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Abstract 

This paper studies the determinants of firm-level revenues, as a measure of the performance of firms in 

China's domestic and export markets. The analysis of the determinants of the aforementioned outcomes 

calls for a mixed linear-nonlinear econometric approach. The paper proposes specifying a system of 

equations, which is inspired by Basmann's work and recent theoretical work in international economics 

and conducts comparative static analyses regarding the role of exogenous shocks to the system to flesh 

out the relative importance of transmissions across outcomes. 
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1 Introduction 

An important strand of Robert Basmann’s early work was devoted to the estimation of 

simultaneous equations (see Basmann, 1957, 1959, 1961, or 1963, to mention a few). Ex-

amples of simultaneous systems of equations in economics are the study of the domestic 

and foreign demand of outputs across firms, of the consumption of different goods and 

services across households, or the behavior of different workers within firms or sectors. 

A host of economic problems at various levels of aggregation involves panel data and 

systems of equations. Two econometric problems which complicate the analysis con-

siderably are the following: The data broadly speaking may be missing in the sense of 

censoring or truncation and is most likely cross-sectionally dependent (e.g., see Pinkse 

and Slade, 1998; McMillen, 2002; Smith and LeSage, 2004; Pinkse, Slade, and Shen, 

2006; Klier and McMillen, 2008; Smirnov, 2010; Conley and Topa, 2007; Case, 1992; 

Wang, Iglesias, and Wooldridge, 2013; for approaches towards estimating problems with 

cross-sectionally dependent binary outcome variables; or LeSage, 2000; Flores-Lagunes 

and Schnier, 2012; Xu and Lee, 2015a; Xu and Lee, 2015b; LeSage and Pace, 2009; for 

cross-section approaches towards a wider range of models with cross-sectionally depen-

dent, censored or truncated and other limited dependent variables). While the literature 

on spatial and social-interaction models has formulated and analyzed models for systems 

of equations (see, e.g., Cohen and Morrison Paul, 2004, 2007; Kelejian and Prucha, 2004; 

Wang, Li, and Wang, 2014; Baltagi and Deng, 2015; Wang, Lee, and Bao, 2015), in these 

approaches the structural form of the model is linear in parameters, and, except for Co-

hen and Morrison Paul (2004) and Baltagi and Deng (2015), the approaches are designed 

for an analysis of cross sections of units. 

The present paper proposes an approach towards estimating panel-data processes 

of systems of cross-sectionally dependent data with potentially mixed continuous and 

censored dependent variables. It outlines a Bayesian estimation approach, puts forward 

simulations to illustrate the performance of the estimators in small samples, and provides 

an application with Census-type firm-level data on manufacturers of textiles in China’s 

province of Guangdong, analyzing domestic and foreign (i.e., export) demand towards 
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firms. 

According to the simulation exercises presented below, the Bayesian approach works 

well in small samples of 500 and 1,000 cross-sectional units. Ignoring the censoring 

clearly leads to a bias in the estimated parameters, according to that evidence. This 

bias is aggravated in a spatial or social-interactions model relative to a model where the 

reduced form of the model is a linear index, since censored observations feed back onto 

the outcomes of uncensored units. Ignoring that this feedback occurs by way of the true 

rather than the censored outcomes leads to a substantive parameter bias, depending on 

the relative importance of the censored units in the data. 

Since its gradual opening up in the 1970s and, in particular, since the country’s 

entering of the World Trade Organization (WTO) in 2001, firm performance has been 

soaring in China. Clearly, foreign demand through exports and foreign firm presence 

through foreign affiliate operation in China have been drivers of this process. This paper 

studies the linkages between domestic selling and exporting on the one hand and among 

domestic versus exporting sellers on the other hand in China’s textiles production. The 

former means that two (potential) outcomes of any firm are modelled as interdependent, 

and the latter implies that firms are not behaving and operating independently of each 

other but that they are cross-sectionally dependent through spillovers. For instance, 

earlier work on firm-level activity in China suggests that the propensity of domestic 

firms to start exporting new varieties to new markets reacted positively to the export 

activity of neighboring firms, in particular, of multinational neighbors (see Swenson, 

2008; Mayneris and Poncet, 2015). Other evidence indicates that exporting changes 

firm behavior through learning, whereby domestic sales are affected by export success 

(see Ma, Tang, and Zhang, 2014; and Van Biesebroeck, 2014). 

In a particular industry, all present firms sell, most if not all of them sell domestically, 

but fewer firms are recorded to export. Hence, firm-level exports are either truncated 

(missing after log-transformation) or censored (lower than an imposed reporting thresh-

old or censored due to confidentiality requirements). And, according to the discussion 

above, domestic sales and exports are interdependent, and they are not independent of 
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other firms, in particular, foreign-owned ones. Accordingly, the analysis of this problem 

calls for an approach to estimate a set of mixed linear and nonlinear seemingly unre-

lated or even simultaneous equations, since domestic sales of firms are continuous, while 

exports are censored or truncated. With repeated observations of firms over time and 

allowing for correlations of the disturbances across equations, the analysis calls for a 

panel-data systems approach. The paper proposes specifying such a system of equations 

which is inspired by recent theoretical work in international economics and conducts 

comparative static analyses regarding the role of exogenous shocks to the system to 

assess the relative importance of shocks across domestic and export sales within and 

between firms. 

The insights from the empirical analysis based on the data employed here may be 

summarized as follows. First, there is censoring or truncation of log exports (for about 

6% of the observations).1 Second, the parameter estimates lead us to reject models 

which disregard spatial or network effects among textiles producers. Third, there is an 

indication that success at export markets positively influences domestic sales but there is 

no evidence of the opposite. Fourth, the results point to the relevance of time-invariant 

unobservable factors which affect domestic and export sales of textiles producers. These 

results suggest that the data at hand call for econometric models of the kind proposed 

and analyzed in this paper. With this approach we identify (broadly defined) productiv-

ity as a key driver of both domestic and export sales of textiles and ad-valorem tariffs as 

1In comparison to data-sets where firms are pooled across sectors, this level of censoring or truncation 

should be considered as relatively low. However, we provide simulation evidence that the proposed 

estimator can also handle much more extreme censoring or truncation rates. 

In practice, exports are typically treated as bivariate truncated in log-transformed data (see Helpman, 

Melitz, and Rubinstein, 2008, for an approach with aggregate bilateral trade data and Karpaty and 

Kneller, 2011, for an approach with firm-level data), as they are truly or reported as zero in levels. 

This means that the process of export propensity (an extensive margin of exports) and export volume 

(an intensive margin of exports) – if positive – must be determined by at least partly different sets of 

covariates for reasons of identification (see Wooldridge, 2010). However, few existing econometric models 

are applicable with panel data (see Dustmann and Rochina-Barachina, 2007, for a survey), and they do 

not accommodate the case with spillovers between cross-sectional units such as firms. 
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the second most important determinant of textiles exports at the firm level in Guang-

dong province. Other important factors relate to factor-market competition among all 

domestic sellers and exporters and to spillovers from other domestic sellers on domestic 

sales and from other exporters on export sales of a firm. Spillovers across firms imply 

that the direct (or partial) effect of a shock on an exogenous explanatory variable may be 

modified (augmented or reduced) by effects on other firms and associated repercussions. 

Then, the total effect of a shock differs from its direct effect.2 

The findings indicate that spatial or network effects among firms account for up to 

about one-third to almost one-half of the total impact for the median firm and some of 

the determinants of domestic sales and exporting. The inter-quartile range of the total 

impact effects is estimated to amount to slightly less than one-half of the effect on the 

median firm. This heterogeneity of the impact effects is due to the interdependence of 

domestic and export selling, respectively. 

The remainder of the paper is organized as follows. The subsequent section in-

troduces the econometric model for panel data with systems of mixed continuous and 

limited dependent variables, Section 3 outlines the estimation procedure, and Section 

4 provides some eclectic evidence on the small-sample performance of the estimation 

approach. Section 5 summarizes Census-type panel data on various characteristics of 

Chinese textiles manufacturers in Guangdong province, including the outcomes of in-

terest, domestic and export sales, and it reports on estimation results based on an 

application of the aforementioned procedure on the respective data. The last section 

concludes. 
2In the international economics literature, such a discrepancy between partial and total effects is 

common in general equilibrium models. However, any kind of interdependence – through partial or 

general equilibrium and strategic or not – leads to such a discrepancy. 
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2 An econometric spatial panel-data model of a system of 

mixed censored and continuous equations 

Let us use indices i and t to denote firms and time periods, and let N and T denote the 

unique number of firms and years in the data. 

For each firm in the data, we observe log domestic sales, yd For exporters, we observe it. 

elog exports, y Whereas log domestic sales are continuous, log exports are censored. it. 

These two observed variables are assumed to be generated from a two-equation system 

d∗ e∗of corresponding latent variables y and y Using a generic notation for equation it it . 

g, h ∈ {d, e}, the two equations of the latent variables are specified as X 
g∗ h∗ g g∗ g gy = γgy + λg w + x βg + uit it ijtyjt it it 

j∈Nt 

g∗ g g= γgy h∗ + λgy + x βg + u (1)it it it it 

where yg∗ is the spatial lag of the gth latent dependent variable, yh∗ denotes the latent it it 

dependent variable of the other equation, xg is a row vector of exogenous, explanatory it 

variables of the gth latent dependent variable, λg is a scalar spatial-lag parameter, γg 

gis a scalar parameter, βg is a conformable parameter vector, and u is an error term. it 

With left censoring at zero,3 we may define the two observed outcome variables as 

y d = y d∗ (2)it it 

e e∗ e∗ y = I(y ≥ 0)y (3)it it it . 

To the Bayesian econometrician, who can sample the latent continuous variables, the 

problem at stake is fully characterized by two latent processes and two corresponding 

equations. The corresponding system of equations is one of mixed censored and uncen-

sored, spatially correlated panel data.4 

3It would be straightforward to allow the censoring point to happen at an arbitrary other value, or 

to consider right censoring of the data on the dependent variable(s). However, since left censoring at 

zero is the relevant case for the application below, we outline the econometric model accordingly. 
4Note that under the assumptions adopted here, namely that there is (spatial or social network) 

interdependence in latent outcomes rather than observed outcomes, the difference between censoring 

and truncation vanishes with Bayesian sampling of latent outcomes. 
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Regarding the disturbances, we assume for the generic equation g ∈ {d, e} 

g αg + νgu = it i it, (4) 

where αg denotes an individual-specific, time-invariant unobserved effect and νg thei it 

idiosyncratic error. In what follows, we will consider αg and νg to be structurallyi it 

correlated across equations. In particular, let us introduce the two 2 × 1 vectors αi = 

(αd
i , α

e
i )
0 and νit = (νit

d , νe . Both vectors are assumed to be multivariate normal with αiit)
0 

potentially having a non-zero mean and νit having mean zero, with variance-covariance 

matrix ⎛ ⎞ 
σζdζd . 

