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Abstract

In this dissertation, we study the role of correlation functions in Cosmol-

ogy. The study is bidirectional: We explore the constraints that corre-

lation functions gathered from data impose on different theories; we also

analyze the constraints that get imposed on correlation functions given

symmetries of theories. For the former analysis, we use structure forma-

tion data like the CMB and matter power spectrum to set limits on the

temperature of cold dark matter particles, basically only assuming that

the particles were nonrelativistic when they decoupled and have interacted

negligibly since. In another study, we use the same data to constrain how

much Sommerfeld enhancement of dark matter annihilation could have

occurred, with the analysis being insensitive to the details of the annihi-

lation. Finally, we propose a new method to detect the so-called CMB

anomalies in a more general manner than is usually considered. For the

latter type of analysis, we consider the role of gauge symmetry in con-

straining relations between n- and (n+ 1)-point correlation functions for

gravity coupled to a scalar field. Using certain assumptions, we show how

novel consistency relations between fields can be derived, that arise only

out of the symmetry of the action, and are independent of its particular

form.
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Inference, some say, is not valid because there is ir-

regularity due to embankment, damage and similarity—

Nyaya Sutra, Book II, Chapter 1.37
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Chapter 1

Introduction

Hydrogen is a light, odorless gas, which, given enough

time, turns into people.

Edward Harrison

The question of the origin and the structure of the Universe must count as one of the

oldest and most profound questions that mankind has asked. All ancient civilizations

had their own theories about how the Universe was constituted. It was the invention

of the telescope that made it possible to verify these theories. The telescope eventually

led to the acceptance of Copernicus’ heliocentric theory, which was radically at odds

with what almost all ancient astronomers thought, and, indeed, what common sense

suggested. Yet, it took almost three more centuries for the technology to reach a

stage where one could conclude that galaxies apart from our own, so-called “island

universes”, existed. Moreover, it was discovered that most of these galaxies appear

to be moving away from us. Interpreted within the context of General Relativity,

this suggested that the universe was expanding. Some of the earliest evidence to

support this view was gathered by Vesto Slipher in 1917 [5]. In 1929, Edwin Hubble

[6] gathered additional evidence and also proposed an empirical relationship between

the receding velocities v and distance d, v = Hd. Here, H is the Hubble constant and

the relationship is known as Hubble’s Law. (Georges Lemâıtre had actually derived

1



much of what Hubble did, with slightly less data, in 1927, but owing to the result

being published [7] in a not-so-famous French journal, most of the credit continues to

go to Hubble.)

Though Modern Cosmology hasn’t settled the question of the origin of the Uni-

verse, it has made tremendous progress in pushing back the envelope of our under-

standing of its evolution by billions of years. Observational and theoretical advances

over the past few decades have improved our theories regarding the Universe’s com-

position to a remarkable degree. Interpreted within the context of Particle Physics,

Cosmology still leaves unanswered several questions such as the particle nature of

Dark Matter, the Cosmological Constant problem, etc. But, treated purely as a

model that makes predictions given the values of a few parameters, the Concordance

Model of Cosmology has been spectacularly successful in explaining the large-scale

structure of the universe from the first few seconds up to today.

Arguably, the most important tool that has contributed to this improvement in

our understanding is the Cosmic Microwave Background radiation (CMB). To date,

Astronomy, and hence Cosmology, is predicated on using photons from outer space

to better understand the constitution of the cosmos. Up until 1965, scientists were

primarily using photons from celestial objects such as stars or clusters to understand

what has been happening in the Universe in the relatively recent past; that is, during

epochs at most since these objects had formed. There was no probe of how the

Universe looked prior to that epoch, or indeed whether such an epoch existed at all.

But, as we shall see, the discovery of the CMB confirms the idea that an epoch bereft

of compact objects existed, and the CMB has been used to pin down the properties

of the cosmos in impressive quantitative detail.

1.1 FLRW Metric

Two pillars on which much of Modern Cosmology stands are:

2



(i) The universe is almost exactly (spatially) homogeneous and isotropic, meaning

that, on large enough scales, the universe must look the same wherever you

are and in whatever direction you look. This is also called the Cosmological

Principle. (This is the reason H in Hubble’s Law is called Hubble’s constant.

Even though it changes as a function of time, it is the same everywhere in

space.)

(ii) The universe is expanding. The corollary to this is that, on large enough scales,

the distance between objects is increasing at a rate that is proportional to the

distance between the objects. This is the same as Hubble’s Law.

If the tiny deviations from homogeneity and isotropy are ignored, point (i) above

implies that the line-element describing the universe is necessarily of the FLRW form:

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

))
, (1.1)

where k = {−1, 0, 1} represents negative, zero and positive curvature of constant-

time hypersurfaces. The metric corresponding to this line-element was discovered by

Friedmann [8, 9] and Lemâıtre [7] independently in the context of General Relativity,

and proved to be a purely geometric result by Robertson [10] and Walker [11]. In this

framework, Hubble’s constant H = ȧ/a and the fact that the universe is expanding

means that H(t) > 0, or equivalently that a(t) is a monotonically increasing function

of time.

In this chapter, we shall try to understand the different epochs in cosmic history

in a pedagogical manner. But, because the motivations for several assumptions for a

given epoch are due to what happens in other epochs, it will sometimes be difficult

to follow a strictly pedagogical discussion. Hence, for reference, we have sketched the

most important epochs in Figure 1.1. The meaning of these epochs should become

clear in due course. For now, it must be noted that what differentiates these epochs is

basically the kind of energy that dominates during the corresponding times. A scalar

3



In�ation Reheating Radiation Matter Dark Energy

Primordial 
perturbations

SM particles
created

Recombination Stars form

Figure 1.1: Text below, in red: The main epochs of the universe, with left to right
indicating a chronological order. Text above, in blue: important events that occur
during the epochs.

field dominates during inflation, photons and neutrinos during radiation-domination,

dark matter and other massive particles during matter-domination and the cosmo-

logical constant dominates at the end. The interactions that are relevant during the

era of reheating aren’t very well-understood and hence not much is known about how

long it lasts.

1.2 Hot Big Bang Model

Let us assume that the universe has been expanding for as long as it has existed.

Then, the fact that the universe is made up of normal matter like photons implies,

within the context of general relativity, that the energy density of the universe must

increase as one goes back in time. In particular, this implies that one hits a spacetime

singularity in the finite past. This isn’t really an issue because quantum gravity effects

are expected to dominate around these high energy densities and rescue the theory.

But, it is valid to seek the implications of this increase in energy density before it

becomes of the order where quantum gravity effects dominate.

For now, let us assume a universe made up only of electrons, protons and pho-

tons as they are stable particles whose properties are very well understood. Further,

assume that the spectrum of the photons is that of a blackbody. We shall explain

the motivation for the assumption in due course, but, the implication of a blackbody
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spectrum is that, given just the temperature of the spectrum, the energy distribution

function of the photons can be calculated. Now, as the universe expands, if interac-

tions of the photons with matter are ignored, it can be shown that the temperature

Tγ of this spectrum is inversely proportional to the scale factor a(t) that appears in

(1.1),

Tγ(t) = Tγ,0
a0

a(t)
, (1.2)

where Tγ,0 is the temperature of the photons today. So, as we go back in time, Tγ

increases, which implies that the average energy of photons in the universe increases.

If photons are absent, electrons and protons combine to form Hydrogen atoms.

Recall that the ionization energy of the Hydrogen atom is 13.6 eV. So, as we go back

in time, we ought to reach an epoch where the average energy of the photons attains

this value. Therefore, around this point of time (and during all times preceding it),

neutral Hydrogen atoms cannot exist. Moreover, even though protons and photons

don’t interact very efficiently, Compton scattering between the electrons and the

photons, and Thomson scattering between the electrons and the protons keep all

three species of particles in thermal equilibrium. This is what is meant by the Hot

Big Bang Model. The conclusion, if all our assumptions are true, is that the very

early universe was made up of a hot plasma that was opaque due to the mean free

path of the photons being very small. As the universe expanded and cooled, around

the time when the average photon energy dropped to that of Hydrogen’s ionization

energy, the photons became free, and neutral Hydrogen formed. This phenomenon is

called recombination.

We had started with the assumption that the universe is almost exactly homo-

geneous and isotropic. So, recombination must have happened everywhere in the

universe. Moreover, if we assume that post recombination most photons travel to

us without any interactions, as we look out in the sky, we should be able to see

these photons. Say recombination occurred n billion years ago. Then, today we
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should be receiving photons that have traveled n billion light-years since recombina-

tion.1 Moreover, the photons must follow a blackbody distribution. It is one of the

great triumphs of Modern Cosmology that, in 1965, this radiation was discovered by

Penzias and Wilson [12]. Further investigations at different frequencies showed that

the photons indeed followed a blackbody distribution, with a temperature of 2.725 K.

This temperature corresponds to the microwave part of the electromagnetic spectrum

and thus the radiation is called the Cosmic Microwave Background radiation. These

discoveries established that the Hot Big Bang Model was the right framework to do

Cosmology in.

1.3 Anisotropies

In our assumptions in Section 1.1, we said that the universe is almost homogeneous

and isotropic. Empirically, the fact that the universe cannot be exactly homogeneous

and isotropic is obviously true because we see structure all around us. It is also

true that, at least classically, one cannot start with a system that has some spatial

symmetry and, using General Relativity, break that symmetry. In other words, the

current state of the universe implies that in all of its past, at least when it could be

treated classically, homogeneity and isotropy were not exact. In particular, during

recombination too, these symmetries must have been broken. So, the spacetime

metric, even in the early universe, must have been a perturbed FLRW metric.

Recalling that General Relativity relates metric perturbations to density pertur-

bations, it is natural to expect that this implies that the photon energy density wasn’t

exactly homogeneous either. The Stefan-Boltzmann law then implies that the temper-

ature of the CMB photons should also depend on the region from which the photons

originated. These inhomogeneities, when projected onto the sky, must correspond to

1Expansion of the space between where these photons initially became free and Earth’s current
location means that these points are further away from us today than n billion light-years, but, only
by an order one number.
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temperature anisotropies. In 1992, these anisotropies were seen by the COBE-DMR

instrument [13], specifically designed for this purpose. (RELIKT, launched in 1983,

had gathered slightly less accurate data.) The anisotropies were of the order of about

1 part in 105, justifying the assumption that the universe is almost homogeneous and

isotropic.

Let Tγ(n̂) denote the detected CMB temperature in direction n̂ on the sky. Then,

Tγ(n̂) = T γ + ∆Tγ(n̂), (1.3)

where T γ is the background CMB temperature today (2.725 K). ∆Tγ(n̂) is thus the

temperature anisotropy. In terms of spherical harmonics Y `m(n̂), we can write

∆Tγ(n̂)

T γ
= a`mY

`m(n̂) (1.4)

Thus, once a coordinate system is chosen, the multipole coefficients a`m’s contain all

the information about the CMB. By construction, the coefficients depend on the co-

ordinate system chosen. On the other hand, consider the correlation function between

the coefficients

〈a∗`m a`′m′〉 = C` δll′ δmm′ (1.5)

The angular brackets in the above indicate an ensemble average over a statistically

isotropic universe with random temperature fluctuations. We will motivate these

properties later, but, for now, we would just like to state that it is these properties

that lead to the Kronecker deltas on the right-hand side, rendering the correlation

function coordinate-system independent. Therefore, if these properties are assumed,

then, given temperature anisotropy data, the C`’s can be estimated as

C` =
1

2`+ 1

m=∑̀
m=−`

|a`m|2 (1.6)
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Figure 1.2: The CMB anisotropy power spectrum as measured by Planck [14], with
D` being plotted along the y-axis. The red lines represent experimental error bars.
The green shaded region represents cosmic variance, which is a theoretical error bar:
from (1.6), we see that, for a given `, there are 2`+ 1 modes to sample from, and so
lower `’s will necessarily have a higher sampling variance.

Furthermore, if the fluctuations are distributed as Gaussians, as the simplest early-

universe theories predict, and as the data seem to indicate, then, the C`’s contain all

the relevant information regarding the CMB. In Figure 1.2, we plot the observed

D` := T
2

γ,0

`(`+ 1)

2π
C`

as a function of `.

1.4 Dark Matter

As the anisotropies on the sky today are basically the evolution of perturbations from

some earlier time, it is clear that their distribution depends on a number of factors like

the amount of matter in the universe, the rate at which the universe is expanding, the

geometry of the spatial hypersurfaces, etc. But, for a given set of these parameters,

and for given initial conditions at some time before recombination, the distribution

of the anisotropies as we see them on the sky today can be calculated. Conversely,
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given the actual distribution of the anisotropies, the values of these parameters can

be estimated.

If such an exercise is carried out, and only particles that we know from the Stan-

dard Model of Particle Physics are considered, it is seen that for no values of the

parameters do the data fit the theory! So, we are led to conclude that we must either

modify the theory or modify the particle content in the model. Given the success of

general relativity, it is reasonable to begin by doing the latter via the addition of a

new kind of particle. Indeed, as long ago as in 1933, Zwicky [15] suggested that the

Coma Cluster had particles in it that had mass, but didn’t interact with light. He

proposed this as a solution to the observation that the mass of the galaxies that he

estimated seemed to be much more than his calculations for the mass of the luminous

objects in the cluster.

When we consider the distribution of the CMB anisotropies today, it is clear that

matter plays two different roles—on the one hand, the phenomenon of recombination

depends on the interaction between photons, electrons and protons; on the other, by

having a mass, electrons and protons influence how the universe evolves, and hence

how photons propagate. Physically, these are different effects—the former is more

“chemical”, whereas the latter is purely gravitational. Following Zwicky’s suggestion,

say we have two types of matter: normal matter, usually called baryons in cosmology,

meaning all types of matter (heavier than neutrinos) that are part of the Standard

Model; dark matter, meaning matter that interacts negligibly weakly with light. It

is seen that the addition of dark matter results in a much better fit of the data with

the model.

In the context of cosmological structure formation, dark matter (DM) can be

modeled as a perfect fluid, just like baryons are. Thus, energy density and pressure

completely characterize the dark matter fluid. As the metric perturbations are tiny2,

2It should be noted that metric perturbations by themselves are not gauge-invariant, so their
magnitude isn’t a physical quantity. In subsequent chapters, we will deal with gauge-fixed metric
perturbations that are physical. It is these perturbations that are being referred to in the text.
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it again suggests that it is useful to decompose the DM energy density and pressure

into background and linearly perturbed components.

The pressure of most fluids considered in cosmology is linearly related to the

energy density, p = w ρ, where w is called the equation-of-state parameter. The role

of pressure in cosmological structure formation is to suppress the growth of structure.

For instance, consider the evolution of the perturbation of a pressureless fluid in two

backgrounds: (i) dominated by radiation (equation of state w = 1/3); (ii) dominated

by pressureless matter (w = 0). In (i), the growing mode of the perturbation evolves

only logarithmically with the scale factor, whereas in (ii), it evolves linearly. This can

directly be traced to the difference in w between the two background fluids.

If the particles of a fluid can be described by a phase-space distribution function,

then the pressure of the fluid is related to the velocity dispersion of the particles.

Further, if the particles are in kinetic equilibrium (meaning that they are described

by one of Maxwell-Boltzmann, Fermi-Dirac or Bose-Einstein statistics), this velocity

dispersion is related to the temperature of the system. To sum up, if particles are

assumed to be in kinetic equilibrium, their pressure is related to their temperature.

In particular, low temperatures correspond to low pressures. We shall assume kinetic

equilibrium of dark matter particles for the rest of the chapter.

Hot and cold dark matter affect structure formation in very different ways. Fluc-

tuations of a fluid cannot grow on scales smaller than the corresponding mean free

paths of the particles simply because the random motions of these particles on those

scales wash out the perturbations. Hot dark matter particles have larger velocity

dispersions due to their higher temperature, and thus larger mean free paths. This

implies that structure formation can only proceed in a “top-down” manner; that is,

superclusters must form first, which then split away into clusters, and finally galaxies.

Because, if one started with a perturbation on small (say galactic) scales, it would

get suppressed with time. Whereas, in the case of cold dark matter, the structure

formation proceeds in a “bottom-up” manner—structures form on the smallest scales
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first, and then continue to grow into bigger and bigger-sized objects.

Evidence from the CMB and other probes prove beyond doubt that structure

formation has happened in a bottom-up manner. So, the consensus in the cosmology

community is that there must be a significant amount of Cold Dark Matter (CDM).

In fact, data show that the energy density of CDM is four times that of baryons.

Apart from the properties of dark matter that we have discussed, little else is

known about it. These properties are sufficient to explain phenomena as widely

separated in scale as the anisotropies in the CMB, the clustering of galaxies and the

rotation curves of stars in the Milky Way. These lines of evidence for their existence

is one of the most concrete reasons to believe in physics beyond the Standard Model.

In Chapter 2, we shall discuss in much greater detail what we mean by the coldness

of dark matter. In Chapter 3, we shall consider one proposed form of interaction

amongst CDM particles and discuss what can be said about the strength of this

interaction.

1.5 Scales

We mentioned earlier that the CMB anisotropies can be used to constrain the values

of parameters that are part of the Concordance Model of Cosmology. To achieve

this, we obviously need to set up some initial conditions for the inhomogeneities. An

ambitious plan would be to set the initial conditions at a time that corresponds to

the highest energies that we have probed here on Earth. This could be, say, the TeV

scale that the LHC [16] probes, or the PeV scale at which IceCube [17] has detected

cosmic neutrinos. Call the time corresponding to this energy tinit. In principle, to

determine the distribution of the CMB anisotropies, one would have to keep track of

all that happened in the universe since tinit. But, due to the expansion of the universe,

the task turns out to be much simpler.

To see this, let us first understand in more detail why the CMB has proved to be
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so useful in understanding the universe’s evolution during very early times. It has to

do with the range of scales that the CMB probes. For the analysis of these scales,

it turns out to be much more convenient to work in Fourier space because, in linear

perturbation theory, the different modes that represent these scales decouple. This

decoupling of scales is extremely crucial. For instance, measuring the temperature

anisotropy on the largest scales today gives us a direct probe of the inhomogeneities in

the gravitational potentials during the first second of the universe! In the absence of

the decoupling of scales, such a simple relationship between the value of an observable

today and its value in the very early universe wouldn’t exist. It is for this reason that

we shall concentrate on perturbations that can be treated linearly.

CMB and supernovae data [18, 19] indicate that the universe is spatially flat. This

implies that any perturbed quantity δf(~x, t) := f(~x, t)− f̄(t) can be written as

δf(~x, t) =
1

(2π)3/2

∫
d3k ei

~k.~x δf(~k, t)

The decoupling of modes means that we could pick a mode δf(~k) and follow its

evolution independently of other ~k, at least until δf(~k) becomes non-linear. Note

that large ~k corresponds to small scales and vice-versa.

Now, it is clear that the larger the number of the modes that we have access to,

the more the information that we possess. There is an obvious lower limit to the

k associated with any cosmological observation. It is related to the distance to the

(imaginary) surface that produced the photons corresponding to the observation. For

instance, one minute after recombination, we would only have access to the photons

produced within a sphere of radius one light-minute. Today, we have access to pho-

tons from a much larger distance (hence, a much lower k). This k corresponds to

the smallest value of k that the CMB probes. Call it kmin, and the wavelength corre-

sponding to it λmax: λmax = 2π
kmin

. Because photons were not free before the CMB was

produced, kmin is the smallest k value that we can ever hope to probe via photons.
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It is for this reason that the CMB contains the best information about the very early

universe.

What about the maximum value of k (smallest scale) that the CMB probes? In

an era dominated by radiation, which is when recombination occurs (refer Figure

1.1), perturbations are prevented from collapsing on the smallest scales. This is

because the pressure in the radiation counters the attractive nature of gravity. So, as

perturbations are washed off on the smallest scales, there is no theoretical kmax. But,

in reality, due to the resolution and sensitivity of the detectors that measure the CMB

temperature, the actual kmax probed is quite a bit smaller. Call the corresponding

wavelength λmin. The evolution of λmin and λmax as a function of a(t), illustrating

the range of modes that the CMB power spectrum probes, is shown in Figure 1.3.

What about other scales? The Hubble constant H is a time scale that represents

the rate at which the universe is expanding. Given that no signal can travel faster

than the speed of light, the Hubble radius cH−1 can be thought of as a length scale

that determines regions in space that are in causal contact. Loosely speaking, this

scale determines the largest length scales that can get affected when a phenomenon

occurs. For instance, the evolution of cosmological perturbations depends on the

value of the Hubble radius at that point of time.3

The wavenumber k is just a label denoting the different modes today. At an earlier

moment of time, the physical wavenumber corresponding to this label is kphys = k/a.

The dimensionless ratio kphys × cH−1 = kc
aH

is a very useful quantity for structure

formation.4 If k
aH
� 1, it means that we are considering very small scales and

the expansion of the universe can be ignored. The mode is said to be sub-horizon. If

k
aH
� 1, we are considering very large scales and the mode is said to be super-horizon.

It is useful to consider the evolution of H, which in turn yields the evolution of

3It must be noted that the dynamical quantity cH−1 is different from the kinematical quantity,
the particle horizon, that determines the maximum comoving distance that a signal could have
traveled since the Big Bang. In particular, the latter depends on the entire history since the Big
Bang, whereas the former depends on the value of the Hubble constant at a given time.

4We shall set c, the speed of light, to one from now on.
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the Hubble radius. Einstein’s equations for the spatially-flat FLRW metric lead to

two equations that are called the Friedmann equations,

H2 =
8πG

3
ρ (1.7a)

Ḣ +H2 = −4πG

3
(ρ+ 3p) (1.7b)

If the universe contains a species that can be modeled as a non-interacting perfect

fluid f , then the above equations imply that the energy density of the fluid evolves

as

ρf ∝ a−3(1+w) , (1.8)

where w is the equation-of-state parameter. From Equations 1.7a and 1.8, we see that

in the particular cases of a radiation-dominated (w = 1/3) and a matter-dominated

(w = 0) universe, H ∼ a−2 and H ∼ a−3/2 respectively. Thus, in both cases, and in

general in cases where (ρ + 3p) > 0, the Hubble radius H−1 decreases faster than a

as we go back in time.

Therefore, if the Universe is made up of energy sources such that (ρ + 3p) > 0,

the Hubble radius decreases faster than λphys = 2π
kphys

= a 2π
k

. This means that, if we

go back far enough in time, the size of a causal patch (given by H−1) is much smaller

than the smallest length scales λmin that we can probe. For times before this, any

local phenomenon would not leave its imprints on the density perturbations of the

CMB or any other probe of structure formation. This is shown in Figure 1.3. Thus,

when we discuss the evolution of the CMB, we can ignore what happened during the

earliest stages of radiation-domination.

We expect that at energies of order hundreds of MeV and higher events such

as phase transitions occur and the particle content of the universe changes. But,

because the interaction rates are high, all the matter in the universe is in the form

of a plasma, and any phenomenon affects scales much smaller than the smallest that
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Figure 1.3: The evolution of modes in a radiation-dominated universe. The brown
line represents the physical wavelength of the smallest scale that we can probe, and
thus the brown region represents modes that we can’t probe experimentally. The
blue line represents the mode corresponding to the distance to the CMB surface and
thus the blue region represents modes that are larger, and hence inaccessible. The
black, dot-dashed line represents the quadratically growing Hubble radius and, early
enough, like at the time corresponding to Q in the figure, H−1(t) < λmin(t) and hence
phenomena that occur then don’t leave an imprint on the CMB power spectrum, etc.

we can probe. Also, the fact that all the matter is in the form of a plasma justifies

one of the assumptions that we started with—that the photons follow a blackbody

spectrum. Very early in the universe’s history, the interactions kept all species at

the same temperature. As energy densities fell due to expansion, the interactions

ceased to be effective and the species decoupled from each other. But, each species

continued to be described by an equilibrium distribution, with a temperature that

decreased with time.

1.6 Inflation

In light of the discussion in the previous section, it must bother us that the CMB

temperature is homogeneous to 1 part in 105. Given that recombination occurs when
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the average energy of the photons becomes of order 13.6 eV5, we can calculate the

energy density of radiation at this time. (This is a lower limit on the total energy den-

sity, but, the following argument only gets stronger if we include other contributions

to the energy density.)

Given the energy density, from (1.7a) we can calculate the Hubble radius at the

time of recombination. It corresponds to about a couple of degrees on the sky today.

We discussed in the previous section that in the Hot Big Bang Model the Hubble

radius decreases faster than a as we go back in time, whereas the physical size of a

patch (the inverse of the physical wavenumber) decreases only as a. So, these patches

of a couple of degrees could never have been in causal contact with each other. Yet,

because the CMB temperature is almost exactly isotropic, we know that photons

coming from even antipodal points on the sky have almost the same temperature!

This feature, which can only be explained as an extremely unlikely coincidence within

the Hot Big Bang Model, goes by the name of the horizon problem.

One way of avoiding this extreme fine-tuning is to see if the Hubble radius can be

made to decrease slower than a as we go back in time. From (1.8), this is possible for

w < −1/3. In this case, the universe is accelerating, meaning that ä
a
> 0. This rapid

expansion of the universe is called inflation. An inflationary epoch could occur before

the Universe was in the hot phase; that is, before it became dominated by normal

Standard Model kind of particles. If this can be achieved, then, pre-hot phase, the

causality arguments of the previous section don’t apply. Thus, we have the possibility

that the regions that constitute our observable universe were initially in causal contact

and then fell out of causal contact as the universe entered the hot phase.

Of course, one needs a microscopic theory in which w < −1/3 can be achieved. It

5Actually, the value is about 0.25 eV. This has to do with the fact that the number density of
photons is much larger than that of electrons. As the photons follow a blackbody distribution,
the larger number density means that the contribution from the tail of this distribution cannot be
neglected. Thus, recombination happens later than one would näıvely expect. Also, recombination
is not an instantaneous process, but, can be approximated to be one for analytical considerations.
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turns out that for a scalar field φ with potential V (φ),

w =
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

(1.9)

If we have φ̇ ≡ 0, then we achieve w = −1. Say the universe is filled with such a

scalar field and that the field, called the inflaton, is homogeneous. From (1.8), we see

that H is then a constant, and from (1.7), we have that the Universe is undergoing

an exponential expansion, with a constant H. Therefore, this exponential expansion

(called de Sitter inflation) is a possible way to get regions into causal contact before

the universe enters the hot phase. Assuming that the scalar field is homogeneous may

seem like trading the homogeneous properties of the CMB (which were the cause of

the problem) into that of the scalar field. But, before inflation begins, the scalar field

need only be homogeneous over the order of a few Hubble radii—not the 1028 that

the Hot Big Bang Model requires.

The trouble with de Sitter inflation is that there is no dynamics. If φ̇ is exactly

zero, then the field is stuck at its initial field value and absolutely nothing happens

in the universe. So, we are led to considering a situation where φ̇2 � V (φ). Using

the equation of motion of the scalar field, this can be reduced to

ε :=
1

16πG

(
∂V/∂φ

V

)2

� 1 (1.10)

So, if we have a scalar field whose potential is almost flat, then the potential energy of

the scalar field acts as a vacuum energy that leads to inflation. The scalar field rolls

down slowly, thereby imparting dynamics to the universe. The fact that BBN (Big

Bang Nucleosynthesis [20]), which occurs around the MeV scale, is so well predicted

by the Hot Big Bang Model means that inflation must have definitely ended by the

time of BBN, and in all likelihood, much earlier.

Figure 1.4 depicts the evolution of two different modes as a function of the scale

factor during and after inflation. As shown in the figure, the Hubble radius remains
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Figure 1.4: The evolution of modes during and after inflation. The blue dotted lines
represent the physical wavelength. The bold, red line represents the Hubble radius,
which remains constant during inflation and grows quadratically during radiation-
domination. The dotted, red line represents the Hubble radius sans inflation. “Sub”
and “super” refer to λ′(t) being sub- and super-horizon respectively.

constant during inflation and then increases with time. The two dotted lines are

the physical wavelengths of two modes, with λ′(t) > λ(t). Firstly, note that if there

was no inflation, the Hubble radius curve would have been extrapolated along the

radiation-domination curve to a point on the y-axis.6 This would imply that, at a

given point of time (that is, for a given a(t)), the wavelength of both the modes would

always be more than that of the Hubble radius. This is a pictorial depiction of the

horizon problem. Also, note that the larger wavelength mode λ′(t) exits the horizon

(becomes super-horizon) earlier and re-enters it (becomes sub-horizon) later.

Data suggest that the universe would have had to have undergone at least 60

e-folds of inflation if the horizon problem is to be solved. That is, slow-roll must have

lasted for at least as long as the time it took for the universe’s radius to grow by a

factor of e60. Only then can modes with k > kmin have been part of a causal patch and

thus lead to the CMB having almost the same temperature in all directions. The high

energy density at the time, coupled with the fact that the expansion is exponential,

6As mentioned in the first section, quantum gravity effects are expected to dominate during the
earliest times. So, the plot cannot be trusted for the earliest of times.
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means that 60 e-folds can be achieved in a tiny fraction of a second. Nothing can be

said about the modes that became superhorizon much before the 60 e-folds because

these modes are currently outside our observable universe.

1.7 Reheating

We are faced with a different issue if we consider the exponential expansion due

to inflation. During inflation, the energy density of the universe would have been

dominated by the scalar field. During slow-roll, the energy density of the scalar field

is almost a constant; whereas, that of normal matter gets exponentially diluted. So,

if the universe expanded by a factor of least e60, any matter that could have existed

at those energies would have got diluted away. Recall that it is this very matter

that eventually leads to the electrons, protons and photons that produce the CMB.

Therefore, we need to somehow be able to convert the energy in the scalar field to

that of normal matter. As inflation ends when the field starts rolling fast and reaches

the minimum of the potential, it may well be that it is this kinetic energy of the scalar

field that is responsible for the matter that we see around us.

We shall not discuss this creation of matter (called reheating) any further. But,

simply from the fact that the energy density of matter is slightly inhomogeneous, we

are led to conclude that the energy density of the scalar field must also have been

very slightly inhomogeneous. (One may wonder if these perturbations could have been

created after the end of inflation—at the time of reheating, say. But then, we basically

encounter the horizon problem again. If the perturbations were produced after the

end of inflation, these perturbations wouldn’t be coherent on scales larger than the

Hubble radius at that time—they would be completely stochastic. In particular, this

would result in the CMB anisotropy not having the peaks that we observe it to.)

The problem has now been “reduced” to setting up the initial conditions for the

scalar field and relating the perturbations in the scalar field to that of normal matter.
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Let’s deal with the latter first. A dimensionless quantity that measures the magnitude

of perturbations in a fluid α is

δα(~x, t) :=
δρα(~x, t)

ρ̄α(t) + p̄α(t)

The simplest initial condition would be to set the same δα for all fluids. If the total

number of particles of each fluid is conserved (that is, there is no decay, annihilation,

etc.), such perturbations are called adiabatic. Adiabatic perturbations have a partic-

ular signature on the CMB—they determine the location of the peaks (refer Figure

1.2). From CMB data, we can conclude that the perturbations that led to the CMB

were very close to being adiabatic.

Under very general conditions, Weinberg [21] has shown that in the case of single-

field inflation, the perturbations in the scalar field at the end of inflation lead to adi-

abatic perturbations in the plasma once the universe becomes radiation-dominated.

The observed adiabaticity of the CMB anisotropies, as well as other observations

such as the absence of non-Gaussianities, very strongly indicates that inflation was

largely driven by a single scalar field. In this case, using Weinberg’s theorem, irrespec-

tive of what happened between the end of inflation and the beginning of radiation-

domination, the spectrum of perturbations at the end of inflation can be mapped into

that of the different species at the beginning of radiation-domination.

1.8 Inflationary Perturbations

So, remarkably, all that we need for setting up the initial conditions of the fluid

perturbations are the perturbations in the scalar field at the end of inflation. Chibisov

and Mukhanov discovered [22] that the quantization of the scalar field itself could lead

to the kind of perturbations that were being sought. As the energy scales of inflation

are typically expected to be much higher than 1010 GeV (certainly much higher than

the MeV scale of Big Bang Nucleosynthesis), it is natural to see if the high energy

20



densities lead to nontrivial quantum effects.

