the data quality flag before

window paddings are added. The solid lines are the values after windows are added

to veto the associated triggers. The right plot shows a log-log histogram for the same

veto. All clusters found in science mode are shown in solid lines and vetoed clusters

are shown in dashed lines.

the seismic motion induced by these trains compared with single interferometer online

glitch monitoring codes [4] showed correlation for up to a minute before and after the

minute of peak seismic amplitude for each train. Data quality flag vetoes were defined

to mark these times.

For this example, our metrics then yielded a deadtime of 0.69 %, an efficiency of

2 % for all clusters and 20 % for clusters with ρthresh ≥ 100, and used percentage of

60 % and 32 % for each threshold respectively. RED therefore increases from 3 to 30

with increasing ρthresh. RU for the same values of ρthresh increases from 0.78 to 16. This

veto is effective at eliminating a population of significant glitches, though not as loud

or common as those from the overflows mentioned earlier. Techniques for combining

together the information from these data quality vetoes is discussed in Section 4.5.

4.3. Auxiliary channel used percentage veto

Even after taking all DQ flags into account, the number of triggers left unflagged is still

very much in excess of those expected from random noise. Another approach is also

possible, using the KW triggers that are generated on important auxiliary channels.

The KW based veto method developed in S5 is similar to other KW based vetoes

implemented in LIGO’s S1, S2, S3 and S4 CBC searches [13, 15]. Comparisons were

made between KW triggers in interferometer and environmental channels and the

clustered CBC triggers. The KW significance can be used in the same way that ρ

is for CBC searches.

For each channel, the threshold on KW significance was initially chosen to be above

the background exponentially distributed triggers from Gaussian noise but low enough

to catch noise transients. This threshold was then incremented until a used percentage

for the veto of at least 50% was achieved. This was chosen to ensure that the times
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identified were likely to contain transients. Veto intervals were then generated by taking

intervals ±1s from the KW trigger times, and rounding away from the trigger to create

intervals of 3s total duration. Only channels that achieved a used percentage of 50%

were considered for veto use.

In the tuning of the veto, already diagnosed problematic times, as described in

Sections 5.1 through 5.3, were excluded from consideration. Once each veto was

defined, a list of time intervals to be excluded was created for all S5 Science mode

data with the tuned parameters. The safety of each veto channel was determined using

hardware injections, similar to the method used for data quality flags; those channels

that produced a statistically significant overlap with hardware injection times were not

implemented as vetoes. While the vetoes were defined via comparison with the clustered

inspiral triggers, the vetoes required padding to ensure that the unclustered triggers

associated with each transient were also vetoed. For channels that triggered coincident

with large amplitude transients in the gravitational wave channel, we added 7s veto

window paddings to the beginning due to the plateau effect (Section 3) and end of the

initial 3s intervals. For each CBC search these KW based used percentage vetoes were

tuned and defined with respect to the single interferometer triggers from the specific

analysis.

In the first year of S5 there were a number of critical veto channels found in

this manner. An important veto associated with an interferometer control channel

was the feedback loop that keeps the H1 recycling cavity resonant. A veto based on

environmental monitors came from the magnetometers located at the end of the Y-arm

for L1.

5. Veto categorization

The goal of using vetoes is to reduce the false alarm rate, in order to more accurately

assess the whether gravitational wave candidates are true detections. Upon evaluating

the available vetoes, we found that they do not all perform similarly, and divided them

into categories. Well understood vetoes have a low probability of accidentally vetoing

gravitational waves, and significantly reduce the background. More poorly understood

vetoes can also reduce the background significantly, but with an increased chance of

falsely dismissing actual gravitational waves. We classified the vetoes into categories

in order to allow searches to choose between using only the well established vetoes or

aggressively using more poorly understood vetoes.