E[ζitζit
∗ ] = ⎝ ⎠ for ζ ∈ {α, ν}, (5) 

σζeζd σζeζe 

where ζit corresponds to either the time-invariant αi or the time-variant νit. More-

αgover, we assume that E[αg ] = 0 for all i 6= j, E[αgνh ] = 0 for all {g, h, i, j, t}, and i j i jt

νgE[νg ] = 0 for all {g, i, j, s, t}.is jt

As is common in panel-data models featuring spatial dependence or a social network 

structure (see, e.g., Kapoor, Kelejian, and Prucha, 2007), the observations are stacked 

such that i is the fast index and t the slow index. After defining the TN × TN spatial 

or social interactions weights matrix W g = (wg ), the model for the latent variable for ijt

equation g in (1) may be written as 

g∗ h∗ g∗ y = γgy + λgW gy + Xgβg + ιT ⊗ αg + νg, (6) 

g∗for g, h ∈ {d, e} where y , yh∗, and νg are of dimension TN × 1.5 The matrix Xg is 

of dimension TN × kg and its parameter vector βg is kg × 1. The TN × TN weights 

matrix W g is block-diagonal with W g = diag(W g) and contains zero diagonal elements. t 

The off-diagonal elements of W g are possibly nonzero, reflecting the neighborliness or t 

g∗ g∗5Notice that we could write W g y = y instead. However, the notation in equation (6) will turn 

out to be useful towards outlining the reduced form of the system of equations. 
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network relations between two cross-sectional units at time t. Moreover, we assume 

the elements of W g to be normalized so that the admissible parameter space of λg can 

be characterized more straightforwardly. For instance, a convenient normalization is 

dividing each element in W g by the corresponding sum of all elements in a row (see 

Anselin, 1988; and see Kelejian and Prucha, 2010, for alternative normalizations).6 The 

vector αg is of dimension N × 1. 

Stacking both equations for g ∈ {d, e} below one another yields the following system of 

equations 

∗ y = (Γ ⊗ ITN )y ∗ + (Λ ⊗ ITN )Wy ∗ + Xβ + Aα + ν, (7) 

e∗0)0where y ∗ = (yd∗0, y denotes the 2TN × 1 vector of stacked latent variables. The 

2TN × 2TN spatial weights matrix is given by W = diagg(W g). The 2 × 2 diagonal 

matrix of the spatial autocorrelation (or social interaction) parameters is given by Λ = 

diagg(λg), and the 2 × 2 matrix Γ contains the respective γ parameters off the diagonal. 

The regressors are subsumed in the 2TN × k matrix X = diagg(Xg) with corresponding P 
k ×1 parameter vector β = (βg), where k = kg. The unobserved, time-invariant g∈{d,e} 

heterogeneity of the cross-sectional units is subsumed in the 2N ×1 vector α = (αg), and 

the innovations are subsumed in the 2TN × 1 vector ν = (νg). The other matrices are 

defined as follows: A = I2 ⊗ ιT ⊗ IN , with ιT being a column vector of ones of dimension 

T , and ITN being an identity matrix of dimension TN . The operator ⊗ denotes the 

Kronecker product. 

Based on this notation, the reduced form of the system of equations in (7) can be written 

as 

∗ y = L−1(Xβ + Aα + ν), (8) ⎛ ⎞ 
Ldd Lde 

with L = (I2TN − (Γ ⊗ ITN ) − (Λ ⊗ ITN )W ) ≡ ⎝ ⎠, where Ldd = ITN − λdW d , 
Led Lee 

Lee W e , Lde= ITN − λe = −γdITN and Led = −γeITN . Notice that the case of a spa-

tial seemingly unrelated system of equations is covered by this expression, as only the 

off-diagonal elements of Γ would then be zero, and in turn both Lde and Led would be 

6With a time-invariant, normalized, N × N spatial weights matrix W 
g 
, W g = IT ⊗ W 

g 
, where IT is 

an identity matrix of dimension T and W 
g 
= (wg ).ij 
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0TN ×TN . 

3 Estimation 

3.1 Bayesian MCMC in general 

Standard simultaneous systems of equations can be estimated by maximum likelihood 

(see, e.g., Haavelmo, 1944; Hood and Koopmans, 1953; among others), two-stage least 

squares (see Basmann 1957, 1959) or Bayesian methods (see Zellner, 1971; or Drèze and 

Richard, 1983, for an overview). 

The system of equations of interest to this paper is characterized by three types 

of dependencies: cross-sectional dependence among the individual units due to spatial 

(or network) interactions and the presence of Wy∗ in equation (7); cross-equation de-

∗pendence due to the presence of y on the right-hand side of (7); and cross-equation 

dependence through the assumptions about the time-invariant and time-variant unob-

servables in (5). Furthermore we have a mixed system where one equation is linear 

whereas the other one is censored. 

∗In particular, the presence of Wy∗ as a determinant of y precludes the estimation 

of the model parameters by the maximum likelihood estimator, in particular, for large 

samples.7 Moreover, the censoring of the data in one equation does not permit an anal-

ysis of the model by customary instrumental-variables generalized-method-of-moments 

estimators which are designed for problems where the data are fully observed.8 

To account for the different forms of interdependence and the non-linearity of some 

of the dependent variables, we follow a Bayesian Markov-chain Monte Carlo (MCMC) 

approach which has been used in earlier work mainly to study single-equation, cross-

section, unlimited- and limited-dependent-variable models (see, for example, LeSage, 

7This is due to the interdependence of the units in the reduced form of the model. 
8Clearly, either ignoring Wy ∗ on the right-hand side of the model or replacing it by Wy (i.e., using 

censored rather than true values of the outcome) would lead to biased parameter estimates. 

8 



2000; LeSage and Pace, 2009; Parent and LeSage, 2012, who analyze a univariate linear 

spatial dynamic random effects model. Also, Baltagi, Egger, and Kesina, 2016, who 

analyze a bivariate probit panel-data model with spatial or social network interactions). 

However, none of these papers consider the case of simultaneous equations with cross-

sectional dependence, limited dependent variables, and panel data, which is the focus of 

the present paper. 

With Bayesian MCMC simulation, the posterior distribution of all parameters is 

estimated by combining prior information on them with the likelihood for the respective 

model. Each parameter is sampled sequentially from its conditional distribution – either 

by Gibbs or Metropolis Hastings sampling, depending on the nature of the conditional 

distribution of the sampled parameter (see the next subsections for details). 

Bayesian MCMC simulation is suitable for simultaneous equation systems with cross-

sectional dependence as the one described in the previous section for several reasons. 

First, it avoids calculating and evaluating multidimensional integrals as they occur in 

maximum-likelihood models with spatial or social network interactions. Second, with 

Bayesian MCMC estimation, the treatment of limited-dependent-variable models is facil-

itated. Utilizing the approach of Albert and Chib (1993) for non-spatial, cross-sectional, 

univariate probit models and LeSage (2000) and LeSage and Pace (2009) for spatial, 

cross-sectional, univariate and multivariate probit models, the latent variables of non-

linear dependent variables may be introduced as additional parameters to the model. 

Compared to maximum-likelihood estimation, this simplifies the estimation as condi-

tioning on latent variables yields simpler conditional distributions than not doing so.9 

In particular, this data-augmentation approach of Bayesian MCMC estimation facili-

tates the computation of moments and the associated confidence intervals of the effects 

of exogenous explanatory variables on outcome. 

Let us use the following convention for the notation in this section. Let us subsume 

9For example, in the application below, we fully observe log domestic sales of textile producers in 

China while their log exports are censored from below at zero. However, one could imagine more general 

circumstances of bigger systems of equations with truncation as well as censoring. 
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all parameters in θ = {β, λg, γg, Σν , y ∗, α, µα, Vα} for g ∈ {d, e}, where β = (β0 , β0 )0 andd e

∗ d∗0 e∗0)0y = (y , y . The variance-covariance matrix of the idiosyncratic errors is denoted 

by Σν . The vector µα and the matrix Vα relate to the conditional distribution of α 

d0 e0)0and will be described in more detail in the subsequent subsections. Using y = (y , y

to denote the vector of observed dependent variables, the joint posterior distribution is 

given by 

p(θ|y, X, W ) 

∝ p(y|y ∗ , X, W )p(y ∗ |β, λg, γg, Σν , α, µα, Vα, X, W ) 

p(β)p(γg|λg)p(λg)p(Σν )p(α|µα, Vα)p(µα)p(Vα). 

The first expression in the second line relates the observed dependent variables to their 

latent counterparts, the second expression represents the likelihood of the model, and 

the third line denotes the priors. The expression for the joint posterior distribution 

turns out to be intractable as such. Therefore, we calculate the conditional distributions 

for all model parameters given the data and the other parameters, which we denote by 

θ`|θ−θ` . In what follows, we will use the convention to denote posterior distributions by 

an overline and prior distributions by an underline. 

3.2 Prior distributions and likelihood 

Using N and W to denote the normal and Wishart distributions, we specify the prior 

distributions for β and Σν as 

12β ∼ N (β, V β ) where β = 0k×1 and V = Ik · 1e , (9) 

Σ−1 W(V −1 V −1 
ν ∼ , vΣν 

) where = I2 and vΣν 
= 2, (10)Σν Σν 

where the above assumptions imply a very diffuse (or uninformative) prior about the 

elements of β and also a relatively diffuse prior about the elements of Σν . The time-

invariant, unobserved heterogeneity captured by α = (α0 , α0 )0, is modelled by means d e

of a hierarchical structure, whereby all elements αi = (αdi, αei)
0 utilize a distribution, 

which has some parameters in common, which we label as hyper-parameters and which 
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are drawn in a previous step and utilized when drawing αi. These hyper-parameters are 

the associated mean µα and the variance-covariance matrix Vα, which have the following 

priors: 

µα ∼ N (µ , V µα) where µ = 02×1 and = I2 (11)
µα µα 

V µα 

V −1 ∼ W(V −1 where V −1 and vV α = 2. (12)α V α, vV α) V α = I2 

By this choice, the priors for the elements in α are relatively diffuse. 

The prior distributions for γg and λg exhibit also a hierarchical structure of the form 

γg|λg ∼ U(−1 + |λg|, 1 − |λg|), (13) 

λg ∼ U(−1, 1), (14) 

reflecting dependence of the spatial-lag (or social-interaction) parameters λg and the 

parameters on the endogenous variables γg to ensure identifiability of the system.10 

As all of the aforementioned priors are relatively uninformative, in calculating the 

posterior distribution relatively little weight is placed on the priors and much on the data. 

∗The joint distribution of y is given by 

∗ y ∼ N (µy ∗ , Ωy ∗ ), (15) 

with 

µy ∗ = L−1(Xβ + Aα) 

Ωy ∗ = L−1(Σν ⊗ ITN )L
−10 , ⎛ ⎞ ⎛ ⎞ 

d Ωdd Ωde 

where µ and Ω are partitioned as µ = ⎝ 
µ ⎠ and Ω = ⎝ ⎠. 
e Ωed Ωeeµ

∗The likelihood stated in terms of the latent variables y is given by � � 
|L| 1 � � 

BΣ−1 p(y ∗ |θ, X, W ) = 
(2π)2T N/2|Σ|T N/2 

exp − tr ,ν2 

10Clearly, this identifiability eventually requires putting exclusion restrictions on the variables in X 

across the equations in the system. The associated conditions are standard in models with systems of 

equations (see Kelejian and Prucha, 2004). 
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where tr denotes the trace and B is a 2 × 2 matrix containing the elements 

d∗ + Lde e∗ − Xdβd − ιT ⊗ αd)0(Ldd d∗ + Ldebdd = (Lddy y y ye∗ − Xdβd − ιT ⊗ αd), 

d∗ + Lde e∗ − Xdβd − ιT ⊗ αd)0(Led d∗ + Lee e∗ − Xeβebde = (Lddy y y y − ιT ⊗ αe), 

d∗ + Lee − ιT ⊗ αe)0(Ldd d∗ + Ldebed = (Ledy ye∗ − Xeβe y ye∗ − Xdβd − ιT ⊗ αd), 

d∗ + Lee e∗ − Xeβe − ιT ⊗ αe)0(Led d∗ + Lee e∗ − Xeβebee = (Ledy y y y − ιT ⊗ αe). 