Let us start by counting the number of degrees of freedom (DOFs) in the the-

ory. Consider the metric perturbation δgµν . It is useful to classify the perturbations

according to their transformations under the symmetries of the background FLRW

spacetime—in particular, (spatial) rotations. Under rotations, δg00 transforms like a

scalar. Hence, we have 1 scalar DOF. δg0i transforms like a rank-1 (Cartesian) tensor,

that is, δg0i → R j
i δg0j, where R j

i is the rotation matrix. The irreducible represen-

tation of such a tensor can be thought of as corresponding to that of the spherical

harmonics Y `m, with ` = 17. This corresponds to 1 scalar DOF of freedom and 2

vector DOFs (see footnote). Finally, the symmetric δgij part has as its irreducible

decomposition a trace component (1 scalar DOF) and an irreducible rank-2 tensor (1

scalar DOF, 2 vector DOFs and 2 tensor DOFs). Hence, in total, in δgµν , there are

4 scalar DOFs, 4 vector DOFs and 2 tensor DOFs. This decomposition is consistent

with the fact that a symmetric 4×4 martix has 10 independent components. A scalar

field (here, the inflaton φ) has 1 DOF.

The above discussion regarding the DOFs of the metric relied only on there being

a metric and on the background symmetries of the metric. General relativity as a

theory has additional symmetries—the predictions of the theory do not change under

coordinate transformations. This property, called general covariance, can be thought

of as a gauge symmetry akin to the gauge symmetries in Particle Physics. The gauge

symmetry can be used to fix the values of 4 of the 11 components in the above, as a

coordinate transformation is captured by a 4-vector in 4 dimensions. Further, general

relativity is an example of a constrained system, in that the metric components that

occur in its spatial part, that is gij(~x, t), uniquely determine g00(~x, t) and g0i(~x, t).

This reduces the number of independent degrees of freedom by 4 more. Thus, we are

left with 3 DOFs—a scalar perturbation with one DOF; and the tensor perturbation

7In general, an irreducible rank-k tensor under rotations, also called a Spherical Tensor, can be
thought of as being made up of spherical harmonics Y `m, with ` = k,m ∈ [−`, `]. In cosmological
perturbation theory, when one refers to a scalar, a vector, or a tensor mode, one is usually referring
to m = 0,±1,±2 respectively.
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(in the cosmological sense), with 2 DOFs. Finally, gauge symmetry implies that for

the 1 scalar DOF, we can either choose the metric perturbation ζ or the inflaton

perturbation δφ, and set the other to zero. We choose to work with ζ because it is for

this quantity that Weinberg’s theorem relates perturbations at the end of inflation to

the beginning of radiation-domination. Recall that we are working in a flat-FLRW

universe; so, constant-time slices of the universe must correspond to Euclidean space.

ζ basically captures the departure of the constant-time slices of the real (perturbed)

universe from a Euclidean space. The perturbed line-element, ignoring tensor modes,

is

ds2 = −dt2 + e2ζ(~x,t)a2(t)dxidxi

Because these are quantum fluctuations, the expectation value of ζ is zero. That

is, if one averaged ζ(~x, t) over all of space, one ought to get zero. But, the two-point

correlation function 〈ζ(~x, t) ζ(~x′, t)〉 between fluctuations at different points in space

is, in general, non-zero. Hence, the Fourier transform of the two-point correlation

function, which is called the power spectrum, is non-zero as well. On dimensional

grounds, we would expect the dimensionless power spectrum of the scalar metric

perturbations to go as GH2, as this quantity is dimensionless too. Up to order one

numbers, it turns out that the scalar power spectrum actually goes as GH2/ε, where

ε was defined in (1.10).

What does it mean to say that the scalar power spectrum goes as GH2/ε? Recall

that during inflation modes exit the horizon (the quantity k
aH

decreases from greater

than one to less than one). So, the power in each mode is given by GH2/ε, where

H2 and ε are to be evaluated at the moment the mode exits the horizon, k = aH.

Most inflationary models have a nearly-constant ε, because otherwise it is difficult

to stay in the slow-roll regime. We shall henceforth assume that ε is constant, and

by slow-roll, that it is much less than one. In that case, because from (1.7a) and

(1.8), H is a decreasing function of time and because w ≥ −1, it must be that the

modes that exit later have less power. As the evolution of H is O(ε), this departure
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from an equal power on all scales must be extremely small. In other words, inflation

predicts an almost scale-invariant spectrum. Moreover, because the scales that leave

earlier correspond to smaller k, inflation predicts that the spectrum has a red tilt;

that is, if k2 > k1, then, P (k2) < P (k1). The scalar power spectrum is thus usually

parametrized as

Pζ(k) = As

(
k

k0

)ns−1

, (1.11)

where k0 is an arbitrary pivot scale and s stands for scalars. Canonical slow-roll

inflationary models predict that ns is close to and less than one. As corresponds to

the amplitude of the power spectrum and is an observationally determined quantity.

CMB data have determined ns to be around 0.96 with extremely high significance, and

this remains one of the biggest successes of inflation. Also, As has been determined to

be close to 2× 10−9, the low value further justifying the usage of linear perturbation

theory, as As is of order the square of the metric perturbation.

1.9 Consistency Relations

Throughout this chapter, we have discussed inflation being driven by a single scalar

field. Arguably, this is the simplest way to realize inflation. But, from an effective

field theory perspective, there are arguments that it is probably not the most natural

mechanism to realize inflation. Moreover, theories of quantum gravity like String

Theory postulate the existence of several scalar fields that should be relevant during

the era of inflation. So, it would be nice to be able to distinguish inflation that occurs

with a single field from inflation that occurs with multiple fields, because it would

teach us something about the relevant degrees of freedom at high energies.

If the only observable we have is the power spectrum of the metric perturbations,

then it is impossible to make this distinction. This is because the power spectrum

basically constrains As and ns, which can easily be matched with both single- and
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multi-field inflation. Instead, if we consider the three point correlation function of

the metric perturbations (called the bispectrum), then single-field inflation implies a

relationship between the bispectrum and the power spectrum in the limit that one

of the Fourier momenta goes to zero. Such relationships between n- and (n + 1)-

point correlation functions in the context of inflation go by the name of consistency

relations. These consistency relations are quite model-independent, in that they don’t

depend on the interactions of the scalar field—rather, they just depend on there

being only one scalar field. For instance, one of the the original consistency relations

derived by Maldacena [23] is, up to order one factors and momentum-conserving delta

functions,

lim
k1→0
〈ζ ~k1ζ ~k2ζ ~k3〉 = (ns − 1)Pζ(k1)Pζ(k2) (1.12)

As ns is very close to one, this indicates that the level of non-Gaussianity must be

quite low.

Usually, the non-Gaussianity parameter fNL is given by

fNL,ζ(k1, k2, k3) =
〈ζk1ζk2ζk3〉

2[Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1)]
, (1.13)

where P stands for the power-spectrum. So, in general, fNL depends on the momenta

of the modes involved. But, in many different classes of inflation, fNL is only relevant

for particular combinations of momenta. For instance, some models lead to a non-

Gaussianity in the squeezed limit, where k1 � k2, k3; some others in the equilateral

limit k1 = k2 = k3, etc. Even though these fNL’s have not been measured exactly, it

is clear from the data that the level of non-Gaussianity is quite low. All the relevant

fNL’s seem to be in the range 0 ± 100. From (1.13), we see that the square of the

power spectrum occurs in the denominator. This squared quantity is of the same

order as the value of the As parameter that we discussed earlier, 10−9. Thus, the

three-point function is a few orders of magnitude less than the two-point function,
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and the data can be said to be highly Gaussian.

Recall that single-field inflation predicts a low level of non-Gaussianity. But, there

also exist multi-field inflationary models that have a low level of non-Gaussianity.

So, merely from the observation that the CMB anisotropies are quite Gaussian, we

cannot really conclude that single-field inflation is much more favored than multi-

field inflation. However, it would be extremely unnatural for multi-field inflation to

satisfy the same consistency relations as single-field inflation. So, if we could measure

the level of non-Gaussianity to a high-enough precision, we can actually check if

consistency conditions like (1.12) are satisfied. This knowledge would lead to a much

better understanding of the exact mechanism by which the universe inflated.

Maldacena derived the consistency conditions assuming slow-roll (ε � 1). But,

people have since generalized the result, and have derived other consistency conditions

using different approaches. One of the more popular approaches is that of using

symmetry—either the symmetries of the spacetime, or of the gauge theory that forms

the framework of the inflationary model. In Chapter 5, we shall adopt the latter

approach, and explore what the gauge symmetries of general relativity imply for the

relationship between different correlation functions.

1.10 The ΛCDM Model

Somewhat belatedly, we come to the Standard Model of Cosmology. The main in-

gredients of the model are laid out in Figure 1.1. We have actually already discussed

all but the final two epochs in the figure, the matter-domination and the dark energy

epochs. The former is basically when the dominant energy density contribution is

that of dark matter. As the universe expands, because the volume is increasing, the

number density of particles decreases. Thus, the energy density also decreases. In

addition to this, relativistic particles like the photons also lose energy due to cosmic

redshift. This is why at late times one would expect non-relativistic particles like
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dark matter to dominate the universe’s evolution, as is borne out by Figure 1.1.

Dark energy is basically the energy density of the vacuum itself. If this vacuum

energy arises due to the cosmological constant Λ of general relativity being nonzero,

the energy density is a constant in space and time. Thus, a larger volume of space

will have a larger amount of dark energy. So, as the universe expands, during very

late times one would expect dark energy to dominate over all other forms of energy.

This is again borne out by Figure 1.1.

We have discussed in earlier sections how the CMB probes the very early universe.

But, the CMB photons must travel to us from the time of recombination to today.

Thus, they also carry information about what has happened to the universe since

recombination—in particular, during dark matter and dark energy domination.

In order to study the ΛCDM model quantitatively, one needs to choose some values

for the relevant parameters. The most minimal set of these parameters contains the

energy densities of baryons, dark matter, and dark energy; the value of the Hubble

constant; As and ns as defined earlier; and a couple of astrophysical parameters. The

CMB power spectrum determines, or at least constrains, several of these parameters.

When the CMB data are combined with other cosmological data, the values of these

parameters get even more constrained. Thus, the Standard Model of Cosmology is

also called the Concordance Model. In the next couple of chapters, we shall see how

one can extend the Concordance Model to include new physics. We shall also use the

CMB and other cosmological data to constrain the parameters that capture the new

physics.

1.11 CMB Statistics

In (1.4), we decomposed the temperature anisotropies ∆T (n̂) into spherical harmon-

ics Y `m(n̂) with multipole coefficients a`m. We mentioned that we would treat the

temperature perturbations as Gaussian distributed, with the underlying distribution
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being statistically isotropic. This meant that the CMB power spectrum contained all

the physical information about the CMB anisotropies. In the previous sections, we

have seen that single-field inflation leads to predominantly Gaussian fluctuations in

the metric perturbations. From the theorem of Weinberg that we discussed, if the

perturbations are adiabatic, these fluctuations translates into predominantly Gaus-

sian fluctuations in the CMB anisotropies. Moreover, as inflation is driven by a scalar

field that is (classically) homogeneous in space, the perturbations that arise when the

field is quantized will be statistically isotropic. We have thus justified the assumptions

behind (1.5), as we promised.

The arguments discussed above are essentially theoretical. One needs to check if

the data are actually consistent with these hypotheses. Consider the case of statistical

isotropy. The index m in a`m captures the directional dependence of the quantity

being decomposed, whereas ` captures the dependence on scale. Statistical isotropy

means that the data shouldn’t exhibit any non-trivial dependence on m. This is

what (1.5) shows—the ensemble average of the correlation function between different

directions must vanish. Assume that, for a given `, the correlation function between

the a`m’s for two different m’s is non-zero (in a statistically significant sense). Then,

these two m’s could be used to define a direction on the sky, thus violating statistical

isotropy. An even simpler example would be that of the value of a`m being non-zero

(again, in a statistically significant sense) for a particular combination of ` and m.

This too would pick out a direction in the sky, and is thus an example of the violation

of statistical isotropy.

Almost as soon as the CMB anisotropy data were available, different research

groups started looking at whether the data were consistent with the hypothesis that

the a`m’s are distributed as independent, zero-mean Gaussians with an m-independent

variance. We shall call this hypothesis the null hypothesis. On large scales (that, is,

for small `), the groups found that for some of the features they considered, the

data seemed to be inconsistent with the null hypothesis at about the (3 - 3.5)σ level.

27



That is, the probability of the features occurring, given that they were described by

the null hypothesis, was about 1 in 1000. Such features were termed CMB anoma-

lies. For instance, one feature considered was the axis n̂ around which the quantity∑m=`
m=−`m

2|a`m(n̂)|2 was maximized, for different `’s.8 It was found that the axes for

` = 2 and ` = 3 were almost exactly aligned, even though in principle they could

have pointed anywhere on the two-dimensional sky. A few other such statistics were

discussed.

By itself, the number 1 in 1000 isn’t statistically significant. This is especially so

given that the groups were reporting inconsistencies only with features that seemed

maximally inconsistent with the null hypothesis. In addition to this unavoidable bias,

cosmic variance, the theoretical error that we described in the text below Figure 1.2,

is most pronounced for small `, the very scales the groups were looking at. Finally,

it is for these scales that the systematics in the CMB experiments are least well-

understood. On these scales, emission of radiation from our own galaxy contaminates

the CMB signal that the experiments try to measure.

Still, successive experiments, employing different systematics, have all seen roughly

the same kind of features on the sky. Other groups have reported even more anoma-

lies. Also, there is no obvious relationship between the different features, which makes

it more difficult to account for them as arising out of a common fluke.

In fact, even today, there is no consensus on whether the anomalies are merely

statistical features, or something more physical. Indeed, WMAP and Planck, the two

largest collaborations in CMB experiments with hundreds of CMB experts, differ on

the interpretation of the anomalies. In Chapter 4, we shall discuss a new method

that could shed some light on whether the features are statistical or physical.

8Recall that the value of a`m depends on the coordinate system chosen; in particular, it depends
on the axis n̂ that acts as the conventional z-axis.
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Chapter 2

The Coldness of Cold Dark Matter

2.1 Introduction

As we discussed in Section 1.4, a wide array of observations, ranging from the dis-

tribution of matter on cosmological distances, to the rotation curves of galaxies on

kiloparsec scales, suggest that the universe contains a form of matter that does not in-

teract with electromagnetic radiation and whose pressure is negligible. At present, the

nature of this dark matter is unknown, but, among other hints, these phenomenolog-

ical properties strongly suggest that dark matter is made of non-relativistic particles

that couple very weakly to the standard model. We briefly discussed the circum-

stances under which the phenomenological properties lead to the latter conclusion.

There is certainly no shortage of particle dark matter models accommodating

these properties, such as axions, moduli, gravitinos, Kaluza-Klein excitations, sterile

neutrinos or WIMPs, just to name a few [24]. In each model, dark matter experi-

ences a different cosmic evolution, resulting in a distribution of dark matter momenta

that is often thermal at late times, although with temperatures that span many or-

ders of magnitude in the different scenarios. Given the great variety of dark matter

models and associated thermal histories, it is thus natural to ask whether we can

place phenomenological limits on the dark matter temperature today, or whether in
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fact there is evidence that dark matter has a non-zero temperature. Indeed, several

authors have suggested that warm dark matter (see below) may help alleviate the

apparent tension between the predictions of the Cold-Dark-Matter (CDM) scenario

and the actual amount of clustering on sub galactic scales [25–30], although recent

studies suggest that warm dark matter is disfavored by observations [31]. Similarly,

the same small-structure problems may also be avoided if cold dark matter kinetically

decouples rather late in cosmic history, as described in [32] and references therein.

Phenomenological bottom-up limits on CDM like the one we discuss would not only

constrain many of the different cold dark matter models, but also offer us a generic

model-independent way to further characterize the properties of dark matter.

In this Chapter, we explore model-independent limits on the dark matter temper-

ature to mass ratio extrapolated to the present time, T0/m. This ratio determines

the velocity dispersion of dark matter particles, which is a parameter that directly

controls the growth of structure. If dark mater decouples while non-relativistic, dark

matter particles travel at a root-mean-square velocity vrms =
√

3T/m, where m is the

dark matter mass. As a result, anisotropies on scales much smaller than the associ-

ated free-streaming length are strongly suppressed, a phenomenon usually known as

Landau damping. The absence of such suppression on observable scales thus places

limits on the dark matter temperature to mass ratio. Whereas it turns out to be

convenient to frame our limits in terms of the dark matter temperature, they can

be equally interpreted as limits on the root-mean-square dark matter velocity. In

this context, we should also point out that our limits apply even if dark matter does

not consist of elementary point particles, but, instead, is made of objects of even

macroscopic size, provided that their velocity dispersion is Maxwellian.

In order to reliably calculate the impact of a non-zero dark matter temperature

on the formation of structure, we restrict ourselves to linear perturbation theory, and

thus focus on cosmological probes applicable in this regime: the CMB and the matter

power spectrum on the appropriate scales. The same suppression of structure implied
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by a non-zero temperature also impacts the smallest scales that become non-linear,

and, thus, the mass of the smallest proto-halos. Several authors have studied how the

latter depend on the mass parameters of specific dark matter models, such as WIMPs

in supersymmetric or extra-dimensional models, but in these cases the corresponding

scales are too small to be probed observationally [33–35]. Interactions between dark

matter particles and the thermal bath in the early universe may also imprint features

on the matter power spectrum on sub-horizon scales at the time of kinetic decoupling

[36, 37]. These interactions may lead to a suppression of small scale structure that

is stronger than that due to free streaming on those scales, although they do not

have any impact on modes outside the horizon at that time. Because the data used

in our analysis only probe modes that entered the horizon at z < zmax ≈ 5 · 105,

these features are absent in the modes of interest if kinetic decoupling occurred at

zdec > zmax, an assumption typically satisfied in most dark matter models. In fact,

a recent analysis of cosmological data does not find any evidence for features due to

dark matter interactions [38], further suggesting that cosmological scales must have

been outside the horizon at the time of kinetic decoupling. In that case, and in the

context of our analysis, we can simply assume that cold dark matter is effectively

collisionless. Signatures of dark matter interactions are then buried in small scales,

beyond the reach of our cosmological data.

The ratio T0/m, and any quantity derived from it, should be carefully interpreted.

By the former we mean the temperature to mass ratio dark matter would have today

in the absence of structure formation. In the real universe, however, dark matter

inhomogeneities grow, become non-linear and collapse, resulting in virialized dark

matter haloes whose temperature is determined just by the properties of the halo.

In pure cold dark matter models the Press-Schechter mass function predicts that all

of the dark matter ends up in such halos [39, 40]. If the dark matter temperature is

non-zero there is a cut-off in the matter power spectrum at small scales, implying that

only a fraction of dark matter collapses, but we expect this fraction to be significant
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for small enough temperatures. Hence, our ratio T0/m is not the temperature of a

typical dark matter particle in today’s universe, but just an extrapolation of what

that ratio would be had dark matter not collapsed.

The work in the literature closest to the limits we discuss here has mainly focused

on constraints on the mass of warm dark matter particles [31, 41–44]. In these models,

dark matter is typically assumed to be hot, in the sense that it decouples kinetically

while being relativistic, whereas in our work we assume that dark matter is cold, and

thus decouples while non-relativistic. Because the parameter that actually affects the

formation of dark matter structure is the velocity dispersion, in order to relate the

latter to the dark matter mass, previous analyses have typically needed to introduce

additional assumptions tied to the particular dark matter model being considered,

such as the chemical potential of dark matter, its thermal history, or its number of

degrees of freedom. As a consequence, mass limits only apply strictly in the context

of the models in which they were derived, and cannot be readily extended to other

scenarios. The present work focuses instead on the dimensionless ratio of temperature

to dark matter mass directly, and basically relies on just two assumptions: that the

distribution of dark matter momenta is Maxwellian after the time the smallest relevant

scales entered the horizon, and that dark matter has been collisionless at least since

that time.

2.2 Formalism

We assume that dark matter consists of collisionless particles, which for simplicity

and without loss of generality we take to be spinless. As we pointed out in the

introduction, these particles do not have to be point-like: As far as our analysis is

concerned, the only restriction is that their size be much smaller than any other length

scale in the problem.

Under these conditions, dark matter is then characterized by its distribution func-
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tion f , which counts the number density of particles at coordinate time τ , comoving

coordinate ~x and covariant momentum ~p. Since we assume these particles to be

collisionless, their distribution function f(τ, xi, pj) obeys the collisionless Boltzmann

equation

p0

m

[
∂f

∂τ
+
∂f

∂xi
dxi

dτ
+
∂f

∂pi

dpi
dτ

]
= 0, (2.1)

in which the zero on the right hand side accounts for the absence of non-gravitational

interactions.

Because we assume that dark matter is non-interacting, its only observable effects

involve gravitation. The energy momentum tensor of a distribution of dark matter

particles characterized by f is

Tµν =
1√
−g

∫
d3p

pµpν
p0

f, (2.2)

where g is the determinant of the space-time metric.

2.2.1 Background Distribution

In a spatially flat FLRW universe with line-element

ds2 = a2(τ)
[
−dτ 2 + d~x2

]
, (2.3)

the Boltzmann equation (2.1) reads

∂f

∂τ
= 0. (2.4)

Hence, any homogeneous and isotropic distribution f = f(p), where

p ≡ a
√
gijpipj, (2.5)
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is a solution of the Boltzmann equation (2.4). Because we want to describe cold dark

matter, we assume that the distribution function describes a gas of non-relativistic

particles, and therefore choose it to be the Maxwell-Boltzmann distribution

f(p) =
1

(2π)3
exp

(
−m− µ0

T0

− p2

2mT0

)
, (2.6)

where m is the mass of the dark matter particles, T0 is the temperature of dark

matter today, and µ0 is the chemical potential today, at a0 ≡ 1. The temperature

T0 determines the mean kinetic energy of the dark matter particles—and hence their

root mean square velocity vrms =
√

3T0/m—and the chemical potential determines

the number density of dark matter particles at present. If dark matter has gdm degrees

of freedom, the right hand side of equation (2.2) should be multiplied by gdm. Since

this amounts to a change in the chemical potential µ0, which in our approach is a free

parameter anyway, we can set gdm = 1 without loss of generality.

Because in many models dark matter is in thermal equilibrium in the early uni-

verse, the distribution (2.6) is fairly generic. If uµ = δµ0 /a is the four-velocity of a

comoving observer, then E = pµu
µ =

√
m2 + p2/a2 is the energy of a particle with

four-momentum pµ in the rest frame of the observer. Hence, the distribution function

f(τ, pi) =
1

(2π)3
exp

(
µ− E(pi)

T

)
(2.7)

reduces to the distribution (2.6) in the non-relativistic limit T/m � 1, and remains

a solution of equation (2.4), provided that the temperature and chemical potential

scale appropriately,

T =
T0

a2
, µ = m+

µ0 −m
a2

. (2.8)

Indeed, in order for the distribution to remain time-independent the dark matter

temperature has to be inversely proportional to the scale factor, because in the non-
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relativistic limit E(pi) ≈ m2 + p2/a2. With this temperature scaling, and in order

to again preserve a time-independent distribution, the chemical potential has to be

given by the equation above.

Note however that a thermal distribution of the form (2.7) only solves the colli-

sionless Boltzmann equation (2.4) either in the relativistic or non-relativistic limits,

but not in both. Hence, our choice of the distribution (2.6) is justified if dark matter

particles kinetically decoupled while non-relativistic. This is indeed what happens

for instance if dark matter consists of WIMPs. In this case, although dark matter

typically decouples chemically from the thermal bath while mildly non-relativistic, at

T/m ≈ 1/25, interactions with standard model particles keep dark matter particles

in equilibrium with the thermal bath until much later [45]. In contrast, most treat-

ments of warm dark matter models assume that dark matter consists of fermionic

particles which kinetically decouple while highly relativistic, and thus assume that

the distribution function follows a (non-Gaussian) Fermi distribution with vanishing

chemical potential, f(p) = [1 + exp(p/T0)]−1.

Since in the ΛCDM cosmological model dark matter particles are assumed to be

cold, we usually calculate their energy-momentum tensor in the strict non-relativistic

limit T/m→ 0, in which their energy density ρ ≡ −T 0
0 becomes

ρ̄ ≡ ρ̄0

a3
≡ m exp

(
µ0 −m
T0

)(
mT

2π

)3/2

. (2.9)

Here, we go beyond this non-relativistic limit and calculate the energy-momentum

tensor and its perturbations to first order in T/m. Inserting equation (2.6) into (2.2)

we find

ρ = ρ̄

(
1 +

3

2

T

m
+ · · ·

)
, (2.10)

35



and, similarly, the pressure becomes

P ≡ 1

3
T ii = ρ̄

T

m
+ · · · . (2.11)

These expressions capture just what we expect from a gas of non-relativistic particles

in an expanding universe. Note that T 0
i vanishes and T ij is diagonal, both because of

rotational invariance. The correction factors to the conventional results arise from the

thermal average of p2, which decays as 1/a2 because physical momenta redshift with

the scale factor. It is easy to check that the energy density and pressure above satisfy

the conservation equation ρ′ + 3H(ρ+ P ) = 0. The equation of state parameter of

this fluid is

w ≡ P

ρ
≈ T

m
, (2.12)

which decays with the square of the scale factor, and is proportional to the small

parameter T/m. Some authors have constrained the equation of state parameter w

of dark matter [46–48], but they typically assume that w is a constant, rather than

proportional to 1/a2.

The expressions above are valid only at late times, in the non-relativistic limit. As

we proceed back in time the momenta of the dark matter particles increase, and thus

become relativistic. As long as dark matter particles remain collisionless, the distri-

bution function (2.6) remains a solution of the Boltzmann equation (2.4). Therefore,

substitution of equation (2.6) into equation (2.2) leads, to all orders in T/m, to the

energy density

ρ = ρ̄
( m

4T

)1/2

exp
( m

4T

)
K1

( m
4T

)
, (2.13)

where K1 is the corresponding modified Bessel function of the second kind and T

scales as in equation (2.8). In the limit m/T → 0 the energy density scales like that
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of relativistic particles, whereas in the limit m/T →∞, the energy density approaches

the limit (2.10).

2.2.2 Perturbations

Our next goal is to derive an equation that captures the impact of a non-zero tem-

perature on the evolution of the dark matter density perturbations. Under different

assumptions and approximations, such an equation has been derived many times in

the literature, which extends as far back as to the pioneering work of Gilbert [49],

the author after whom the equation is mostly named. Most of the relatively recent

derivations of the Gilbert equation have focused on warm dark matter particles, which

decouple while relativistic (see e.g. [50, 51]), although a few analyses have also consid-

ered particles that decouple while non-relativistic (see e.g. [52]). Our derivation here

relies on the linearized and relativistic Boltzmann equation in synchronous gauge,

and does not involve any approximations beyond an expansion in
√
T/m, a small pa-

rameter in the non-relativistic limit. Our Gilbert equation can thus be incorporated

directly into existing numerical Boltzmann codes to calculate CMB anisotropy and

matter power spectra in the linear regime.

In order to study the evolution of structure when dark matter has a non-zero

temperature, we perturb the homogeneous and isotropic FLRW line-element (2.3),

ds2 = a2
[
−dτ 2 + (δij + hij)dx

idxj
]
, hij =

kikj
k2

h+ 6

(
kikj
k2
− 1

3
δij

)
η, (2.14)

in which we have chosen synchronous gauge, and we concentrate on the perturbation

caused by a single Fourier mode of wave vector ~k. To calculate the perturbed energy

momentum tensor, we need to perturb the background distribution (2.7). Let us

write the perturbed distribution function as

f(τ, ~x, ~p) = f̄(p) + δf(τ, ~x, ~p), (2.15)
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where f̄ is the thermal distribution (2.7) and p is the magnitude of the spatial mo-

mentum,

p ≡ a
√
gijpipj =

√
δijpipj −

1

2

hijpipj√
δijpipj

. (2.16)

Note that p depends on the metric, so f̄ also contributes to the perturbations of

the distribution function. Then, the perturbation δf obeys the linearized Boltzmann

equation

∂δf

∂τ
+
∂δf

∂xi
1

a2

pi
p0
− 1

2

f̄ ′

p

∂hjk
∂τ

pjpk = 0, (2.17)

where a prime denotes a derivative with respect to p in this case, and Einstein’s

summation convention is implied even if repeated indices are not in opposite locations.

It is then easy to check that the perturbed Boltzmann equation admits the line-of-

sight integral solution

δf(τ,~k, ~p) = δf(τdec, ~k, ~p) exp
[
−i∆(τ, τdec)~p · ~k

]
+

+
1

2

f̄ ′

p

∫ τ

τdec

dτ ′ pipj h
′
ij(τ

′, ~k) exp
[
−i∆(τ, τ ′) ~p · ~k

]
, (2.18)

where

∆(τ2, τ1) ≡
∫ τ2

τ1

dτ
1

a2(τ) p0(τ)
and p0 =

1

a

√
m2 +

p2

a2
. (2.19)

Note that ∆(τ2, τ1)·p is the comoving distance traveled by a dark matter particle with

covariant momentum p between times τ1 and τ2. In particular, p/(a2p0) is its comoving

velocity, which, in our non-relativistic approximation can be taken to be p/(ma). For

a thermal distribution, the magnitude of the root mean square momentum is of order
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√
mT0, which leads us to define the comoving free streaming length

d(τ2, τ1) ≡
√
T0

m

∫ τ2

τ1

dτ

a
. (2.20)

As we shall see shortly, the free streaming captured by the solution (2.18) leads to an

exponential suppression of structure on comoving scales k d� 1.

In a universe dominated by matter and radiation,

d(τ2, τ1) =
1

2

√
Teq

m
τeq log

(
τ2

τ1

τ1 + 2τeq

τ2 + 2τeq

)
, (2.21)

where Teq and (
√

2−1)τeq respectively are the dark matter temperature and conformal

time at matter-radiation equality. Note that during radiation domination, the prod-

uct τ
√
T/m is constant, and thus roughly agrees with its value at matter-radiation

equality.

We obtain the perturbed energy momentum tensor δT µν by substituting the solu-

tion (2.18) into equation (2.2). As we describe in detail in Appendix B, the perturbed

energy density becomes

δρ = − ρ̄
2

∫ τ

τdec

dτ ′e−d
2k2/2

{
h′ − (d k)2(h′ + 4η′) +

+
T (τ)

2m

[
(5− d2k2)h′ − (d k)2(7− d2 k2)(h′ + 4η′)

] }
.

(2.22)

In this equation, the free streaming length d = d(τ, τ ′) is given by equation (2.20)

and we have assumed that the perturbation δf vanishes at decoupling. Note the

exponential factor inside the integrand, which suppresses the contributions of the

potentials on scales (d k)2 � 1. The exponential arises from the moments of spherical

Bessel functions with respect to the Gaussian distribution in equation (2.6), and is

thus sensitive to the precise form of the distribution function. Because the comoving

free streaming length d depends on the dark matter temperature, the absence of such
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suppression allows us to place quite stringent constraints on T/m. The CDM density

contrast

δρ

ρ
≈ δρ

ρ̄

(
1− 3

2

T

m

)
(2.23)

contains an additional correction due to the non-zero dark matter temperature, but

the impact of this correction is typically much smaller than that due to the free-

streaming term.

As opposed to what happens in the limit T/m → 0, in which the dark matter

velocity can be taken to vanish in synchronous gauge, in this case the velocity potential

is non-zero. With δT 0
i ≡ (ρ+ P )∂iv, we find

(ρ+ P )v =
ρ̄

2

√
T

m

1

k

∫ τ

τdec

dτ ′e−d
2k2/2

[
d k (3h′ + 8η′)− (d k)3(h′ + 4η′)

]
, (2.24)

which shows an analogous suppression of the velocity perturbation on scales much

smaller than d. Finally, following the same approach, we arrive at

δT ij = − ρ̄
2

T

m

∫ τ

τdec

dτ ′e−d
2k2/2

{
h′δij + 2h′ij + (d k)2

[
(h′ + 4η′)δij + (5h′ + 16η′)k̂ik̂j

]
+

+ (d k)4(h′ + 4η′)k̂ik̂j

}
,

from which we can immediately read off the perturbed pressure δp and the scalar

anisotropic stress π, δT ij ≡ δP δij − kikj π,

δP = − ρ̄
2

T

m

∫ τ

τdec

dτ ′ e−d
2k2/2

[
h′ − 4η′ + (d k)2(h′ + 4η′)

]
, (2.25)

π =
ρ̄

2

T

m

1

k2

∫ τ

τdec

dτ ′ e−d
2k2/2

[
2h′ + 12η′ + (d k)2(5h′ + 16η′) + (d k)4(h′ + 4η′)

]
.

(2.26)

Note that the contribution of the anisotropic stress to the energy momentum tensor, of

order k2π, is of the same magnitude as that of the pressure perturbation. The pressure
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perturbation itself is a factor T/m smaller than the energy density perturbation, as

expected.