Those vetoes classified as well understood almost always had higher RED and RU , as

well as lower overall deadtime, than the less understood transients that correspondingly

had less effective, longer intervals with poorer ratios. This was because when the

mechanism behind a transient was well understood, such as an overflow in the digital

control channels of the interferometer, it was easier to identify the specific times at

which these transients occurred. In some cases, however, well understood vetoes may

include little enough time that statistics are difficult to perform due to the small number
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involved, and these can still be categorized as well understood, providing sufficient

evidence for coupling is present. Conversely, when only the general cause was known,

as in the case of transients related to passing trains at the Livingston site, long intervals

of time when these conditions were present needed to be vetoed in order to capture the

related transients, despite the short duration of each particular transient. In this latter

case, a statistical argument based on the veto metrics was required to prove the utility

of a set of veto intervals.

The idea of this categorization scheme was to allow the followup of candidate

triggers after applying sequentially each category of vetoes with the consequently lowered

background false alarm rate, in order to search for detections [2, 3]. In the CBC

searches in LIGO’s S5 science run, we decided on four categories in descending order of

understanding of the problems involved:

5.1. Category 1

The first category includes vetoed times when the detectors were not taking data in

the design configuration. A fundamental list of science mode times is compiled for

each interferometer, and only the data in these times is analyzed. These times are

logged automatically by the detectors with high reliability, though on rare occasions

DQ flags marking non-science mode data mistakenly marked as science quality need to

be generated after the fact. These are the same for all searches, and do not need to be

padded with extra windows, as the data are not analyzed.

5.2. Category 2

The second category contains well understood vetoes with well tuned time intervals,

low deadtimes and a firm model for the coupling into the gravitational wave channel.

For many transients, this results in a high efficiency, particularly at high ρ, though

this is not necessarily the determining factor in categorization. A well understood

noise coupling into the gravitational wave channel may consistently produce triggers of

moderate amplitude, or at a lower rate than more common transients. These are still

considered to be of category 2 if several conditions are met. The ratios RED and RU

should be statistically significant, of order 10 or higher, for all clusters above some ρ

threshold characteristic of the transients.

One example of a category 2 veto is the overflow veto mentioned in Section 4.3. As

is clear from the right hand plot in Figure 3, these veto intervals include most of the

loudest clusters. Not all category 2 vetoes need to have this level of efficiency, or any

efficiency at all at the most extreme ρ. For instance, we also used vetoes based on data

quality flags for glitches in the lasers for the thermal compensation system (TCS). TCS

heats the mirrors in order to offset changes in curvature due to heating by the main

laser. These flags, with 4 seconds added to the end of the original 2 second intervals,

had a RED ratio of nearly 500 for triggers above ρ of 20, but zero efficiency above ρ of

40. The RU for this veto was over 100. As is clear in Figure 4, there is a population
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Figure 4. A category 2 data quality veto for a month containing glitches in the

TCS lasers of H2. At right, a log-log histogram of single interferometer clusters for

the CBC search with total mass between 2 and 35 solar masses, with all clusters in

blue and vetoed clusters in red. At left, the effect of the transient on the production

of unclustered triggers (dots), the 10 second clusters of these raw triggers (circle), the

original Data Quality flag (dashed lines), and the expanded data quality veto after the

window paddings are applied (solid lines).

of clusters with ρ from 20 to 40 that correspond to the transients from TCS glitches in

this particular search.

5.3. Category 3

The third category contains vetoes which were significantly correlated with transients,

but with less understanding of the exact coupling mechanism, and thus often poorer

performance in the metrics of deadtime and used percentage than category 2 vetoes.

There are many sources of transient noises whose coupling is only partly understood.

Site-wide events of significant duration, such as heavy winds or elevated seismic

motion, intermittently lead to loud transient noises. The auxiliary channel vetoes

discussed in Section 4.3, because of their statistical nature, fall also into this category.