3.3 Conditional distributions 

Conditional distribution of β 

The conditional distribution of β given the other parameters is 

β|θ−β ∼ N (β, V β ), (16) 

where 

� � � � 
X 0 Σ−1β = V β ν ⊗ ITN (Ly ∗ − Aα) + V −1β , � � � �−1 

V β = X 0 Σ−ν 
1 ⊗ ITN X + V −1 . 

Accordingly, we may apply Gibbs sampling to draw values for β. 

Conditional distribution of α 

The conditional distribution of the 2N × 1 vector α is 

α|θ−α ∼ N (α, V α), 

where 

� � � � 
A0 Σ−1α = V α ⊗ ITN (Ly ∗ − Xβ) + (V −1 ⊗ IN )(µα ⊗ ιN ),ν α � �−1 

V α = ν α ⊗ IN ,A0(Σ−1 ⊗ ITN )A + V −1 

which are based on the hyper-parameters µα and Vα. The latter are drawn as 

µα|θ−α ∼ N (µα, V µα ), 
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using � � 
N )α + V −1 µα = V µα (Vα 

−1 ⊗ ι0 µα 
µ ,
α 

V µα = 
� �−1 
NV −1 + V −1 ,α µα 

and 

V −1|θ−α ∼ W(V Vα , vVα ),α 

with 

vVα = v + N, 

)−1V Vα = (M + V Vα 
, 

gh 
α
g )0(αh0 and the 2 × 2 matrix M = (mgh) containing the elements m = (αg − ιN µ − 

h0 ιN µα ), where ιN is an N × 1 vector of ones. All of these parameters have known distri-

butions. Accordingly, we apply Gibbs sampling, drawing the hyper-parameters µα and 

Vα first and then using those in drawing the elements of α. 

Conditional distribution of Σν 

The conditional distribution of the 2 × 2 matrix Σ−1 is given by ν 

Σ−1|θ ∼ W(V Σν , vΣν ),ν −Σ−1 
ν 

with 

vΣν = vΣν 
+ T N, 

)−1V Σν = (B + V Σν 
, 

which is of the Wishart form. Therefore, we use Gibbs sampling for drawing the 

respective parameters. 
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Conditional distributions of λg and γg 

The conditional distributions of λg and γg for g ∈ {d, e} are given by � � 
1 � � 

λg|θ−λg ∝ |L|exp − tr BΣ−1 , (17)ν2 � � 
1 � � 

∝ |L|exp − tr BΣ−1 , (18)γg|θ−γg ν2 

where |L| = |(ITN − λdW d)(ITN − λeW e) − γdγeITN |. These distributions have an 

unknown form and therefore a Metropolis-Hastings sampling procedure is applied. Since 

we use the same approach for drawing λg|θ−λg and γg|θ−γg , it is sufficient to outline it 

exemplarily for λg|θ−λg . Following LeSage and Pace (2009), a proposal candidate λgc is 

drawn by λgc = λg + cλg · N(0, 1) , with λg denoting the previous value and cλg a tuning 

parameter. We only use proposal candidates that are in the admissible parameter range. 

Using (17), and {λg, λgc}, an acceptance probability is calculated to decide whether 

keeping λg or using the new candidate λgc. The tuning parameter cλg is adapted to 

ensure an acceptance probability between 40% and 60%. 

Conditional distribution of ye∗ 

In the application in Section 5 below, yd represents the (log of) domestic sales, which are 

d∗fully observed for all firms and time periods. Thus, y = yd, and we do not have to take 

draws for this dependent variable. In contrast, ye∗, which represents the (log of) exports 

are not fully observed but censored for some percentage of the observations from below 

at zero. We calculate the conditional distribution of ye∗ using the joint distribution in 

equation (15) as 

y e∗ |θ−ye∗ ∼ N (µye∗ , Ωye∗ ), (19) 

with 

µye∗ = µ e +Ωed(Ωdd)−1(y d − µ d), 

Ωee − Ωed(Ωdd)−1ΩdeΩye∗ = . 

We draw the censored values of log export sales from a truncated multivariate normal, 

which is truncated from the right at zero using the method suggested by Geweke (1991). 

14 



4 Simulation analysis 

4.1 Simulation design 

Before turning to the applications, we provide some evidence on the applicability of the 

proposed estimation routine in small to medium-sized samples of N ∈ {500; 1, 000} and 

T = 3. Specifically, we provide evidence of two types of systems each of which consists of 

two equations, one corresponding to a panel tobit and one to a linear panel-data model. 

In one case, we consider the case of a seemingly-unrelated-regression error structure, 

where Γ is a 2 × 2 matrix of zeros (SUR), and in another case, we consider the case of a 

simultaneous system of equations (SSE). Since both types of models contain a spatial lag 

of the dependent variable to account for cross-sectional spillovers among firms, we will 

refer to them as SSUR and SSSE in this section. For each type of model, we consider 

two parameter configurations regarding {λ1; λ2}, namely {0.4; 0.4} and {0.1; 0.3}. 

For each model and configuration, we generate an N × N raw weights matrix W0 

which has a wrap-around structure of a neighbors before and a neighbors behind every 

unit i in a row, where a = 10. Hence, for the 11-th cross-sectional unit, all units 

1, ..., 10 and all units 12, ..., 21 are neighbors; for the first unit, units 2, ..., 11 and units 

N − 10, ..., N are neighbors; and for the N -th unit, units N − 11, ..., N − 1 as well as 

units 1, ..., N are neighbors; etc. 

We employ three exogenous variables {Xit
g1 ; Xit

g2 ; Xit
g3} which we generally draw iden-

tically and independently from univariate normal distributions with mean zero and vari-

ance two. Their coefficients are set to βg1 = (1, 1, 1)0 , βg2 = (1, 1, 1)0 , βg3 = (1, 1, 1)0 . 

We draw the elements of the 2 × 1 vector νit independent of {Xit
g1 ; Xit

g2 ; Xit
g3} and of 

αg 
i and identically and independently within equation g from a bivariate normal with ⎛ ⎞ 

2 1 
νit ∼ N(02×1, Σν ) where Σν = ⎝ ⎠. Similarly, we draw the elements of the 2 × 1 

1 2 
vector αi identically and independently within equation g from a bivariate normal with ⎛ ⎞ 

2 0.8 
αi ∼ N(µα, Σα) with Σα = ⎝ ⎠. With a few exceptions, we set µα = (1.5; 2.5)0 . 

0.8 2 
However, to assess the importance of the relative amount of censored observations in the 
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data on y2, we allow µα2 to vary in Design 1. 

For the sake of better readability, we summarize the parameters for the SSUR and 

the SSSE models under the different designs in Table 1. In each case, we generate one 

Markov chain of 30,000 parameter draws with 5,000 burn-ins and a thinning rate of 10 

(i.e., using every 10−th draw after discarding the burn-in draws). In the next subsection, 

we report the results obtained from each of those Markov chains. 

In all designs, we consider the case where one outcome is fully observed whereas a 

second one is censored, where the fraction of censored values is reported in the notes of 

each table. In the table, we report the posterior mean and standard deviation for each 

parameter. The terms mα1 and mα2 refer to the averages across the thinned Monte Carlo 

draws of the draw-specific averages of the posterior α1 and α2, respectively. Similarly, 

{sα11, sα12, sα22} correspond to the averages across Monte Carlo draws of the draw-

specific posterior variance terms of {α1, α2}. 

We assess the validity of the thinned chains for statistical inference by way of 

Geweke’s (1992) test.11 

4.2 Simulation results 

We present the results for the four combinations of N and {λ1; λ2} for the SSUR model 

in Tables 2-7 and for the SSSE model in Tables 8-10. The findings from these simulations 

can be summarized as follows. 

– Tables 2-7 about here – 

First of all, the simulation results in Tables 2-7 indicate that the SSUR model works 

well in samples of 500 and even more so in ones of 1,000 cross-sectional units. As 

expected, the parameters can be estimated at greater precision with a larger sample of 

1,000 than with a smaller one of 500 cross-sectional units. Tables 2-5 are all based on 

Design 1. However, in Tables 2-4 we vary the fraction of censored observations in y2 

11This test splits the sample of the MCMC draws after thinning and discarding burn-in draws into 

three parts and tests the equality of the sample means based on the first 20% and the last 50% of the 

draws of the chain. 
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by changing µα = (1.5; 2.5)0 as used in Tables 2 and 6-10 to µα = (1.5; 4)0 in Table 3 

(low degree of censoring; see the respective table footnote) and µα = (1.5; 1)0 in Table 4 

(high degree of censoring; see the respective table footnote). According to these results, 

the routine works well, especially for a sample size of 1,000 cross-sectional units for all 

considered degrees of censoring. 

Table 5 serves to describe how the econometric model can even handle relatively 

extreme censoring in finite samples. In this table, we changed the censoring point from 

zero to 4 but otherwise use Design 1 as in Tables 2-4. Accordingly, the fraction of 

censored observations is very high relative to the other tables, amounting to around 

70% (see the footnote to Table 5). Hence, of the 500 and 1,000 observations in the 

latent process in the two column blocks, we observe the true data for only 139 and 

279 observations, respectively. This is much less than in the other tables, even for 

the case with 1,000 latent-process observations in Table 5 relative to 500 latent-process 

observations in other tables. Hence, the estimator should not be expected to perform 

as well as it did in the other tables. However, it turns out that, even with as few data 

on true outcome values, we still estimate parameters of interest — in particular the 

parameters βgk and λg – relatively well. We should take into account that, even though 

a censoring or truncation rate as the one in Table 5 may emerge in micro data on firm-

level exports, the absolute number of data points on which the true outcome is observed 

is typically much larger. Hence, overall, this simulation suggests beyond Tables 1-4 that 

the estimator works very well even in finite samples. 

Table 6 is an interesting benchmark case to which Table 2 should be compared. In 

∗Table 2, the censored values of y2 are drawn, and y2 rather than y2 is used in estimation. 

By way of contrast, the censored values are set at zero in Table 3, so that y2 instead of 

∗ y2 is used in estimation. The results in Table 6 clearly indicate that ignoring the fact 

that some of the information on outcome y2 is censored leads to parameter bias (e.g., 

consider the point estimates of {β21, β22, β23} or of λ2 in the case of N = 1, 000. Hence, 

addressing the missing information in a suitable way as in Table 2 is particularly relevant 

with interdependent data (such as ones on spatial units of social networks). 
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– Tables 8-10 about here – 

The results for the SSSE models in Tables 8-10 suggest that, given everything else, 

the estimation of simultaneous-equations models of the proposed kind, where we permit 

γ1 6= 0 and γ2 6= 0, leads to a change in the signal-to-noise ratio so that one would wish 

to have a somewhat larger number of cross-sectional units available. This can be seen 

from the point estimates of λ1 and λ2, e.g., in Table 8, in particular for the smaller 

sample. However, overall, the estimator appears to work quite well, and small-sample 

problems tend to vanish even in panel data-sets with moderately-large cross-sections. 

5 Empirical analysis of firms’ domestic sales and exports 

in China’s textiles industry 

In the course of the 1990s and certainly since the country’s accession to the World 

Trade Organization in 2001, China has become a key player on global textiles markets. 