With δρ, δP , π and δu given by the previous expressions, it is relatively straight-

forward, albeit tedious, to verify that the energy momentum tensor is covariantly

conserved up to terms of order (T/m)3/2. In particular, these quantities obey the

perturbed hydrodynamical equations of energy conservation,

δρ′ + 3H(δρ+ δP )− k2 [(ρ+ P )v +Hπ] + (ρ+ P )
h′

2
= 0, (2.27)

and momentum conservation,

[(ρ+ P )v]′ + 4H(ρ+ P )v + δP − k2π = 0. (2.28)

In any case, because the anisotropic stress is of the same order as the pressure per-

turbation, a (perfect) fluid description of dark matter breaks down on small scales.

For instance, as we mention in Appendix 2.B, collisionless dark matter does not un-

dergo acoustic oscillations, even if the dark matter particles have a non-zero velocity

dispersion, and thus, a non-zero pressure.

2.3 Impact on Structure Formation

Here, we are interested in assessing the impact of a non-zero CDM temperature on the

formation of structure at scales accessible to linear perturbation theory. At present,

constraints on the linear power spectrum at these smallest scales rely on the Lyman-

alpha forest [53], which probes comoving wave numbers of order

kmax ≈ 2 hMpc−1 (2.29)
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at redshifts z ≈ 3. This should be compared with the wavenumber we can probe with

the `’th multipole of the cosmic microwave background,

kCMB ≈ 0.21
`

3500
Mpc−1, (2.30)

which is about an order of magnitude smaller than kmax even for the angular scales

probed by ACT [54], SPT [55] and Planck [14].

In a ΛCDM cosmology the scale kmax enters the horizon at a redshift of about

zmax ≈ 5 · 105. Because our analysis assumes that at redshift zmax cold dark matter

particles were already non-relativistic, the temperature today hence needs to obey

T0

m
. 2 · 10−12, (2.31)

and has to be proportionally smaller if we are interested in length scales smaller than

kmax. In addition, because we also assume that dark matter is collisionless, it needs

to decouple at redshift zdec > zmax. This behavior should be contrasted with that

of neutrinos or warm dark matter, which decouple kinetically while being relativistic

and become non-relativistic after galactic scales have entered the horizon. The impact

of a non-zero dark matter temperature on scales with wave numbers much larger than

(2.29), as well as the imprint of dark matter decoupling on the matter power spectrum,

is discussed in [33, 36].

Our next goal is to estimate the matter density perturbation (2.22) after matter-

radiation equality, at τ0 > τeq. At recombination, the density of dark matter has

an impact on the structure of the CMB Doppler peaks, and at redshift zero, the

dark matter perturbation is directly related to the matter power spectrum. Because

dark matter particles are non-relativistic, we assume that we are in a regime in

which we can drop the term proportional to T/2m in equation (2.22), which in this
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approximation becomes

δρ = − ρ̄(τ0)

2

{∫ θeq

θdec

dθ +

∫ θ0

θeq

dθ

}
e−d

2k2/2

[
dh

dθ
− (d k)2

(
dh

dθ
+ 4

dη

dθ

)]
. (2.32)

Note that we have split the integral into the contribution to δρ during radiation

domination and that during matter domination, and that we have introduced the

new integration variable

θ =
kτ√

3
. (2.33)

2.3.1 Radiation domination

Well in the radiation-dominated era, the free-streaming length in equation (2.21)

becomes

d(θ0, θ) ≈
1

2

√
Teq

m
τeq log

(
2
θeq

θ

)
, θ � θeq, (2.34)

During this era, we can neglect the impact of dark matter on the gravitational po-

tentials, which take their standard values

dh

dθ
=

12Ri

θ

(
2(cos θ − 1)

θ2
+

2 sin θ

θ
− 1

)
,

dη

dθ
= −4Ri

θ

(
sin θ

2θ
− 1− cos θ

θ2

)
,

(2.35)

where Ri is the initial (primordial) curvature perturbation.

There are two dimensionless ratios that determine the behavior of the perturba-

tions: θeq and the ratio of wavelength to the free-streaming length in equation (2.34),

k d. In order to proceed, we focus on the short-wavelength limit θeq � 1 and discuss

the limits k d� 1 and k d� 1, in this order, separately.

In the absence of free-streaming (k d ≡ 0), the dominant contributions to the

integral in equation (2.32) stem from the extrema of dh/dθ and dη/dθ at θmax ≈ 3.
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Because the logarithmic derivative of (k d)2 is

d log(k d)2

dθ
= −2

θ
log−1 2θeq

θ
, (2.36)

in the limit of large θeq both the exponential and the factor of (kd)2 in the integrand

are then slowly varying functions of θ around θmax for small k d. Therefore, taking the

factors of k d out of the integral, and evaluating at the extrema of the corresponding

potential derivatives we get

δρ

ρ̄
≈ 6Ri

(
log θeq + γ − 1

2

)
− Ri

8

Teq

m
θ2

eq log2 2θeq

3
× (18 log θeq + 18γ − 13) ,

(2.37)

where γ is Euler’s constant. As expected, free streaming suppresses density pertur-

bations at small scales, although, by assumption, the effect is small in this limit.

When k d is large, the exponential in equation (2.32) is a rapidly varying function

of θ, which strongly suppresses the contribution of a mode when θ � θeq. Therefore,

in this limit, the integral is dominated by the values of the integrand around θ = θeq.

Assuming constant derivatives of the gravitational potentials around that point, and

taking those functions outside the integral we thus get

δρ

ρ̄
≈ −6Ri log 2 exp

[
−3

8
(Teq/m)θ2

eq log2 2

]
, (2.38)

where we have only kept the contribution of the term proportional to (d k)2. In this

case, the exponential suppression of the density perturbations essentially smoothes

out dark matter inhomogeneities on comoving scales with θ2
eq � m/Teq.
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2.3.2 Matter domination

It still remains to calculate the contributions to (2.32) from the matter-dominated era.

During this epoch, the comoving free-streaming length in equation (2.21) becomes

d(θ0, θ) ≈
1

2

√
Teq

m
τeq log

(
1 + 2

θeq

θ

)
, θ � θeq. (2.39)

Hence, well in the matter-dominated era, the free-streaming length is suppressed

by a factor of order θeq/θ relative to that of the streaming length during radiation

domination, even though most of the growth in δρ/ρ happens during this time. As a

result, in the limit in which free-streaming has a sizable impact on structure formation,

we expect that impact to be largest during the radiation-dominated regime.

To illustrate the impact of free-streaming during the matter-dominated epoch,

consider for instance the ratio

X ≡ T (k, z, T0/m)

T (k, z, 0)
, (2.40)

where T (k, z, T0/m) is the dark matter transfer function at wave number k, redshift

z and present dark matter temperature T0/m. In Figure 2.1, we plot X as a function

of k for fixed T0/m = 10−7 at redshifts z = 3300 and z = 0. As seen in the figure,

at z = 3300 most of the suppression of dark matter inhomogeneities (due to free

streaming) is already in place. There is an additional suppression at z = 0, but the

latter is not significantly different from that at z = 3300.

Equations (2.34) and (2.39) allow us to obtain a rough estimate of the comov-

ing length scale below which free streaming leads to a suppression of dark matter

anisotropies. Both equations show that the free streaming length d responsible for

the exponential suppression of structure in equation (2.32) equals, modulo a loga-

rithmic factor,
√
Teq/m τeq/2. We are thus led to define the comoving free-streaming
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Figure 2.1: A plot of the dark matter transfer function ratio X in equation (2.40) for
fixed temperature T0/m = 10−7 at redshifts z = 3300 (black continuous) and z = 0
(red dashed). Most of the impact of free streaming on the suppression of dark matter
inhomogeneities occurs before matter-radiation equality, at z ≈ 3300.

wave number

kfs =

√
m

Teq

2

τeq

≈
√

m

Teq

Ωmh
2

16 Mpc
. (2.41)

Noting that the dark matter temperature today T0 is related to that at equality by

Teq = (1 + zeq)2T0 ≈ (2.3 · 104 Ωmh
2)2 T0, (2.42)

we thus obtain the free-streaming wave number

kfs ≈ 2.6 · 10−6

√
m

T0

Mpc−1, (2.43)

which does not depend on the dark matter density. This is basically the length
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scale derived in references [28, 50], although the scalings with Ωmh
2 differ. The

reason is that whereas in our analysis T0/m and Ωmh
2 are independent parameters,

in warm dark matter models, the current dark matter density and the dark matter

mass are used to determine the dark matter temperature (we are ignoring baryons

here). Modulo the logarithmic factor that we dropped, the free-streaming scale (2.41)

also agrees with the scale derived for WIMPs in [33], provided that equations with

the same parameters are compared. For further analytical estimates of the impact

of a non-zero temperature on the matter power spectrum during matter domination,

see reference [52].

2.3.3 Power Spectra

We have seen that a non-vanishing dark matter temperature generically leads to a

suppression of structure on small scales. In order to determine the quantitatively

precise nature of this suppression, we need to rely on a numerical solution of the

perturbation equations.

In Figure 2.2, we plot the temperature anisotropy power spectrum for different

values of the dark matter temperature. Although these temperatures do not satisfy

the condition (2.31), they are low enough for our non-relativistic approximation to

be trusted, since, according to equation (2.30) the comoving scales probed by the

CMB are smaller than kmax in equation (2.29). Even at these temperatures, the

impact of a non-zero temperature on the CMB power spectrum is not visible, so we

have magnified the difference with respect to the the T = 0 power spectrum by a

factor of a hundred. As seen in the figure, a non-zero temperature does not shift

the location of the acoustics peaks significantly, which simply grow in amplitude, the

growth being more pronounced for the even peaks. At least partially, this behavior

is relatively simple to explain: in synchronous gauge, and in the approximation of

instantaneous recombination, the temperature anisotropies are mostly determined by
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Figure 2.2: Temperature anisotropy power spectra for different values of x ≡
√
T0/m

as a function of spherical multipole `. Differences in the angular power spectra with
respect to the x = 0 case have been magnified by a factor of 102.

the Sachs-Wolfe term at last scattering [56]

F (k) =
Ri

5

[
3T (k/keq)RL −

S(k/keq)

(1 +RL)1/4
exp

(
−
∫ τL

0

Γdτ

)
cos

(
k

∫ τL

0

dτ√
1 +R

)]
,

(2.44)

where
√

2keq is the mode that enters the horizon at recombination, R is the baryon

to photon density ratio, T is the dark matter transfer function, and S is the transfer

function that determines the amplitude of the photon acoustic oscillations. A non-zero

dark matter temperature hardly impacts the amplitude of the acoustic oscillations S,

since the latter is determined during radiation domination, but it does suppress the

transfer function T , because free-streaming damps dark matter perturbations. As a

result, the source term F increases in magnitude at the location of the even peaks

(where the cosine in equation (2.44) is positive), leading to a power increase in the

48



 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01  0.1  1

P
(k

)

k (h/Mpc)

x=0

x=2 10-7

x=5 10-7

x=10 10-7

Figure 2.3: Matter power spectrum for different values of x ≡
√
T0/m as a function

of comoving wave number k hMpc. On length scales smaller than the free streaming
length, structure is suppressed. Because the free-streaming length is proportional to
the dark matter temperature, larger temperatures lead to more suppression.

even peaks of the angular power spectrum. Of course, by the same token we would

expect a power decrease at the odd peaks; instead we just observe a less prominent

increase in the peak amplitude.

The effects of a non-zero dark matter temperature are more pronounced in the

(total) matter power spectrum at z = 0, which is a far more direct probe of the

dark matter distribution. In Figure 2.3, we plot the matter power spectrum also

for a different set of dark matter temperatures. Whereas the impact of a non-zero

temperature on the CMB was hardly visible, here, departures in the matter power

spectrum are very prominent on scales k > 0.4hMpc−1, and show the expected

suppression due to the free streaming of dark matter particles. Of course at these

scales linear perturbation theory breaks down, so our linear calculation has to be
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appropriately interpreted.1

Ma has found that in warm dark matter models the ratio of dark matter linear

transfer functions X in equation (2.40) is well fit by

X ≈ 1

[1 + (αk)2ν ]5/ν
, (2.45)

where α depends on various cosmological parameters, such as Ωm and the mass of the

warm dark matter particle, and the exponent ν is a constant, ν ≈ 1.2 [28]. Although

our non-relativistic approximation does not allow us to numerically explore the regime

k d � 1 in which we expect structure to be exponentially suppressed, we find that

different exponents ν provide better fits to the numerical results as we vary the dark

matter temperature. Say, for T0/m = 10−16 the exponent ν ≈ 1.17 gives a squared

sum of square residuals about thirty times smaller than for ν = 1.2, whereas for

T0/m = 10−14, ν ≈ 1.25 gives sum of square residuals about three times smaller than

for ν = 1.2.

We have not explored however how the parameter α depend on the dark matter

temperature or the remaining cosmological parameters. If for a given non-zero CDM

temperature and fixed cosmological parameters we simply determine the value of α

in equation (2.45) that best fits the the cold dark matter spectrum for fixed ν = 1.2,

we find an excellent agreement between both. This agreement between the CDM and

WDM spectra is what one would expect from the relative similarity of the exponent

ν described above. On the other hand, when we compare CDM and WDM spectra

with the same cosmological parameters and the same velocity dispersion at present2

we find a significant disagreement at small scales, as shown in Figure 2.4 .

1If the dark matter temperature is high enough, the associated suppression of structure may keep
all scales in the linear regime. Obviously, there would not be any collapsed haloes in such a universe,
which would be very different from ours.

2We fix the mass of the warm dark matter particle by matching equation (A3) of reference [28]
to the desired CDM velocity dispersion vrms =

√
3T0/m. The resulting mass is then substituted

into equation (A9) of [28], which then determines the coefficient α.
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Figure 2.4: Comparison of a CDM matter power spectrum at T0/m = 10−14 with
a WDM obtained from the fitting formulate in equation (2.45), with ν = 1.2 and
the value of α that matches the CDM velocity dispersion at present. The remaining
cosmological parameters have the same values.

2.4 Limits

The results of the previous section allow us to place a rough but conservative limit on

the dark matter temperature today. A host of cosmological measurements of small

scale structure seem to be in good agreement with the standard ΛCDM cosmological

model. As we saw in Section 2.3, the CMB is not very sensitive to the dark matter

temperature on these small scales. On the other hand, the distribution of large scale

structure is directly affected by a non-zero dark matter temperature, and can probed

down to kmax ≈ 2hMpc−1 by Lyman-alpha forest observations in reference [53].

Therefore, we expect the most stringent constraints on the dark matter velocity to

arise from measurements of the dark matter power spectrum on these scales.

The most recent (published) analysis of how the Lyman-alpha forest constrains
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the matter power spectrum is that of reference [53]. The measurement suffers from

significant systematic errors, affecting the amplitude of the power spectrum at z = 3

and k = 2hMpc−1 by factors of up to 25%. Demanding then that the relative

correction to the dark matter overdensity in equation (2.37) be less than 50% on

those scales we thus arrive at the limit Teq/m . 10−6. Because the temperature is

inversely proportional to a2, and 1 + zeq ≈ 3 · 103, this implies that T0/m . 10−13.

Since this ratio is smaller that the one necessary for the validity our approximation,

equation (2.31), our analysis is at the very least self-consistent. We derive a sharper

numerical limit next.

Numerical Results

In order to place rigorous and precise marginalized limits on the temperature to mass

ratio, we resort to the by-now standard Bayesian approach to parameter estima-

tion based on Markov-Chain Monte Carlo methods. We have modified the publicly

available Boltzmann integrator CAMB and the Markov-Chain Monte Carlo engine

CosmoMC 3 [57, 58] by including the necessary modifications of the dark matter

equations needed to account for a non-zero dark matter temperature, as detailed in

Appendix 2.A. We sample the posterior probability for a spatially flat cosmological

model with parameters H0 (Hubble’s constant today), ΩΛ (critical density fraction of

a cosmological constant), Ωbh
2 (baryon density), τ (optical depth), ns (scalar spec-

tral index), As (scalar spectral amplitude), ASZ (amplitude of a Sunyaev-Zeldovich

template) and
√
T0/m (square root of present dark matter temperature to mass ra-

tio) with a set of four Monte Carlo Markov chains of at least 2× 105 elements each,

generated with an appropriately modified version of CosmoMC. We impose flat pri-

ors on all parameters, assume that the universe is spatially flat and neglect tensor

modes. To check for the converge of our chains, we monitor the Gelman and Rubin

statistic [59], which stays under 10−2. Following CosmoMC output, we also estimate

3http://cosmologist.info/cosmomc
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the statistical errors on our upper limits by exploring their changes upon split of our

chains in several subsamples, which remain of the order of 1%.

In order to obtain the strictest constraints on the dark matter temperature, it

is crucial to employ observations at small scales. We thus include constraints on

the linear matter power spectrum at redshift z = 3 derived from Lyman alpha ob-

servations in reference [53] (surprisingly, this 2005 analysis is still state-of-the-art).

Measurements of the linear power spectrum on the scales probed by the Lyman alpha

forest are notoriously difficult, and typically require structure formation simulations

for various input power spectra and cosmological parameters. Although the simula-

tions carried in reference [53] just involved the standard ΛCDM cosmological model,

their constraints on the linear power spectrum should remain valid as long as the

linear matter power spectrum does not significantly deviate from that in ΛCDM. We

enforce such an agreement at the corresponding scales with the temperature prior√
T0

m
≤ 2 · 10−7, (2.46)

which also guarantees the validity of our perturbative equations.

Although at the temperatures of interest the cosmic microwave background is

hardly affected, observations of the cosmic microwave background are nevertheless

crucial to constrain the remaining cosmological parameters. We therefore include

cosmic microwave measurements from the WMAP 9 year data release [60], as well

as ACT [54] and SPT data [55], which probe the angular power spectrum on smaller

scales. We also include large scale structure data from an SDSS luminous red galaxy

(LRG) sample [61]. We calculate the likelihood of our angular power spectra with

the numerical codes supplied by the corresponding collaboration [62], and we employ

the patch4 written by Anže Slosar to evaluate matter power spectra likelihoods on

Lyman-alpha scales [53].

Proceeding as outlined above, using the afore-mentioned datasets, we obtain the

4http://www.slosar.com/aslosar/lya.html

53



 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0  2e-08  4e-08  6e-08  8e-08  1e-07  1.2e-07  1.4e-07

p
d
f

(T0/m)1/2

Figure 2.5: Marginalized posterior distribution of
√
T0/m. Note the relatively flat

plateau at low temperatures, which indicates that data cannot discriminate between
temperatures in the range

√
T0/m . 6 · 10−8.

marginalized posterior distributions for
√
T0/m shown in Figure 2.5. We also list

mean, standard deviation and credible upper limits of the corresponding posterior

distribution in Table 2.1. Simple inspection of the posterior distribution shows that

there is no evidence for a non-zero dark matter temperature in the data. In fact,

adding the temperature to mass ratio
√
T0/m to the standard cosmological parame-

ters in ΛCDM improves the log likelihood just by 0.15. The 95% upper credible limit

on the dark matter to temperature ratio then is

T0

m
≤ 1.07 · 10−14, (2.47)

which translates into an upper limit on the present dark matter rms velocity vrms ≤

54 m/s. The mean of the posterior distribution of T0/m is several standard deviations

away from the edge of our prior (2.46), which therefore has no influence on the upper
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Dataset µ σ 68% 95%
CMB+LRG+Lyα 5.22 · 10−8 3.05 · 10−8 ≤ 6.84 · 10−8 ≤ 1.03 · 10−7

Table 2.1: Marginalized posterior mean µ, standard deviation σ and 68% and 95%
upper credible limits on

√
T0/m .

limit (2.47). These results do not depend on any particular model, and only rely

on the assumptions that dark matter is collisionless, and that the distribution of its

momenta is Maxwellian, with a temperature T/m� 1. As we emphasized previously,

equation (2.47) should not be interpreted as a constraint on the actual dark matter

temperature at present (because the latter is mostly found in collapsed haloes), but

as an extrapolation: The limit implies that at redshift z, where 1 � z ≤ zdec, the

dark matter temperature has to obey

T

m
≤ 1.07 · 10−14(1 + z)2. (2.48)

Imagine, for example, that a dark matter model predicts a decoupling redshift zdec,

at which dark matter matter decouples kinetically. If this decoupling redshift obeys

zdec > zmax ≈ 5 · 105 the assumptions of our analysis hold. Then, evaluating the in-

equality (2.48) at zdec, we obtain an actual limit on the dark matter temperature to

mass ratio at decoupling. If the ratio in the model under consideration violates this

limit, the model is consequently ruled out by our analysis.

It is also illustrative to compare the temperature limit (2.47) with the baryonic

temperature to mass ratio at present. Although most electrons recombine with hy-

drogen and helium nuclei around last scattering, there is a residual ionization that

keeps baryons and photons in thermal contact until a redshift of order z ≈ 140 [63].

Therefore, ignoring reionization and any other process that may affect the hydrogen

temperature on large scales, we would expect the present hydrogen temperature to

mass ratio to be T 0
H/m ≈ 1.7 × 10−15, which is comparable to the ratio in the limit

(2.47). It may come as a surprise that dark matter does not have to be much colder
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than baryonic matter.

2.5 Implications for dark matter models

In order to illustrate an application of our limit (2.47) to a particular class of dark

matter scenarios, let us consider how it impacts the mass of an eventual fermionic

dark matter candidate χ that only couples to the three species of (Dirac) neutrinos

in the standard model. Dark matter couplings to photons, quarks or electrons are

severely constrained by direct and indirect detection experiments [64–67], but due to

their elusive nature, interactions with neutrinos are beyond the reach of most of these

experiments. Neutrino telescopes do constrain direct dark matter annihilation into

neutrinos, but only if dark matter is sufficiently massive [68–70]. It is in cases like

this where cosmological limits like the one we derived turn out to be most powerful.

Similar models and their cosmological implications have therefore been discussed

in the literature: References [71–73] mostly focus, for instance, on the effects of

dark matter interactions on cosmological observables, whereas references [32] and

[74] explore whether late time kinetic decoupling could resolve some of the problems

of CDM on small scales, and are therefore closely related to our analysis.

To proceed in a fairly model-independent way, let us assume that the coupling

between χ and standard model neutrinos ν is universally described by one of the two

effective four-fermion interactions

LSint =
1

Λ2
S

∑
i

χ̄χ ν̄iνi, LVint =
1

Λ2
V

∑
i

(χ̄γµχ)(ν̄iγµνi), (2.49)

where ΛS and ΛV are constants with dimensions of energy, and i runs over the three

neutrinos species i = e, µ, τ . We expect this effective description to remain valid up to

energies of order E ∼ ΛS,V , which, because dark matter particles are non-relativistic
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leads us to impose

2m . ΛS,V . (2.50)

The coupling in LSint is what we expect in any model in which interactions between

dark matter and neutrinos are mediated by a heavy scalar of mass mscalar . ΛS,

whereas that in LVint is what we expect from the mediation of a heavy gauge boson

of mass mgauge . ΛV . Such interactions are two of the possible couplings in the

effective field theory approach to dark matter that is often used to constrain dark

matter couplings. Of course, from an effective field theory approach there is no

reason why dark matter should interact with neutrinos alone, but by the same token

there are many properties of the standard model itself that cannot be explained in

this framework.

This class of models has indeed been previously considered in the literature. Ref-

erence [32] for instance proposes a model in which dark matter decouples at late times

because of the interactions between dark matter and neutrinos mediated by a heavy

gauge boson, and analyzes whether the resulting suppression of structure due to free

streaming could resolve some of the problems of the CDM scenario at small scales.

Motivated by similar considerations, Shoemaker studies constraints on effective in-

teractions between neutrinos and dark matter like those in equation (2.49), and how

these affect the masses of the smallest proto-haloes in reference [74].

As we shall see, the limit (2.47) becomes particularly relevant for sufficiently

light dark matter particles. In this case, χ decouples kinetically rather late in the

history of the universe (after nucleosynthesis), which is what we shall assume in what

follows. Although the neutrinos themselves decouple from the remaining standard

model particles around nucleosynthesis, we assume that their interactions with dark

matter particles maintain neutrinos and dark matter particles in thermal equilibrium

until kinetic decoupling. Neutrino self-interactions also impact the CMB and the

matter power spectrum [72, 73], but such an impact should be negligible as long as
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kinetic decoupling takes place before observable scales enter the horizon.

The mass m may be related to the scales ΛS and ΛV if the couplings (2.49) deter-

mine the dark matter relic density. In the non-relativistic limit, the total thermally

averaged dark matter annihilation cross section times relative velocity becomes, to

lowest non-trivial order in the relative velocity,

〈σvrel〉S =
9

4π

m2

Λ4
S

T

m
, 〈σvrel〉V =

3

π

m2

Λ4
V

, (2.51)

where we have used the results in reference [75] to calculate the thermal average of the

annihilation cross section times the relative velocity, and we assume that dark matter

may annihilate into any of the three Dirac neutrino species. Chemical decoupling

(freeze-out) then occurs at temperatures of order [76]

T Sfreeze ≈ m

[
41.1 + 3 log

m

GeV
− 4 log

ΛS

GeV
− 3

2
log

(
41.1 + 3 log

m

GeV
− 4 log

ΛS

GeV

)]−1

,

(2.52a)

T Vfreeze ≈ m

[
40.7 + 3 log

m

GeV
− 4 log

ΛV

GeV
− 1

2
log

(
40.7 + 3 log

m

GeV
− 4 log

ΛV

GeV

)]−1

,

(2.52b)

where we have set the effective number of relativistic degrees at freeze-out to be

g∗ = 3.36. Note that this equation only applies under the assumption that dark matter

decouples while non-relativistic, and as long as our effective field theory remains valid,

2m� ΛV,S. At present, the corresponding relic density is [76]

ΩS
cdm = 5.4 · 10−10

(
m

T Sfreeze

)2(
GeV

m

)2(
ΛS

GeV

)4

, (2.53a)

ΩV
cdm = 2.0 · 10−10

(
m

T Vfreeze

)(
GeV

m

)2(
ΛV

GeV

)4

. (2.53b)

Because the dark matter fraction of the critical density Ωcdm is well constrained,
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equations (2.53) can be used to express m in terms of Λ or vice-versa. Say, in the

low-mass regime, the relations

ΛS = 32
( m

GeV

)0.48

GeV, ΛV = 89
( m

GeV

)0.49

GeV (2.54)

provide a good fit for the numerical solution of equations (2.53) with Ωcdm = 0.23.

Note that several cosmic ray anomalies can be explained if dark matter couples to a

gauge boson with a mass of order 10 GeV, which happens to be the scale suggested

by the previous equations for sub-GeV dark matter particles. The explanation of

these anomalies relies on the temperature-dependent enhancement of the annihilation

cross section caused by an additional interaction mediated by the relatively light

gauge boson. In the presence of such “Sommerfeld” enhancement, the dark matter

annihilation cross section at present is thus decoupled from dark matter primordial

abundance constraints [77]. Note however that there is no Sommerfeld enhancement

as long as our effective field theory description of dark matter remains valid.

Even after chemical freeze-out, interactions between dark matter and standard

model particles keep dark matter in thermal equilibrium, until they kinetically de-

couple later on. The kinetic decoupling temperature critically depends on the forward

scattering amplitude between dark matter and standard model particles. For the in-

teractions in (2.49), the spin-averaged square amplitudes for scattering between a

non-relativistic WIMP and a relativistic neutrino are [67]

1

4

∑
spins

|MS|2 =
16m2m2

ν

Λ4
S

,
1

4

∑
spins

|MV |2 =
16m2E2

ν

Λ4
V

, (2.55)

where Eν is the neutrino energy in the frame in which dark matter is at rest, and, for

simplicity, we assume that all neutrinos have the same mass mν (neutrino oscillations

actually imply that the three neutrino masses are all different). Using the results

of reference [45] and taking into account the fact that dark matter only couples to
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neutrinos we then find that the decoupling temperature is

T Sdec

m
= 0.23

(
GeV

m

)1/2(
1 eV

mν

)(
ΛS

GeV

)2

, (2.56a)

T Vdec

m
= 8.3 · 10−6

(
GeV

m

)3/4(
ΛV

GeV

)
. (2.56b)

After kinetic decoupling, the dark matter temperature redshifts with the square of

the scale factor. Hence, assuming adiabatic expansion, the dark matter temperature

to mass ratio at present is

T0

m
=

(
4

11

)2/3 T 2
γ

mTdec

, (2.57)

where Tγ is the current photon temperature and we have used the fact that at the

time dark matter kinetically decouples from the neutrino background, its temperature

is (4/11)1/3 times smaller than that of the photons. With the decoupling temperature

given by equations (2.56), equation (2.57) becomes

T S0
m
≈ 1.2 · 10−25

(
GeV

m

)3/2 (mν

eV

)(GeV

ΛS

)2

, (2.58a)

T V0
m
≈ 3.4 · 10−21

(
GeV

m

)5/4(
1 GeV

ΛV

)
. (2.58b)

Combining our limit (2.47) on the dark matter temperature today with equations

(2.58) we finally obtain 95% CL lower bounds on the corresponding scale Λ,

ΛS ≥ 3.4 · 10−6 GeV
(mν

eV

)1/2
(

GeV

m

)3/4

, ΛV ≥ 3.2 · 10−7 GeV

(
GeV

m

)5/4

.

(2.59)

Recall however that the limit (2.47) holds only under the assumptions that dark

matter decoupled while non-relativistic (Tdec/m � 1) and before observable scales
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had entered the horizon (zdec > zmax). Because the decoupling redshifts are

zSdec = 1.4 · 1012
( m

GeV

)1/2
(

1 eV

mν

)(
ΛS

GeV

)2

, (2.60a)

zVdec = 4.9 · 107
( m

GeV

)1/4
(

ΛV

GeV

)
, (2.60b)

observable scales enter the horizon after decoupling if

ΛS ≥ 6.1 · 10−4 GeV

(
GeV

m

)1/4 (mν

eV

)1/2

, ΛV ≥ 1.0 · 10−2 GeV

(
GeV

m

)1/4

,

(2.61)

whereas the demand that dark matter decouple kinetically while non-relativistic leads

to

ΛS ≤ 2.1 GeV
( m

GeV

)1/4 (mν

eV

)1/2

, ΛV ≤ 1.2 · 105 GeV
( m

GeV

)3/4

. (2.62)

Note that for our purposes it does not matter whether dark matter freezes out

while relativistic or non-relativistic; in order for the dark matter distribution to

be Maxwellian, it just suffices that dark matter decouples kinetically while non-

relativistic.

As shown in Figures 2.6 and 2.7, equations (2.61) and (2.62), together with condi-

tion (2.50) define a wedge in parameter space in which dark matter can be considered

to be cold and collisionless for observational purposes, and in which we can trust our

effective field theory description. This is the region in parameter space in which our

analysis holds, and for which our limit (2.47) applies. There may exist viable dark

matter models beyond this shaded region, but these models must violate one of our

assumptions, so, our analysis and limits do not apply to them.

Combining the region of parameter space for which our analysis holds with the

lower limits on Λ, we find the fraction of parameter space excluded by observations,

namely that region inside the shaded wedge that lies below the red line in the cor-
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Figure 2.6: Constraints on the scalar interaction scale ΛS in equation (2.49) as a
function of the dark matter mass m (for a neutrino mass mν = 0.1 eV). The area
under the dark green line corresponds to models in which dark matter decouples
kinetically while non-relativistic [equation (2.62)], whereas the area above the blue
line describes models in which dark matter decouples before observable modes have
entered the horizon [equation (2.61)]. The area above the orange line corresponds to
parameter choices in which we can trust the effective field theory [equation (2.50)].
Hence, the light shaded area describes models in which dark matter is cold and
collisionless for practical purposes, and we can trust our calculation. Parameters
under the red line [equation (2.59)] are incompatible with our limit (2.47), which
excludes the dark shaded region at the 95% level. Along the black line [equation
(2.54)], the scalar interaction leads to the observed dark matter relic abundance.

responding figure. We also plot in the corresponding figure equation (2.54), which

determines the scale Λ required for the present dark matter density to agree with

the observed one. The figures thus imply that in some of the models that explain

the current dark matter density, dark matter is either not cold or collisionless, in

disagreement with the cold-dark-matter paradigm. Of course, different interactions

or mechanisms may be responsible for establishing the present dark matter density,

which is in fact what needs to happen in the low mass regime; at m . 10 MeV equa-

tions (2.52) imply that dark matter is in chemical equilibrium while still relativistic

(or nearly relativistic) during nucleosynthesis. Dark matter then significantly af-
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Figure 2.7: Constraints on the vector interaction scale ΛV in equation (2.49) as a
function of the dark matter mass m. See caption of Figure 2.6 for more details.

fects the expansion rate during that time, thus modifying the predicted light element

abundances, in conflict with observations [78]. As we discussed above, Sommerfeld

enhancement [77] can drastically alter the primordial abundance of dark matter parti-

cles. In this case, one would also need to study how Sommerfeld enhancement affects

the thermal evolution of dark matter particles [79–81].