Category 3 vetoes also include the minutes immediately preceding the loss of lock of

the interferometer, when the triggers were likely due to the same instabilities that

contributed to the lock loss. These vetoes, based more on the probability of transients

than a direct measurement, tend to have lower used percentages, higher deadtimes, and

therefore smaller ratios between the efficiency and deadtime.

The train data quality flag veto mentioned in Section 4.2 was in this category,

for while the trains themselves were well understood, the nonlinear coupling to create

sporadic high frequency glitches was not. This caused large windows defined by the

presence of heightened ground motion alone to be created, rather than targeted vetoes

of the individual noise transients.

Another example was elevated winds above 30 Mpc at the Hanford site. This data

quality veto had a RED of 17, and a RU of 31. While this is significant, it is less than

the typical value of category 2 vetoes.
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Figure 5. A category 3 data quality veto for a month of high winds at Hanford. A

log-log histogram of single interferometer clusters, total in solid lines and vetoed in

dashed lines.

By definition, the auxiliary channel vetoes have a large used percentage, always

greater than 50%. However, they are classified as category 3 because the coupling is

not well understood. An example of such a veto made using the above technique based

on an interferometer control channel is the veto made from the H1 feedback loop that

keeps the recycling cavity resonant. This veto had an RED of 20. Another veto, this

time based on an environmental channel, used the magnetometers located at the end of

the L1 Y-arm, and had an RED of 10.

5.4. Category 4

The fourth category contains vetoes with low statistical significance, often with high

deadtimes. The used percentages are often near 100%, but this is a representative of the

long intervals of science mode time flagged, and thus the high probability that at least

one cluster will be within the time defined (as mentioned earlier, the average clustered

trigger rate was of order one per 10 minutes). Seismic flags with lower thresholds,

aircraft passing within miles of the detectors, and problems recorded in the electronic

logbooks at the detectors all fall within this category. These long intervals are not used

as vetoes for searches, but rather are identified for the purposes of providing input to

the follow up of gravitational wave candidates, when all possible factors that prompted

the creation of these flags at the time of the detection candidate are scrutinized.

5.5. Examining candidate events after vetoing times

As mentioned earlier, candidate coincident events that occur during the times of category

2, 3, and 4 vetoes are not automatically discarded. The total deadtime of category 2

vetoes for the low mass CBC search, for example, was of order 1%. Category 3 had

a deadtime of order 5%, and category 4 many times that. As the search reported

no detections, it therefore included a calculation of the upper limit on the number of

compact binary coalescences. The first three categories, including both data quality
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Figure 6. This diagram schematically represents the anticipated effect of vetoes on the

significance of candidate events. The solid lines represent the estimated background

coincidence rate from timeslides before and after vetoes. The circles denote the number

of foreground coincidences with ρ
2 equal to or greater than the x axis value. For

the purpose of the discussion in Section 5.5, the points A, B, C, and D are denote

hypothetical detection candidates.

flag vetoes and auxiliary channel used percentage vetoes, were applied in this example

search before calculating the upper limit, as they reduced the false alarm rate from these

transients. Because the total veto deadtime of the applied categories was between 5%

and 10% per interferometer, the probability that a true gravitational wave could be in

a vetoed interval is significant.

The decisions on which vetoes to use are made prior to examination of candidates.

While the veto choices were tuned on single interferometer triggers, the end product

of the CBC searches are detection candidates found in coincidence in the data from

multiple interferometers. In the rest of this section, we will discuss the effect that the

veto categories have on coincident CBC searches.

While we are unwilling to precipitously remove all candidates in vetoed times

from consideration, it is imperative to reduce the rate of accidental coincidences from

the noise transients that have been identified. This can be done by examining all

significant candidates with respect to the background present after each category is

consecutively applied. If a candidate is not vetoed by successive veto categories, it

becomes more significant, as more of the background false alarm candidates against

which it is compared are removed. If a candidate is in vetoed time for a given category,

it is not completely ruled out as a detection, but further investigation would be required

to show such a candidate is not an artifact due to the disturbance that triggered the

veto. Candidates that are vetoed by lower numbered categories are more suspect, given

the firmer understanding of the vetoes that populate the first two categories. A true
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gravitational wave is not impossible, as a sufficiently nearby (within the Milky Way)

binary system coalescence could theoretically overflow the feedback control systems. It

would be apparent, however, in follow up investigations as the spectrogram for the data

would show a large amplitude chirp signature leading up to the overflow, coherently

between multiple detectors.