Apart from easier access to foreign markets through lower tariffs abroad and access to 

foreign capital in China, spillovers through contact with foreign textile producers on 

export markets as well as local technology spillovers among producers in China appear 

to be important determinants of supply of and demand for China’s textiles products (see 

Chang and Xu, 2008; Swenson, 2008; Mayneris and Poncet, 2015).12 

In the present paper, we focus on textiles sales of firms in Guangdong province which 

is located on the coast of south-eastern China. According to the census of 2014, the 

province is the most populous one in China with almost 110 million people, accounting 

for almost eight percent of China’s population. The major settlements in the province 

are its administrative capital, Guangzhou, and the economic hub of Shenzhen both of 

12Swenson (2008) found that an expanded presence of multinational firms, especially, of ones within the 

same industry, stimulated the creation of trading relationships of Chinese firms. Mayneris and Poncet 

(2015) found that the propensity of domestic firms to start exporting new varieties to new markets 

reacted positively to the export activity of neighboring foreign firms. Consistent with this evidence, 

other authors such as Chang and Xu (2008) found that the presence of multinational firms even affects 

firm-level domestic sales in China. 
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which feature among the most populous cities in China. With the fourth-highest average 

per-capita income among all the provinces, Guangdong is also the largest one in terms 

of GDP in China. The manufacture of textiles is among the most significant economic 

activities in Guangdong province. 

Trade is very important to Guangdong. It has numerous economic and technological 

development zones in place – most but not all of them in Guangzhou, Huizhou, Shenzhen, 

and Zhuhai. Many of these zones provide easy access to global markets, and they lead to 

a clustering of the emergence of firms in space, stimulating spillovers among firms. Much 

of the export activity and of production in general is situated in or in close neighborhood 

to the Pearl River Delta, for which the Port of Guangzhou – the largest port in South 

China – serves as the key economic and transport node. 

In the remainder of this section, we will introduce the data-set used in the present 

paper, report on descriptive statistics of the variables employed, and summarize the 

associated regression results. 

5.1 Firm-level census panel data on textiles producers in Guangdong 

province 

The panel data utilized in this study are provided by the National Bureau of Statistics 

of China (NBS). The data contain information on balance sheets, their exports, foreign 

ownership, and their location for all firms, whose annual turnover exceeds five million 

RMB (about 700,000 USD).13 

Specifically, we employ panel data on domestic sales and exports of textiles producers 

in Guangdong province over the period 2004-2007. During that time span, approximately 

8.5% of total sales in the Chinese textiles industry are produced in Guangdong. However, 

of all domestic textiles sales by Chinese producers, firms in Guangdong contribute only 

6%, while their exports account for about 14% of China’s export volume in the textiles 

sector, indicating the province’s strong orientation towards export markets. All over 

13One could view this as further censoring. However, this issue cannot be analyzed, as we do not know 

anything about firms (even not their number) below this turnover threshold. 
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China’s manufacturing, foreign capital (ownership) is concentrated in exporting firms. 

For instance, 48% of China’s manufacturing exporters (and 20% of all manufacturers) 

were partly foreign owned in 2004-2007. However, 70% of Guangdong’s manufacturing 

exporters (and 44% of all manufacturers) were partly foreign owned over the same time 

span. All of this suggests that Guangdong is a province of primary interest to study 

domestic and export performance of firms, in particular, in the textiles sector. 

We refer to the dependent variables used in the subsequent empirical analysis as log 

domestic salesit (or yit
d ) and log exportsit (or yit

e ), respectively. Log exports sales are 

censored at zero.14 

We generally employ lagged determinants as adjusting supply occurs with some lag. 

Accordingly, exogenous independent variables range from 2004 to 2006 and the corre-

sponding dependent variables are measured in 2005-2007. For each producer, we know 

the exact geographical location through its 6 digit zip code, which permits determining 

the distance to other producers and whether a producer is located in the Pearl River 

Delta or not.15 Moreover, we know the density of all firms as well as of textiles produc-

ers – in particular of domestic sellers versus exporters of any goods and of textiles – in 

the same zip code. For all producers, we observe their overall employment, the wage 

costs per employee, the interest rate paid for capital, the material costs, the value added 

per employee as a crude measure of productivity, and the share of foreign capital in all 

capital invested in a firm. By the association with a specific textiles subsector,16 we 

14In the data, censoring may occur due to mis-reporting or non-reporting of small export volumes, due 

to indirect exporting of small export quantities through wholesalers, due to confidentiality requirements, 

etc. It is well known that countries impose thresholds for the requirement of reporting exports to 

statistical offices and not all textiles producers report positive exports. See Wakelin (1998) or Berthou 

and Fontagné (2008) for estimating firm-level exports with censored regression models. Truncation 

typically occurs through the log-transformation of export values which are zero in levels. 
15Some other papers used alternative regional classification schemes when analyzing Chinese firm-level 

data. Regional aggregates used in such work often reflect provinces, prefectures, counties, or town-level 

data. In any case, these regional aggregates are larger and, in terms of spatial association, less precise 

than the zip codes used in the present paper. 
16Our data set consists of firms from two subsectors: Textile processing and textile manufacturing. 

These consist of 24 4-digit subsectors, which we based our merge with the tariff rates on. 
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may also compute the weighted average tariff rate applied to China’s exports abroad, 

where the weights (China’s overall exports by subsector, destination country and year) 

and partner country tariffs are available from the World Bank’s WITS database.17 

All variables are in logs except for the interest rate – the ratio of interest expenditures 

and total debt for the same textiles subsector and year –, the binary indicator for the 

location in the Pearl River Delta, the share of domestic market sellers of any products 

among all firms in the same zip code, the share of domestic sellers in all textiles producers 

in the same zip code, the share of export market sellers of any products among all firms 

in the same zip code, and the share of exporters in all textiles producers in the same zip 

code. 

Firm size (employmentit−1), productivityit−1, and cost variables (wage per worker 

it−1, materials per workerit−1, and interest rateit−1) capture aspects of technology at the 

level of the firm. On the contrary, the firm number variables (number of all firms in 

zip codeit−1, number of all textile firms in zip codeit−1, share of domestic market sellers 

in all firms in zip codeit−1, share of domestic market sellers in all textile producers in 

zip codeit−1, share of exporters in all firms in zip codeit−1, and share of exporters in 

all textile producers in zip codeit−1) capture aspects of the market environment (the 

required labor pool, the potential of competition as well as of spillovers). Fixed time 

effects in each equation reflect aspects of domestic and foreign demand potential such as 

the expiration of the Multi-fiber Agreement (MFA) that limited exports of textiles, and 

the ad-valorem tariffit−1 which captures foreign-market access costs. Finally, the foreign 

capital shareit−1 captures another aspect of foreign-market access costs (and, possibly, 

of technology transfer). 

Factor costs, productivity and profitability (both of which are captured by the vari-

able value added per employee as used here), and the economic and geographical envi-

ronment are standard determinants of firm overall sales (see, e.g., Baltagi, Egger, and 

17In a sector such as textiles, which does neither involve large-scale import activity of intermediate 

products nor large-scale final-product competitive imports from elsewhere by China, it seems natural to 

focus on the role of import tariffs abroad on Chinese exports. However, in other sectors, this is not the 

case, as has been demonstrated by Van Biesebroeck and Yi (2012). 
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Kesina, 2016, for evidence on China) as well as exports (see Kneller and Pisu, 2005; 

Greenaway and Kneller, 2007).18 However, a customary assumption introduced by theo-

retical work that most of the empirical literature relies upon is that individual firms are 

atomistic (see Eaton and Kortum, 2002; Melitz, 2003; Kneller and Yu, 2016), so that 

shocks to individual operations do not induce effects on other firms. The spillover (or 

spatial- or network-lag) terms introduced by the presence of (Λ ⊗ ITN )Wy∗ among the 

explanatory variables in the proposed empirical model means that individual firms are 

important enough so that shocks to them induce effects on other firms in the geographical 

neighborhood (e.g., through literal productivity spillovers, effects on market power, or 

factor flows across firms). Hence, empirical evidence of Λ being nonzero would challenge 

this assumption. Though based on different econometric methods than the ones applied 

here, some earlier work suggests that firms are indeed not operating independently of 

each other (see, e.g., Smarzynska Javorcik, 2004, for evidence from Lithuania; the find-

ings in Greenaway and Kneller, 2008, for the United Kingdom indicate that the presence 

of other exporting firms in the neighborhood induces positive effects on a firm’s propen-

sity to export; the evidence in Manova and Yu, 2016, and Manova, Wei, and Zhang, 

2015, for China suggests that firms are related to each other through processing and 

multinational relationships). Another customary assumption introduced by the same 

theoretical work that most of the empirical literature relies upon is that – conditional on 

firm-level productivity, market power, and factor costs – any change in the success on 

export markets is irrelevant for success of the same firm on domestic markets and vice 

∗versa. The presence of (Γ ⊗ ITN )y in the empirical model permits a departure from this 

hypothesis, and evidence of Γ to be non-zero would be a challenge for the respective the-

oretical assumption. Again, some earlier work suggests that also firms’ non-exporting 

outcomes may benefit from their exports (see, e.g., Berman, Berthou, and Héricourt, 

18Defever, Heid, and Larch (2015) showed that, across all industries, Chinese firms tend to enter 

export markets in a contagious way, which is consistent with the theoretical results and the evidence 

in Albornoz, Calvo Pardo, Corcos, and Ornelas (2012). However, this issue is only loosely related to 

the interest in this paper, which is about spatial and network effects among the export sales anywhere 

abroad versus domestic sales anywhere in China of Chinese textiles producers. 
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2011; Wang, Wei, Liu, Wang, and Lin, 2014). 

We collect all of the explanatory variables into the two vectors Xit
d and Xe forit 

domestic sales and exports, respectively. Both Xd and Xe include: employmentit−1;it it 

productivityit−1; wage per workerit−1; materials per workerit−1; interest rateit−1; number 

of all firms in zip codeit−1; number of all textile firms in zip codeit−1; and fixed time 

effects for 2006 and 2007. Only Xit
d additionally includes: share of domestic sellers in all 

firms in zip codeit−1; and share of domestic sellers in all textile producers in zip codeit−1. 

And only Xit
e includes: share of exporters in all firms in zip codeit−1; share of exporters in 

all textile producers in zip codeit−1; ad-valorem tariffit−1; and foreign capital shareit−1. 

Altogether, our study includes 630 textiles producers which are scattered across 288 zip 

codes. Table 11 summarizes the main features of the dependent and the independent 

variables. 

– Table 11 about here – 

According to the table, (log) domestic sales are on average slightly higher than (log) 

exports. The zip code specific variables indicate the concentration of firms in some zip 

code areas. Textiles producers are more strongly oriented towards export markets than 

firms on average in Guangdong province. The numbers in the table suggest that, for 

the years 2005-2007, the share of textiles exporters in all textiles producers in the data 

is much larger than the share of exporters in all firms in the same 288 zip codes where 

textiles producers are located. Conversely, the share of domestically selling textiles 

producers in all textiles producers in the data is smaller than the share of domestic 

sellers in all manufacturing firms in the same zip codes and years. More than 80% of the 

textile producers in the data are located within the Pearl River Delta which points to 

some geographical concentration of firms in this area, and provides easy access to export 

markets. A foreign capital share of 0.647 for those textile producers and years indicates 

a relatively high presence of foreign firms, at least as partial owners, in Guangdong’s 

textile sector. 
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5.2 Estimation results 

In this subsection, we present results based on a number of different econometric models, 

eall of which consider censoring in log exports y . Table 12 presents the results of single-

eequation models, where yd and y are estimated as separate, univariate, spatial models 

with ye censored and yd not censored. Tables 13 and 14 contain the SSUR (assuming 

that both γd = 0 and γe = 0) and SSSE models. The latter are particularly inspired by 

the evidence in Ma, Tang, and Zhang (2014) and Van Biesebroeck (2014), which suggests 

that firms change their behavior in response to export-market participation, providing 

a rationale for why exporting may induce an impact on firms’ domestic sales. 