Figures 2.6 and 2.7 are the analogues of the mass vs. scattering cross section

exclusion plots derived from direct dark matter search experiments (see e.g. [82]).

Note however that our limit reaches down to much lighter dark matter masses, of

order of a keV. Indeed, inspection of Figures 2.6 and 2.7 reveals that our constraint

imposes absolute lower mass limits on cold and collisionless dark matter models that

interact according to equations (2.49). In fact, equation (2.47) yields a lower limit on

the dark matter mass which is essentially independent of the scattering dark matter

scattering rate. In the case at hand, for instance, from equations (2.59) and (2.62)

we obtain a lower mass limit

m ≥ 1.6 keV, (2.63)
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which does not depend on the interaction type (vector or scalar), and is also neutrino

mass independent. Such a mass limit is comparable to those derived in the context of

warm dark matter models [31]. As constraints on the matter power spectrum tighten,

we expect our lower limits on Λ (the red line in the figure) to move up in the exclusion

plots, thus ruling out larger portions of parameter space, and further increasing the

lower dark matter mass limit.

2.6 Summary and Conclusions

In the currently accepted cosmological model, ΛCDM, dark matter is a pressureless

and non-interacting perfect fluid. Although such a model is sufficient to capture the

properties of our universe on large scales, it does not really address the nature of dark

matter. The simplest explanation of these dark matter properties postulates that the

latter consists of sufficiently cold non-relativistic and non-interacting particles, an

assumption that is often taken to be part of the ΛCDM model itself.

In this Chapter, we have addressed how cold dark matter particles would have to

be in order to be compatible with large scale structure observations. In a wide variety

of dark matter models, dark matter is in thermal equilibrium in the early universe,

and its distribution remains thermal at least until the time when non-linear structures

form. As long as dark matter particles decoupled while non-relativistic, we expect

their momentum distribution to be Maxwellian, with a sufficiently low temperature T .

A measure of how cold dark matter is stems from its temperature to mass ratio T/m,

which for non-interacting and non-relativistic particles redshifts with the square of

the scale factor. This ratio determines the root-mean-square velocity of dark matter

particles, and the ratio of dark matter pressure to energy density, which is of order

T/m. Hence, dark matter is cold as long as T/m� 1.

A non-zero dark matter temperature implies a non-zero velocity dispersion of

its constituents. Such a non-zero velocity leads to dark matter free-streaming, which
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tends to erase structure on length scales smaller than the corresponding free-streaming

length. The absence of such suppression in the matter power spectrum on the smallest

scales accessible to linear perturbation theory thus allows us to place limits on the dark

matter temperature to mass ratio at present. Indeed, combining cosmic microwave

background and large scale structure observations, down to the scales probed by

Lyman alpha forest observations, we derive the 95% credible limit on the extrapolated

present dark matter to temperature ratio,

T0

m
≤ 1.07 · 10−14. (2.64)

This limit only applies within the cold-dark-matter paradigm, but is otherwise fairly

model-independent. It assumes that since the time the smallest observable scales

enter the horizon, dark matter can be described by an ensemble of non-interacting

particles with a Maxwellian momentum distribution, whose temperature remains non-

relativistic until today. Whether these particles are point-like or have a finite extent

does not affect our limit, as long as the size of dark matter particles is much smaller

than the scales probed by the cosmological observations. The limit also implies that

dark matter had to be quite cold already at the time galactic scales entered the

horizon, thus supporting the assumptions made in its derivation, and placing the

cold dark matter scenario within quantitative boundaries.

The limit (2.64) does not constrain typical WIMP scenarios very tightly. Say, for

neutralinos with m ∼ 100 GeV the kinetic decoupling temperature can be as low as

Tdec ∼ 10 MeV [35], implying T0/m . 10−24, far away from our limit. On the other

hand, (2.64) allows us to constrain dark matter models that are otherwise uncon-

strained by direct or indirect dark matter searches. Say, if dark matter only couples

to standard model neutrinos through a four-fermion scalar or vector interaction, the

limit (2.64) implies that the dark matter mass has to be heavier than 1 keV. Improved

constraints on the matter power spectrum should tighten the limit (2.64) and further

rule out portions of parameter space in this and other classes of models.
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Appendix

2.A Numerical Implementation

We have modified the publicly available Boltzmann integrator CAMB to take into ac-

count the effects of a non-zero dark matter temperature on the evolution of structure

in the linear regime. Instead of pursuing the conventional expansion of the distri-

bution function in multipoles (see e.g. [83]), we follow the approach described in

Section 2.2. As a consequence, we simply need to evaluate the dark matter density

perturbation (2.22) and the velocity perturbation (2.24) numerically (these suffice to

determine the evolution of the metric potentials h and η.) Inspection of equations

(2.22) and (2.24) quickly reveals that in order to calculate δρ and v we need the

integrals

Hn ≡
∫ τ

τdec

dτ ′ exp

(
−k

2d2(τ, τ ′)

2

)
[d(τ, τ ′)k]n h′(τ ′), (2.65a)

En ≡
∫ τ

τdec

dτ ′ exp

(
−k

2d2(τ, τ ′)

2

)
[d(τ, τ ′)k]n η′(τ ′), (2.65b)

for values of n ranging from zero to four. These integrals obey the recursion relations

dHn

dτ
= δn0h

′ + k

√
T

m
(nHn−1 −Hn+1), (2.66a)

dEn
dτ

= δn0η
′ + k

√
T

m
(nEn−1 − En+1), (2.66b)
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Figure 2.A.1: A plot of the transfer function ratio (2.40) at z = 0 obtained for different
number of equations in the hierarchy nmax at a fixed temperature T0/m = 10−12.

which, unfortunately, lead to an infinite hierarchy of coupled differential equations.

We choose to truncate the hierarchy at nmax = 12. This is a good approximation if

d k remains small, but fails when d k becomes sufficiently large (see Figure 2.A.1).

In order to determine the values of k T0/m where our finite nmax approximation

works, we plot the suppression factor (2.40) at z = 0 as a function of comoving

scale k for different values of nmax, as in Figure 2.A.1. As seen in the figure, all

the suppression factors agree at k ≤ 2h/Mpc, but disagree at larger k. The smaller

the nmax, the earlier the corresponding curve starts to disagree from the remaining

curves. Given the structure of these curves, we infer that our approximation can be

trusted at k . 2hMpc−1 and T0/m = 10−12 for nmax ≥ 12. Conversely, since we fix

nmax = 12, and because our expansion parameter k d is proportional to
√
T0/m, we
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conclude that our approximation is valid as long as√
T0

m
≤ 10−6 × 2hMpc−1

kmax

(2.67)

Because we are interested in the constraints imposed by the Lyman-α forest, we

want to make sure that our numerical results are accurate up to scales of order

kmax = 2hMpc−1. We therefore impose the conservative prior (2.46).

In order to solve the system of equations (2.66) we need to specify initial conditions

during radiation domination, at a time when the corresponding mode is well outside

the horizon. We calculate the appropriate value of Hn and En by integrating equations

(2.65) analytically, using expressions (2.79) for the gravitational potentials. As we

argue in Appendix 2.B, as long as the corresponding mode is outsize the horizon, the

integrals do not depend on the lower integral limit τdec, which we hence set to zero.

Under these assumptions we find

Hn(τ) = −Ri
n!√
2n
m

T
U

(
1 +

n

2
,
3

2
,
m

T

2

k2τ 2

)
+ · · · , En(τ) = − 5 + 4Rν

12(15 + 4Rν)
Hn(τ) + · · · .

(2.68)

where U is the confluent hypergeometric function. Initial conditions on Hn and En

are thus determined by evaluation of equations (2.68) at an appropriate initial time

τi, chosen so that k τi � 1. Note that in the radiation dominated era, k2τ 2T/m is

time-independent.

2.B Calculation of δρ

Our goal is to calculate the perturbed components of the energy-momentum tensor.

As noted in reference [56], because δT 0
0, δT 0

i and δT ij respectively transform as

a scalar, vector and tensor under spatial diffeomorphisms, and because there are

no non-trivial functions of the spatial metric with these transformation properties,
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metric perturbations do not contribute, and we can focus on the contributions from

δf . Below we shall also argue that the contributions from δf(τdec) to the energy-

momentum tensor are negligible, so we shall omit them in what follows.

We begin by calculating δρ ≡ −δT 0
0. To do so, we substitute the perturbed

distribution function (2.18) into the expression for the energy momentum (2.2),

δρ(τ) = − 1

a4

∫
d3p p0

f̄ ′

2p

∫
dτ ′pipj h

′
ij(τ

′) exp
(
−i∆ ~p · ~k

)
, (2.69)

where ∆ is defined in equation (2.19), and a sum over repeated indices (regardless of

location) is implied. We are interested here in the non-relativistic limit, so we just

need to calculate this expression to first order in T/m. Because the root mean square

momentum is
√

3mT , at this order we need to expand the covariant momentum p0

in the integrand to quadratic order in p/m.

p0 = −a
√
m2 +

p2

a2
≈ −am

(
1 +

p2

2a2m2
+ · · ·

)
. (2.70)

For the same reason, it suffices to expand p0 inside ∆ to zeroth order, since the

exponential in the integrand is already linear in p/m. We could then subsequently

expand that exponential to quadratic order in p, but because the exponent includes

terms that may become large on small scales (large k), we do not follow this route.

Instead, we treat the exponential exactly in an expansion in powers of k.

We begin by carrying out the integrals over the angular part of the covariant

momentum variable ~p, which we compute using the formula

∫
d2p pipj exp [−i~p · ~v] = 4πp2

[
δij
j1(v)

v
− v̂iv̂jj2(v)

]
, (2.71)

where a hat denotes unit vector in the corresponding direction and j1 and j2 are

spherical Bessel functions of the first kind. We then proceed to evaluate the integral
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over the magnitude of the momentum,

∫ ∞
0

dp
f̄ ′

2p

(
p4 +

p6

2a2m2
+ · · ·

)[
δij
j1 (∆ · p · k)

∆ · p · k
− k̂ik̂j j2 (∆ · p · k)

]
, (2.72)

which has a closed analytic form because for the Maxwell-Boltzmann distribution

(2.6), f̄ ′/p is a Gaussian. To calculate the integral in the last equation it suffices to

know the generating functions

∫ ∞
0

dp p3 exp

(
− p2

2mT0

)
j1(∆ k p)

∆ k
=

√
π

2
(mT0)5/2 exp

(
−mT0 ∆2k2

2

)
, (2.73a)∫ ∞

0

dp p4 exp

(
− p2

2mT0

)
j2(∆ k p) =

√
π

2
(mT0)7/2 exp

(
−mT0 ∆2k2

2

)
, (2.73b)

from which integrals with higher even powers of p can be calculated by formal dif-

ferentiation with respect to α ≡ 1/(mT0). In particular, every additional power of

p2/m2 in our non-relativistic expansion yields relative corrections of order T0/m and

(T0/m)(mT0∆2k2). Hence, such an expansion is justified provided that both quanti-

ties are small.

The structure of the exponential in equations (2.73) suggests that we define d2 ≡

mT0∆2, which in the non-relativistic limit results in the definition of the streaming

length in equation (2.20). Thus, the analysis in the last paragraph reveals that our

approximations are valid as long as T/m � 1 and (T0/m)k d � 1. Using equations

(2.73) in (2.72) and substituting into (2.71) we finally arrive at equation (2.22). The

derivation of equations (2.24), (2.25) and (2.26) is completely analogous.

It is also illustrative to check how the specific form of the distribution function

affects these results. Instead of the Maxwell-Boltzmann distribution (2.6), let us

assume that f̄ is instead [51]

f̄ = exp(−p/T0), (2.74)

which is the high-momentum limit of both the Fermi and Bose distributions. In this
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case, the generating functions analogous to those in equation (2.73) are

∫ ∞
0

dp p2 exp

(
− p

T0

)
j1(∆ k p)

∆ k
= 2T 4

0

1

(1 + T 2
0 ∆2k2)2

, (2.75)∫ ∞
0

dp p4 exp

(
− p

T0

)
j2(∆ k p) = 8T 6

0

5− T 2
0 ∆2k2

(1 + T 2
0 ∆2k2)4

. (2.76)

The structure of these integrals thus suggests identifying the free streaming length

with d = T0∆, which differs from the definition in equation (2.20). In both cases,

however, the free streaming length is proportional to the root mean square velocity

of the particles, namely, vrms ∼
√
T0/m for a Maxwell-Boltzmann distribution, and

vrms ∼ T0/m for the distribution (2.74). On length scales smaller than this free-

streaming length, there is again a suppression of structure, but instead of exponential,

as in (2.73), the suppression here is polynomial.

To conclude this section we still need to show that the contributions to the energy-

momentum tensor of the term δf(τdec) in equation (2.18) are negligible. Consider for

that purpose the energy density. Let us assume that dark matter decouples with a

thermal distribution with vanishing chemical potential while (mildly) non-relativistic,

as in WIMP models. Then, at or shortly before decoupling we have

δf(τdec, ~k, ~p) ≈
1

(2π)3
exp

[
− m

Tdec

− ~p 2

2mTdeca2
dec

]
δT (τdec, ~k)

Tdec

. (2.77)

Substituting this expression into equation (2.2) and integrating over momenta as

before we find

δρ = ρ̄
m

Tdec

δTdec

Tdec

[
1 +

1

2

Tdec

m

(
1 +

a2
dec

a2

)(
3− d2(τ, τdec)k

2
)]

exp

(
−1

2
d2(τ, τdec)k

2

)
,

(2.78)

which again shows the expected exponential suppression of structure due to free

streaming.

For adiabatic perturbations we expect the temperature perturbation to be of the
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same order as the density perturbation in photons δTdec/Tdec = δγ/4. On super-

horizon scales the latter and the gravitational potentials are given by

η = −ζi
(

1− 5 + 4Rν

12(15 + 4Rν)
k2τ 2 + · · ·

)
, h = −ζi

2
k2τ 2 + · · · , δγ =

ζi
3
k2τ 2 + · · · .

(2.79)

Hence, because the time derivatives of the potentials grow linearly in time, the con-

tribution from the integral in equation (2.22) is always larger than that of equation

(2.78), as long as the corresponding mode was super-horizon sized at decoupling. For

the same reason, and under the same assumption, the integral in equation (2.22) is

not very sensitive to the time of decoupling, which can be taken to be zero.

Equation (2.78) also illustrates an important property of an ensemble of colli-

sionless particles. In the absence of gravity, equation (2.78) is the energy density

associated with the solution of Boltzmann’s equation with the corresponding initial

conditions. In the case of a perfect fluid with a non-zero pressure, we would expect

such a solution to describe acoustic oscillations, but equation (2.78) instead shows

exponential decay on scales smaller than the free-streaming length if the gas is colli-

sionless. If we had carried out an analogous calculation with massless particles, we

would have found that the energy density is proportional to j0[(τ − τdec)k]. This

function does in fact oscillate in time (albeit with a decaying amplitude), but the

corresponding frequency is ω = k, instead of ω = k/
√

3, the acoustic oscillation

frequency for a fluid of relativistic particles.
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Chapter 3

Structure Formation Constraints

on Sommerfeld-enhanced dark

matter annihilation

3.1 Introduction

We have discussed in the introductory chapter to the book, as well as in the previous

chapter, that the simplest way to explain the properties of the dark matter fluid is

to assume that it consists of non-interacting and non-relativistic particles. In this

scenario, the amount of dark matter in our universe is a free parameter that has to

be chosen to fit observations and thus remains unexplained. On the other hand, if

dark matter particles are assumed to self-annihilate with an averaged cross section

times relative velocity of the order of the weak scale,

〈σv〉w ≡ 3 · 10−26cm3 s−1, (3.1)
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dark matter particles decouple from radiation in the early universe while being non-

relativistic, with an abundance that roughly fits the observed amount of dark matter,

Ωch
2 ≈ 0.1

〈σv〉w
〈σv〉

. (3.2)

This equation holds regardless of the precise value of the dark matter mass and the

particles dark matter annihilates into. In this scenario, we not only explain the major

properties of dark matter, but also its amount. This is why weakly interacting massive

particles (WIMPs) are widely believed to be the dark matter constituents.

But somewhat recently, motivated by certain anomalies in cosmic ray spectra [84–

86], several authors have suggested that the dark matter self-annihilation rate today

may differ from the rate suggested by equation (3.2) [77, 87, 88]. If f is the fraction of

the energy deposited into standard model particles by two annihilating dark matter

wimps, these models require [87, 89]

f · 〈σv〉 ∼ 102 〈σv〉w (3.3)

for a WIMP of mass m ∼ 1 TeV. Therefore, in order to preserve the successful

postdiction of the dark matter abundance, these authors have suggested that the

dark matter annihilation rate is inversely proportional to the dark matter velocity,

and thus increases as the universe expands and the velocity redshifts.

〈σv〉 ∝ 1

v
. (3.4)

A simple way to accomplish such an increase involves the Sommerfeld enhancement of

the annihilation cross section induced by a new, sufficiently light force carrier [90, 91].

Recombination places quite stringent constraints on the annihilation cross sec-

tion of the enhanced dark matter models. If dark matter efficiently annihilates into

radiation during recombination, the injection of this radiation into the plasma sig-
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nificantly affects the temperature anisotropies in the cosmic microwave background

radiation. Using this effect, several groups have been able to place an upper limit on

the thermally averaged annihilation rate times velocity during recombination [92–94],

〈σv〉 ≤ 15
〈σv〉w
f

mc2

TeV
at 95%CL. (3.5)

On the face of this limit, models that explain cosmic ray anomalies with enhanced

annihilation cross section are already ruled out.

Unfortunately, the limit on the annihilation cross section (3.5) depends on the

model-dependent parameter f , which can vary by several orders of magnitude. In

those (nearly ruled out) models that attempt to explain the cosmic ray anomalies

mentioned above, f is of order one, whereas in models in which dark matter is part of

a dark sector that interacts only gravitationally with the standard model, f vanishes.

In extreme cases like the latter, the limit (3.5) is not very useful.

In this Chapter, we set limits on the dark matter annihilation cross section that do

not depend on f , and thus apply to a wider class of dark matter candidates, beyond

those designed to address the aforementioned cosmic ray anomalies. Our constraints

are based on the impact of dark matter annihilation on the formation and growth

of large-scale structure, including the cosmic microwave background anisotropies and

the distribution of dark matter. Because the presence of additional force carriers in

the dark sector still remains well-motivated, regardless of the dark matter annihilation

channels, and because models with enhanced annihilation cross section provide dis-

tinct phenomenological signatures we focus on dark matter that self-annihilates into

dark radiation with a Sommerfeld-enhanced cross section (several specific models in

this class have been studied for instance in [95, 96].) Our dark radiation is assumed

to not interact with standard model particles, which corresponds to the limit f = 0

in the class of models discussed above. Hence, any imprint of annihilation on cosmic

observables must come from either the suppressed growth of dark matter structures,

or from the gravitational interactions of its annihilation products, which are present
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in any scenario in which dark matter self-annihilates.

For negliglible values of f , one can also derive quite stringent constraints on the

self-scattering cross-section of dark matter (which should also experience Sommerfeld

enhacement), because the latter would cause the central cores of gravitational bound

astrophysical systems to become spherical, rather than elliptical, in conflict with

observations [79, 97]. Unfortunately however, there is no model-independent relation

between the scattering and annihilation cross sections, so these constraints cannot

be directly applied to self-annihilation. In addition, these constraints only limit the

scattering cross section at velocities of the order found in the corresponding dark

matter halo. In contrast, our limits on annihilation do not depend on the dark

matter velocity, and only rely on the assumption that dark matter is non-relativistic.

Our considerations of dark matter annihilation with a Sommerfeld-enhanced cross

section are further motivated by two seemingly unrelated phenomenological problems.

On one hand, it has been argued for some time that in the standard ΛCDM model

the central densities of dark matter haloes, and the number of small subhaloes, do

not appear to match observations [98, 99], although this eventual disagreement may

have conventional astrophysical explanations [100, 101]. A natural way to explain the

discrepancy is to assume that dark matter interacts or annihilates with a cross section

that is inversely proportional to the dark matter velocity, as in Sommerfeld-enhanced

models [32, 102], or simply to assume that dark matter self-annihilates with cross

section larger than that required by equation (3.2) [103]. On the other hand, it has also

been noticed that cosmic microwave data seem to indicate an additional relativistic

dark component that interacts only gravitationally with the standard model (see

for instance [104–107]). It is thus worthwhile to investigate whether this additional

radiation could originate from dark matter annihilation, a circumstance that would

link these two apparently unrelated problems.

In the context of the original Sommerfeld-enhancement models designed to explain

the cosmic ray anomalies, our limits can be used for instance to determine the values
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of f for which the effects of dark matter annihilation on structure formation have to

be taken into account. In the general case, they help further constrain the properties

of the yet to be identified dark matter particle, and, eventually, may explain the origin

of the dark radiation hinted at by cosmic microwave data.

3.2 Annihilating Dark Matter

As we mentioned in the introduction, for our purposes dark matter is well described

by a pressureless perfect fluid, with energy momentum tensor

T (c)
µν = ρcu

(c)
µ u

(c)
ν , (3.6)

where ρc is the energy density of dark matter, and uµ(c) its four-velocity, gµνu
(c)
µ u

(c)
ν =

−1. By assumption, the pressure of dark matter vanishes. In Appendix 3.A we link

this perfect fluid description to a kinetic description, in which dark matter is regarded

as an ensemble of non-relativistic particles. Our goal is to study the effects of dark

matter annihilation on the growth of structure. For simplicity, we assume that dark

matter annihilates into relativistic particles that interact only gravitationally with

the standard model, but interact sufficiently rapidly with other particles in the dark

sector (or themselves) to justify a perfect fluid approximation on the scales of interest.

In that sense, the behavior of dark radiation mimics the behavior of photons prior

to recombination. We shall thus regard the dark matter annihilation products as a

perfect relativistic dark fluid, with energy-momentum tensor

T (d)
µν = (ρd + pd)u

(d)
µ u(d)

ν + pd gµν , where pd =
ρd
3
. (3.7)

As it turns out, present cosmic microwave anisotropy data suggest the existence of

such an additional relativistic species (see for instance [107]). Our dark radiation pro-

vides a natural candidate for this additional relativistic component for three reasons:
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i) Since dark matter is negligible during early radiation domination, its annihilation

products are unlikely to conflict with the successful predictions of big-bang nucleosyn-

thesis. ii) Cosmic microwave anisotropy data probe times during which the amount

of dark matter was sizable. iii) As we shall see, with a Sommerfeld-enhanced an-

nihilation cross section, dark matter does not entirely freeze out at early times, but

keeps annihilating until the dark-matter dominated era. Note that studies suggesting

the presence of an additional dark relativistic species typically model this radiation

as collisionless (neutrino-like) [104–107]. Although in this case a hydrodynamical de-

scription breaks down at small scales, this difference in description should not have

much of an impact on cosmological observables, because dark radiation is not visible

and never becomes the dominant component of the universe.

In the absence of particle number violating interactions, the energy-momentum

tensor of dark matter is covariantly conserved, but in the presence of annihilation,

dark matter particles transfer energy to its annihilation products. To determine the

energy lost by the dark matter fluid, we rely on the kinetic description of Appendix

3.A, which yields

∇νT
(c)
µ

ν = −〈σv〉
m

ρ2
cu

(c)
µ . (3.8a)

Here, 〈σv〉 is the average dark matter annihilation cross section times relative velocity

defined in equation (3.50), and m is the dark matter particle mass. Note that the rates

at which energy and momentum are lost are inversely proportional to m, because the

annihilation rate is proportional to the square of the number density, and the energy

density is proportional to the mass m. The energy lost by the dark matter fluid due

to annihilation is gained by the dark radiation fluid, so

∇νT
(d)
µ

ν = +
〈σv〉
m

ρ2
cu

(c)
µ . (3.8b)

In this way, the combined energy-momentum tensor of cold dark matter and dark

radiation remains covariantly conserved.
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3.2.1 Background Evolution

We turn our attention now to the evolution of the dark matter and dark radiation

energy densities in an unperturbed, spatially flat FLRW universe,

ds2 = a2(τ)
[
−dτ 2 + d~x 2

]
. (3.9)

The equations of motion of dark matter and dark radiation are given by the time

components of equations (3.8a) and (3.8b), with the four velocities of dark matter

and dark radiation taken to be uµ = δµ0/a,

ρ′c + 3Hρc = −〈σv〉
m

ρ2
ca, (3.10a)

ρ′d + 4Hρd = +
〈σv〉
m

ρ2
ca. (3.10b)

We have definedH = a′/a, and a prime denotes a derivative with respect to conformal

time τ . In a spatially flat universe we are free to choose the value of a today, which we

set to one. Equations (3.10) hold after the kinetic decoupling of dark matter, which

typically occurs well before nucleosynthesis [80, 108].

If the evolution of the scale factor is known, equations (3.10) can be readily inte-

grated to give the evolution of dark matter and dark radiation,

ρc =
ρica

3
i

a3

(
1 + ρica

3
i

∫ τ

τi

dτ ′
〈σv〉
m

1

a2

)−1

(3.11a)

ρd =
1

a4

∫ τ

τi

dτ ′
〈σv〉
m

(ρica
3
i )

2

a

(
1 + ρica

3
i

∫ τ ′

τi

dτ ′′
〈σv〉
m

1

a2

)−2

, (3.11b)

where ρic, ai and τi are integration constants, and we have assumed that sufficiently

early, at τ = τi, the amount of dark radiation is negligible, ρid = 0. With this choice,

dark radiation only originates from dark matter annihilation; a non-zero value of ρid

would lead to an additional contribution to the dark radiation density that may or

may not have originated from the former.
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In this Chapter, we mostly concentrate on the regime in which Sommerfeld en-

hancement operates, when, according to the discussion in Appendix 3.A, the averaged

relative velocity between dark matter particles vrel lies in the appropriate interval next

to equation (3.43). We therefore assume that dark matter annihilates into dark radi-

ation with a Sommerfeld-enhanced cross section, which, according to equation (3.61),

is proportional to the scale factor,

〈σv〉
m

= Γa, (3.12)

with constant Γ. Although the times at which Sommerfeld enhancement operates are

strongly model-dependent, we note that dark matter particles typically decouple from

the thermal bath well before big-bang nucleosynthesis, so we expect their velocities

to be below the velocity v0 introduced in the Appendix, certainly by nucleosynthesis.

In our numerical solutions, we therefore assume that Sommerfeld enhancement is

already operating at an initial scale factor ai = 10−10.

Clearly, in the presence of annihilation, the density of dark matter decreases faster

than it otherwise would. For a cross section of the form (3.12), the density of dark

matter during radiation domination is, for instance,

ρc = ρic

(ai
a

)3
(

1 +
〈σv〉i
m

ρic
Hi

log
a

ai

)−1

, (3.13)

where, again, the index i denotes the initial value of the corresponding quantity.

In contrast to what happens in the conventional freeze-out scenarios, the correction

factor proportional to 〈σv〉i slowly varies for a � ai, suggesting that annihilation

keeps operating during radiation domination. Also note that the dark matter density

diverges at a scale factor a < ai. Of course, at early times our description of cold

dark matter ceases to valid, because at sufficiently high densities we are not supposed

to ignore inverse annihilations and other processes responsible for keeping the dark

matter density in local thermal equilibrium.

80



To proceed with our analysis, we assume that the annihilation cross section is

sufficiently small. On general grounds, we expect the quantitative effects of annihila-

tion to be controlled by the relative change in the number of particles in a comoving

volume during a Hubble time,

R ≡ − 1

H
d log(a3ρc)

dτ
=
〈σv〉
m

ρc
H
. (3.14)

This is, for instance, the case in equation (3.13), in which this factor appears explicitly

in the correction to the energy density. Therefore, 〈σv〉 is small if R remains much

smaller than one throughout cosmic history. In that case, it is enough to calculate

the impact of annihilation on any cosmological variable just to first order in 〈σv〉.

Note that to leading order in 〈σv〉, R is constant during radiation domination, and

proportional to a−1/2 during matter domination.

To see how this works, consider for instance the amount of dark radiation. Ne-

glecting the higher order correction in the denominator of the integrand in (3.11b)

we find

ρd ≈
〈σv〉
m

ρ2
ca · (τ − τi). (3.15)

This equation shows that in this limit the amount of dark radiation does not depend

on τi for τ � τi, and that ρd actually scales like non-relativistic matter instead of

radiation. In the same limit, the fraction of the total radiation in the dark form

during radiation domination is

ρd
ρr
≈ 〈σv〉

m

ρc
H

Ωc

1− Ωc

, (3.16)

showing that for an R of order one, the amount of dark radiation is negligible during

big-bang nucleosynthesis, but becomes sizable, about 10% at redshifts of about z ≈

5zeq, where zeq is the redshift of matter-radiation equality. This is relevant because

scales entering the horizon at that time are probed by cosmic microwave temperature
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multipoles of about ` ≈ 700, which roughly corresponds to the region probed by

WMAP cosmic microwave anisotropy data [104].

Equations (3.11) are useful during radiation domination, when the scale factor

is explicitly known. In order to determine how the energy density of dark matter

evolves during matter domination, we introduce the scale factor a as a time variable in

equation (3.10a). To integrate the resulting expression we use Friedmann’s equation,

neglecting both standard and dark radiation. The solution is

ρc ≈ ρic

(ai
a

)3
[

1 +
〈σv〉i
m

ρic
Hi

(
1− a

1/2
i

a1/2

)]−2

, (3.17)

where the index i denotes the value of the corresponding quantity at an arbitrary

scale factor ai. Therefore, as opposed to what happens during radiation domination,

dark matter freezes out at a � ai, when its density decays as in the absence of

annihilation. From equation (3.15), the amount of dark radiation is simply

ρd = 2
〈σv〉
m

ρ2
c

H
. (3.18)

The time of matter-radiation equality depends on 〈σv〉, because both the amount

of dark matter and dark radiation depend on the latter. Since R is proportional

to a−1/2 during matter domination, we do not expect the values of 〈σv〉 long after

matter-radiation equality to significantly affect cosmological observables, even under

the assumption that 〈σv〉 has been growing with the scale factor since that time. This

is important because, as we discuss in appendix 3.A, 〈σv〉 should become constant

at late times, presumably during matter domination. We do not incorporate this

saturation in our model, however, so as to avoid an excessive proliferation of free

parameters.

To conclude our analysis of the background evolution, let us consider the effect of
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annihilation on the age of the universe,

t0 =
1

H0

∫ 1

0

da

a
√

Ω0
Λ + Ω0

ba
−3 + ρc(a)/ρ0

crit + Ω0
ra
−4 + ρd(a)/ρ0

crit

, (3.19)

where ρ0
crit is the critical density today. Clearly, for fixed values of the remaining

cosmological parameters (including the dark matter density today), an increase in Γ

causes an increase in ρd, and also induces an increase in ρc at earlier times. Therefore,

such a change lowers the age of the universe.

3.2.2 Linear Perturbations

Our main concern here is the impact of annihilating dark matter on the formation

of structure in the linear regime. We thus consider linear perturbations around the

FLRW spacetime (3.9), and decompose them in Fourier modes,

ds2 = a2
[
−dτ 2 + (δij + hij)dx

idxj
]
, hij =

kikj
k2

h+ 6

(
kikj
k2
− 1

3
δij

)
η. (3.20)

Here, η and h are the conventional metric potentials in synchronous gauge, which we

adopt to connect our equations with the numerical results presented below.

Because the energy momentum tensors of dark matter and dark radiation still

have perfect fluid form, the linearized Einstein equations retain their conventional

form, and we shall not write them down here (see for instance [109] for the explicit

equations.) We shall primarily address the modifications that annihilation imposes

on the dynamics of both dark matter and radiation. The linearized time and spatial

components of equation (3.8a) for dark matter are

δ′c +
1

2
h′ − k2vc +

δ〈σv〉
m

ρc a+
〈σv〉
m

ρcδc a = 0, (3.21a)

v′c +Hvc = 0, (3.21b)

where δ〈σv〉 is given by equation (3.24), and we define velocity potentials by ui ≡ a ∂iv
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where ui are the spatial components of the four-velocity. Note that the annihilation

cross section does not enter the equation for the velocity perturbation, which admits

vc = 0 (3.22)

as a solution. Therefore, as in the absence of annihilation, we can use the residual

gauge freedom of synchronous gauge to set vc = 0. In this gauge, the equations of

motion for dark radiation simplify to

δ′d +
2

3
h′ − 4

3
k2vd −

δ〈σv〉
m

ρ2
c

ρd
a− 〈σv〉

m

ρ2
c

ρd
(2δc − δd) a = 0, (3.23a)

v′d +
1

4
δd +

〈σv〉
m

ρ2
c

ρd
vd a = 0. (3.23b)

Note that if 〈σv〉 is time-dependent, it is not consistent to assume that its fluctuations

δ〈σv〉 vanish. Indeed, as we argue in appendix 3.A, in the non-relativistic limit we

should set, to leading order in couplings,

δ〈σv〉 = 〈σv〉 h
6
. (3.24)

Heuristically, with 〈σv〉 = mΓa, a perturbation in the scale factor a→ a+ δa induces

a perturbation in the averaged cross section δ〈σv〉 = 〈σv〉δa/a. But on large scales (in

cosmic time coordinates) such a perturbation is equivalent to a metric perturbation

with h = 6 δa/a, from which equation (3.24) automatically follows.