The diagram in Figure 6 illustrates the effect of vetoes that we anticipate on the

significance of detection candidates. Superimposed are four hypothetical candidates

with the labels A, B, C, and D. For illustration only, let us assume that there is a

gravitational wave candidate at one of these points.

If the candidate is at point A, it is visible above background and significant before

any vetoes are applied. If A is not vetoed after subsequent veto categories are applied,

it will be the loudest candidate and significantly above the rest of the distribution,

and thus a strong gravitational wave candidate. If A is vetoed, it would be plausible

to believe it could still be significant with strong evidence that it did not originate

from the same problems used to define the veto, as in the hypothetical example of the

galactic coalescence mentioned above. Even if A is recovered, it would be compared to

the background estimation before vetoes are applied, and thus have a lower significance

than had it survived the vetoes originally.

If the candidate is at point B, it is visible above background, though not as

significant as if it were at point A. If it is not vetoed, then B is a good candidate,

and having cleared away the understood accidental triggers from transient noises, it can

be followed up in depth. The reason for defining vetoes is precisely to uncover these

candidates, which would be buried in the background otherwise. If it is vetoed, it is

again necessary to confirm that the data artifacts prompting the veto intervals are not

responsible for the candidate.

If the candidate is at point C, it is likely among the triggers with the largest ρ2

before the vetoes are applied. Surviving the vetoes improves its ranking, reducing the

background of triggers with equal or lower ρ2. If it is vetoed, it is a problematic candidate

given the population of spurious triggers that it sits in. If it survives the vetoes, it is

still only a marginal candidate. Follow up analysis of the highest ρ2 triggers will likely

uncover reasons to distrust the surrounding loud candidates, but that is not enough to

make C into a strong candidate. Additional veto definitions and revisions would make a

candidate at C somewhat more significant, providing it is not vetoed, plausibly making

it significant.

A candidate at point D is within the accidental population of triggers after vetoes

are applied, with tens of triggers surrounding it with similar ρ2. Such candidates are not

detectable without additional reduction of the background. Additional veto definitions

and revisions might make a candidate at D marginally more significant, but it is not at

all likely to become detectable through veto efforts.
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5.6. Results of veto efforts in S5

In S5, hundreds of data quality flags and auxiliary channels were evaluated as mentioned

above in Sections 4 and 5. The resulting veto metrics and categorization for each of the

vetoes used in the searches were archived in a technical document [16].

6. Proposed Veto Techniques

The techniques mentioned in Section 4 were by and large refined months after the data

were recorded. Additionally, the decisions on categorization, veto window padding,

and utility of auxiliary channels for used percentage vetoes were determined largely by

individual human examination of the behavior of each data quality flag and auxiliary

channel. While this was necessary for development and early implementation, the low

latency and rigor associated with automating as much of this decision making process

as possible is desirable. Below are discussions of our current and near future efforts to

realize the goal of automated evaluation, categorization, and extension of data quality

and auxiliary channel vetoes.

6.1. Automated categorization using a χ2 test

One promising method that has been developed, and that has the potential to help

automate recommendations for veto categories, is a figure of merit based on a χ2 test.

For each DQ flag this χ2 statistic is given by

χ2(ρ) =
R∑

k=1

(nk(ρ)− Tk〈nt(ρ)〉)
2

Tk〈nt(ρ)〉
,

where 〈nt(ρ)〉 is the average number of triggers per unit time in the science run above

a certain threshold ρ, Tk is the duration of the flagged window k, and nk is the actual

number of triggers above the threshold ρ in the same window.