– Table 12-14 about here – 

Notice that the reduced form of the estimated model for exports and domestic sales 

is nonlinear in parameters, as can be seen from equation (8). There are two reasons for 

this nonlinearity, namely that domestic sales and exporting may have an impact on each 

other and that the success of textile firms at the domestic and the foreign market may 

depend on the one of other firms. Therefore, as is the case in general with nonlinear 

models, the parameters in Tables 12-14 cannot be directly interpreted and do not reflect 

impact effects. Therefore, we refrain from a detailed discussion of the parameters here 

and focus on a comparison of the results in the tables by way of impact effects in the 

subsequent subsection. However, we can point out a few general findings here. 

First, the posterior means of σνde are −0.758 (with standard deviation 0.069) for 

SSUR in Table 13, and −2.168 (with standard deviation 0.214) for SSSE in Table 14. 

This suggests that efficiency gains can be had from estimating the two equations jointly, 

rather than estimating them separately as in Table 12. 

Second, all the specifications in Tables 12-14 point to an interdependence in both 

domestic sales and exports (with λ̂g being generally positive and statistically significantly 

different from zero). These results suggest that there are positive spillovers among both 

domestic sellers and exporters which are potentially related to the understanding of 

consumer markets and to productivity. 
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Third, firm-specific effects appear to be quite important, according to the estimates 

mb αd and b σαdd and σbαee.mαe as well as the associated variances b This suggests that one 

should not ignore the presence of producer-specific unobserved attributes in estimation. 

Fourth, a comparison of the results of SSUR and SSSE in Tables 13 and 14, respec-

tively, leads to the conclusion that an increase in export sales has, on average, positive 

repercussions on a textile producer’s domestic sales but not vice versa: γd is estimated 

with a posterior mean of γbd = 0.178 and an associated small standard deviation of 0.019, 

while γe is estimated with a posterior mean of γbe = 0.042 with a large standard deviation 

of 0.114. This suggests that the SSUR model is rejected against the SSSE model. We 

devote the subsequent subsection to a discussion of the parameter estimates by way of 

impact estimates based on the reduced form of the SSSE model. 

5.3 Impact effects of regressors 

Let us consider the effects of a change in a single element of xit, namely covariate xk,it, 

which may be part of Xd only, of Xe only, or of both of them. It will be useful to refer to 

a one-standard-deviation change in this covariate, which is scaled by the corresponding 

parameter estimate, βbdk in equation d and βbek in equation e, by Δb d and Δb e , both of k k

which are scalars. 

It is important to see that the reduced form of the system of equations with inter-

dependent observations through cross-firm spillovers implies that, in spite of any direct 

effect of a shock on covariate xk,it on other firms than i in year t, there will be indirect 

effects of that shock on other firms through spillovers in the dependent variables, and 

these indirect effects will have repercussions on i. Hence, shocks on firm i will be mod-

ified (amplified or mitigated) by spillovers, and shocks on other firms than i similarly 

will have indirect effects on i. 

dbgh,d, of Let us define the vectors of equation-to-equation estimated direct effects, 
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dgh,teffects on others, dbgh,o, of effects from others, dbgh,f , and of total effects, b , as 

gh,d bdk = vecdiag(L−1) bgh Δhk, (20) 

gh,o bdk = gh,d (L−1 d ,gh ιT N ) bΔhk − bk (21) 

gh,f bdk = gh,d (L−10 d ,gh ιT N ) bΔhk − bk (22) 

gh,t bdk = gh,d gh,f bd + bd ,k k (23) 

where a superscript {gh, l} with any vector dbk indicates a subvector pertaining to effects 

of type l ∈ {d, o, f, t} of a shock in the exogenous explanatory variable k in equation of 

outcome h ∈ {d, e} on outcome g ∈ {d, e}. Averages of such impact effects have been 

proposed in different types of models with spatial or network interactions in LeSage and 

Pace (2009). Notice that the elements of dbgh,l vary across the observations it, depending k 

on these observations’ location and economic geography in the textiles sector. In the 

above expressions, L−1 denotes the gh-th block of L−1 . Whenever g = h, the effects gh 

pertain to within-outcome responses, whereas for g 6= h they pertain to across-outcome 

responses. 

– Tables 15-16 about here – 

Tables 15 and 16 summarize moments of the distribution of the impact effects of a 

one-standard-deviation increase in an explanatory variables (which enters only one or 

both equations) at a time on log domestic sales and log exports, respectively. As to 

the moments of these distributions, we generally report the minimum (Min), the 25-th 

percentile (p25 ), the 50-th percentile (p50 ), the 75-th percentile (p75 ), the Maximum 

(Max ), and the average (Avg).19 The horizontal organization of the tables is such that 
gg,l gh,l own-outcome effects, db , are followed by cross-outcome effects, db . Vertically, every k k 

table contains the impact effects for those determinants at the top, which enter both 

equations, followed by the equation-specific ones. The normalization of the shocks to 

19In general, these moments are evaluated at the posterior mean of the respective parameter estimates 

βbdk and βbek . Clearly, computing the standard deviations of these moments across the draws in the Monte 

Carlo chain is straightforward. We refrain from reporting these standard deviations (as estimates of the 

standard errors) due to space constraints. 

26 



one standard deviation permits a quantitative comparison of the estimates both across 

tables as well as across entries within a table. 

In the subsequent discussion, we focus, for the sake of brevity, on shocks on log 

productivityit−1 (as a common determinant of log domestic salesit and log exportsit), on 

the log ad-valorem tariffit−1, and the foreign capital shareit−1 (as equation-specific de-

terminants of the considered outcomes). The corresponding effects may be summarized 

as follows: 

First, among all the impact-effect estimates the variability of the direct effects and 

of the effects on others is relatively small, while the effects from other producers is 

relatively large. This is largely owed to the row normalization of the weights matrix 

W . Accordingly, the variance in the (own- and cross-equation) total effects largely flows 

from the variability of the impact effects from other firms. 

Second, what we call a positive shock on productivity (in a broad sense, as it includes 

changes in total-factor productivity as well as in prices) tends to lead to a shift away 

from selling abroad to selling in China. In view of the model of heterogeneous firms 

and fixed costs of exporting along the lines of Melitz (2003), this may be surprising. 

E.g., Clerides, Lach, and Tybout (1998) and Bernard and Jensen (1999) document that 

exporters are more productive than domestic sellers on average; this is now documented 

for many countries. However, the finding may be explained by the specific context of 

China: many of the largest exporters are foreign owned, and they serve as one input-

providing link in the value-added chain of the multinational network; but some of the 

highly productive domestic sellers are taken over by foreign firms not to serve the global 

market but to gain access to the large domestic market; the market access costs to reach 

a high fraction of potential customers in China to foreign-owned firms may be higher 

than the costs of integrating an affiliate in China into its global trading network. 

Third, in comparison to other explanatory variables, a shock in the log ad-valorem 

tariff rateit−1 in the same textiles sub-sector as firm i induces the second-largest impact 

effect on log exports in absolute value, according to Table 16. Finally, a higher foreign 

capital shareit−1 raises the level of exports, but the impact is relatively modest, at least 
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in this sector and province, in comparison to other determinants of log exports. 

6 Conclusions 

This paper conducts an analysis of the determinants of domestic and export sales of 

individual textiles producers in Guangdong province over the years 2004-2007. Features 

of the data, evidence of spatial and network effects among Chinese producers in earlier 

work, and evidence of learning from exporting in earlier work on firms call for an econo-

metric model, which permits analyzing a panel-data system of simultaneous equations 

with cross-sectionally (or spatially) dependent outcomes of which some are censored and 

others are not. 

We outline an estimation approach based on Bayesian Markov-chain Monte Carlo 

simulation. We conduct simulations which suggest that this approach can be used in 

small to moderately-large samples of 1,000 cross-sectional units or less. 

The application suggests that all features of the econometric model which we account 

for are important: time-invariant heterogeneity in terms of unobservables must not be 

ignored; export success boosts domestic sales; domestic sales success of other firms and 

export success of other firms induce positive spillovers on domestic sellers and exporters 

of textiles, respectively. 

One advantage of the utilized MCMC approach is its flexibility in allowing for various 

forms of interdependence and the treatment of non-linear models in a unified framework. 

Analyzing systems with multiple non-linear equations can be simplified by formulating 

a latent variable model representation and drawing the unobserved values. 

Future work in this context may be devoted to incorporating other forms of cross-

sectional correlation such as the presence of spatial or social-network interdependence in 

unobservables as captured by the disturbances. Moreover, future work might consider 

time-wise interdependence of the data in somewhat longer panels than studies here, e.g., 

through the presence of time lags of latent variables on the right-hand side of the model 

or serial correlation of the disturbances.20 

20E.g., the importance of time-wise dependence in data has been addressed in Basmann (1985), Bas-
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Table 1: Overview of simulation designs - True parameter values

SSUR SSUR SSSE SSSE SSSE
Design 1 Design 2 Design 3 Design 4 Design 5

β11 1.000 1.000 1.000 1.000 1.000
β12 1.000 1.000 1.000 1.000 1.000
β13 1.000 1.000 1.000 1.000 1.000
β21 1.000 1.000 1.000 1.000 1.000
β22 1.000 1.000 1.000 1.000 1.000
β23 1.000 1.000 1.000 1.000 1.000
λ1 0.400 0.100 0.400 0.100 0.400
λ2 0.400 0.300 0.400 0.300 0.400
γ1 - - -0.100 -0.100 -0.300
γ2 - - 0.100 0.100 0.100
σν11 2.000 2.000 2.000 2.000 2.000
σν12 1.000 1.000 1.000 1.000 1.000
σν22 2.000 2.000 2.000 2.000 2.000
mα1

1.500 1.500 1.500 1.500 1.500
mα2

2.500 2.500 2.500 2.500 2.500
sα11

2.000 2.000 2.000 2.000 2.000
sα12 0.800 0.800 0.800 0.800 0.800
sα22 2.000 2.000 2.000 2.000 2.000

Table 2: SSUR Design 1 - the fraction of censored observations in y2 is medium,
N = 500 and N = 1, 000

N = 500 N = 1, 000
True Mean Std.dev GT Mean Std.dev GT

p-value p-value
β11 1.000 0.980 0.019 0.480 1.015 0.013 0.262
β12 1.000 0.989 0.018 0.322 0.998 0.013 0.386
β13 1.000 1.030 0.019 0.562 1.008 0.013 0.796
β21 1.000 0.995 0.024 0.464 1.005 0.015 0.599
β22 1.000 0.975 0.024 0.484 1.010 0.015 0.625
β23 1.000 1.001 0.025 0.701 1.024 0.015 0.508
λ1 0.400 0.373 0.031 0.660 0.395 0.021 0.414
λ2 0.400 0.335 0.136 0.484 0.386 0.081 0.605
σν11 2.000 1.928 0.088 0.857 2.007 0.062 0.172
σν12 1.000 0.940 0.081 0.667 1.051 0.053 0.294
σν22 2.000 2.319 0.372 0.855 2.084 0.134 0.202
mα1

1.500 1.560 0.094 0.520 1.552 0.062 0.534
mα2

2.500 2.636 0.503 0.460 2.512 0.327 0.590
sα11

2.000 1.751 0.105 0.703 2.044 0.083 0.199
sα12 0.800 0.670 0.091 0.453 0.794 0.068 0.778
sα22 2.000 1.938 0.146 0.408 2.070 0.094 0.640
Notes: The total number of observations TN and the fraction of censored observations on y2 are 1, 500
and 0.155 for N = 500; and 3, 000 and 0.156 for N = 1, 000. GT p-value denotes the p-value of the
Geweke (1992) test.