3.2.3 Initial Conditions

In order to calculate the impact of dark matter annihilation on the temperature

anisotropies and the distribution of matter, we need to specify initial conditions for

the perturbations in all the components of the universe, including dark mater and

dark radiation. These initial conditions are set well into the radiation-dominated era,
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when all modes of cosmological interest are much larger than the Hubble radius.

At present, the angular correlations of cosmic microwave background temperature

anisotropies are well-fit by a nearly scale-invariant spectrum of adiabatic primordial

perturbations, in agreement with the predictions of the arguably simplest (single field)

inflationary models. We would therefore like to impose adiabatic initial conditions on

our perturbations, which we expect to be different for dark matter and dark radiation.

It turns out that in the presence of annihilation, and in synchronous gauge, the

question of adiabaticity is a subtle one. Weinberg has shown for instance that the

linearized perturbation equations in longitudinal gauge always admit (under rather

mild assumptions) an “adiabatic” solution in the long wavelength limit k → 0 [110].

The form of this adiabatic solution is explicitly known, regardless of the dynamics

of the universe constituents, and this makes it straightforward to impose adiabatic

initial conditions in longitudinal gauge, even in the presence of annihilation. But if one

transforms this longitudinal adiabatic solution to synchronous gauge one finds that

the total energy density perturbation vanishes, while η remains finite. Although this

in fact solves the synchronous gauge equations for spatially constant perturbations,

this solution cannot be extended to spatially varying perturbations. As argued by

Weinberg, the appropriate adiabatic perturbations in synchronous gauge must come

from the solution of the longitudinal gauge equations to next-to-leading order in the

long-wavelength expansion. But the latter is in general unknown.

In synchronous gauge, the conventional approach to determine appropriate adi-

abatic initial conditions involves an expansion of the linearized solutions in powers

of conformal time τ , which one can use to find appropriate initial conditions in the

long-wavelength limit kτ → 0. In order to do so, one has to expand the scale factor

and energy densities in powers of τ [111]. This does not pose any technical problem

in the standard scenario, but it the presence of annihilation in fails because, from

equation (3.11a), the dark matter density is non-analytic around τ = 0. More gen-

erally, an expansion around τ = 0 requires assumptions about the evolution of the
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universe around the time of the big-bang, which is precisely the time around which

we know the least about the universe.

In the specific case of coupled fluids, however, Malik and Wands have shown that

the linearized perturbation equations in any gauge admit an adiabatic solution in the

long-wavelength limit with
δρα
ρ′α

=
δρβ
ρ′β

(3.25)

if the intrinsic non-adiabatic energy transfer of each individual fluid δQintr,α van-

ishes [112]. To check whether this is true in our case, we note that during radiation

domination we can neglect the influence of dark matter and dark radiation perturba-

tions on the metric potentials. In that limit, the adiabatic solution for the dominant

constituents takes its conventional form [111],

η = −ζi, h = −ζi
2

(kτ)2, δγ =
ζi
3

(kτ)2, δν = δγ, δb =
3

4
δγ, (3.26a)

vγ = − τ

12
δγ, vν =

23 + 4Rν

15 + 4Rν

vγ, vb = vγ, (3.26b)

where the normalization has been chosen so that the curvature perturbation equals

ζi (along this adiabatic solution ζ is conserved), and we only quote the leading terms

in the long-wavelength expansion, since the subleading corrections depend on the

unknown behavior of dark matter around τ = 0. Then, it is simple to check using

equations (3.24), (3.25) and (3.26a) that the intrinsic energy transfer of dark matter

δQintr,c = −
(
δ〈σv〉
m
− 〈σv〉

′

m

δρc
ρ′c

)
ρ2
c (3.26c)

vanishes, because in the Sommerfeld regime 〈σv〉′ = H〈σv〉. We can therefore specify

initial conditions for dark matter and dark radiation using equation (3.25),

δc =

(
3

4
+
〈σv〉
4m

ρca

H

)
δγ, δd =

(
1− 〈σv〉

4m

ρ2
ca

ρdH

)
δγ. (3.26d)
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Again, the magnitude of the impact of annihilation on the initial conditions is deter-

mined by the ratio R in equation (3.14).

On the other hand, the adiabatic solution discussed in reference [112] does not

constrain the velocity perturbations. In order to determine the latter we note that

equation (3.23b) has the integral solution

ρdvd = − 1

4a4

∫ τ

τi

a4δρd,

where we have assumed that at τi, ρdvd vanishes. For τi � τ this reproduces for

instance the conventional adiabatic solution if we replace dark radiation by standard

radiation in the last equation. The dark radiation density perturbation can be found

using equation (3.26d), which to first order in 〈σv〉 gives

vd = vγ +
1

64

〈σv〉
m

ρca

H
ρc
ρd
τδγ. (3.26e)

This expression reduces to the standard adiabatic solution in the limit 〈σv〉 → 0, even

though the second term on the right-hand-side typically dominates when ρd is very

small. In our numerical code we use ρdvd as an independent variable, which, according

to equation (3.26e) has a well-defined value even if ρd is initially zero. Recall that

vc ≡ 0 by gauge choice.

3.2.4 Impact on Structure Formation

Annihilations impact the growth of the perturbations on many fronts: The evolution

of the background differs from the one without annihilations, the evolution of the

perturbations differ from their counterparts without annihilation, and, finally, the

initial conditions differ from their counterparts in the absence of annihilation.

Because annihilation enters the equations that model dark matter annihilation

only through the combination 〈σv〉/m, in the limit we are considering, cosmological

observables are only sensitive to the combination 〈σv〉/m. Here, as throughout this
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Figure 3.1: Matter and temperature anisotropy power spectra for different values of
Γw. All the remaining cosmological parameters, including Ω0

c , are kept fixed.

work, we focus on the case of Sommerfeld-enhanced annihilation, in which the average

cross section times velocity is proportional to the scale factor. It is thus convenient

to introduce an appropriately normalized constant Γw implicitly determined by

〈σv〉
mc2

≡ Γw
〈σv〉w
TeV

a, (3.27)

where 〈σv〉w is defined in equation (3.1). Thus, because in our conventions a equals

one today, Γw is the present value of 〈σv〉/mc2 in units of 〈σv〉w/TeV.

To determine the precise effects of annihilation on the CMB and matter power-

spectrum we have modified the Boltzmann integrator CAMB [57] by including the

three contributions mentioned above. In figure 3.1, we plot the matter and tempera-

ture anisotropy power spectra for different values of Γw, while keeping the remaining

cosmological parameters fixed. The impact of annihilation on the CMB power spec-

trum is visible only for relatively large values of Γw, for which the amount of dark

radiation is significant. This dark radiation is what drives most of the impact on

the power spectra in this regime. In particular, dark radiation delays the onset of

matter-domination, which shifts the wave number of the mode that enters the horizon

at matter-radiation equality, keq to larger scales. On small scales (k � keq) this shift
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has no effect, because the transfer function approaches a constant, whereas at larger

scales (k � keq), the power is suppressed by the corresponding factor of (keq/k
0
eq)2

from the transfer function, where k0
eq is the mode that enters at equality in the ab-

sence of annihilation. Accordingly, the maximum of the power spectrum at k = keq

is shifted to smaller values of k, as seen in the left panel of figure 3.1.

The delay in matter-radiation equality also affects the size of the sound horizon at

recombination, which becomes smaller because, with the remaining parameters fixed,

the latter is a monotonically growing function of the redshift at matter-radiation

equality (see for instance [56]). Hence, the angular size of the sound horizon at

recombination decreases, thus shifting the cosmic microwave acoustics peaks to higher

values of `. Apart from Silk damping at very small scales, the amplitudes of these

acoustic peaks depend on a monotonically growing function of k/keq. Hence, a shift

in keq to smaller values causes the anisotropy at a given angular scale (fixed value of

k) to increase, as observed on the right panel of figure 3.1.

For smaller (and more realistic) values of Γw, the shift in matter-radiation equal-

ity is not as pronounced, and an accurate description of the impact of annihilation

becomes impractical, because no single effect dominates the phenomenological signa-

tures of annihilation.

3.3 Results

Because annihilation affects both the cosmic microwave temperature anisotropies and

the matter power spectrum, measurements of the latter place constraints on how

strongly dark matter annihilates. We can obtain a rough estimate of the kind of limits

that we should be able to impose on Γw, defined in equation (3.27), by estimating the

Fisher information. As we argued above, the impact of annihilation is dictated by the

magnitude of R in equation (3.14), so on dimensional grounds we expect ∆C`/C` ∼ R.

At leading order, R is constant during radiation domination and decays during matter
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Figure 3.2: Smoothed marginalized posterior probability distribution function of Γw.

domination. Replacing R by Req, and assuming that the temperature multipoles are

normally distributed, the Cramer-Rao bound on the variance of an estimate of Req

leads to

∆Γw .
8πG

3c2

a
1/2
eq

H0

TeV

〈σv〉w
1√
` 2

max

≈ 1014

`max

. (3.28)

Here, `max is the maximum multipole probed by the WMAP and ACBAR missions,

`max ≈ 103. As we shall see, the rough estimate in equation (3.28) is in fact not far

from the actual standard deviation of Γw that we calculate later.

Upper Limits

To obtain upper limits on the value of Γw we follow the standard Bayesian approach

in cosmological parameter estimation. We sample the posterior probability for a cos-

mological model with parameters H0 (Hubble’s constant today), Ω0
Λ (critical density

fraction of a cosmological constant), Ω0
bh

2 (baryon density), τ (optical depth), ns

(scalar spectral index), As (scalar spectral amplitude) and Γw in equation (3.27) with

a set of four Monte Carlo Markov chains of 2.5 × 105 elements each, generated with

an appropriately modified version of COSMOMC [58]. We impose flat priors on all
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parameters, assume that the universe is spatially flat and neglect tensor modes. To

check for the converge of our chains, we monitor the Gelman and Rubin statistic [59],

which stays under 2×10−3 for all parameters. Following COSMOMC output, we also

estimate the statistical errors on our upper limits by exploring their changes upon

split of our chains in several subsamples; the corresponding relative errors remain

below 1%.

To derive our first limits, we use cosmic microwave temperature anisotropy and

polarization data from the seven year WMAP release [104], small angular scale tem-

perature anisotropy data from the ACBAR experiment [113], and large scale structure

data from an SDSS luminous red galaxy (LRG) sample [61]. For the WMAP and LRG

data sets, the likelihood of a model is calculated using the codes supplied by the cor-

responding collaboration. The (smoothed) marginalized posterior probability density

of Γw is shown in Figure 3.2. The posterior mean and standard deviation of Γw are

〈Γw〉 = 1.65 · 1013,
√
〈Γ2

w〉2 − 〈Γw〉2 = 8.94 · 1012, (3.29)

which suggests that there is no significant evidence for dark matter annihilation. In

fact, the highest density set1 with probability content p = 95% contains Γw = 0,

which confirms that the latter is in reasonable agreement with the data.

In order to settle the question of the evidence for a non-zero value of Γw, we focus

on the likelihood of the data under the two hypotheses H0 : Γw = 0,

H1 : Γw 6= 0.
(3.30)

The Bayes factor (the ratio of marginalized likelihoods under both hypotheses) is

often advocated in Bayesian hypothesis testing. Unfortunately, for nested hypothesis

of the form (3.30), it is ill-defined for improper priors, or very sensitive to the width of

1In our context, a highest density set is a credible interval of prescribed probability content and
minimal length. See, for instance, 2.50 in [114].
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Dataset µ σ 68% 95%
WMAP+ACBAR+LRG 1.65 · 1013 8.94 · 1012 ≤ 2.18 · 1013 ≤ 3.09 · 1013

Table 3.1: Posterior mean µ and standard deviation σ of Γw, and 68% and 95% upper
credible limits on Γw.

any uninformative prior placed on the additional parameters (see e.g. 7.17 in [114]).

We focus instead on the likelihood ratio

λ ≡ maxH0 L(data|H0)

maxH1 L(data|H1)
, (3.31)

which is a statistic that has often proved to be sensible in the classical context, and

is closely connected to the Bayes factor asymptotically. Evaluating the maximum

likelihoods under both hypotheses, we find

− 2 log λ = 0.92. (3.32)

Recall that under H0, −2 log λ is asymptotically distributed like χ2 with 1 dof, so the

evidence against the null hypothesis H0 is weak at best.2

We thus proceed to set an upper limit on the value Γw. From the posterior

distribution we finally derive the 95% credible upper limit

Γw ≤ 3.09 · 1013. (3.33)

Our results are summarized in Table 3.1.

In our conventions a = 1 today, so the previous limits translate for instance

into 〈σv〉/mc2 . 2.81 · 1010〈σv〉w/TeV around recombination, at z = 1100. In that

2Both the distribution of −2 log λ and its relation to the Bayes factor in the form of the Schwarz
information criterion are often derived in the limit of a large number of independent and identically
distributed variables. Although the temperature multipoles a`m are indeed independent in a statis-
tically isotropic universe, they are however not identically distributed. Hence, care should be when
quoting precise statistical predictions based on likelihood ratios.
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respect, for moderately small values of f , our constrain on the value of 〈σv〉 at recom-

bination is orders of magnitude weaker than the limit (3.5) based on recombination

alone. Therefore, in those cases it is safe to ignore the impact of annihilation on the

evolution of structure. But in any case, our limits are fundamentally different from

(3.5) because while the latter only constrains 〈σv〉/m at recombination, the former

are sensitive to the evolution of 〈σv〉/m throughout cosmic history. Since WMAP is

sensitive to comoving scales with k τ0 ∼ 103, our limits are sensitive to the value of

〈σv〉 at redshifts of about z ∼ 104.

The remaining cosmological parameters (H0,Ω
0
Λ,Ω

0
bh

2, τ, ns, As) do not differ sig-

nificantly from their values with Γw = 0. In particular, their best fit values under H1

fall within the posterior 95% credible limits on the corresponding parameters under

H0. The parameter Γw shows the strongest correlations with the amount of baryons

Ωbh
2 (−80%), the Hubble parameter H0 (76%) and the age of the universe (−89%),

although the latter still remain well constrained by the data. The negative correla-

tion between Γw and the age of the universe is, for instance, what we expect from our

analysis of the background evolution at the end of subsection 3.2.1.

3.4 Summary and Conclusions

We have studied the impact of dark matter annihilation on the cosmic microwave

background and the matter power spectrum, under the assumption that dark matter

annihilates into dark radiation with an averaged cross section times velocity 〈σv〉 that

grows in proportion to the scale factor. This Sommerfeld enhancement is expected

to occur generically in any dark matter model in which dark matter particles experi-

ence an additional attractive interaction, regardless of the dark matter annihilation

channels. Most previous analyses of this scenario assumed that dark matter predom-

inantly annihilates into standard model particles (visible radiation). Our analysis

focuses on the purely gravitational impact of the annihilation, and thus holds for a
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much wider class of models. In particular, within the context of our analysis we can

address whether the relativistic dark matter annihilation products consitute the dark

radiation that some analyses of cosmic data seem to favor.

Actual cosmic microwave anisotropy and large scale structure data do not show

evidence of dark matter annihilation with such a growing cross section, so we have

derived the limits on the corresponding averaged cross section times velocity listed

in table 3.1 (we define Γw in equation (3.27)). As seen in the table, these upper

limits allow 〈σv〉 to be several orders of magnitude larger than a typical weak anni-

hilation cross section. In particular, our limits indicate that if dark matter annihi-

lation deposits a significant fraction of the annihilation energy into visible radiation,

f � 10−8, the effects on the cosmic microwave background that we have studied

here are subdominant. On the other hand, if f � 10−8 the impact of annihilation

on recombination is subdominant, and the gravitational effects that we have studied

here play the dominant role. Because the data do not seem to support the dark mat-

ter annihilation hypothesis, we do not find evidence supporting an additional dark

relativistic species originating from such annihilations either.

At present, the nature of dark matter remains a mystery. The limits that we

have derived are not only useful in further constraining the properties of dark matter

itself, but also in constraining its interactions with other elements of the sector where

it resides. Because large scale structure still allows for very large annihilation cross

sections, the dark sector may in principle host a dark matter candidate with properties

far different from the standard collisionless WIMP.

94



Appendix

3.A Microscopic Description

In order to determine the impact of annihilation on the dark matter density we

begin with a microscopic description of annihilation. Let us consider the phase space

distribution of dark matter particles in the universe, f . It is useful to resort to a

formulation in which the distribution function depends on the space-time coordinates

τ and xi, and on covariant spatial momenta pj, f = f(τ, xi, pj) (for simplicity we

assume that dark matter particles are spinless.) In that case, the distribution function

f is a scalar under diffeomorphisms, and it obeys the Boltzmann equation [115]

p0

m

[
∂f

∂τ
+
∂f

∂xi
dxi

dτ
+
∂f

∂pi

dpi
dτ

]
= C[f, f ], (3.34)

where m is the WIMP mass and dpi/dτ is dictated by the geodesic equation

p0dpj
dτ

=
1

2m

∂gαβ
∂xj

pαpβ. (3.35)

In the above, p0 should be expressed in terms of the covariant momenta pi and the

spacetime metric.

Although this is not manifest, the left hand side of equation (3.34) is a diffeomor-

phism scalar. Hence, the collision term C is a scalar too, and describes the changes

in the distribution function caused by collisions and annihilations. For definiteness,

let us assume that the only relevant processes involve the annihilation of two dark
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matter particles χ into two spinless particles φ of four-momenta q1 and q2. Then, the

collision term is

C[f, f ] = − (2π)4

m2m2
φ

∫
d4
∗p2 d

4
∗q1 d

4
∗q2 f(xµ, p1ν)f(xµ, p2ν)Rann

√
−g δ4(p1 + p2− q1− q2),

(3.36)

where we identify p1 ≡ p, and all four-momenta are covariant (as opposed to con-

travariant.) Note the minus sign in front of the last equation, which reflects that we

are considering annihilation processes only.

The combination

d4
∗p ≡

d4p√
−g

2mθ(p0)δ(p2 +m2) =
m√
−g

d3p

p0
(3.37)

is a scalar under diffeomorphism, so Rann has to be a scalar too. We can thus calculate

Rann using the standard rules of quantum field theory in a local Lorentz frame, in

which

Rann ≡ p0
1p

0
2q

0
1q

0
2|Mann|2, (3.38)

and Mann determines the S-matrix, S = −2πiMδ4(p1 + p2 − q1 − q2). Say, for an

interaction of the form

Sint =

∫
d4x
√
−g λ

4
χ2φ2, (3.39)

where χ represents the dark matter field and φ its (relativistic) annihilation products,

Rann = λ2/16 at tree level (we follow the conventions of [116].)

In this Chapter, however, we are interested in annihilation processes for which the

annihilation rate is boosted by a factor S from Sommerfeld enhancement,

Rann =
λ2

16
× S(v0/vrel), (3.40)

where λ is a constant (not necessarily related to the simple model in equation (3.39)),

and v0 is a constant with dimensions of velocity and vrel is the appropriate relativistic
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expression for the relative velocity [117]

vrel =

√
−(p1 + p2)4 − 4(p1 + p2)2m2

−(p1 + p2)2 − 2m2
. (3.41)

(Because we are interested in the non-relativistic limit, any diffeomorphism scalar vrel

that reduces to |~v1 − ~v2| at non-relativistic momenta in a local Lorentz frame would

suffice). The factor S describes the enhancement of the cross section. In models in

which such an enhancement is caused by an attractive interaction mediated by a light

force carrier of mass mY coupling to dark matter with amplitude λY it has the form

[77]

S(x) ≈


m

mY α
,
vrel

c
� 2mY

m
v0

vrel

,
2mY

m
� vrel

c
� 2πα

1, 2πα� vrel

c

, (3.42)

where α = λ2
Y /(4π) and v0 = 2πα. For the rest of our analysis we restrict ourselves

to the intermediate regime, in which the enhancement is inversely proportional to the

relative velocity,

S ≈ v0

vrel

(
2mY

m
� vrel

c
� 2πα

)
. (3.43)

Clearly, this range of velocities is strongly model-dependent, although typically, for

light force carriers and not too weak couplings it can span several orders of magnitude

in vrel.

3.A.1 Perfect Fluid Description

The energy momentum tensor of the ensemble of particles described by f is

Tµν =

∫
d4
∗p
pµpν
m

f, (3.44)

97



which clearly transforms like a tensor. In order to determine whether this energy

momentum is conserved, it is convenient to consider a local inertial frame, in which

gµν = ηµν and Γµνρ = 0. Then, using the Boltzmann equation (3.34) and general

covariance it is easy to show that in an arbitrary coordinate system the energy mo-

mentum tensor satisfies

∇µT
µν =

∫
d4
∗p p

ν C[f, f ], (3.45)

since the latter holds in any local inertial frame. Thus, in the absence of annihilation

the energy momentum tensor is covariantly conserved, as it should.

In order to relate the kinetic to the fluid description, following Eckart [118], we

define the four-velocity of the fluid to be proportional to the averaged particle velocity,

uµ ≡ 〈pµ〉√
−〈pν〉〈pν〉

, (3.46)

where the average of any function g of momentum is defined by

〈g(~p)〉 =
1

n

∫
d4
∗p g(~p)f, (3.47)

and n is the (scalar) particle number density,

n ≡
∫
d4
∗p f. (3.48)

It is simple to show that for any distribution the Boltzmann equation (3.34) implies

that in the absence of annihilations the current n〈pµ〉 is covariantly conserved,

1

m
∇µ[n 〈p〉µ] = −n2〈σv〉, (3.49)
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where we have defined the averaged annihilation cross section times relative velocity,3

〈σv〉 = − 1

n2

∫
d4
∗pC[f, f ], (3.50)

which of course vanishes in the absence of annihilations. In that case, the four velocity

(3.46) is proportional to the current that captures the conservation of matter.

We shall assume that the distribution f is such that the energy momentum tensor

is well approximated by that of a perfect fluid,

Tµν = (ρ+ p)uµuν + p gµν . (3.51)

Using equations (3.44) and (3.46), the energy density thus becomes

ρ ≡ Tµνu
µuν = − n

m

〈pµpν〉〈pµ〉〈pν〉
〈pρ〉〈pρ〉

. (3.52)

In order to determine the pressure we note that equation (3.44) implies that T µµ =

−mn, whereas equation (3.51) implies that T µµ = 3p− ρ. Therefore, the pressure of

the fluid simply is

p =
ρ−mn

3
, (3.53)

which clearly shows that only relativistic components, those for which the energy

density ρ is larger than the “rest” energy mn, contribute to the pressure.

Pressureless fluids

By definition, the pressure of a non-relativistic fluid of particles vanishes, which im-

plies that ρ = mn, as expected. Looking back at equation (3.52) and noting that

〈pµpµ〉 = −m2 we see that this is the case if the covariance of the four momentum

3Recall that cross sections are rates per flux, and that the flux is proportional to the relative
velocity between the annihilating particles.
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vanishes,

〈pµpν〉 = 〈pµ〉〈pν〉. (3.54)

It then follows, using (3.46), that

uµ =
〈pµ〉
m

. (3.55)

Given that the covariance of the momenta vanishes by assumption, it is natural to

assume that we can also replace the momentum on the rhs of equation (3.45) by its

average. Then, the conservation equation becomes

∇µT
µν = −〈σv〉

m
ρ2uν . (3.56)

Since for a pressureless fluid ρ is proportional to the number density n, equation

(3.56) also expresses conservation of particle number, as can be seeing by looking

at the projection of that equation onto uν . To conclude, we note that because∫
d4
∗q1d

4
∗q2

√
−g δ(4)(p1 + p2 − q1 − q2) is a scalar, in the non-relativistic limit the

averaged annihilation rate in a universe with metric (3.20) becomes

〈σv〉 ≈ (2π)5

m2

λ2

16

a2

(−g)

1

n2

∫
d3p1d

3p2
v0

vrel

f(~p1)f(~p2), (3.57)

where we have assumed that the relative velocities are in the regime in which Sommer-

feld enhancement is effective, equation (3.43), and that all the annihilation products

are highly relativistic, m� mφ.

3.A.2 Background

Let us turn our attention now to the evolution of 〈σv〉 in the unperturbed universe

(3.9). Because of homogeneity and isotropy, the distribution function f can only
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depend on the magnitude of the momentum f = f(τ, p), where

p ≡ a
√
gijpipj. (3.58)

In the WIMP scenario dark matter decoupled while being non-relativistic, so it would

be natural to consider a Maxwell-Boltzmann ansatz for the distribution function, but

this is problematic because it can be shown, that annihilation does not preserve this

form of the distribution function [80].

We can nevertheless proceed without making any assumptions about the form of

f when the coupling λ is sufficiently small. Namely, because 〈σv〉 in equation (3.57)

is already of order λ2, to leading order we can calculate 〈σv〉 by substituting into

(3.57) the solution of the Boltzmann equation (3.34) to zeroth order in λ,

∂f

∂τ
= 0. (3.59)

In this case, any distribution function f = f(p) solves equation (3.59), and the density

of dark matter particles (to zeroth order) evolves as we would expect in the absence

of annihilation,

n =
1

a3

∫
d3p f(p), (3.60)

provided that f has support for non-relativistic momenta only. Using this form of

the density and equation (3.57) the averaged cross section becomes

〈σv〉 =
(2π)5

m2

λ2

16

a
∫
d3p1d

3p2 f(p1)f(p2)mv0/|~p1 − ~p2|(∫
d3pf(p)

)2 . (3.61)

The crucial point is that the the thermal average is proportional to the scale factor

a, simply because the relative velocity vrel between dark matter particles redshifts as

the universe expands.

101



3.A.3 Perturbations

In a perturbed universe (3.20) we also need to consider the perturbations in the

annihilation cross section, δ〈σv〉. Again, in the non-relativistic limit it is possible to

do so for an arbitrary background distribution and arbitrary metric perturbations by

focusing on the leading result in a small-coupling expansion. In particular, we can

calculate δ〈σv〉 to leading order in λ by solving the perturbed Boltzmann equation for

δf to zeroth order and substituting the corresponding solution into equation (3.57).

In doing so, we shall be able to remain in the perfect fluid approximation, without

the need to include the evolution of δf into our system of perfect fluid equations.

Following [119] let us write the perturbed distribution function as

f(τ, ~x, ~p) = f̄(p) + δf(τ, ~x, ~p), (3.62)

where f̄ is an arbitrary distribution with support at non-relativistic momenta, and p

is the magnitude of the spatial momentum defined in (3.58),

p =
√
pkpk −

1

2

hijpipj√
pkpk

. (3.63)

Here and in the following, Einstein’s summation convention is implied even if repeated

indices are not in opposite locations. Because p now depends on the metric, f̄ also

contributes to the perturbations of the distribution function. Then, the perturbation

δf obeys the linearized Boltzmann equation

∂δf

∂τ
+
∂δf

∂xi
1

a2

pi
p0
− 1

2

f̄ ′

p

∂hjk
∂τ

pjpk = 0, (3.64)

where a prime denotes derivative with respect to the argument (p in this case). Recall

that we set the collision term to zero because we are only interested in evaluating

δ〈σv〉 to zeroth order in λ.
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The linearized Boltzmann equation (3.64) has the line of sight solution

δf =
1

2

f̄ ′

p

∫ τ

τi

dτ ′pipj hij,τ

(
τ ′, ~x−

∫ τ

τ ′
dτ ′′

1

a

~p

m

)
, (3.65)

which assumes that δf was negligible at the initial time τi, and that dark matter is

non-relativistic. In general, this solution is a non-local functional of hij, but in the

non-relativistic limit in which p/m� 1, we can set the momentum in the argument

of the integral to zero, which yields a simple local expression for δf in terms of the

metric perturbations hij,

δf(τ, ~x, ~p) =
1

2

f̄ ′

p
hij(τ, ~x) pipj, (3.66)

where we have assumed again that the perturbations of h are initially negligible (as

we discuss in subsection 3.2.3, this holds for adiabatic initial conditions.) Note that

the first correction to this result away from the strict non-relativistic limit would be

proportional to three momenta, and would therefore vanish in momentum integrals

invariant under rotations like the ones involved in the calculation of δ〈σv〉. Given the

structure of the terms we have omitted, we expect this approximation to be valid on

scales

(kτ)2 �
(
m

p/a

)2

, (3.67)

which for non-relativistic momenta encompasses modes well within the horizon. Since

momenta redshift with a, this approximation becomes increasingly accurate.

With the explicit expression for δf in equation (3.66) at hand, we can calculate

δ〈σv〉 by substituting the solution (3.66) into equation (3.61). Because the latter is a

function of gij, invariant under spatial diffeomorphisms, metric perturbations do not

contribute to δ〈σv〉, and we may restrict our attention directly to the contributions

from δf alone. The resulting integrals can be simplified by noting that rotational

invariance and linearity demand that δ〈σv〉 be proportional to the trace of hij, and
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explicit calculation shows that

δ〈σv〉 =
h

6
〈σv〉. (3.68)

In this way, the system of perfect fluid equations remains closed, and there is no need

to track the evolution of δf in our system of equations. Also note that the velocity

perturbation associated with the solution (3.66) vanishes, and is therefore consistent

with the gauge choice vc = 0 in equation (3.22).

It is also instructive to explore how δf is affected by gauge transformations, and

how the residual gauge symmetry allowed by synchronous gauge leads to the existence

of gauge mode solutions. Under a gauge transformation

xµ → x̃µ = xµ + εµ (3.69)

the perturbation in the distribution function δf defined in equation (3.62) transforms

as

∆δf ≡ δf̃ − δf =
f̄ ′

p

(
ε,ij pipj + ε0,i pip0

)
+

1

2

f̄ ′

p
pipj∆hij, (3.70)

where we have used that εi ≡ ∂iε in the scalar sector. The additional term pro-

portional to ∆hij originates from the dependence of f̄ on the metric perturbations.

Under the same gauge transformations, the latter transform as

∆h00 = 2Hε0 + 2ε0,τ (3.71a)

∆h0i = ε0,i − ε,iτ (3.71b)

∆hij = −2ε,ij − 2Hε0δij. (3.71c)

Equations (3.71a) and (3.71b) immediately reveal that synchronous gauge contains a
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residual gauge freedom. A coordinate transformation with

ε0 =
A(x)

a
, ε = B(x) + A(x)

∫ τ dτ ′

a(τ ′)
(3.72)

preserves the synchronous conditions h00 = h0i = 0, and thus leads to the existence of

gauge modes. In fact, it is easy to check that equations (3.70) and (3.71), with εµ given

by equations (3.72) solve the linearized Boltzmann equation (3.64). Substituting this

gauge mode into expression (3.57) we find that the term proportional to pip0 does

not contribute to δ〈σv〉 because of rotational invariance. In the remaining terms,

the factors of ε cancel, so the corresponding δ〈σv〉 equals what we would get from a

perturbation δf of the form (3.66) with an effective metric perturbation

hij = −2Hε0δij. (3.73)

If we substitute this effective metric perturbation into equation (3.68) we find that

δ〈σv〉 = −H〈σv〉ε0. (3.74)

This is precisely what we expect from a gauge transformation of a scalar proportional

to the scale factor, and it also leads to a (gauge mode) solution of the perturbed

equations (3.21a). This agreement thus provides a check of expression (3.68) and the

consistency of our approach.
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Chapter 4

Detecting anomalies in CMB

maps: a new method

4.1 Introduction

A dramatic increase in the amount of observed data has, over the last couple of

decades, led to a much better understanding of the Universe we inhabit. In fact, the

cosmology community is so confident about the standard paradigm that the paradigm

is referred to as the Standard (or Concordance) Model, after the Standard Model

of Particle Physics. Seven or eight parameters, along with general relativity and

elementary quantum mechanics, are sufficient to explain a host of observations on the

largest scales, once initial conditions are set deep in the radiation era. Standard field

quantization techniques applied to cosmic inflation have been remarkably successful

in explaining these initial conditions even. The cosmology being studied today is

called Precision Cosmology because parameters have been determined to percent-

level precision [120, 121].