The null hypothesis is that the triggers are Poisson distributed, i.e. there is no

correlation between the presence of triggers and the DQ flags. In our analysis we

compute the figure of merit and test the null hypothesis at a confidence level of 95%.

The higher the figure of merit, the higher the correlation between triggers and DQs and

thus the lower the category.

As an example of the χ2 categorization scheme, the χ2 value for the H2 overflow

mentioned previously is ≈ 100 times higher than the typical ranges of category 3 vetoes

and ≈ 1000 times higher than the ranges typical of category 4 vetoes. For vetoes that

have χ2 values that are near or on the boundaries between the categories we turn to

figure of merits mentioned previously such as deadtime, used percentage, and efficiency

to determine which category a particular veto belongs in. For example, the veto for

glitches in the TCS lasers of H2 has a chi-squared value that falls near the lower range

for category 2 and the higher range for category 3. However, the high used percentage

and the low deadtime distinguish this veto from category 3 vetoes with similar χ2 values.
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The χ2 method is a step towards automated categorization. An automated monitor

that incorporates previously mentioned figures of merit and χ2 values to organize vetoes

into categories is currently being developed.

6.2. Automated veto window padding determination

The determination of window paddings (see Section 4.2) is another step of the veto

selection pipeline that currently requires human input. A method to automate this

step would be to look for quiet time intervals of pre-determined duration around the

clusters. If the unclustered triggers remain below the minimum ρ threshold for the

chosen duration before and after the glitch’s loudest trigger, the earliest and latest

triggers above the threshold would determine the left and right padding of the DQ

window, respectively. Assuming the duration of the required padding for the DQ flag

to be normal distributed, a final recommendation for the padding of that flag would be

obtained by taking the average of the values for each window.

6.3. Multiple auxiliary channel veto algorithm

Another approach that has been explored is that of defining vetoes when multiple

auxiliary channels glitch coincidently, specifically by examining the output of the

“QScan” time-frequency algorithm [5] over multiple auxiliary channels, at the time

of detection candidates. When a number of auxiliary channels glitch simultaneously

and at the same time as the gravity wave channel, there is a strong possibility that the

glitching has a non-astrophysical cause, particularly when the channels are physically

related. For example, a number of the length sensing and control channels may glitch

together in different parts of the interferometer, such as the beam splitter and reflected

and dark ports. Sometimes the glitches in a set of length sensing and control channels

will be associated with glitches in the alignment sensing and control channels. Many

of these measure pitch and yaw of mirrors, including the test masses, and when mirror

alignment and length disturbances occur simultaneously, it is unlikely that a transient

also in the gravity wave channel will be astrophysical. Nevertheless, safety studies have

been successfully conducted, using all of the hardware injections from the first year of

S5, to verify that these combinations of glitches could not be caused by the arrival of

gravitational waves.

Tests of the efficacy of proposed vetoes were carried out on data from the S5 search

with total mass between 25 and 100 solar masses. On outlier coincident triggers with

ρ ≥ 200 remaining after the application of existing veto categories 1 through 4, from 94

to 100% of the triggers would be vetoed for each single interferometer, and 100% of the

coincident triggers would be vetoed in one or more interferometers. Since these vetoes

are run on small time intervals around the times of the detection candidate triggers, the

dead time is not calculated: a candidate survives or is vetoed.

Future work planned includes running this algorithm over the times of candidates

using a larger set of the available channels, rather than only channels corresponding
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the length and alignment sensing and control, as restricted in the above studies to

reduce computation time. It is expected that additional sets of channels will be useful,

particularly the environmental channels.

7. Summary

In this paper, we showed how we developed techniques for vetoing non-astrophysical

transient noises safely and effectively, in order to reduce the effect of noise transients

on astrophysical searches for low mass CBCs in the first year of the initial LIGO data

run. We based our vetoes on data quality flags created by detector characterization

work, as well as KW triggers from auxiliary channels with high used percentages.