Table 3: SSUR Design 1 - the fraction of censored observations in y2 is low,
N = 500 and N = 1, 000

N = 500 N = 1, 000
True Mean Std.dev GT Mean Std.dev GT

p-value p-value
β11 1.000 0.996 0.019 0.451 1.013 0.013 0.470
β12 1.000 0.970 0.019 0.306 1.001 0.013 0.849
β13 1.000 1.000 0.019 0.728 0.987 0.013 0.334
β21 1.000 0.995 0.021 0.591 0.974 0.017 0.510
β22 1.000 1.000 0.022 0.188 1.036 0.016 0.478
β23 1.000 0.993 0.022 0.983 0.994 0.016 0.263
λ1 0.400 0.388 0.033 0.285 0.422 0.027 0.361
λ2 0.400 0.353 0.130 0.317 0.379 0.118 0.864
σν11 2.000 2.046 0.091 0.342 1.974 0.063 0.470
σν12 1.000 1.074 0.083 0.189 1.008 0.055 0.407
σν22 2.000 2.358 0.491 0.106 2.273 0.433 0.636
mα1

1.500 1.559 0.100 0.455 1.518 0.076 0.536
mα2

4.000 4.307 0.827 0.340 4.274 0.776 0.631
sα11 2.000 2.095 0.120 0.189 1.926 0.080 0.595
sα12 0.800 0.657 0.095 0.326 0.926 0.067 0.240
sα22

2.000 1.864 0.154 0.920 2.116 0.125 0.774

Notes: The total number of observations TN and the fraction of censored observations on y2 are 1, 500
and 0.060 for N = 500; and 3, 000 and 0.050 for N = 1, 000. GT p-value denotes the p-value of the
Geweke (1992) test.

Table 4: SSUR Design 1 - the fraction of censored observations in y2 is high,
N = 500 and N = 1, 000

N = 500 N = 1, 000
True Mean Std.dev GT Mean Std.dev GT

p-value p-value
β11 1.000 1.021 0.020 0.806 1.003 0.013 0.805
β12 1.000 1.003 0.020 0.173 1.014 0.013 0.495
β13 1.000 0.991 0.020 0.793 1.007 0.014 0.373
β21 1.000 1.067 0.029 0.109 1.003 0.019 0.694
β22 1.000 1.050 0.030 0.437 1.022 0.018 0.370
β23 1.000 1.056 0.030 0.215 1.027 0.019 0.796
λ1 0.400 0.380 0.030 0.419 0.385 0.021 0.441
λ2 0.400 0.335 0.115 0.464 0.341 0.090 0.548
σν11 2.000 2.026 0.094 0.731 2.052 0.065 0.162
σν12 1.000 0.968 0.090 0.113 1.112 0.061 0.939
σν22 2.000 2.429 0.167 0.219 2.175 0.110 0.479
mα1

1.500 1.651 0.095 0.382 1.647 0.062 0.619
mα2

1.000 1.049 0.181 0.438 1.144 0.167 0.765
sα11

2.000 2.437 0.129 0.674 1.933 0.083 0.524
sα12 0.800 1.085 0.113 0.222 0.708 0.069 0.392
sα22 2.000 2.037 0.179 0.376 1.989 0.107 0.166
Notes: The total number of observations TN and the fraction of censored observations on y2 are 1, 500
and 0.346 for N = 500; and 3, 000 and 0.335 for N = 1, 000. GT p-value denotes the p-value of the
Geweke (1992) test.



Table 5: SSUR Design 1 - the fraction of censored observations in y2 is very high,
N = 500 and N = 1, 000

N = 500 N = 1, 000
True Mean Std.dev GT Mean Std.dev GT

p-value p-value
β11 1.000 0.986 0.020 0.697 1.002 0.014 0.165
β12 1.000 1.040 0.020 0.322 1.006 0.014 0.816
β13 1.000 0.987 0.021 0.913 0.995 0.014 0.474
β21 1.000 1.192 0.088 0.982 1.268 0.057 0.301
β22 1.000 1.179 0.095 0.787 1.259 0.056 0.262
β23 1.000 1.187 0.094 0.783 1.293 0.058 0.497
λ1 0.400 0.420 0.032 0.412 0.383 0.021 0.155
λ2 0.400 0.223 0.145 0.840 0.278 0.091 0.234
σν11 2.000 1.876 0.085 0.709 1.904 0.060 0.935
σν12 1.000 0.596 0.120 0.916 0.575 0.077 0.889
σν22 2.000 2.917 0.484 0.834 3.030 0.320 0.514
mα1

1.500 1.465 0.096 0.570 1.613 0.061 0.124
mα2

1.000 0.530 0.337 0.692 0.407 0.199 0.374
sα11 2.000 2.173 0.117 0.978 2.176 0.082 0.972
sα12 0.800 0.955 0.180 0.704 1.189 0.119 0.260
sα22

2.000 2.774 0.529 0.408 3.062 0.352 0.589

Notes: The total number of observations TN and the fraction of censored observations on y2 are 1, 500
and 0.722 for N = 500; and 3, 000 and 0.693 for N = 1, 000. GT p-value denotes the p-value of the
Geweke (1992) test.

Table 6: SSUR Design 1 - the fraction of censored observations in y2 is medium
and no drawing of y2 occurs, N = 500 and N = 1, 000

N = 500 N = 1, 000
True Mean Std.dev GT Mean Std.dev GT

p-value p-value
β11 1.000 0.982 0.019 0.841 1.026 0.014 0.595
β12 1.000 0.987 0.019 0.443 1.001 0.014 0.117
β13 1.000 1.031 0.020 0.144 1.005 0.014 0.688
β21 1.000 0.827 0.025 0.432 0.853 0.021 0.551
β22 1.000 0.811 0.027 0.657 0.847 0.019 0.360
β23 1.000 0.843 0.033 0.139 0.857 0.018 0.883
λ1 0.400 0.371 0.043 0.384 0.392 0.034 0.264
λ2 0.400 0.256 0.279 0.362 0.306 0.262 0.391
σν11 2.000 1.934 0.087 0.705 2.011 0.065 0.917
σν12 1.000 0.842 0.108 0.454 0.860 0.071 0.694
σν22 2.000 3.329 1.822 0.978 3.188 1.707 0.385
mα1

1.500 1.565 0.124 0.425 1.560 0.094 0.229
mα2

2.500 3.177 0.955 0.234 3.086 0.970 0.393
sα11

2.000 1.748 0.107 0.780 2.041 0.083 0.090
sα12 0.800 0.536 0.090 0.867 0.687 0.068 0.371
sα22 2.000 1.246 0.191 0.606 1.363 0.178 0.252
Notes: The total number of observations TN and the fraction of censored observations on y2 are 1, 500
and 0.155 for N = 500; and 3, 000 and 0.156 for N = 1, 000. GT p-value denotes the p-value of the
Geweke (1992) test.



Table 7: SSUR Design 2 - N = 500 and N = 1, 000

N = 500 N = 1, 000
True Mean Std.dev GT Mean Std.dev GT

p-value p-value
β11 1.000 0.999 0.019 0.764 0.968 0.014 0.772
β12 1.000 0.973 0.019 0.706 0.991 0.013 0.869
β13 1.000 1.002 0.020 0.490 1.003 0.013 0.962
β21 1.000 1.000 0.025 0.498 1.007 0.017 0.793
β22 1.000 1.000 0.024 0.423 1.013 0.016 0.766
β23 1.000 1.010 0.026 0.332 0.994 0.016 0.900
λ1 0.100 0.081 0.043 0.132 0.077 0.029 0.874
λ2 0.300 0.249 0.160 0.814 0.282 0.087 0.531
σν11 2.000 2.043 0.092 0.392 1.964 0.063 0.651
σν12 1.000 1.071 0.083 0.754 0.981 0.054 0.687
σν22 2.000 2.347 0.396 0.327 2.248 0.131 0.789
mα1

1.500 1.561 0.090 0.238 1.580 0.057 0.984
mα2

2.500 2.659 0.518 0.712 2.553 0.305 0.521
sα11 2.000 2.098 0.118 0.995 2.007 0.080 0.241
sα12 0.800 0.650 0.095 0.756 0.835 0.068 0.261
sα22

2.000 1.817 0.154 0.666 2.032 0.102 0.904

Notes: The total number of observations TN and the fraction of censored observations on y2 are 1, 500
and 0.180 for N = 500; and 3, 000 and 0.181 for N = 1, 000. GT p-value denotes the p-value of the
Geweke (1992) test.

Table 8: SSSE Design 3 - N = 500 and N = 1, 000

N = 500 N = 1, 000
True Mean Std.dev GT Mean Std.dev GT

p-value p-value
β11 1.000 0.992 0.019 0.390 0.988 0.014 0.947
β12 1.000 1.018 0.020 0.113 1.016 0.014 0.121
β13 1.000 1.008 0.019 0.679 1.015 0.014 0.376
β21 1.000 1.021 0.023 0.770 1.005 0.015 0.254
β22 1.000 1.040 0.023 0.696 0.978 0.015 0.912
β23 1.000 1.001 0.021 0.227 0.998 0.016 0.389
λ1 0.400 0.448 0.029 0.982 0.387 0.021 0.155
λ2 0.400 0.346 0.031 0.231 0.371 0.021 0.761
γ1 -0.100 -0.101 0.012 0.535 -0.116 0.009 0.544
γ2 0.100 0.102 0.014 0.951 0.101 0.009 0.460
σν11 2.000 1.902 0.089 0.126 2.009 0.066 0.319
σν12 1.000 0.950 0.081 0.615 0.937 0.057 0.204
σν22 2.000 2.102 0.108 0.416 2.030 0.073 0.726
mα1

1.500 1.422 0.083 0.993 1.661 0.060 0.159
mα2

2.500 2.760 0.148 0.345 2.614 0.101 0.671
sα11

2.000 2.250 0.119 0.769 2.150 0.088 0.512
sα12 0.800 0.866 0.104 0.587 0.923 0.074 0.512
sα22 2.000 2.061 0.133 0.913 2.207 0.096 0.915
Notes: The total number of observations TN and the fraction of censored observations on y2 are 1, 500
and 0.156 for N = 500; and 3, 000 and 0.136 for N = 1, 000. GT p-value denotes the p-value of the
Geweke (1992) test.