But, as is well-known, there is a difference between precision and accuracy. Ques-

tions abound over some of the postulates of the Concordance Model. Because we

have access to only one universe, the usual method of testing postulates by repeating
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experiments cannot be carried out. As inflation postulates that the primordial seeds

of the universe’s structure themselves arise out of a stochastic process, this inability

to repeat experiments is an even bigger handicap.

The cosmic microwave background (CMB) has turned out to be the cosmologist’s

most useful aid in understanding what has happened in the universe from just a few

minutes after the Big Bang, all the way up to the present. Since most CMB photons

have travelled to us without any scattering, they represent a very faithful picture of

the universe when it was about 400,000 years old. Moreover, at the scales relevant

to us today, the density perturbations were small enough that linear perturbation

theory is an excellent approximation. This implies that the statistical properties of

the primordial fluctuations were preserved all the way to the surface of last scattering,

and thence to us today.

In vanilla models of inflation, the Fourier modes of the primordial fluctuations

have the same dynamics as harmonic oscillators in their ground state, and are thus

distributed as Gaussians.1 Moreover, statistical homogeneity and isotropy imply that

the variance of this Gaussian distribution doesn’t depend on the direction of the

wavenumbers of the Fourier modes, and that the variance is the same for the real

and the imaginary parts of the Fourier modes [122]. In 2013, Planck announced that

the CMB data put very strong constraints on the amount of non-Gaussianity in the

primordial power spectrum [123]. In effect, this meant that several exotic inflationary

models got ruled out with very high probability. So, the accepted wisdom is that the

Fourier modes of the initial density perturbations are independent and distributed as

Gaussians.

The only challenge to this postulate of independent, normally distributed pertur-

bations probably has to do with the so-called CMB anomalies. The CMB anisotropies

across the sky are usually expressed in terms of a`m’s, the co-efficients corresponding

to the spherical harmonics Y`m’s. Expressing Fourier modes in terms of the spherical

1We ignore non-Gaussianities of the kind calculated by Maldacena [23] as they are highly sup-
pressed.
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harmonics, and using the results from the previous paragraph, we are led to conclude

that most viable inflationary models predict that the a`m’s are normally distributed

with zero mean and with a variance C` (hence independent of m).

When WMAP announced [124] its first set of results, the authors in [125] and

[126] analysed the a`m’s to test this hypothesis. (See [127] for an earlier analysis

with the COBE data.) They employed a variety of tests and found weak evidence for

correlation amongst the a`m’s that corresponded to the largest scales (low-`’s). The

anomalies reported dealt with the alignment of different multipoles and how planar

a few of these multipoles were. Several authors [128–130] performed similar analyses

and again found weak evidence. A different kind of anomaly, having to do with a low

value for the variance in the CMB sky, was observed by [131] for the WMAP data.

The authors in [132–135] considered the isotropy of the angular power spectrum and

concluded that it appears to be anisotropic. A few more anomalies were reported in

[136–138], amongst other works.

Apart from the weak evidence, two arguments were proferred questioning the

“real” nature of these anomalies: one, that they arose from the systematics that

WMAP employed; two, that these anomalies were checked for a posteriori. So, now

that Planck has confirmed that most of the anomalies are present in their data too

[139], one may reasonably argue that the anomalies are a bona fide feature of the

CMB. The question remains as to whether this feature is physically relevant or not.

As Planck also concluded that there is only weak evidence for these anomalies, this

question has not been settled convincingly. Many authors contend [140, 141], with

good reason, that given a large enough dataset, one can always find any feature

that one desires. Compounding the problem of the large dataset is the fact that the

anomalies have been observed for low-`’s—it is here that the effect of cosmic variance

is most pronounced. This makes statistical inferences about the anomalies even more

dubious. Also, there is the perennial question of foreground contamination—without

a reliable model for galactic dust, it isn’t clear how accurate the determination of the
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a`m’s is. (Though, with the availability of multiple probes and multiple frequency

channels, this is less of an issue [142] than it used to be.)

But, the fact remains that there are many anomalies with weak evidence. Some

of them are so apparently different from the rest that, at the outset, it is seems hard

to believe that they all arose from a common statistical fluke. And, the anomalies

seem to be present “coherently” across different `’s too, seemingly making it harder

to believe that it is the consequence of a fluke.

This chapter tries to address the second of the arguments put forth against the

existence of the anomalies—that the tests are all a posteriori. We propose two statis-

tics that test the null hypothesis that the a`m’s are independent, normally distributed

zero-mean variables. As we shall show, these statistics are such that one cannot rea-

sonably be accused of performing the analysis after “seeing” the anomalies in the

data. The point is to perform as general an analysis of the data as possible, without

worrying about whether a test statistic is physically-motivated or high-confidence-

interval motivated. We shall achieve this by not arbitrarily choosing the `’s and the

m’s to analyse; instead, we consider their linear and quadratic combinations. For one,

this makes the analysis more general; but, crucially, if the anomalies are physical, it

is very unlikely that they arose because of a coupling between just two or three a`m’s.

This anomalous nature must be present for a range of modes and thus considering

combinations of the modes should lead to an enhancement of the signal. Also, pre-

vious analyses of CMB anomalies have involved several Monte Carlo simulations to

produce a reference set of Gaussian sky maps. And, one gets several p-values as dif-

ferent statistics are considered. In our case, once a maximum ` value is chosen, one

gets a single p-value for each of the two statistics considered.
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4.2 Y—A Linear Statistic

4.2.1 Motivation

In broad terms, the way a hypothesis is statistically tested is this: Assume that

a given dataset is described by a known probability distribution P1; formulate a

statistic that is a function of the corresponding random variables; determine the

expected distribution P2 of this statistic, assuming the fiducial distribution P1; see

how compatible the actual (realized) value of the statistic using the given dataset is,

with the distribution P2. If the compatibility is very low, then one concludes that the

data are inconsistent with the hypothesis.2 It is clear, however, that the conclusion

strongly depends on the statistic chosen. Ideally, one would like to do the analysis

for several different statistics.

Let us look at linear test statistics; that is, if an n-component vector ~X describes

n variables of a dataset, then consider S = ~a · ~X, where each choice of the constant

co-efficients ~a would correspond to one statistic. If one wants to do a blind analysis

of the data, one is tempted to consider several different choices of ~a—for instance, by

making ~a itself a random vector. If one knows the underlying distribution of ~a, and

the null hypothesis for the distribution of ~X, then one may hope to determine the

distribution of S. In general, this distribution would be quite complicated. In the

next section, we show that for a specific choice of the distribution of ~a, and a specific

null hypothesis, the distribution of S becomes very simple.

4.2.2 The Y Statistic

Let ~a be an N -component random variable vector, with each component being de-

scribed by a zero-mean normal distribution,N (0, α2
i ). Let ~X be anotherN -component

vector with each of its components being described byN (0, β2
i ). Further, assume that

2This is more of a goodness-of-fit test than a hypothesis test because we are not specifying an
alternative hypothesis. But, the former can be thought of as a special case of the latter, where the
alternative hypothesis is that the data are not described by the null hypothesis.
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α2
i = 1/β2

i . That is, the combined probability distribution function is

P (~a, ~X) =
1

(2π)N
(det Σa det ΣX)−1/2 exp

(
−1

2
~a T Σ−1

a ~a

)
exp

(
−1

2
~X T Σ−1

X
~X

)
,

(4.1)

where Σa and ΣX are diagonal matrices with (Σa)ij = (ΣX)−1
ij = α2

i δij.

Consider a random variable arising out of these two random variables,

Y = ~a · ~X = aiX
i (4.2)

In the above, Einstein’s summation convention is implied. Though both ~a and ~X

are random variables, we shall eventually consider the case where there is only one

realization of ~X. That is, the two random variables must not be considered to be on

the same footing. We shall first treat ~X as a constant vector, carry out all operations

with respect to ~a and finally promote ~X to a random vector and carry out operations

with respect to it. This shall become more clear when we apply it to the case of

Cosmology.

For a given realization of ~X, Y is a linear combination of the independent normal

variables ~a. Hence, Y is normally distributed too:

Y ∼ N
(
0, α2

1X
2
1 + · · ·+ α2

NX
2
N

)
:= N

(
0, σ2

)
(4.3)

This is for a given realization of the X i’s. But, the X i’s themselves are random

variables with an underlying distribution. Thus, we may ask how σ2 is distributed.

Because α2
i = 1/β2

i , that is, the reciprocal of the variance of X i, σ2 is the sum

of squares of N normally distributed random variables with zero mean and unit

variance. Hence, σ2 follows a Chi-squared distribution with N degrees of freedom,

σ2 ∼ χ2(N). To calculate the probability distribution of Y , that is, P (Y = y), we
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need to marginalize over this χ2(N) because the variance is now a random variable:

P (Y = y) =

∫ ∞
0

dσ2 P (y|σ2)P (σ2)

=

∫ ∞
0

dσ2 1√
2πσ2

exp

[
−y2

2σ2

]
χ2(N, σ2)

=

√
1

π

(
|y|
2

)N−1 K
(
N−1

2
, |y|
)

Γ (N/2)
, (4.4)

where K is the modified Bessel function of the second kind. This distribution can be

considered to be the generalization of the well-known distribution of the random vari-

able that is the product of two standard Gaussian variables. The latter corresponds

to the N = 1 case of the former.

As the dependence of Y is only on N , one may wonder where the distributions of

~a and ~X enter. It is only because of the choice of the variances of the distribution,

α2
i = 1/β2

i , that the dependence on the details of the distribution “cancels out”. So,

as promised earlier, we have shown that a specific choice of the distribution for the

co-efficients (~a in this case) results in a very simple form for the distribution of the

statistic.

Usually, the word (test) statistic is reserved for a function of the data. In partic-

ular, for each set of data, such a statistic returns a single number. In our case, by

construction, the Y statistic is not a single number because a given ~X is multiplied

by several ~a. We shall call such statistics vector statistics.

4.2.3 Realizations

In cosmology, we have only one realization of the Universe. For our purposes, this

translates into one realization of the a`m’s, which we take to be the real multipole

co-efficients corresponding to the real spherical harmonics Y`m’s (see, for instance,

Appendix A of [143]). The index m then ranges from [−`, `]. But, the Concordance

Model of Cosmology predicts that each a`m is a random variable, arising from a
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Gaussian distribution N (0, C`). This can be thought of as the null hypothesis H0.

Thus, the a`m’s are like our ~X and we shall refer to them as ~X in order to keep

matters general. One way of testing H0 is by considering different test statistics of

~X and seeing if their realized values are compatible with that predicted by the null

hypothesis. A trouble with this method is that ~X doesn’t have a basis-independent

definition—its meaning depends on the coordinate system employed in the sky. Fur-

ther, the p-values that one derives depend fundamentally on the test statistic chosen.

So, just because one such p-value is compatible with the null hypothesis doesn’t mean

that the data are.

In our case, note that the Y statistic is independent of the co-ordinate system

chosen in the sky. To see this, consider a (passive) rotation of the co-ordinate system.

It can be shown that the transformed ~X, say ~X ′, is related to ~X by a real orthogonal

matrix3, say R; that is, ~X ′ = R · ~X. The Y statistic arising out of ~X ′, say Y ′ =

ai(X
′)i = aiRi

kX
k = R i

k aiX
k := (a′)iX

i. Using (4.1) and RTR = 1, it is clear that

the PDFs for ai and (a′)i are the same and hence the Y statistic is co-ordinate system

independent.

Now that we have discussed the test statistic and its properties, let us detail our

motivation for considering this statistic and what we intend to do with it. One might

wonder why a linear combination of the components of ~X is being considered. This

has to do with the kind of anomalies that are usually discussed. It is very natural to

assume that these anomalies are the result of some correlation between the different

components of ~X. Indeed, many models that attempt to explain these anomalies

posit precisely such a correlation (see [146] and references therein for a review of the

anomalies and some proposed explanations for their origins). The only way to test

these correlations is by considering functions that “mix” the different components. A

linear superposition is just the simplest of these functions. We shall consider second-

3The transformation matrix is given by C∗DC T [144], where C is a matrix that relates the complex
spherical harmonics to the real ones, and D is the Wigner D-matrix [145] that describes how complex
spherical harmonics transform under rotations. Both matrices are unitary and ∗ denotes complex
conjugation.
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order statistics in due course.

We now consider a more operational definition of ~X. We specialize to the case

where ~x, the realization of ~X, is the set of a`m’s. That is x1 = a2,−2, x2 = a2,−1, . . . , x5 =

a2,2; x6 = a3,−3, . . . ;xN = a`max,−`max .4 Here, `max is the largest ` value that we go up

to:

`2
max + 2`max − (3 +N) = 0 (4.5)

The strategy is the following: Under the null hypothesis H0, we have the distri-

bution for Y , given in (4.4). From CMB experiments such as WMAP and Planck, we

have the realized values of ~X in the actual sky. We use these realized values of ~X,

~xsky, and determine the distribution of Y , P (ysky). We can compare this distribution

with (4.4) and can then infer the compatibility of CMB data with H0.

4.3 Hypothesis Testing

Usually, hypothesis testing involves calculating the probability of the realized value

of a statistic, given the distribution of the statistic under the assumption of the

null hypothesis. This procedure cannot be directly implemented in our approach

because, by construction, our test statistic Y doesn’t yield a single number for a

given dataset—it is a vector statistic. So, whereas in the usual case we only have to

compare one realized value of the test statistic with the expected value, in our case,

by its very nature, we must compare the realized distribution P (ysky) with that in

(4.4).

Now, there is no unique way of comparing two arbitrary distributions. As we are

basically looking for a measure of goodness-of-fit, we could consider a chi-squared test.

But, chi-squared tests are more useful in circumstances where one is estimating the

parameters in a given model. In that case, minimising chi-squared leads to the best-

4As is usual in CMB analyses, we ignore the monopole and the dipole (` = 0 and ` = 1).
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fit parameters. That is not what we are doing here. We are actually comparing data

with a fiducial distribution function. Moreover, using the chi-squared test involves

binning the data, and some information is lost in this process. It would be more

desirable to work with tests that use the data themselves, not bins of data.

Different such tests have been proposed in the literature, and we shall adopt the

Anderson-Darling (A-D) test [147], which we shall describe shortly. The reason for

the choice is that studies [148] have shown that, for a variety of distributions, this

test is more powerful than others such as the more commonly used Kolmogorov-

Smirnov (K-S) test. A possible drawback of using the A-D test instead of, say, the

K-S test is that the critical values depend on the distribution corresponding to the

null hypothesis, but, because we know the form of this distribution (4.4), the critical

values can be calculated. Moreover, this dependence on the distribution is reflective

of the fact that the A-D test is much more sensitive to the underlying distribution

than the K-S test, and hence more powerful.

4.3.1 Anderson-Darling Test

Let V be a random variable and let the null hypothesis be that the (continuous)

probability distribution F (V ) describes this variable. Further, let the m-component

vector vi represent m samples of V , sorted in increasing order. Define Φ(w) to be the

cumulative distribution function,

Φ(w) =

∫ w

−∞
dv F (v)

Also, define

S =
1

m

m∑
i=1

(2i− 1)
(

log[Φ(vi)] + log[1− Φ(vm+1−i)]
)

(4.6)
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The A-D statistic is then given by

A2 = −m− S (4.7)

For well-known distributions, such as the normal distribution, critical values of

the A2 statistic have been calculated in the literature. Associated with each critical

value is a p-value, with which the null hypothesis can be rejected at the corresponding

significance. For example, a value of A2 more than 3.857 would mean rejecting the

null hypothesis that the data are described by a normal distribution with a given

mean and variance at the 1% level.5

As our distribution (4.4) is not one of the common distributions (the earliest

reference to it that we could find is in [149]), published critical values for the A-D

test do not exist. But, for a given N , we can determine them simply by generating

a large number of realizations drawn from (4.4), calculating the corresponding value

of A2, and repeating this procedure a sufficient number of times. This would give us

the distribution of A2 for (4.4), from which the critical values can be calculated. Call

this distribution ΨY (A2, N).

A peculiar feature arises out of the fact that we only have access to one realization

of the a`m’s. For typical PDFs, the distribution of A2 in (4.7) asymptotes fairly quickly

to a fixed distribution as the number of realizations (m in the equation) increases.

But, recall that we have only one realization of ~X. So, even if we increase the

number of Y statistics generated (thereby increasing the corresponding m), this is

not equivalent to an ergodic sampling of the distribution. In particular, if we choose,

say, m = 105, then, it does matter whether we generate m realizations of Y by

choosing 105 realizations of ~a and 1 realization of ~X, or by choosing 103 realizations

of ~a and 102 realization of ~X. Thus, it turns out that in our case the distribution

5This is in the limit of infinite data, and for data that have been standardised (subtract the mean
from the data, and divide by the standard deviation), though, for the case of the normal distribution,
modifications for finite m exist.
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Figure 4.1: PDF for ΨY (A2, N,m) for m = 105, N = 672.

of A2 for a given N , what we called ΨY (A2, N), depends on m. We shall denote

this distribution by ΨY (A2, N,m). Implicit in this notation is the fact that we are

choosing only one realization of ~X.

For a given N and m, we can determine ΨY (A2, N,m) numerically by simply fol-

lowing the procedure outlined in (4.2): We choose both a and X to be N -dimensional

normal vectors with zero mean and unit variance. We pick one realization of ~X and

m realizations of ~a, calculate the corresponding Y and one corresponding realization

of ΨY (A2, N,m). We repeat this procedure several times until we have mapped out

the distribution ΨY (A2, N,m) reasonably well. This distribution for N = 672 and

m = 105 is shown in Figure 4.1.

Once we have determined ΨY (A2, N,m), putting limits on how anomalous the data

are, in terms of our formalism, is relatively straightforward. We have discussed in the

previous section how we can generate a given number (say, m) of the Y statistic. On

sorting this data vector in increasing order, we can proceed to calculate the realized

value of A2, with the distribution in (4.4) corresponding to F (V ) above. Call this

a2
sky.6 This value can be compared with ΨY (A2, N,m) and a p-value can be calculated.

6Henceforth, we shall follow the standard practice of representing random variables by capital
letters and realized values by small letters.
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4.4 Z—A Quadratic Statistic

4.4.1 Ensemble

In the previous section, we considered a linear combination of the different a`m’s.

We mentioned that if the anomalies are real, then models that could produce these

anomalies without correlations amongst the different a`m’s would likely be very con-

trived. So, to probe these correlations better, it is natural to consider test statistics

that are second order in the a`m’s. We shall do that here and revert to using ~X to

denote the ordered set of a`m’s.

Consider the following test statistic:

Z = B12X1X2 +B34X3X4 + · · ·+BN−1NXN−1XN (4.8)

For now, assume that N is even, so that this definition always makes sense (N is even

for an odd `max). We shall comment on dealing with an odd N later.

Bij is a random variable distributed as N
(
0, σ2

Bij

)
, where σ2

Bij = 1
X2
i β

2
j
. Recall

that β2
j is the variance of the normally distributed Xj. Note that we are using Xi

itself as a parameter describing a distribution. (Compare this with the distribution

of ~a, which depended on the variance of ~X, and not on ~X itself.) This is not an issue

because ~X is still being treated as a fixed vector. The reason for this choice of σ2
Bij

will become clear momentarily, but, it must be borne in mind that it gets determined

after a choice of ~X is made.

With this, Z is basically a sum of N/2 Gaussian random variables Bij, with

constant coefficients XiXj. Thus, we have that Z ∼ N (0, σ2
Z), where

σ2
Z = X2

1X
2
2σ

2
B12 + · · ·+X2

N−1X
2
Nσ

2
B,N−1,N

=
X2

2

β2
2

+ · · ·+ X2
N

β2
N

∼ χ2(N/2).
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Here, like in the analysis in Section 4.2.2, we have used the fact that σ2
Z is the

sum of the squares of N/2 normally distributed, zero-mean random variables with unit

variance. Similar to what we did for the test statistic Y , we now perform an ensemble

average of Z with respect to the distribution of ~X. Repeating the calculation that

led to (4.4), with half the number of terms, we have that the distribution of Z is

P (Z = z) =

√
1

π

(
|z|
2

)(N/2−1) K
(
N−2

4
, |z|
)

Γ (N/4)
(4.9)

Again, because of the choice of the distribution of the Bij variables, the distribu-

tion of Z is solely a function of N . This is quite a useful feature for the following

reason: Consider four random variables R1, R2, R3, R4. Let only R1 and R3 be corre-

lated, and R2 and R4 be correlated:

〈R1R3〉 = 〈R2R4〉 = ε, where ε� 1 (4.10)

Now, say you are testing the null hypothesis that all four variables are mutually in-

dependent. You come up with two test statistics, T1 := R1R2 + R3R4 and T2 :=

R1R3 + R2R4. From (4.10), it is clear that 〈T1〉 is indistinguishable from that pre-

dicted by the null hypothesis, whereas 〈T2〉 gives a different prediction from the null

hypothesis. Of course, the distribution of both T1 and T2 will be different from that

predicted by the null hypothesis, but, at least for non-pathological distributions, T1

is an O(ε) worse discriminator for testing the null hypothesis.

If the CMB anomalies are due to correlations amongst the different a`m’s, from

the form of (4.8), one may näıvely worry that just like with the Ri’s, the order in

which the a`m’s appear in the equation may matter. That is, instead of the order in

(4.8), one could alternatively consider

Z ′ = B13X1X3 +B24X2X4 + · · ·+BN−2,NXN−2XN
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This is a different statistic from Z. In this manner, there are (N −1)!! alternatives to

Z.7 In principle, each of these combinations will have a different distribution for Z.

But, because of our choice of the distribution of Bij, we have that the distribution of Z

depends only on N . With this motivation, let us define Perm(Z) as a permutation of

the indices in Z that ensures that each index appears once and only once. Now, define

Z̃ as the set of all Perm(Z). It is obvious that Z̃ is distributed as (4.9). It is Z̃ that

is the statistic that we shall consider for the rest of this chapter, though, by abuse of

notation, we shall refer to it as Z. In this way, the choice of the distribution function

for Bij helps us overcome the difficulty of having to consider (N − 1)!! different

distributions, while ensuring that there is no loss of generality in the sequence of

indices chosen.

Earlier, we had stated that we would discuss the case with an odd N , which arises

if we have an even `max. In that case, we can just consider pairs of the first (N −1) of

the indices of Perm({1, . . . , N}), which occurs in Z̃ anyway. This would mean that

we are losing out on one mode during every permutation, but, the procedure ensures

that there isn’t any arbitrariness in the choice of that mode.

4.4.2 Hypothesis Testing

The procedure of testing the null hypothesis H0 is identical to the one we employed

for the linear test statistic Y . The expected distribution under H0 is given by (4.9)

and we can use actual data to determine the realized distribution. We can then

calculate the statistical significance of a departure from H0 by using the procedure

outlined in the previous section. Let us denote the probability distribution function

for the Anderson-Darling statistic for the Z statistic as ΨZ(A2, N,m). We can repeat

the procedure outlined in 4.3.1 to determine this PDF—the only change will be that,

7Consider the sequence {1..N}. Each index has to occur once. So, there is no freedom in choosing
the i in (4.8). For the j corresponding to the first term, there are (N − 1) possibilities. Again, the
i for the second term is effectively fixed, as it must appear in the sum. For the j corresponding to
this term, there are (N − 3) possibilities, and so on.
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Figure 4.2: PDF for ΨZ(A2, N,m) for m = 105, N = 672.

instead of generating distributions of the Y statistic, we will generate distributions of

the Z statistic, and, instead of using (4.4), we shall use (4.9). For a particular choice

of N and m, this PDF is shown in Figure 4.2. Figures 4.1 and 4.2 look to be very

similar, and we have confirmed this for other values of `max. That is, for a given `max,

the distribution of the A-D statistic is the same for both the Y and the Z statistics.

The distributions are different for different values of `max. For illustrative purposes,

we have also plotted the PDFs for m = 105 and N = 252 (which corresponds to

`max = 15) in Figure 4.5. This figure appears just before the concluding section of

the chapter.

4.5 Results

Having discussed the method for testing for the null hypothesis in the previous sec-

tions, in this section, we demonstrate that the method actually works. To do this, we

break one of the assumptions in the null hypothesis. The easiest condition to break

(in the sense that the new probability distribution is easiest to describe) is that of

zero-mean. Previous studies [143] have looked at relaxing this condition, though they

concentrate on somewhat larger values of `. They found that, at least in the range

of multipoles they considered, the data seemed to be consistent with the zero-mean
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hypothesis. Here, we choose to break the condition of independence and normal dis-

tribution of the a`m’s, mostly because that is usually posited as the reason behind

the anomalies. But, we should emphasise that a similar analysis can be performed

(in fact, more easily) with a non-zero mean.

Now, there is an infinite number of ways of breaking the independent, normally

distributed hypothesis [150]. We break it by deliberately masking the fiducial CMB

sky about the equator. This masking breaks statistical isotropy and thus leads to

a correlation between modes.8 The resulting probability distribution of the a`m’s is

difficult to analytically estimate, but it is clear that a greater degree of masking leads

to a “bigger” departure from the null hypothesis. Then, the strategy behind the

demonstration is this:

1. Generate a set of fiducial CMB sky maps from a known set of C`’s.

2. Generate Y and Z statistics using the a`m’s of these maps.

3. Mask these maps to varying degrees and determine the resulting a`m’s, and Y

and Z statistics.

The method can then be said to work if increasing the masking leads to a bigger

departure from the null hypothesis (in the sense of the Anderson-Darling test applied

to the Y and Z statistics). Also, for zero masking, the distribution one gets with the

CMB maps must correspond to ΨY (A2, N,m) and ΨZ(A2, N,m) respectively.

As mentioned earlier, one of the things that we need to pick is the range of `’s

that we will be considering. Because we are concentrating on low-` anomalies, we

start with the lowest relevant ` (` = 2) and go up to an `max. For the rest of this

section, let us choose `max = 25. From (4.5), this corresponds to N = 672.

Therefore, what we now need to do is to generate m realizations of Y and Z for

each of the CMB maps described in the strategy above and compare this distribution

with ΨY (A2, N,m) for Y and ΨZ(A2, N,m) for Z. We employ routines in HEALPix9

8See [151] for more discussion on breaking statistical isotropy in the context of CMB anomalies.
9http://healpix.sourceforge.net/
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Figure 4.3: PDF for ψy(a
2, N,m) for N = 672, m = 105, and for different masks.

[152] to generate CMB maps from a given set of C`’s, mask the maps, and then

determine the corresponding a`m’s. For the C`’s, we use the Planck best-fit values,

though, because this is for testing, any reasonable set would be sufficient. We consider

four sets of maps: unmasked, and a mask of 5%, 10% and 15% of the pixels about

the galactic equator. We choose m = 105 so that we can compare the distribution of

the realized vector statistic with that in Figures 4.1 and 4.2. We use C++ to generate

the Y and Z statistics and mathematica to calculate the A-D statistic.

For the Y statistic, the results are plotted in Figure 4.3. As expected, the distri-

bution for the unmasked sky [Figure 4.3 (a)] resembles that in Figure 4.1 to a very

high degree, and the other three to a much lesser degree. Clearly, a bigger mask, and

thus a bigger departure from statistical isotropy (and the null hypothesis), leads to a

bigger departure of the distribution from that in Figure 4.1. Similar results hold for
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Figure 4.4: PDF for ψz(a
2, N,m) for N = 672, m = 105 and for different masks.

the Z statistic, plotted in Figure 4.4. These plots are to be compared with those in

Figure 4.2.

In the calculation of the Y and Z statistics, we need the values of the C`’s of

the distribution in the null hypothesis. For the unmasked sky, it is clear that these

variances are the same C`’s with which the fiducial map was generated. For the

masked skies, it isn’t immediately obvious what C`’s one must choose. We choose

them to be the same as that for the unmasked sky for the following reason: Because

the anomalies are said to occur on large scales, we have restricted our analysis to

an `max of 25. The ΛCDM hypothesis is implicit in our tests. In particular, the

theoretical C`’s, the ones that form part of the null hypothesis, are estimated by first

determining the best-fit parameters in the ΛCDM model. That is, these parameters

uniquely determine the null hypothesis. By cosmic variance, the measurements at
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Figure 4.5: PDFs for m = 105, N = 252

very low `’s (of the range that we are considering) contribute negligibly towards this

determination of the best-fit parameters. So, in a sense, the values of the C`’s at very

low `’s are fixed by measurements at higher `’s. Thus, even if the masking affects the

estimation at very low `’s, it is safe to compare the masked and the unmasked sky

with the same variances that generated the maps.

4.6 Summary and Conclusion

The last couple of decades have seen a tremendous amount of progress in the un-

derstanding of the large-scale structure of our Universe. Some parameters have been

determined to several decimal places and some models have been ruled out to ex-

tremely high significance. Observationally, the only real challenge to this ΛCDM

paradigm seem to be the large-scale CMB anomalies, of which many have been re-

ported. The most important criticism levelled against the anomalies has to do with

the fact that the anomalies are an a posteriori phenomenon—one tests for anomalies

after having “looked” at the data. This is a fair criticism and in this paper we have

proposed a method that addresses this very criticism. In a very general manner, we

have sought to test the null hypothesis that the a`m’s are independent, zero-mean,

normally distributed variables with an m-independent variance.
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We considered linear (Y ) and quadratic (Z) combinations of the a`m’s, with ran-

domized co-efficients. The probability distribution of these co-efficients is of a very

specific form, but, depends only on the C`’s. This choice greatly simplifies the PDFs

of Y and Z. Given a CMB map, the Y and Z distribution corresponding to the a`m’s

of the map can be determined. This distribution can be compared with the fiducial

distribution for Y and Z (given in (4.4) and (4.9) respectively) and a high degree

of incompatibility between the distributions would mean that the data are not well

described by the null hypothesis.

To make this comparison between distributions, we have suggested a very slight

modification of the Anderson-Darling test. Of course, other tests could also be used

for this purpose. In order to demonstrate the usefulness of the test, we generated

CMB maps with varying degrees of masking in them. This masking breaks statistical

isotropy and thus results in a departure from the null hypothesis. We demonstrated

that, firstly, for zero masking, the distribution of the Anderson-Darling test statistic

is what we expect it to be. Secondly, increasing the masking did lead to distributions

of the Anderson-Darling test statistic that were further and further removed from the

distribution that arises out of the null hypothesis.

A few points to note regarding this method are: (i) Like most other “goodness-

of-fits” tests without an alternative hypothesis, this is a frequentist analysis. In

particular, because of its very general and stochastic nature, the test may be sus-

ceptible to Type II Errors; that is, a failure to reject the null hypothesis. If we do

have an alternative hypothesis, we can then compute the power of the test and make

a quantitative statement about the probability of Type II errors. Or, indeed, do a

Bayesian analysis. In the absence of this alternative hypothesis, a p-value compatible

with the null hypothesis should not be taken to mean that the data indicate that

the null hypothesis is true. (ii) In our analysis, we have mostly assumed that the

C`’s are fixed numbers, but, at least from a Bayesian perspective, they themselves

are random variables, with an associated variance. We don’t see a way around this,
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because taking into account the stochastic nature of the C`’s would make the anal-

ysis extremely complicated. Also, recall that the variance of C` is proportional to

C` itself. Thus, for multipoles where the random nature of C` is most pronounced

(that is, the lowest of the `’s), the value of C` is large to begin with. This partially

alleviates the problem associated with assuming that the C`’s are fixed numbers. (iii)

Though we have concentrated on using the method to make statements about the

a`m’s, it is clear that our method works in general for any set of random variables

that are hypothesized to be described by H0. So, our method could be used to test

H0 in a variety of situations, becoming particularly useful when there are only a few

realizations of several independent, non-identically distributed Gaussian variables.

In a future publication, we hope to use our method and actual CMB data to

quote p-values for the departure of the data from the null hypothesis. Planck is soon

expected to release CMB polarization data, which can easily be incorporated into our

analysis and should tell us more about the largest scales of the observable universe.
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Chapter 5

Diffeomorphism-Invariance

Constraints on Cosmological

Correlators

5.1 Introduction

Most studies in Cosmology involve the analysis of correlation functions of different

perturbed quantities. For example, we discussed the correlation functions of CMB

temperature anisotropies in Section 1.3, and used actual data of these correlation

functions in Chapters 2 and 3 to draw conclusions about dark matter interactions.

We have also discussed how, in the case of adiabatic perturbations, the correlation

functions of metric perturbations at the end of inflation can be related to that of the

fluid perturbations at the beginning of radiation-domination. As inflation most likely

occurs at energies that we will not achieve here on Earth, at least in the foreseeable

future, such analyses validate Zel’dovich’s statement that the universe is a “poor

man’s accelerator”.