Though we approached each flag and each channel individually, and though different

flags and different channels reflected a variety of specific causes, we found that the

effects on the gravitational wave channel fell into a few common groupings. Flags and

channels that responded to similar phenomena generally required similar windows, had

similar deadtimes, were effective for similar populations of triggers, and therefore were

placed in the same categories. The LSC used these categories for sequentially studying

the significance of gravitational wave candidates rising above background in the CBC

searches.

Going forward, we intend to use the experience gained to finish ongoing automation

work both to select veto window paddings and to provide recommendations for veto

categorization. There will be data quality flag and auxiliary channel based vetoes

developed for use in LIGO’s S6 science run. The goal will be to analyze the auxiliary

channel KW triggers in near real time, and to have vetoes defined on a week-by-week

basis for both types of vetoes. It is probable that there will be marginal cases for

categorization that require further human review, but automation will allow us to focus

our time on these cases.

Acknowledgments

This work is partially supported by the National Science Foundation grants PHY-

0457622 (NZ, TR), PHY-0553422 (NC, TI, MC, JC), PHY-0555406 (KR), PHY-0600259

(JRS), PHY-0605496 (GG, JS), PHY-0653550 (LC), PHY-0757937 (MC, BR), PHY-

0757957 (PS), PHY-0847611(DAB), PHY-0854790(NC, TI, MC, JC), and PHY-0905184

(GG, JS).

References

[1] Abbott B et al. (LIGO Scientific Collaboration) 2009 Rept. Prog. Phys. 72 076901 (Preprint

arXiv:0711.3041)

[2] Abbott B et al. (LIGO Scientific Collaboration) 2009 Phys. Rev. D 79 122001 (Preprint

arXiv:0901.0302)

arXiv:0711.3041
arXiv:0901.0302


Reducing False Alarms for Compact Binary Coalescences Searches 22

[3] Abbott B et al. (LIGO Scientific Collaboration) 2009 Phys. Rev. D 80 047101 (Preprint

arXiv:0905.3710)

[4] Blackburn L et al. 2008 Class. Quant. Grav. 25 184004 (Preprint arXiv:0804.0800)

[5] Chatterji S, Blackburn L, Martin G and Katsavounidis E 2004Class. Quant. Grav. 21 S1809–S1818

(Preprint arXiv:gr-qc/0412119)

[6] Wainstein L A and Zubakov V D 1962 Extraction of signals from noise (Englewood Cliffs, NJ:

Prentice-Hall)

[7] Allen B, Anderson W G, Brady P R, Brown D A and Creighton J D E 2005 FINDCHIRP:

An algorithm for detection of gravitational waves from inspiraling compact binaries (Preprint

arXiv:gr-qc/0509116)

[8] Owen B J and Sathyaprakash B S 1999 Phys. Rev. D 60 022002

[9] Allen B 2005 Phys. Rev. D 71 062001

[10] Abbott B et al. (LIGO Scientific Collaboration) 2008 Phys. Rev. D 77 062002 (Preprint

arXiv:0704.3368)

[11] Abbott B et al. (LIGO Scientific Collaboration) 2007 Tuning matched filter

searches for compact binary coalescence Tech. Rep. LIGO-T070109-01 URL

http://www.ligo.caltech.edu/docs/T/T070109-01.pdf

[12] Brown D A 2004 Search for gravitational radiation from black hole MACHOs in the Galactic halo

Ph.D. thesis University of Wisconsin–Milwaukee

[13] Christensen N et al. (LIGO Scientific Collaboration) 2005 Class. Quant. Grav. 22 S1059–S1068

[14] Abbott B P et al. (LIGO Scientific) 2009 Phys. Rev. D80 102001 (Preprint 0905.0020)
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