Table 9: SSSE Design 4 - N = 500 and N = 1, 000

N = 500 N = 1, 000
True Mean Std.dev GT Mean Std.dev GT

p-value p-value
β11 1.000 0.993 0.019 0.974 0.987 0.013 0.542
β12 1.000 1.020 0.020 0.230 1.015 0.014 0.456
β13 1.000 1.010 0.019 0.685 1.015 0.014 0.146
β21 1.000 1.010 0.023 0.747 1.005 0.016 0.258
β22 1.000 1.039 0.023 0.785 0.974 0.016 0.183
β23 1.000 0.994 0.022 0.806 0.996 0.016 0.914
λ1 0.100 0.168 0.038 0.856 0.080 0.028 0.967
λ2 0.300 0.237 0.035 0.371 0.276 0.024 0.420
γ1 -0.100 -0.101 0.012 0.621 -0.115 0.010 0.638
γ2 0.100 0.100 0.014 0.721 0.099 0.009 0.398
σν11 2.000 1.904 0.091 0.377 2.004 0.066 0.502
σν12 1.000 0.939 0.080 0.881 0.928 0.057 0.765
σν22 2.000 2.079 0.108 0.109 2.005 0.070 0.651
mα1

1.500 1.426 0.078 0.463 1.652 0.054 0.706
mα2

2.500 2.770 0.141 0.434 2.584 0.096 0.306
sα11

2.000 2.254 0.123 0.131 2.143 0.085 0.773
sα12 0.800 0.861 0.105 0.822 0.907 0.072 0.633
sα22 2.000 2.021 0.132 0.600 2.186 0.097 0.900
Notes: The total number of observations TN and the fraction of censored observations on y2 are 1, 500
and 0.193 for N = 500; and 3, 000 and 0.173 for N = 1, 000. GT p-value denotes the p-value of the
Geweke (1992) test.

Table 10: SSSE Design 5 - N = 500 and N = 1, 000

N = 500 N = 1, 000
True Mean Std.dev GT Mean Std.dev GT

p-value p-value
β11 1.000 0.993 0.019 0.449 0.987 0.014 0.506
β12 1.000 1.020 0.020 0.717 1.014 0.014 0.979
β13 1.000 1.009 0.019 0.515 1.014 0.013 0.319
β21 1.000 1.022 0.023 0.206 1.006 0.015 0.109
β22 1.000 1.045 0.023 0.189 0.981 0.016 0.844
β23 1.000 1.004 0.023 0.812 0.997 0.016 0.529
λ1 0.400 0.447 0.028 0.690 0.391 0.020 0.274
λ2 0.400 0.342 0.031 0.832 0.375 0.023 0.868
γ1 -0.300 -0.296 0.012 0.312 -0.315 0.009 0.518
γ2 0.100 0.103 0.014 0.764 0.100 0.009 0.216
σν11 2.000 1.887 0.090 0.440 2.001 0.067 0.434
σν12 1.000 0.951 0.080 0.105 0.943 0.058 0.685
σν22 2.000 2.121 0.108 0.516 2.037 0.072 0.658
mα1

1.500 1.463 0.064 0.700 1.636 0.048 0.825
mα2

2.500 2.764 0.138 0.827 2.588 0.103 0.909
sα11

2.000 2.265 0.123 0.329 2.149 0.087 0.611
sα12 0.800 0.876 0.105 0.959 0.918 0.072 0.754
sα22 2.000 2.070 0.133 0.881 2.202 0.095 0.928
Notes: The total number of observations TN and the fraction of censored observations on y2 are 1, 500
and 0.165 for N = 500; and 3, 000 and 0.143 for N = 1, 000. GT p-value denotes the p-value of the
Geweke (1992) test.



Table 11: Descriptive statistics

Mean Std.dev Min Max
Domestic sales (in logs) 10.350 1.732 2.590 14.610
Exports (in logs) 10.109 2.976 0 14.590
Wage per worker (in logs) 2.632 0.453 0.194 5.162
Interest rate 0.029 0.088 0.000 0.773
Materials per worker (in logs) 4.624 0.909 0.593 7.218
Productivity (in logs) 4.969 0.819 2.637 7.501
Employment (in logs) 5.586 0.982 2.565 8.731
Pearl River Delta 0.832 0.374 0 1
Number of all firms in zip code (in logs) 3.861 1.228 0 5.935
Number of all textile firms in zip code (in logs) 2.211 1.251 0 4.635
Share of domestic market sellers in all firms in zip code 0.811 0.151 0.250 1
Share of domestic market sellers in all textile producers in zip code 0.780 0.202 0.143 1
Share of exporters in all firms in zip code 0.528 0.194 0 1
Share of exporters in all textile producers in zip code 0.723 0.237 0 1
Ad-valorem tariff (in logs) 0.048 0.012 0.041 0.100
Foreign capital share 0.647 0.450 0 1



Table 12: Spatial univariate regression results for domestic sales and exports

Mean Std.dev GT
p-value

Dependent variable: Domestic sales
βd
Wage per worker (in logs) -0.066 0.061 0.935
Interest rate -0.260 0.305 0.209
Materials per worker (in logs) -0.126 0.089 0.105
Productivity (in logs) 0.226 0.102 0.112
Employment (in logs) 0.056 0.020 0.411
Pearl River Delta -0.104 0.130 0.846
Number of all firms in zip code (in logs) -0.002 0.027 0.962
Number of all textile firms in zip code (in logs) -0.003 0.027 0.573
Share of domestic market sellers in all firms in zip code -0.744 0.365 0.345
Share of domestic market sellers in all textile producers in zip code -0.017 0.255 0.168

λd 0.370 0.048 0.124
σνdd 0.737 0.030 0.770
mαd 6.515 0.496 0.124
sαdd 2.126 0.065 0.252

Dependent variable: Exports
βe
Wage per worker (in logs) 0.413 0.152 0.111
Interest rate 1.990 0.818 0.912
Materials per worker (in logs) 0.589 0.235 0.408
Productivity (in logs) -0.641 0.265 0.145
Employment (in logs) 0.247 0.071 0.463
Pearl River Delta -0.190 0.197 0.885
Number of all firms in zip code (in logs) -0.122 0.090 0.564
Number of all textile firms in zip code (in logs) 0.006 0.089 0.467
Share of exporters in all firms in zip code -1.636 0.528 0.263
Share of exporters in all textile producers in zip code 0.247 0.425 0.482
Ad-valorem tariff (in logs) -15.966 7.260 0.324
Foreign capital share 0.277 0.131 0.572

λe 0.480 0.075 0.663
σνee 7.534 0.315 0.243
mαe 5.200 0.760 0.651
sαee 1.778 0.253 0.239
Notes: All regressors are one period lagged. We include year dummies. GT p-value denotes the p-value of the Geweke (1992)
test.



Table 13: Domestic sales and exports - SSUR results

Mean Std.dev GT
p-value

βd
Wage per worker (in logs) -0.072 0.045 0.727
Interest rate -0.175 0.296 0.315
Materials per worker (in logs) -0.094 0.058 0.896
Productivity (in logs) 0.153 0.067 0.940
Employment (in logs) 0.017 0.017 0.872
Pearl River Delta -0.020 0.055 0.914
Number of all firms in zip code (in logs) -0.015 0.026 0.757
Number of all textile firms in zip code (in logs) 0.006 0.025 0.204
Share of domestic market sellers in all firms in zip code -0.219 0.156 0.778
Share of domestic market sellers in all textile producers in zip code -0.017 0.115 0.477

βe
Wage per worker (in logs) 0.458 0.137 0.244
Interest rate 2.042 0.827 0.892
Materials per worker (in logs) 0.569 0.231 0.661
Productivity (in logs) -0.627 0.262 0.730
Employment (in logs) 0.233 0.063 0.905
Pearl River Delta -0.124 0.177 0.525
Number of all firms in zip code (in logs) -0.113 0.086 0.508
Number of all textile firms in zip code (in logs) 0.007 0.086 0.448
Share of exporters in all firms in zip code -1.788 0.538 0.950
Share of exporters in all textile producers in zip code 0.258 0.432 0.809
Ad-valorem tariff (in logs) -16.476 7.280 0.365
Foreign capital share 0.261 0.118 0.375

λd 0.511 0.041 0.115
λe 0.506 0.104 0.885
σνdd 0.730 0.029 0.677
σνde -0.758 0.069 0.764
σνee 7.530 0.318 0.230
mαd

5.063 0.420 0.118
mαe 4.952 1.051 0.892
sαdd

2.163 0.063 0.481
sαde

0.101 0.122 0.411
sαee

1.783 0.256 0.150

Notes: All regressors are one period lagged. We include year dummies. GT p-value denotes the p-value of the Geweke (1992)
test.



Table 14: Domestic sales and exports - SSSE results

Mean Std.dev GT
p-value

βd
Wage per worker (in logs) -0.144 0.059 0.340
Interest rate -0.494 0.366 0.391
Materials per worker (in logs) -0.211 0.088 0.365
Productivity (in logs) 0.304 0.100 0.271
Employment (in logs) -0.008 0.020 0.110
Pearl River Delta 0.036 0.066 0.823
Number of all firms in zip code (in logs) 0.002 0.030 0.799
Number of all textile firms in zip code (in logs) 0.010 0.031 0.286
Share of domestic market sellers in all firms in zip code -0.373 0.177 0.782
Share of domestic market sellers in all textile producers in zip code 0.091 0.126 0.197
βe
Wage per worker (in logs) 0.454 0.148 0.451
Interest rate 2.033 0.815 0.811
Materials per worker (in logs) 0.570 0.237 0.969
Productivity (in logs) -0.658 0.269 0.737
Employment (in logs) 0.190 0.059 0.965
Pearl River Delta -0.180 0.168 0.873
Number of all firms in zip code (in logs) -0.102 0.082 0.457
Number of all textile firms in zip code (in logs) 0.039 0.085 0.173
Share of exporters in all firms in zip code -1.558 0.484 0.421
Share of exporters in all textile producers in zip code 0.748 0.368 0.536
Ad-valorem tariff (in logs) -17.624 6.749 0.886
Foreign capital share 0.127 0.094 0.259

λd 0.405 0.047 0.801
λe 0.348 0.103 0.723
γd 0.178 0.019 0.801
γe 0.042 0.114 0.771
σνdd 1.259 0.093 0.768
σνde -2.168 0.214 0.867
σνee 7.661 0.369 0.921
mαd

4.371 0.494 0.726
mαe

6.096 1.691 0.472
sαdd

2.121 0.083 0.706
sαde

-0.240 0.270 0.616
sαee

1.785 0.258 0.128

Notes: All regressors are one period lagged. We include year dummies. GT p-value denotes the p-value of the Geweke (1992)
test.