As a theory, even classical general relativity is quite complicated, in the sense

that it involves coupled, second-order partial differential equations, and closed-form
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solutions don’t exist in general. But, in Cosmology, because of the high degree of

symmetry in the background FLRW spacetime, the evolution equations for the per-

turbations become much simpler. Given the evolution equations, one can always

calculate the correlation between different fields at any point of time, if their initial

values are specified. But, in some cases, symmetry arguments can be used to calculate

the value of these correlations, thus doing away with having to evolve the fields.

For instance, consider an initial state of metric perturbations that is parity-

invariant, meaning that δgµν(~x, t) = δgµν(−~x, t). The parity-invariance of the system

implies that all correlation functions of the perturbations must be parity-invariant too.

We have discussed in Section 1.8 how the metric perturbations can be decomposed

into irreducible components that are equivalent to the spherical harmonics Y `m. The

components that correspond to m = 0 (for example, a scalar S) are parity invariant

whereas those that correspond to m 6= 0 (for example, a tensor T) are not. Consider

the correlation function 〈ST 〉. From the discussion above, we know that this state

must be parity-invariant. But, as S → S and T → −T under parity, it is clear that

〈ST 〉 ≡ 0 at all times. We have not had to use the evolution equations of the theory

at all. In fact, we have not used any information about the “details” of the theory,

apart from its parity-invariance.

While this means that an observation of a vanishing 〈ST 〉 doesn’t teach us any-

thing about the details of the theory, it also means that if the correlation function

is observed to be non-zero, it rules out entire classes of theories that are parity-

invariant. (Indeed, similar ideas were used by Lee and Yang [153] and Wu et al [154]

to demonstrate parity violation in weak interactions in Particle Physics.) In this

respect, symmetry arguments are very useful because they can help constrain the

classes of theories that seem to describe Nature.

We have discussed in Section 1.8 that different inflationary models lead to different

values for ns and As. These are the only two inflationary parameters that have been

estimated to a precision high enough that they can be said to have been measured. As
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we discussed in Section 1.9, measurements of these two parameters aren’t sufficient

to pin down the exact mechanism of inflation. Different potentials with different

numbers of fields, and different interactions amongst the fields can all be made to

yield the same value of ns and As.

It is in this context that relations that arise out of symmetries have proved to be

useful in inflationary cosmology. Say R is a relation that arises out of the symmetries

of one class of theories, and that it is very unnatural to expect R to hold in other

classes of theories. Then, even though one may not have the precise measurement

of a variable, if the measurement is good enough to show that R is not violated, it

would, in effect, rule out the latter class of theories.

Let us now discuss the different kinds of relations that one can derive from sym-

metries. Broadly speaking, there are two kinds of symmetries in physics—spacetime

(global) symmetries, that are symmetries of the system being considered; and gauge

(local) symmetries, that are symmetries that arise out of the redundancies in the

language used to describe the system. As the names suggest, the parameter that

describes the action of a global symmetry transformation is a constant, whereas that

for a local symmetry depends on spacetime.

5.1.1 Consequences of Local Symmetries

Whether local symmetries such as diffeomorphism invariance have any physical con-

tent has been a subject of intense debate ever since the inception of general relativity.

Indeed, already in 1917, Erich Kretschmann argued that the principle of general co-

variance is physically vacuous: Any non-covariant theory ought to be made covariant

without changing any of its physical predictions [155], and, conversely, any covari-

ant theory can be made non-covariant by gauge fixing, a process that preserves the

physical implications of the covariant theory.

Yet diffeomorphism (or gauge) invariance does seem to have significant physical

implications. In general relativity, for instance, diffeomorphism invariance enforces
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the equivalence principle [156, 157]. More generally, the invariance of gauge theories

under gauge transformations severely constrains the structure of the counter-terms,

and plays a crucial role in the demonstration that these theories are renormalizable.

Indeed, local symmetries such as diffeomorphism and gauge invariance are the basis

of our understanding of all interactions, both in the standard model and general

relativity. But whether any of the physical implications of these theories do really

follow from gauge invariance, or whether they are a consequence of the field content

and the residual global symmetries that gauge fixing allows us to preserve, often

remains somewhat obscure.

In this Chapter we study the extent to which diffeomorphism invariance constrains

the properties of the primordial perturbations. We formulate a set of identities that

relate different connected correlators, and also different one-particle-irreducible (1PI)

diagrams in general relativity coupled to a scalar field. These identities belong to a

family of relations connected to symmetry, and have appeared under different names

in different contexts. They are known as Slavnov-Taylor, Ward-Takahashi or Dyson-

Schwinger equations, although they are all basically equivalent: They all express the

invariance of the theory under diffeomorphisms.

These identities have to be interpreted appropriately, however. In order to quan-

tize a theory with a local symmetry, such as diffeomorphism invariance in the case at

hand, the symmetry has to be explicitly broken by gauge-fixing terms. Hence, strictly

speaking, the Ward-Takahashi and Slavnov-Taylor identities we discuss actually mir-

ror the way in which diffeomorphism invariance has been broken, and therefore often

depend on the particular gauge choice. Many of the identities exist because they

involve the correlators of gauge-variant fields, and hence cannot have a physically

invariant meaning. Actual observables do not depend on any particular gauge choice,

but in this paper we will not attempt to connect our gauge-variant correlators to any

gauge-invariant observables like the statistical properties of the cosmic microwave

background anisotropies. Although such a connection is relatively simple in linear
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perturbation theory, it is highly non-trivial beyond the linear order.

At this point the Slavnov-Taylor identities could be viewed as useful checks on

the validity of intermediate cosmological perturbation theory calculations. In one-

loop calculations of cosmological correlations, for instance, one needs to regularize

the theory first. In some cases the regularization procedure may unintendedly break

diffeomorphism invariance, and the resulting violation of the identities we derive can

help diagnose such violations.

But, perhaps, the most important application of the Slavnov-Taylor identities is

the derivation of “consistency relations” between the different correlators of cosmo-

logical perturbations. To illustrate our methods, we derive consistency relations that

follow essentially from diffeomorphism invariance alone, although these lack the pre-

dictive power of other relations, and just seem to reflect the underlying redundancy

associated with diffeomorphism invariance. The constraining power of diffeomor-

phism invariance changes significantly when combined with an assumption about the

analyticity of the correlators of the theory [158]. In this case, analyticity allows one

to go beyond what appears to follow merely from gauge redundancies, allowing one

to derive physically predictive consistency relations in specific gauges, in the limit in

which one of the field momenta approaches zero. In that sense, the ensuing relations

are close relatives of the constraints on the vertex function that guarantee the valid-

ity of the equivalence principle in general relativity [156, 157], which also follow from

diffeomorphism invariance and analyticity around zero momentum transfer.

Some of the constraints that spatial diffeomorphism invariance imposes on the

primordial perturbations have been recently discussed in [159–161], and more specifi-

cally in references [158, 162, 163] by Berezhiani, Khoury and Wang. All these papers

attempted to generalize or derive relations between correlation functions of cosmo-

logical perturbations that go back to the consistency condition originally discussed

by Maldacena in [23].1 Different arguments and symmetries have been used to derive

1Consistency relations following from diffeomorphisms have also been derived in the context of
large scale structure—for more details, see for instance [164, 165].
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such relations [166–168], although it appears that an approximate conformal sym-

metry is the cleanest way to understand their origin [169–172]. Our work is most

similar to [158], which we generalize to arbitrary gauges and also extend to time

diffeomorphisms.

The plan of the paper is as follows: In Section 5.2 we explore the action of dif-

feomorphisms on cosmological perturbations, and establish how to calculate their ex-

pectation values. In Section 5.3 we formulate identities for the connected correlators

of the theory, while in Section 5.4 we derive equivalent identities for the one-particle-

irreducible diagrams. We derive consistency relations between bispectra and power

spectra in Section 5.5, and finally conclude and summarize in Section 5.6.

5.2 Diffeomorphism Invariance

We are interested here in theories whose action is invariant under (infinitesimal)

diffeomorphism transformations. The resulting equations of motion are then auto-

matically covariant, so we take diffeomorphism invariance and general covariance to

be synonymous. We assume that these theories describe gravity coupled to a scalar

field, so their action is of the general form

S = S[gµν , φ] ≡
∫
M
d4x
√
−gL, (5.1)

where the Lagrangian density L depends on the metric gµν , the scalar φ, and their

derivatives, and where the integral runs over the spacetime manifold M. Although

we focus on a single scalar for simplicity, our results can easily be generalized to

accommodate further scalar fields.

Under passive diffeomorphisms xµ → xµ − ξµ(x) any tensor field T transforms as

follows:

T→ T + £ξT, (5.2)
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where £ξ is the Lie-derivative along ξ. Hence, if the Lagrangian density transforms

like a scalar, L → L + ξµ∂µL, the change in the action (5.1) under infinitesimal

diffeomorphisms is given by

∆S =

∫
M
d4x
√
−g∇µ(L ξµ) =

∫
∂M

d3x
√
γ nµ L ξµ, (5.3)

where nµ is the normal to the boundary ∂M and γ the determinant of its metric.

Hence, in the diffeomorphism invariant theories we discuss here the action is actually

only invariant up to boundary terms.

5.2.1 Cosmological Background

Our goal is to constrain correlators of cosmological perturbations, that is, field fluc-

tuations around a cosmological background. Therefore, we expand the metric and

the scalar field as

gµν ≡ ḡµν + hµν , φ ≡ φ̄+ ϕ, (5.4)

where ḡµν and φ̄ are the background values of the metric and the scalar, and hµν

and ϕ are its fluctuations. We choose our cosmological background to be that of a

spatially flat universe filled by a homogeneous scalar,

ds̄2 = a2(η)
[
−dη2 + d~x 2

]
, φ̄ = φ̄(η). (5.5)

Then, from equation (5.2), the perturbations around this background transform ac-

cording to

∆hµν = gµα∂νξ
α + gαν∂µξ

α + ξα∂αgµν , ∆ϕ = ξα∂αφ, (5.6)

where gµν and φ are to be replaced by the corresponding expressions in equations

(5.4). Note that these transformations are valid to first order in ξ (which we take to

be infinitesimal), but to all orders in the fluctuations. In particular, diffeomorphisms

act linearly (albeit non-homogeneously) on the field perturbations hµν and ϕ.
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5.2.2 Cosmological Perturbations

The isometry group of the background, those diffeomorphisms under which the back-

ground fields are invariant, plays a particularly important role in cosmological pertur-

bation theory. Just as it is convenient to classify fields in Minkowski space according

according to their transformation properties under the isometries of the Minkowski

metric, it turns out to be convenient to classify cosmological perturbations in terms

of their transformation properties under spatial translations and rotations. We thus

introduce a set of eleven tensors Qµν
f (~x; ~p) and Qϕ(~x; ~p) that transform irreducibly

under translations and rotations [173]. We list the components of these tensors in

Appendix 5.A. What matters to us here is that we can expand the metric and scalar

fluctuations in terms of these tensors,

hµν(η, ~x) =
∑
f

∫
d3pQµν

f (~x; ~p) f(η, ~p), ϕ(η, ~x) =

∫
d3pQϕ(~x; ~p)ϕ(η, ~p), (5.7)

where the sum over f runs over the ten metric perturbation fields in momentum space

f ∈ {A,B,HL, HT , B+, B−, H+, H−, H++, H−−}. (5.8)

The fields f = f, ϕ are eigenvectors of spatial translations by ~a [with eigenvalues

exp(−i~p · ~a)], and spatial rotations by an angle θ around the ~p axis [with eigen-

values exp(−imθ), where m = 0 for f ∈ {A,HL, HT , B, ϕ} (scalars), m = ±1 for

f ∈ {B±, H±} (vectors) and m = ±2 for f ∈ {H±±} (tensors)]. Conversely, given

arbitrary metric and scalar perturbations hµν(η, ~x) and ϕ(η, ~x) we can determine the

corresponding perturbation variables with the projection operators Qf
µν(~p; ~x) and

Qϕ(~p; ~x), whose components we also gather in Appendix 5.A. By definition, we thus

have

f(η, ~p) =

∫
d3xQf

µν(~p; ~x)hµν(η, ~x), ϕ(η, ~p) =

∫
d3xQϕ(~p; ~x)ϕ(η, ~x). (5.9)
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Notice that the decomposition (5.7) of the metric fluctuations is equivalent to the

following parametrization of the perturbed line element:

ds2 = a2(η)

{
−(1 + 2A)dη2 + 2

(
∂iB√
∇2

+Bi

)
dxidη (5.10)

+

[
δij(1 + 2HL) + 2

(
δij
3
− ∂i∂j
∇2

)
HT + 2

∂(iHj)√
∇2

+Hij

]
dxidxj

}
,

where Bi andHi are two transverse vectors with polarizations B± andH± respectively,

while Hij is a traceless and transverse tensor with polarizations H++ and H−−.

To simplify the notation it shall be convenient to simplify our equations by switch-

ing to DeWitt notation [174], in which Latin indices a, b, . . . collectively denote the

type of field and its spacetime arguments, and functional derivatives are treated as

partial derivatives ∂F/∂fa ≡ F ,a, and also denoted simply by F a where confusion is

not likely. Along the same lines, the index α shall denote both the components and

the spacetime argument of the diffeomorphism parameter ξα(x). Indices in opposite

locations imply both a sum over type of fields or parameter components, and an

integral over spacetime arguments.

For example, because diffeomorphisms are linear and inhomogeneous, we shall

write equations (5.6) as

∆a = (Saα + Tabα fb) ξα, (5.11)

where ∆a is the change of the field fa under diffeomorphisms, and, in real space, the

non-vanishing components of the “tensor” Saα are

Shµν(x)ξα(y) =

[
ḡµα

∂

∂xν
+ ḡαν

∂

∂xµ
+
∂ḡµν
∂xα

]
δ(4)(x− y), (5.12a)

Sϕ(x)ξα(y) =
∂φ̄

∂xα
δ(4)(x− y). (5.12b)

The free action for the perturbations is invariant under transformations with Tabα ≡ 0,

which is why we refer to (5.12) as the transformation of the fields under “linear dif-
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feomorphisms.” It readily follows from equation (5.6) that for the isometries of the

background, namely, translations (ξ̄α = δαi) and rotations (ξ̄α = εαijx
j), the corre-

sponding linear transformations vanish, Saα ξ̄α = 0. The non-vanishing components

of diffeomorphism transformations linear in the field perturbations themselves, Tabα,

are given by

Thµν(x)
hρσ(y)

ξα(z) = −
[
δµα

ρσ ∂

∂zν
+ δαν

ρσ ∂

∂zµ
+ δµν

ρσ ∂

∂yα

]
δ(4)(x− y)δ(4)(x− z),

(5.13a)

Tϕ(x)
ϕ(y)

ξα(z) = − ∂

∂yα
δ(4)(x− y)δ(4)(x− z). (5.13b)

In the above, a Kronecker delta function with 4 indices refers to a delta function

symmetrized with respect to, say, both the upper indices.

Also, instead of the standard notation for the functional derivative δ∆fa(x)/δξα(y),

we shall write the more compact expression

∆aα ≡
∂∆a

∂ξα
≡ Saα + Tabαfb. (5.14)

In this notation, the transition between metric perturbation fields in real space, and

the cosmological perturbations in Fourier space that we introduce in Appendix 5.A

amounts to a matrix multiplication. Denoting by fã the fields in Fourier space, and

by fa those in real space, we have

fã = Qã
afa, fa = Qa

ãfã, (5.15)

with Qa
ãQã

b = δa
b and Qã

aQa
b̃ = δã

b̃. Along the same lines, we can parameterize

diffeomorphism transformations ξα in terms of its irreducible components ξα̃, with

ξα̃ = Qα̃
αξ

α, ξα = Qα
α̃ξ

α̃, (5.16)
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where the components of the transformationsQ are also listed in Appendix 5.A. In this

language, under diffeomorphisms the fields f ĩ transform according to fã → fã+∆ãα̃ξ
α̃,

where

∆ãα̃ = Qã
a ∆a,αQ

α
α̃. (5.17)

An advantage of this formalism is that it is covariant in field space. As long as the

transformations between fields are linear, all our equations retain the same form,

provided that the field tensors S and T are transformed appropriately. We list the

components of S and T in the basis of the irreducible components in Appendix 5.B.

5.2.3 Expectation Values

Primordial perturbations are characterized by the moments of the different metric

perturbations at sufficiently early times. These moments are identified with equal

time vacuum expectation values of the corresponding product of fields in the quantum

theory,

〈Πifai(η, ~xi)〉 ≡ 〈0in|Πifai(η, ~xi)|0in〉. (5.18)

Therefore, to make predictions about the primordial perturbations we need to quan-

tize the theory and find a way to calculate expectation values of quantum fields. As

far as the quantization is concerned, Fadeev and Popov have argued that the canon-

ical quantization of gravity is equivalent to the covariant path-integral formulation,

as long as one includes appropriate gauge-fixing and ghost terms, and as long as one

appropriately modifies the functional measure in the path integral [175]. The actual

form of the path integral measure, however, has been the subject of some controversy

and does not appear to be settled [176]. The author of the last reference, for instance,

argues that the correct measure is

Dg ≡
∏
x∈M

g00 · g−1 dgµν(x), Dφ ≡
∏
x∈M

(g00)1/2 · g1/4 dφ(x), (5.19)
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and also suggests that, in spite of their appearance, both measures are invariant

under diffeomorphisms. We adopt the path integral formulation of quantum gravity

here because it is better suited to handle local symmetries such as diffeomorphism

invariance. The actual form of the measure is not important to us, as long as it is

invariant under diffeomorphisms. This is a requirement for the self-consistency of the

theory, analogous to the demand that gauge theories be anomaly-free.

In order to calculate expectation values of fields at conformal time η in the path

integral approach, we need to either double the number of fields [177], or introduce a

time contour C extending from the asymptotic past to η and back to the asymptotic

past, C ≡ (−∞, η] ∪ [η,−∞) [178]. This last formulation is more convenient because

it is formally analogous to that of the in-out formalism, and because it allows us to

work with a single set of fields. In particular, the expectation value of a product of

fields is simply

〈0in|Πifai(η, ~xi)|0in〉 =

∫
DhDϕDω [Πifai(η, ~xi)] exp (iStot[hµν , ϕ, ω]) , (5.20)

where the functional integral runs over field configurations on the extended time

contour C, and we have introduced the ghost fields ω. The values of the fields at the

endpoints of this contour, ∂C = {−∞,−∞}, determine the state whose expectation

value we are calculating. In the in-in formalism, the field configurations at both

endpoints of the contour are identical, and hence, the boundary terms cancel and

do not contribute to the change of the action under diffs. Therefore, any identity

that follows from diffeomorphism invariance alone will apply to expectation values in

arbitrary states. By shifting this contour by a small imaginary contribution, we can

project onto the in-vacuum of the theory |0in〉.

Naively, one may think that it is irrelevant whether we integrate over all metric

and field configurations gµν and φ, or just over its fluctuations hµν and ϕ, since

they just differ by the given background values. But given the (somewhat uncertain)

non-linear structure of the measure in equation (5.19), such a shift may introduce
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fluctuation-dependent terms in the measure. Nevertheless, this has no impact on our

analysis, as long as the measure for the new fields hµν and ϕ remains diffeomorphism

invariant, which, as we argued above, is a condition for the self-consistency of the

theory.

The classical action for the perturbations is simply

Sinv[hµν , ϕ] ≡ S[ḡµν + hµν , φ̄+ ϕ], (5.21)

where the functional S on the right-hand-side is diffeomorphism invariant, that is,

satisfies equation (5.3). Again, Sinv is invariant under the transformations of the

perturbations (5.6) because in the in-in formalism there is no contribution from the

boundary terms.

The change of variables (5.7) casts the path integral in terms of the cosmological

perturbations fields f . Because the transformation (5.7) is linear in the perturba-

tions, the functional Jacobian is field independent and has no impact on cosmologi-

cal correlators. In particular, we can go back and forth between the representation

of the fluctuations in terms of the fields hµν and ϕ in real space, and the pertur-

bations f in Fourier space. On the other hand, a non-linear change of variables,

hµν(x) = F (ζµν(x)) would force us to introduce a field-dependent Jacobian in the

path integral measure, which would amount to the additional term in the action

SJ = −iΩ−1

∫
d4x logF ′(ζµν(x)), (5.22)

with a divergent constant Ω−1 = δ(4)(0). This would affect cosmological correlators,

although only beyond tree level.
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5.2.4 Gauge Fixing

To render the functional integral (5.20) well-defined, we have to introduce gauge-fixing

and ghost terms into the action functional,

Stot = Sinv + Sgf + Sgh. (5.23)

The actual form of the gauge-fixing terms is not particularly important, as long as

they are not invariant under the set of gauge symmetries under consideration. In

DeWitt notation, if the gauge-fixing terms are taken to be of the form

exp(iSgf) = B[Fβ(fa)], (5.24)

where B is an arbitrary functional of its arguments, and the Fβ are a set of arbitrary

local functions of the field perturbations fa (one function Fβ for each local symme-

try), the only condition is that the matrix Fβ
a∆aα be invertible, which amounts to

the functional Fβ not being invariant under any combination of infinitesimal diffeo-

morphisms. We focus here on tree-level calculations, so we shall ignore the ghost

fields, although they could be easily incorporated into our analysis.

Component Approach The conventional approach to gauge-fixing in cosmological

perturbation theory is to impose conditions that enforce the vanishing of a subset of

the fields fg, g ∈ G

exp(iSgf) =
∏
g∈G

δ(fg). (5.25)

Because we are using DeWitt notation, the index g here runs over the fields that

have been set to zero, and all their spacetime arguments. Since diffeomorphisms are

parameterized by four independent functions ξα, we need to specify four independent

gauge fixing conditions, and we need to make sure that these conditions are not

preserved by any infinitesimal diffeomorphism. Say, in longitudinal gauge we may
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choose

Glong = {B,HT , H+, H−}. (5.26)

Equations (5.90) then suffice to check that the condition fg = 0 (g ∈ Glong) is not

preserved by infinitesimal diffeomorphisms.

The change in the total action (5.23) under diffeomorphisms plays a crucial role

in the identities we derive below. By assumption, the classical action Sinv is invari-

ant and thus does not contribute to the total change. There is also a simple way to

calculate the change of the gauge fixing terms Sgf , given a set of gauge fixing condi-

tions fg = 0, g ∈ G. If in the absence of gauge-fixing conditions the action is gauge

invariant, by definition it must be that

0 = ∆Sinv,α = Sinv
a ∆aα. (5.27)

We now split the sum over the fields fg subject to the gauge condition fg = 0, and

those fields fu which remain unconstrained, and impose the gauge-fixing conditions

fg = 0 on the resulting equation, Sinv
u ∆uα|fg=0 = −Sinv

g ∆gα|fg=0. But this equation

just states that the gauge-fixed action Sinv|g=0 = Sinv + Sgf changes by

(Sinv + Sgf),α = −Sginv ∆gα|g=0, (5.28)

which completes our determination of the variation of the total action under diffeo-

morphisms. As an example consider the gauge fixing condition ϕ = 0. Combination

of equations (5.6) and (5.28) implies that this condition breaks time, but preserves

spatial diffeomorphisms.

Gauge-Fixing Terms The drawback of demanding that individual components

of the field perturbations vanish is that the variation of the action under broken

diffeomorphisms in equation (5.28) not only depends on the particular fields gauge-

fixed to zero, but also on the actual invariant action Sinv of the theory. In that case, it
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does not appear to be possible to derive relations that only follow from diffeomorphism

invariance, no matter what the specific action of the theory is.

There is however a physically equivalent way to impose a gauge-fixing condition

fg = 0 while preserving almost all of the symmetry of the action. Suppose that we

add to our action the gauge-fixing term

Sgf = −M
2

2

∑
g∈G

f 2
g , (5.29)

where M is a constant that will be taken to infinity at the end of the calculation

(the reader may think of this as a mass term for the field fg.) This is to some

extent analogous to the Rξ gauges employed in the quantization of non-abelian gauge

symmetries. It amounts to a choice of a Gaussian B in equation (5.24) and a set of

linear functions Fβ(fa) ≡ δaβ, where β runs over the fields in G.

For sufficiently large M , the free propagator for the gauge-fixed fields fg and the

remaining “unconstrained” fields fu becomes

〈fg1fg2〉C = − 1

M2
δg1g2 +O(M−4), 〈fgfu〉C = O(M−2). (5.30)

Hence, in the limit M → ∞, the fields g decouple. The theory still has cubic and

higher vertices containing the fields fg, but their contributions to any diagram with

no external heavy fields vanish because the internal line propagators approach zero

as M tends to infinity. Effectively, the theory is the same as if we had gauge-fixed

fg ≡ 0. If we keep M finite, (5.29) remains a valid gauge-fixing term for appropriate

choices of the fields fg, but in this case, the massive fields fg are not decoupled from

the theory.

Reduced Action Gauge symmetries enhance the invariance group of a theory,

at the expense of introducing redundant degrees of freedom. In some cases, it is

convenient to trade back these gauge symmetries for a description of the theory
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that involves a smaller number of fields. In many diffeomorphism invariant theories,

such as general relativity coupled to a canonical scalar, the metric components h00

and h0i are auxiliary fields, and the matrix S,ab is non-singular for a, b ∈ {h00, h0i}.

Therefore, if our gauge-fixed theory (5.23) belongs to the last class, we can integrate

these variables out perturbatively,

exp(iSR[ϕ, hij]) ≡
∫
Dh00Dh0i exp(iStot). (5.31)

The resulting reduced action SR does not depend on the redundant variables h00 and

h0i any longer, and, as a result, it appears to have lost some of the original symmetries

of Sinv. In fact, equation (5.6) for the spatial components of the metric

∆hij = giα∂jξ
α + gαj∂iξ

α + ξα∂αgij, (5.32)

implies that SR is invariant under spatial diffeomorphisms (α 6= 0), but not under the

original time diffeomorphisms (α = 0), basically because only under the former does

∆hij depend on the unconstrained variables hij alone. The only exception consists

of those diffeomorphisms that amount to a spatially global time shift, ξ0 = ξ0(η),

because in that case ∆hij does not involve the variables being integrated out. But in

any case, this apparent loss of invariance under diffeomorphisms is not fatal, among

other things, because time diffeomorphisms have to be gauge-fixed (and hence broken)

anyway. As it will become apparent below, at tree level it does not matter whether

a symmetry has been broken by gauge fixing terms or otherwise.

So far, we have simply integrated out the four auxiliary fields, but we have not fixed

the gauge yet. In this context, one usually fixes time-diffeomorphisms by imposing

“unitary gauge” ϕ = 0. In unitary gauge the action is still invariant under spatial

diffeomorphisms. We shall discuss different ways to gauge-fix the latter below.
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5.3 Schwinger-Dyson Equations for Connected Cor-

relators

We are now ready to investigate the constraints diffeomorphism invariance places

on the correlators of cosmological perturbations. For the sake of generality, we shall

derive these identities in an arbitrary gauge. Those terms in the identities that involve

variation with a field that has been gauged to zero should then be ignored.

Let us define the generator of connected correlators W (Ja) by

exp(iW ) =

∫
Df exp [iStot + iJa fa] , (5.33)

where, again, fields are defined along the time contour C appropriate for the in-in

formalism. Taking functional derivatives of iW with respect to the currents iJa and

setting the latter to zero thus allows us to calculate contour-ordered correlators of

arbitrary products of fields. Changing variables fa → fa + ∆a in equation (5.33), and

assuming that the measure is invariant under such an infinitesimal transformation,

results in the master identity

Ja
(
Saα + Tabα

δW

δJ b

)
= −W∆S,α, (5.34)

where we have introduced the generator of connected diagrams with an insertion of

the change in the action under diffeomorphisms,

W∆S,α =

∫
Df (δ∆Stot/δξ

α) exp [iStot + iJa fa]∫
Df exp [iStot + iJa fa]

, (5.35)

If the action Stot is invariant under diffeomorphisms, (∆Stot),α = 0, the generator

W∆S,α vanishes, but typically, the action contains gauge-fixing terms that break the

symmetry, leading to a non-zero W∆S,α. In fact, the master identity above is valid

no matter what the total action Stot is. Any eventual change of the action under
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Saα = −i

a

∆S,α
Figure 5.1: Diagrammatic representation of equation (5.38). Dots denote vertices,
and circles the sum of all connected diagrams with the corresponding number of
insertions. In particular, a circle stands for iW , and a circle with a vertex insertion
of ∆S,α stands for W∆S,α . Each additional field a connected to a circle then amounts
to a functional derivative of the corresponding generator with respect to iJa.

diffeomorphisms (or any transformation of the form (5.14)) is then captured by W∆S,α.

By taking functional derivatives of W∆S,α with respect to the currents iJa we

obtain the sum of all connected diagrams with the corresponding number of fields

fa and a single insertion of (∆Stot),α. In standard notation, letting s(x) and tµν(x)

denote the currents conjugate to ϕ and hµν , the master identity for the real space

fields reads

s
∂

∂xα

(
φ̄+

δW

δs(x)

)
+tµν

∂

∂xα

(
ḡµν +

δW

δtµν(x)

)
−2

∂

∂xµ

[
tµν
(
ḡαν +

δW

δtαν

)]
= −W∆S,α(x).

(5.36)

Note that if we contract equation (5.34) with the generator of a background isometry

ξ̄α, the inhomogeneous term Saα ξ̄α drops out the equation. Typically, the gauge-

fixing terms are chosen to respect the background isometries, (∆Stot),α ξ̄
α = 0, so

functional derivatives of the contracted equation express then the invariance of the

correlation functions under such global transformations.

Equation (5.36) (or (5.34)) captures the constraints imposed by diffeomorphism

invariance on the connected diagrams of the theory and is one of the main results of

this section. By taking functional derivatives of (5.36) with respect to the currents

itµν and is, we derive relations between the correlators of cosmological perturbations.

If the gauge-fixing terms set some of the field perturbations ϕ or hµν to zero, the
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iTacα

b

c

+ iTbcα

a

c

=

a b

∆S,α
Figure 5.2: Diagrammatic illustration of equation (5.39). Same conventions as in
Figure 5.1 apply. Note that there is an implied sum and integral over the repeated
dummy indices. The reader should be mindful of the different factors of i that appear
in the relation between connected diagrams and functional derivatives of W ; for
instance, the propagator is −iW,ab.

generating functional does not depend on the associated conjugate currents, and the

corresponding functional derivatives vanish. Similarly, if we are working with the

reduced action (5.31), the functional derivatives with respect to t00 and t0i = ti0 can

be set to zero, since these currents, and their conjugate fields, are not part of the

theory.

For instance, the simplest relation follows by just evaluating equation (5.34) at

zero currents,

W∆S,α = 0. (5.37)

This just states that the sum of all vacuum diagrams with an insertion of the vertex

∆S,α vanishes. In some cases this would follow from translational invariance, although

we have not made that assumption here. Taking one functional derivative of equation

(5.34) with respect to Ja and setting the currents to zero then yields

Saα = −(W∆S,α),a, (5.38)

where we have assumed that the fields have zero expectation, W,a = 0 and we denote

δF/δJa by F,a (again, where confusion is unlikely, we shall simply write Fa). The

previous equation thus relates the sum of all connected diagrams with an insertion

of ∆S,α and a single field fa to the inhomogeneous component of the change of fa
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a

∆S,α

+

a

∆S,α
Figure 5.3: The sum of all diagrams with insertions of fa and ∆S,α, 〈fa∆S,α〉, ex-
pressed in terms of sums of products of connected diagrams. We do not include
vacuum-to-vacuum diagrams, which are common factors to all of these, equal to one
if the quantum state is normalized. Note that vacuum diagrams with a single field
insertion vanish by assumption, 〈fa〉 = 0, and that the vacuum diagrams with an
insertion of ∆S,α vanish by equation (5.37).

under a diff transformation. We represent such a relation diagrammatically in Figure

5.1. Similarly, taking two functional derivatives of equation (5.34) with respect to the

currents yields the identity

TacαWcb + TbcαWca = −(W∆S,α),ab, (5.39)

which relates the propagators of the theory to the sum of all connected diagrams with

an insertion of ∆S,α and two fields, and is represented diagrammatically in Figure

5.2.

As we shall see, equations (5.38) and (5.39) are closely related to a family of

relations known as Slavnov-Taylor or Ward-Takahashi identities. To further illustrate

their meaning, let us here elaborate on their connection with the Schwinger-Dyson

equations. The latter reflect the fundamental theorem of calculus, namely, that the

functional integral of a functional derivative vanishes. In particular, for any functional

F of the fields fa we have, in DeWitt notation,

〈F c〉+ i〈FSc〉 = 0, (5.40)

where S is the total action of the theory, and 〈· · · 〉 denotes the sum of all diagrams
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a b

∆S,α

+

a b

∆S,α

+

a b

∆S,α

+

a b

∆S,α

+

a b

∆S,α
Figure 5.4: The sum of all diagrams with insertions of fa, fb and ∆S,α, 〈fafb∆S,α〉,
expressed in terms of sums of products of connected diagrams. Same comments as
those in the caption to Figure 5.3 apply. Hence, all but the last diagram on the right
vanish.