Table 15: Effects estimates of one std.dev. increase in explanatory variables - domestic sales

ddd,d ddd,o ddd,f ddd,t dde,d dde,o dde,f dde,t

Wage per worker Min -0.068 -0.046 -0.078 -0.144 0.037 0.056 0.011 0.048
p25 -0.066 -0.046 -0.056 -0.122 0.037 0.060 0.047 0.085
p50 -0.066 -0.046 -0.045 -0.111 0.038 0.060 0.058 0.095
p75 -0.066 -0.046 -0.037 -0.104 0.038 0.060 0.073 0.111
Max -0.066 -0.044 -0.009 -0.074 0.041 0.060 0.105 0.142
Avg -0.066 -0.046 -0.046 -0.112 0.038 0.060 0.060 0.097

Interest rate Min -0.043 -0.029 -0.049 -0.091 0.032 0.049 0.009 0.041
p25 -0.042 -0.029 -0.035 -0.077 0.032 0.051 0.041 0.073
p50 -0.042 -0.029 -0.028 -0.070 0.032 0.052 0.050 0.082
p75 -0.042 -0.029 -0.024 -0.065 0.033 0.052 0.063 0.095
Max -0.042 -0.028 -0.005 -0.047 0.035 0.052 0.090 0.123
Avg -0.042 -0.029 -0.029 -0.071 0.032 0.051 0.051 0.084

Materials per worker Min -0.200 -0.136 -0.228 -0.422 0.094 0.143 0.027 0.121
p25 -0.194 -0.135 -0.164 -0.357 0.095 0.151 0.119 0.216
p50 -0.193 -0.135 -0.131 -0.325 0.095 0.151 0.146 0.242
p75 -0.193 -0.135 -0.109 -0.303 0.095 0.152 0.186 0.280
Max -0.193 -0.128 -0.025 -0.218 0.103 0.152 0.266 0.361
Avg -0.194 -0.135 -0.135 -0.329 0.095 0.151 0.151 0.246

Productivity Min 0.251 0.167 0.033 0.283 -0.107 -0.158 -0.275 -0.374
p25 0.251 0.175 0.142 0.394 -0.099 -0.158 -0.193 -0.291
p50 0.252 0.176 0.171 0.423 -0.099 -0.157 -0.152 -0.251
p75 0.252 0.176 0.213 0.464 -0.098 -0.157 -0.124 -0.224
Max 0.260 0.177 0.297 0.549 -0.098 -0.148 -0.028 -0.126
Avg 0.252 0.175 0.175 0.427 -0.099 -0.157 -0.157 -0.256

Employment Min -0.007 -0.005 -0.008 -0.015 0.033 0.050 0.010 0.042
p25 -0.007 -0.005 -0.006 -0.013 0.033 0.053 0.042 0.075
p50 -0.007 -0.005 -0.005 -0.012 0.033 0.053 0.051 0.084
p75 -0.007 -0.005 -0.004 -0.011 0.033 0.053 0.065 0.098
Max -0.007 -0.005 -0.001 -0.008 0.036 0.053 0.093 0.126
Avg -0.007 -0.005 -0.005 -0.012 0.033 0.053 0.053 0.086

Pearl River Delta Min 0.014 0.009 0.002 0.016 -0.013 -0.019 -0.034 -0.046
p25 0.014 0.010 0.008 0.022 -0.012 -0.019 -0.024 -0.036
p50 0.014 0.010 0.010 0.024 -0.012 -0.019 -0.019 -0.031
p75 0.014 0.010 0.012 0.026 -0.012 -0.019 -0.015 -0.027
Max 0.014 0.010 0.017 0.031 -0.012 -0.018 -0.003 -0.015
Avg 0.014 0.010 0.010 0.024 -0.012 -0.019 -0.019 -0.031

Number of all firms Min 0.003 0.002 0.000 0.003 -0.025 -0.036 -0.063 -0.086
in zip code p25 0.003 0.002 0.002 0.004 -0.023 -0.036 -0.044 -0.067

p50 0.003 0.002 0.002 0.005 -0.023 -0.036 -0.035 -0.058
p75 0.003 0.002 0.002 0.005 -0.023 -0.036 -0.028 -0.051
Max 0.003 0.002 0.003 0.006 -0.022 -0.034 -0.007 -0.029
Avg 0.003 0.002 0.002 0.005 -0.023 -0.036 -0.036 -0.059

Number of all textile Min 0.012 0.008 0.002 0.014 0.009 0.013 0.002 0.011
firms in zip code p25 0.012 0.008 0.007 0.019 0.009 0.014 0.011 0.020

p50 0.012 0.008 0.008 0.020 0.009 0.014 0.013 0.022
p75 0.012 0.008 0.010 0.022 0.009 0.014 0.017 0.026
Max 0.012 0.008 0.014 0.026 0.009 0.014 0.024 0.033
Avg 0.012 0.008 0.008 0.020 0.009 0.014 0.014 0.023
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Table 15 continued: Effects estimates of one std.dev. increase in explanatory variables - domestic sales

ddd,d ddd,o ddd,f ddd,t dde,d dde,o dde,f dde,t

Share of domestic market Min -0.059 -0.040 -0.068 -0.125
sellers in all firms in p25 -0.057 -0.040 -0.048 -0.106
zip code p50 -0.057 -0.040 -0.039 -0.096

p75 -0.057 -0.040 -0.032 -0.090
Max -0.057 -0.038 -0.007 -0.065
Avg -0.057 -0.040 -0.040 -0.097

Share of domestic market Min 0.018 0.012 0.002 0.020
sellers in all textile p25 0.018 0.013 0.010 0.028
producers in zip code p50 0.018 0.013 0.012 0.030

p75 0.018 0.013 0.015 0.033
Max 0.019 0.013 0.021 0.040
Avg 0.018 0.013 0.013 0.031

Notes: The columns denote the within-equation direct effects, ddd,d, effects on others, ddd,o, effects from others, ddd,f , and total
effects, ddd,t, and the across-equation direct effects, dde,d, effects on others, dde,o, effects from others, dde,f , and total effects, dde,t of
one-standard deviation changes of the regressors. The rows contain the minimum, the 25-th, 50-th, and 75-th percentile, maximum,
and average for each effect.

Table 16: Effects estimates of one std.dev. increase in explanatory variables - exports

dee,d dee,o dee,f dee,t ded,d ded,o ded,f ded,t

Wage per worker Min 0.209 0.110 0.022 0.230 -0.003 -0.004 -0.008 -0.011
p25 0.209 0.115 0.094 0.304 -0.003 -0.004 -0.005 -0.008
p50 0.209 0.115 0.112 0.321 -0.003 -0.004 -0.004 -0.007
p75 0.209 0.115 0.139 0.348 -0.003 -0.004 -0.004 -0.006
Max 0.214 0.116 0.191 0.400 -0.003 -0.004 -0.001 -0.004
Avg 0.209 0.115 0.115 0.324 -0.003 -0.004 -0.004 -0.007

Interest rate Min 0.180 0.095 0.019 0.199 -0.002 -0.003 -0.005 -0.007
p25 0.180 0.099 0.081 0.262 -0.002 -0.003 -0.003 -0.005
p50 0.180 0.099 0.097 0.277 -0.002 -0.003 -0.003 -0.004
p75 0.181 0.100 0.120 0.300 -0.002 -0.003 -0.002 -0.004
Max 0.185 0.100 0.165 0.345 -0.002 -0.003 -0.001 -0.002
Avg 0.180 0.099 0.099 0.280 -0.002 -0.003 -0.003 -0.005

Materials per worker Min 0.528 0.278 0.055 0.584 -0.009 -0.013 -0.023 -0.031
p25 0.529 0.291 0.239 0.769 -0.008 -0.013 -0.016 -0.024
p50 0.530 0.292 0.285 0.814 -0.008 -0.013 -0.013 -0.021
p75 0.530 0.292 0.353 0.883 -0.008 -0.013 -0.010 -0.019
Max 0.543 0.293 0.484 1.015 -0.008 -0.012 -0.002 -0.010
Avg 0.530 0.291 0.291 0.821 -0.008 -0.013 -0.013 -0.021

Productivity Min -0.563 -0.304 -0.502 -1.052 0.011 0.016 0.003 0.014
p25 -0.550 -0.303 -0.366 -0.915 0.011 0.017 0.013 0.024
p50 -0.550 -0.303 -0.295 -0.845 0.011 0.017 0.016 0.027
p75 -0.549 -0.302 -0.248 -0.798 0.011 0.017 0.021 0.032
Max -0.548 -0.289 -0.057 -0.605 0.012 0.017 0.030 0.041
Avg -0.550 -0.302 -0.302 -0.852 0.011 0.017 0.017 0.028

Employment Min 0.185 0.097 0.019 0.204 -0.000 -0.000 -0.001 -0.001
p25 0.185 0.102 0.083 0.269 -0.000 -0.000 -0.001 -0.001
p50 0.185 0.102 0.100 0.285 -0.000 -0.000 -0.000 -0.001
p75 0.186 0.102 0.123 0.309 -0.000 -0.000 -0.000 -0.001
Max 0.190 0.103 0.169 0.355 -0.000 -0.000 -0.000 -0.000
Avg 0.185 0.102 0.102 0.287 -0.000 -0.000 -0.000 -0.001
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Table 16 continued: Effects estimates of one std.dev. increase in explanatory variables - exports

dee,d dee,o dee,f dee,t ded,d ded,o ded,f ded,t

Pearl River Delta Min -0.069 -0.037 -0.062 -0.129 0.001 0.001 0.000 0.001
p25 -0.068 -0.037 -0.045 -0.113 0.001 0.001 0.001 0.001
p50 -0.068 -0.037 -0.036 -0.104 0.001 0.001 0.001 0.002
p75 -0.067 -0.037 -0.030 -0.098 0.001 0.001 0.001 0.002
Max -0.067 -0.035 -0.007 -0.074 0.001 0.001 0.002 0.002
Avg -0.068 -0.037 -0.037 -0.105 0.001 0.001 0.001 0.002

Number of all firms Min -0.130 -0.070 -0.115 -0.242 0.000 0.000 0.000 0.000
in zip code p25 -0.126 -0.070 -0.084 -0.210 0.000 0.000 0.000 0.000

p50 -0.126 -0.070 -0.068 -0.194 0.000 0.000 0.000 0.000
p75 -0.126 -0.069 -0.057 -0.183 0.000 0.000 0.000 0.000
Max -0.126 -0.066 -0.013 -0.139 0.000 0.000 0.000 0.000
Avg -0.126 -0.069 -0.069 -0.196 0.000 0.000 0.000 0.000

Number of all textile Min 0.048 0.025 0.005 0.053 0.001 0.001 0.000 0.001
firms in zip code p25 0.048 0.027 0.022 0.070 0.001 0.001 0.001 0.001

p50 0.048 0.027 0.026 0.074 0.001 0.001 0.001 0.001
p75 0.048 0.027 0.032 0.081 0.001 0.001 0.001 0.002
Max 0.050 0.027 0.044 0.093 0.001 0.001 0.001 0.002
Avg 0.048 0.027 0.027 0.075 0.001 0.001 0.001 0.001

Share of exporters in all Min -0.316 -0.170 -0.282 -0.590
firms in zip code p25 -0.308 -0.170 -0.205 -0.513

p50 -0.308 -0.170 -0.166 -0.473
p75 -0.308 -0.169 -0.139 -0.447
Max -0.307 -0.162 -0.032 -0.339
Avg -0.308 -0.169 -0.169 -0.478

Share of exporters in all Min 0.181 0.096 0.019 0.200
textile producers in p25 0.182 0.100 0.082 0.264
zip code p50 0.182 0.100 0.098 0.279

p75 0.182 0.100 0.121 0.303
Max 0.186 0.101 0.166 0.348
Avg 0.182 0.100 0.100 0.282

Ad-valorem tariff Min -0.217 -0.117 -0.194 -0.406
p25 -0.212 -0.117 -0.141 -0.353
p50 -0.212 -0.117 -0.114 -0.326
p75 -0.212 -0.116 -0.095 -0.308
Max -0.211 -0.111 -0.022 -0.233
Avg -0.212 -0.117 -0.117 -0.329

Foreign capital share Min 0.058 0.031 0.006 0.064
p25 0.058 0.032 0.026 0.085
p50 0.058 0.032 0.031 0.090
p75 0.058 0.032 0.039 0.097
Max 0.060 0.032 0.053 0.112
Avg 0.058 0.032 0.032 0.090

Notes: The columns denote the within-equation direct effects, dee,d, effects on others, dee,o, effects from others, dee,f , and total
effects, dee,t, and the across-equation direct effects, dde,d, effects on others, dde,o, effects from others, dde,f , and total effects, dde,t of
one-standard deviation changes of the regressors. The rows contain the minimum, the 25-th, 50-th, and 75-th percentile, maximum,
and average for each effect.
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