(connected and disconnected) with the corresponding number of insertions. Equation

(5.40) is also the statement that the equations of motion Sc = 0 of the classical theory

hold in the quantum theory, modulo contact terms, for which the functional derivative

F c is non-vanishing. Now, setting F ≡ fa ∆cα in equation (5.40), and summing over

c results in the identity

〈∆aα + fa∆cα
,c〉+ i〈fa∆S,α〉 = 0. (5.41)

Because ∆aα is linear in the fields, taking Figure 5.3 into account, and bearing in

mind that 〈fa〉 = 0, this is nothing but equation (5.38). To arrive at this conclusion

we also need to assume that ∆cα
,c = Tccα = 0. This is again the statement that

the integral of a derivative vanishes. As mentioned by DeWitt in [157] it is also a

condition for the internal consistency of the theory. Similarly, setting F = fafb∆cα

in equation (5.40) and summing over c we find,

〈fb∆aα〉+ 〈fa∆bα〉+ 〈fafb∆cα
,c〉+ i〈fafb∆S,α〉 = 0. (5.42)

Taking Figure 5.4 into account, and recalling equation (5.37), this becomes equation

(5.39). We can therefore think of equations (5.38) and (5.39) as consequences of the

equations of motion in the quantum theory.
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5.4 Slavnov-Taylor Identities for the Effective Ac-

tion

In many cases, it is more convenient to restrict the properties of the one-particle

irreducible diagrams of the theory, which are generated by the effective action. The

quantum effective action Γ is the Legendre transformation of the generator of con-

nected diagrams W ,

Γ(f̄a) = W (Ja∗ )− f̄aJa∗ , (5.43)

where the currents Ja∗ are defined by the condition

δW

δJa

∣∣∣∣
J=J∗

= f̄a, (5.44)

and f̄a is the prescribed expectation value of the field fa (hence the bar, which we

shall later drop for simplicity.) The only difference here with respect to the in-out

formalism is that, once more, time integrals run over the contour C we introduced in

Section 5.2.3.

The generating functional W does not depend on the currents conjugate to those

fields that the gauge-fixing terms constrain to vanish, so the effective action does not

depend on the corresponding field expectations. Therefore, Γ is a functional of the pre-

scribed expectations of the unconstrained perturbations alone. Functional derivatives

of iΓ with respect to these fields give the sum of all one-particle-irreducible diagrams

with the corresponding number of external fields. These one-particle-irreducible dia-

grams are then the building blocks from which one can calculate connected correlators,

by summing over tree diagrams whose vertices are determined by the corresponding

functional derivatives of the effective action.

If the action of a theory with fields fa changes by ∆Stot,α under an infinitesimal

transformation fa → fa + ∆a, where ∆a is linear in the fields like in equation (5.11),
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−i

a

b

Sbα =

a

∆S,α
Figure 5.5: Diagrammatic representation of equation (5.48). Here, shaded circles
denote sum of all one-particle-irreducible diagrams with the corresponding number
of insertions. In particular, a shaded circle stands for iΓ, whereas a circle with a
vertex labeled by ∆S,α stands for Γ∆S,α. Each additional field vertex a denotes then
a functional derivative of the corresponding quantum action with respect to f̄a.

one can show (see e.g. [179]) that

δΓ

δf̄a
(Saα + Tabαf̄b) = Γ∆S,α, (5.45)

where Γ∆S,α (note the missing factor of i) is the sum of all one-particle irreducible

diagrams with an insertion of ∆Stot,α. In particular, if the action is invariant, ∆S = 0,

the previous equation states that linear symmetries are also symmetries of the effective

action. If we contract equation (5.45) with an isometry unbroken by the gauge-

fixing terms, the equation just expresses again the invariance of the effective action

with respect those transformations, as before. Equations relating the change of the

effective action under a set of local transformations are generally known as Slavnov-

Taylor identities, although they are often referred to as Ward-Takahashi identities

too. Adapting equation (5.45) to the standard notation, and dropping the bar from

the arguments of the effective action we obtain in real space

δΓ

δhµν(x)

∂gµν
∂xα

+
δΓ

δϕ(x)

∂φ

∂xα
− 2

∂

∂xµ

(
δΓ

δhµν(x)
gαν

)
= Γ∆S,α(x), (5.46)

where gµν and φ are the fields defined in equations (5.4). This is our master identity

for the effective action, which holds for α = 0 (time diffeomorphisms) and α = i

(spatial diffeomorphisms). Again, if a certain set of fields are constrained to vanish

by the gauge-fixing conditions, or they have been integrated out from the action, the
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a

c

b iScα +

b

c

iTcaα+

a

c

iTcbα =

a

∆S,α

b

Figure 5.6: Diagrammatic representation of equation (5.49). Same conventions as in
Figure 5.5 apply.

corresponding functional derivatives vanish. It is worth stressing that this master

equation is valid at all orders in perturbation theory and for any gauge-fixing con-

ditions. For spatial diffeomorphisms, and in the reduced formulation of the theory,

essentially the same identity is derived in reference [158].

In some non-linear parameterizations of the metric perturbations, such as the one

employed for instance in [23], diffeomorphisms act non-linearly on the cosmological

perturbations. In this case, equation (5.45) still holds at all orders in perturbation

theory, provided that we truncate the action of diffeomorphisms on the fields of the

theory to its linear components. In that case, Γ∆S on the right-hand-side will include

the change in the action ∆S under these truncated linear diffeomorphisms, a change

that would otherwise receive contributions from the gauge fixing terms alone. At

tree level this is a trivial consequence of the identity Γ = Stot and invariance of the

classical action under diffeomorphisms, S,ainv ∆aα = 0. In particular, at tree level the

Slavnov-Taylor equation
δΓ

δf̄a
∆aα = Γ∆S,α (5.47)

holds even if ∆aα is a non-linear functional of the fields.

5.4.1 Derivation of the Identities

Taking functional derivatives of the effective action, and evaluating the latter at zero

fields yields relations between the 1PI diagrams of the theory. For instance, taking
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a

∆S,α

=

a

∆S,α
Figure 5.7: The sum of all connected diagrams with an insertion of ∆S,α and a field
fa. The shaded blob indicates the sum of all 1PI diagrams with the given vertices,
Γ∆S,α.

one functional derivative of equation (5.45) and using that Γa = 0 results in

Γba Sbα = (Γ∆S,α),a, (5.48)

whereas taking two functional derivatives gives

ΓcbaScα + ΓcbTcaα + ΓcaTcbα = (Γ∆S,α),ba. (5.49)

These identities are represented diagrammatically in Figures 5.5 and 5.6.

The reader may wonder whether the identities that involve Γ bear any relation

to those obeyed by the generators of connected diagrams, W. In fact, it is quite easy

to see that both sets of identities are essentially the same. Compare for example

equations (5.38) and (5.48), and their corresponding diagrammatic representations in

Figures 5.1 and 5.5. Because the sum of all connected diagrams with an insertion of

∆S,α and an external line is given by the diagrams in Figure 5.7, equation (5.38) just

states that

Saα = −i (Γ∆S,α),b (−iWba). (5.50)

Using the fact that the propagator −iWba is just minus the inverse of the self-energy

iΓba equation (5.48) immediately follows. Similarly, equation (5.39) and Figure 5.8

153



a b

∆S,α

=

a b

∆S,α

+

a b

∆S,α
Figure 5.8: The sum of all connected diagram with an insertion of ∆Sα and two fields
fa and fb. The shaded blobs indicates the sum of all 1PI diagrams with an insertion
of ∆S,α and the number of fields indicated by the thick dots.

imply that

TacαWcb + TbcαWca = Γcd∆S,α(−iWca)(−iWdb) + iΓecd(−iWca)(−iWdb)
1

i
(W∆S,α),e.

(5.51)

Contracting left and right of this equation with two factors of the self-energy, and

using equation (5.38) yields equation (5.49).

Equation (5.39) relates cubic to quadratic terms in the effective action, and thus

provides constraints on the possible form of the cubic terms. These equations are

analogous to the identities that relate the vertex for graviton emission by matter to

the matter propagator, and ultimately enforce the equivalence principle in general

relativity [156, 157]. If any of the fields appearing in these equations has been gauge-

fixed to vanish, the corresponding term in the equation should be set to zero. The

identities also hold in the reduced theory defined by equation (5.31), provided that

functional derivatives of Γ with respect to Ā, B̄ and B̄± are also set to zero.

5.4.2 Illustration

As an application of these results, consider equation (5.50) in a case in which the

gauge fixing term is of the form (5.29). Then, at tree level, the effective action with
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an insertion of ∆S,α satisfies

(Γ∆S,α),a = −M2
∑
g

δg
aSgα. (5.52)

Therefore, inserting the last equation into (5.50) we arrive at

Saα = M2
∑
g

SgαWga. (5.53)

Suppose now the field a is invariant under a particular linear diffeomorphism α, Saα =

0, This is for instance the case for the gauge-invariant scalar perturbations introduced

by Bardeen [173]. Then, if a particular gauge-fixed field g does transform under the

same diffeomorphism, Sgα 6= 0, and also happens to be the only one appearing in

the sum on the right hand side of (5.53), it follows that Wga = 0. Therefore, at tree

level, there is no correlation between gauge-invariant and gauge-fixed perturbations.

Note that we expect the fields g to change under diffeomorphisms, because otherwise

equation (5.29) would not be an appropriate gauge-fixing term.

5.5 Consistency Relations from Diffeomorphisms

One of the main motivations for the introduction of this formalism is the study

of the extent to which diffeomorphism invariance constrains the properties of the

perturbations created during a scalar field driven inflationary stage. These primordial

perturbations are conveniently characterized by the equal time expectation values of

their products. For two fields we speak of spectra, and for three fields we speak of

bispectra; these are the only quantities that are observationally relevant at this point.

Building on the work of references [159, 160], the authors of [158] considered the

implications of spatial diffeomorphism invariance by formulating identities that relate

the bispectrum of cosmological perturbations to their power spectrum, in the limit of

a squeezed triangle. Similar relations had been derived earlier from the requirement
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Scα = Tacα
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c

+

a b

∆S,α
Figure 5.9: Diagrammatic representation of equation (5.55), the basis for the deriva-
tion of consistency relations in cosmological perturbation theory.

of conformal invariance [169–171]. Here, we extend the work of [158] to arbitrary

diffeomorphisms and arbitrary gauges, not necessarily in the reduced formulation of

the theory.

Our goal is to relate the bispectrum of cosmological perturbations to their power

spectrum, with a gauge-fixing action of the form (5.29). Equation (5.39) appears

to be the perfect starting point for such analysis, since its right hand side already

contains almost what we are looking for: The sum of all connected diagrams with

insertions of fa, fb and ∆S,α, the latter being known for a gauge-fixing term (5.29).

Yet, since equation (5.39) contains contact terms that become singular in the limit of

equal times, it is more convenient to start with the equivalent identity (5.51), which,

when combined with equation (5.38) results in

ΓcdeWdaWeb Scα = TacαWcb + TbcαWca + Γde∆S,αWdaWeb. (5.54)

Diagrammatically, this equation can be represented as in Figure 5.9. The left hand

side of equation (5.54) (or the equation in Figure 5.9) is almost the sum of all con-

nected diagrams with three external fields, since Wabc = ΓdefWdaWebWfc. To simplify

the notation, we are going to think of Wab as a metric, which we can use to lower

indices in field space. In this case, equation (5.54) simplifies to

Γcab Scα = Tabα + Tbaα + (Γ∆S,α)ab. (5.55)
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The reader should thus remember the natural position of the indices to determine

whether an index has been lowered with the propagator.

Equation (5.55) is where we need to stop if we are not willing to make additional

assumptions. In order to proceed further, we shall work at tree level, where the

analysis simplifies considerably, because the effective action Γ is then just the same

as the total (gauge-fixed) classical action Stot. If we further assume that the gauge-

fixing term is of the form (5.29) we know exactly what ∆S,α is, and because at tree

level (Γ∆S,α)cd = (∆S,α)cd it follows that

(Γ∆S,α)ab = −M2
∑
g∈G

(TgcαWgaWcb + TgcαWcaWgb) . (5.56)

Hence, if both external fields have a vanishing correlation with the massive fields fg,

the last term on the right hand side of equation (5.55) vanishes, regardless of the

action of the theory and the particular diffeomorphism α involved. The latter is what

happens for instance if the fields fg are scalars or vectors, and the fields fa, fb are

tensors. Note that this simplification occurs because of a global symmetry, namely,

invariance of the background under translations and rotations. In the meantime,

we concentrate on three-point functions that involve two tensor modes, for which

the breaking term does not contribute under any circumstance. Later on we shall

consider more general cases.

5.5.1 Diffeomorphism Invariance

With the term proportional to Γ∆S,α gone, we can focus on the irreducible vertex Γcab,

which appears in the identity contracted with Scα. As seen from equation (5.90c),

invariance under transverse diffeomorphisms (α = ±) constrains the vertices that

include B± and H±. Because equation (5.90c) contains a time derivative of a delta

function, however, equation (5.55) thus affects the time derivative of 1PI diagrams

with an external vector B±. It is hence not possible to translate such equation into
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an equation for connected correlators with a vector B±, although such an equation

would not be particularly relevant, since in the class of theories we are studying,

vectors are redundant fields anyway. In the reduced formulation of the theory, for

instance, the action SR defined in equation (5.31) remains invariant under the two

transverse diffeomorphisms. Hence, in order to fix the gauge we can simply impose

the condition H+ = H− = 0, thus eliminating vectors from the theory altogether.

Consider instead longitudinal diffeomorphisms. In this case, the corresponding

transformations in equation (5.90b) do not contain time derivatives of any field in the

reduced formulation of the theory, in which h00 and h0i have been integrated out, and

the field B is therefore absent (the term proportional to δf
B can be set to zero.) At

this point, instead of working with the scalars HL and HT , it is convenient to regard

the effective action in the scalar sector as a functional of the two fields

Ψ ≡ HL +
HT

3
, HL. (5.57)

Note that Ψ is invariant under longitudinal diffeomorphisms in the linearized theory.

Hence, by introducing these fields, we are dividing the two-dimensional scalar sector

into a direction in field space that changes under linear longitudinal diffeomorphisms

(HL), and one which does not (Ψ). This division is to some extent arbitrary, since

we may add any multiple of Ψ to the gauge-variant direction, without changing the

transformation properties under longitudinal diffs of the latter. Clearly, in order to

fix longitudinal diffeomorphisms we need to give a mass to HL, which is the field that

is not invariant under the symmetry,

Sgf = −M2

∫
dη d3pHL(η, ~p)HL(η,−~p). (5.58)

In terms of Ψ and HL, and in unitary gauge, equation (5.90c) simply reduces to

Sf(η1,~p1) ξL(η2,~p2) =
p1

3
δ(η1 − η2)δ(~p1 − ~p2)δf

HL . (5.59)
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Equation (5.55) thus constrains 1PI diagrams that contain the scalar field HL, the

gauge-variant direction in the scalar sector.

To obtain an equation that involves the connected correlators, we need to contract

equation (5.55) with a scalar propagator. According to the discussion of Section

5.4.2, invariance under longitudinal diffeomorphisms (α = L) implies that there is no

correlation between the gauge-invariant field Ψ and the gauge-fixed field HL, WHLΨ =

0. Hence, the propagator in the scalar sector is diagonal in the fields HL and Ψ.

Because the propagator is diagonal, and equation (5.55) involves a vertex with a field

HL, we just multiply the left and right hand side of equation (5.55) by WH̃LHL
. Recall

that if fa and fb are tensors, the term that involves Γ∆S does not contribute. Hence,

setting a and b to be tensors with respective helicities σ2 and σ3, and integrating over

the undisplayed time and momentum variables we finally obtain

p1

3

WHLHσ2Hσ3
(η, ~p1; η, ~p2; η, ~p3)

W̄HLHL(η, ~p1)
=

{[
2p1

jQHσ3
ij(~p3)Qik

Hσ2 (−~p2)p̂k1

+QHσ3
ij(~p3)Qij

Hσ2 (−~p2) ~p2 · p̂1

]
W̄Hσ2Hσ2

(η, ~p2) + 2↔ 3

}
δ(~p1 + ~p2 + ~p3)

(2π)3/2
, (5.60)

where we define the power-spectrum of an arbitrary variable f by

〈f(η, ~p)f(η, ~p ′)〉 ≡ −iW̄ff (η, ~p)δ(~p+ ~p ′), (5.61)

and the components of the projection tensors for tensor perturbations are listed in

Appendix 5.A. Equation (5.60) therefore relates the three-point function of cosmolog-

ical perturbations to their power spectra. It is the consistency relation that follows

from the original invariance under longitudinal diffeomorphisms. Note that it is valid

for all scalar momenta, and not only in the soft limit ~p1 → 0. As should be manifest

from our derivation, it applies only at tree level and in the reduced formulation of

the theory, with a gauge fixing term (5.57) that gives HL an arbitrary (but finite)

mass. Other than that it only relies on the invariance of the theory under spatial
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diffeomorphisms and the isometries of a cosmological background. The consistency

relation does not explicitly contain M2, although the power spectra and the three-

point function implicitly depend on that quantity. It is also important to realize that

the gauge in which this consistency relation holds is not one of the conventional gauge

choices used in cosmological perturbation theory. By giving a finite mass term to a

scalar variable, we are not eliminating it from the theory. Hence, the scalar sector

here consists of two fields (Ψ and HL), rather than one, as in the standard ζ-gauge,

in which HT ≡ 0. If we had simply set HT to zero, we would have lost the ability to

calculate Γ∆S.

Diffeomorphism invariance also constrains the expectation of a product of three

scalar perturbations, or the product of two scalars and a tensor. In this case, however,

the last term on the right hand side of equation (5.55) contributes a non-vanishing

correction proportional to M2. As a result, the ensuing consistency relation becomes

explicitly gauge-dependent. Hence, we shall not write down the corresponding con-

sistency relation here, although it can be easily derived from the previous equations.

A consistency relation for time diffeomorphisms can be derived along the same lines.

5.5.2 Analyticity

As we have seen, diffeomorphism invariance alone constrains the cubic vertices of the

theory only along gauge-variant directions in field space. As shown in reference [158],

however, additional analyticity properties allow us to extend these constraints to the

full cubic vertex itself, in the limit in which one of the momenta approaches zero.

Spatial Diffeomorphisms

Unitary Gauge To see how this works, it is going to be useful to consider the

sum of all diagrams with insertions of hij(η1, ~p1) and two arbitrary fields f2(η, ~p2)

and f3(η, ~p3), with the propagator of hij stripped off, and the overall momentum-
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conserving delta function omitted,

Γ̄ijf2f3(η1, ~p1; η, ~p2; η)× δ(3)(~p2 + ~p3 − ~p1) ≡ Γf1f2f3Qf1
ij(η1, ~p1). (5.62)

We consider an insertion of the metric perturbation hij, rather than a helicity eigen-

vector f1, because the decomposition into irreducible representations obscures the

analyticity properties of the vertex. We also define the propagator of the fields with

a momentum-conserving delta function stripped off, which in the case of coincident

times defines the power spectrum,

Wf1f2(η1, ~p1; η2, ~p2) ≡ W̄f1f2(η1, ~p1; η2)× δ(~p1 + ~p2). (5.63)

We work in the reduced formulation of the theory, in a gauge in which ϕ ≡ 0 and the

breaking term is

Sgf = −M
2

2

∫
dη d3p [HT (η, ~p)HT (η,−~p) +H+(η, ~p)H+(η,−~p) +H−(η, ~p)H−(η,−~p)] .

(5.64)

We take the limit M → ∞ at the end of the calculation, which decouples both the

scalar HT and the two vectors H±. This implies that we assume the fields f2 and f3 to

stand for the remaining light fields HL or H±±, but not for any of the massive fields.

Then, from equation (5.55), invariance under spatial diffeomorphisms ξj implies that

Γ̄ijf2f3 obeys the equation

2a2
1p

1
i Γ̄

ik
f2f3δkj−

[(
2p1

kQf2
ik(~p2)Qij

f3(~p2−~p1)+(p2
j−p1

j)Qf2
ik(~p2)Qik

f3(~p2−~p1)

)
W̄f3f3(η, ~p2−~p1)

+

(
2p1

kQf3
ik(~p1−~p2)Qij

f2(−~p2)−p2
jQf3

ik(~p1−~p2)Qik
f2(−~p2)

)
W̄f2f2(η,−~p2)

]
δ(η − η1)

(2π)3/2

= −i(Γ̄∆S,j)f2f3 , (5.65)
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where we have defined

(Γ̄∆S,j)f2f3(η1, ~p1; η, ~p2; η)δ(3)(~p2 + ~p3 − ~p1) ≡
(

δΓ∆S

δξj(η1, ~p1)

)f̃2f̃3
Wf̃2f2

Wf̃3f3
. (5.66)

Note that because in the limit M → ∞ the propagator is diagonal in field space,

there is no need to sum over the repeated indices f2 and f3 in equation (5.65). On

the other hand, because the breaking term is proportional to M2, one needs to be

careful with terms in the propagator that only decay like 1/M2 when dealing with

(Γ̄∆S,j)f2f3 .

We can constrain the components of Γ̄ijf2f3 if we assume it to be analytic for

momenta ~p1 in the vicinity of zero. As argued in [158], this is a non-trivial assumption

even at tree-level because gravitons are massless particles and we are working in the

reduced formulation of the theory, in which h00 and h0i have been integrated out.

Nevertheless, if the assumption holds, we can solve for Γ̄ijf2f3 as power series in the

components of ~p1. Say, at zeroth order in ~p1, we find that the equation is satisfied

provided that

(Γ̄∆S,j)f2f3(η1, ~p1 = 0; η, ~p2; η) = 0. (5.67)

We shall verify this property below. At first order we obtain then the unique solution

2a2
1Γ̄ik(0)f2f3δkj = −i∂(Γ̄∆S,j)f2f3

∂p1
i

+
δ(η − η1)

(2π)3/2

[
− δijW̄f2f3(η, ~p2)− p2

j

∂W̄f2f3(η, ~p2)

∂p2
i

+ 2Qf2
ik(~p2)Qkj

f3(~p2)W̄f3f3(η, ~p2) + 2Qf3
ik(−~p2)Qkj

f2(−~p2)W̄f2f2(η,−~p2)

]
, (5.68)

Although this is not immediately apparent, it is straight-forward to check that for a

rotationally-invariant state of the perturbations the right-hand side is always sym-

metric in ij. For instance, p2
j ∂W̄f2f3/∂p

2
i is symmetric if W̄f2f3 only depends on the

magnitude of the vector ~p2.

Along the same lines, one can derive the solution of equation (5.65) at higher
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orders in the momentum ~p1. At first order the solution is again unique, but the

proliferation of indices makes its manipulation rather cumbersome beyond the hard

scalar case, in which f2 = HL, f3 = HL. At yet higher orders the solution is not

unique because equation (5.65) only constrains the longitudinal component of the

vertex.

In order to proceed, we need to determine (Γ̄∆S,j)f2f3 . With a breaking term

of the form (5.64) the variation of the quadratic part of the action under spatial

diffeomorphisms α = ξj(η1, ~p1) becomes

i(Γ∆S,j)f2f3 =
M2

(2π)3/2

{
W̄f2HT (η, ~p2; η1)W̄f3f̃3

(η, ~p3; η1)
[
2p1

kQHT
ik(~p2)Qij

f̃3(−~p3)

− p3
jQHT

ik(~p2)Qik
f̃3(−~p3)

]
+ 2↔ 3

}
δ(3)(~p2 + ~p3 − ~p1). (5.69)

It is easy to check that (Γ̄∆S,ξk)f2f3 vanishes at ~p1 = 0, as required by condition

(5.67). In fact, as we also stated above, for two hard tensors f2 and f3 the breaking

term vanishes at all momenta and can be therefore ignored. On the other hand, this

simplification does not generically occur when the two fields f2 and f3 are scalars. If,

for instance, f2 = H
(2)
L (η, ~p2) and f3 = H

(3)
L (η, ~p3), the first derivative of (Γ̄∆S,j)f2f3

equals

∂(Γ̄∆S,j)H(2)
L H

(3)
L

∂p1
i

∝ −M2QHT
ik(~p2)Qkj

HL
[
W̄HLHT (η, ~p2; η1)W̄HLHL(η,−~p2; η1)

+ W̄HLHT (η,−~p2; η1)W̄HLHL(η, ~p2; η1)
]
, (5.70)

where we have used that QHT
ij(−~p2)Qij

HL(~p3) ≡ 0. Note that W̄HLHT is proportional

to 1/M2, so the right hand side remains finite in the limit M → ∞. Since the

finite limit of M2W̄HLHT depends on details of the theory, we cannot hence determine

the contribution of this term from symmetry arguments alone. There is however an

exception. If we were interested in correlation functions with a soft scalar, we would
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f1 f2 f3

HL HL HL

HL HL H±±
HL H±± H±±
H±± H±± H±±

Table 5.1: The different combination of fields for which the consistency relation
(5.71a) in unitary gauge holds. The field f1 carries the soft momentum, whereas
the two hard fields f2 and f3 can be interchanged.

need to contract the vertex with Qij
HL , since Γ̄HLHLHL ≡ Γ̄ijHLHLQij

HL . Because

the right-hand side of equation (5.70) is traceless, the contribution of the breaking

term would then vanish. Similarly, one can also check that the breaking term does

not contribute to ΓHLHLH±± . We summarize the combination of fields for which the

symmetry-breaking term can be discarded at zeroth order in ~p1 in table 5.1.

The offshoot of the previous analysis is that at zeroth order in ~p1, and for the

combination of fields listed in table 5.1, the mixed vertex Γ̄f1f2f3 is determined by

symmetry alone. We are then just a step away from the consistency relation for

spatial diffeomorphisms. Convolving Γ̄f1f2f3 with the propagator of f1 we finally

arrive at

W̄f1f2f3(η, ~p1; η, ~p2; η)

W̄f1f1(η, ~p1; η)
=
Qik

f1(−~p1)δkj

2(2π)3/2

[
− δijW̄f2f3(~p2)− p2

j

∂W̄f2f3

∂p2
i

+ 2Qf2
ik(~p2)Qjk

f3(~p2)W̄f3f3(~p2) + 2Qf3
ik(−~p2)Qjk

f2(−~p2)W̄f2f2(~p2) +O(~p1)

]
,

(5.71a)

which holds for all the combinations of fields listed in table 5.1. This is the counterpart

of the consistency relation from spatial diffeomorphisms derived in [158]. It is a

consequence of invariance under spatial diffeomorphisms, analyticity and translation

and rotational invariance. The consistency relation simplifies significantly in the soft
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scalar case f1 = HL, in which it takes the form

W̄HLf2f3(η, ~p1; η, ~p2; η)

W̄HLHL(η, ~p1; η)
=

δf2f3
(2π)3/2

(
1− ~p2 ·

∂

∂~p2

)
W̄f2f2(η, ~p2; η) +O(~p1). (5.71b)

Note that the right hand side is proportional to δf2f3 because the three-point function

in the soft-momentum limit HL(~p1 → 0) is expected to be roughly the two-point

function of the two hard fields f2, f3, which is diagonal in field space. For two hard

scalars, it is also relatively easy to obtain the O(~p1) correction by solving equation

(5.65) to next-to-leading order. Again, one can show that the breaking term can be

discarded, thereby yielding

W̄HLHLHL(η, ~p1; η, ~p2; η)

W̄HLHL(η, ~p1; η)
=

1

(2π)3/2

[
1− ~p2 ·

∂

∂~p2

+ ~p1 ·
∂

∂~p2

+ (~p2 ·
∂

∂~p2

)(~p1 ·
∂

∂~p2

)− 1

2
~p1 · ~p2

(
∂

∂~p2

)2
]
W̄HLHL(η, ~p2; η) +O(~p1

2).

(5.71c)

Spatially Flat Gauge Most, if not all, of the consistency relations that have been

derived so far apply only in unitary gauge. Yet consistency relations can also be

formulated in other gauges. Consider for instance spatially flat gauge, which we

recover with a breaking term of the form

Sgf = −M
2

2

∫
dη d3p

(
H2
L +H2

T +H2
+ +H2

−
)

(5.72)

when we take M to infinity at the end of the calculation. In this limit, the fields HL,

HT and H± decouple from the rest of the perturbations, which amounts to working

in a gauge where HL ≡ HT ≡ H± ≡ 0. In this gauge, the fluctuations of the scalar

field ϕ contain all the information about the scalar sector of the perturbations.

In order to arrive at a consistency relation in spatially flat gauge that follows from

spatial diffeomorphisms, we choose α = ξk(η1, ~p1), a = f2(η2, ~p2) and b = f3(η3, ~p3) in
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f1 f2 f3

H±± ϕ ϕ
H±± H±± H±±

Table 5.2: The different combination of fields for which the consistency relation
(5.71a) in spatially flat gauge holds. The field f1 carries the soft momentum, whereas
the two hard fields f2 and f3 can be interchanged.

equation (5.55). Since we have the limit of spatially flat gauge in mind, the fields f2

and f3 therefore stand for either the scalar ϕ or the two tensors H±±. Proceeding as

above we are led to

2a2
1p

1
i Γ̄

ik
f2f3δkj−

[(
2p1

kQf2
ik(~p2)Qf3

ij (~p2−~p1)+(p2
j−p1

j)Qf2
ik(~p2)Qik

f3(~p2−~p1)
)
W̄f3f3(η, ~p2−~p1)

+
(

2p1
kQf3

ik(~p1 − ~p2)Qf3
ij (−~p2)− p2

jQf3
ik(~p1 − ~p2)Qik

f3(−~p2)
)
W̄f2f2(η,−~p2)

+(p2
j−p1

j)δf2
ϕδf3

ϕW̄ϕϕ(η, ~p2−~p1)−p2
jδf3

ϕδf2
ϕW̄ϕϕ(η,−~p2)

]
δ(η − η1)

(2π)3/2
= −i(Γ∆S,j)f2f3 ,

(5.73)

which has essentially the same structure as equation (5.65), since both capture invari-

ance under spatial diffeomorphisms in the reduced formulation of the theory. Because

the propagator Wgϕ must fall like 1/M2, and because T does not mix metric pertur-

bations and ϕ, inspection of equation (5.56) reveals that (Γ∆S,j)f2f3 vanishes at all

orders in ~p1 for the combination of fields listed on table 5.2. Again, using analyticity

we can solve equation (5.73) by taking partial derivatives wrt p1
i on both sides of the

equation. The unique solution at zeroth order is again given by equation (5.68) with

∂(Γ̄∆S,j)f2f3/∂p
i
1 set to zero. Therefore, the ensuing consistency relations then take

the form of equation (5.71a), where this time f1, f2 and f3 are drawn from the values

listed in table 5.2. In this gauge we can for instance reliably determine the cubic

vertex Γ̄H±±ϕϕ for a soft tensor and two hard scalars.
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Time Diffeomorphisms

Proceeding along similar lines it is possible to derive a consistency relation that follows

from invariance under time diffeomorphisms, among a few other assumptions. To do

so, we need to work in spatially flat gauge, as the gauge-fixing condition ϕ = 0 we

used in unitary gauge breaks time diffeomorphisms in an uncontrolled way. One may

be tempted to introduce a symmetry breaking mass term for the scalar ϕ instead, but

this choice is not useful, because the scalar field ϕ would appear in the cubic vertices

that are constrained by the Slavnov-Taylor identities (see equation (5.90a)). Because

of that, we rather choose to work in the analogue of spatially flat gauge, with the

gauge-fixing terms in equation (5.72).

We begin the analysis with equation (5.55) for time diffeomorphisms, α = ξ0(η1, ~p1),

by setting as usual a = f2(η2, ~p2) and b = f3(η3, ~p3). Factoring out the momentum-

conserving delta function we obtain

2a2
1H1δijΓ̄

ij
f2f3(η1, ~p1; η, ~p2; η) +

∂φ̄

∂η1

Γ̄ϕf2f3(η1, ~p1; η, ~p2; η)

− δ(η − η1)

(2π)3/2

{[
Qf2

ij(~p2)Qij
f3(~p2 − ~p1)

(
2H +

∂

∂η

)
+ δf2

ϕδf3ϕ
∂

∂η

]
W̄f3f3(η, ~p2 − ~p1; η)

+
[
Qf3

ij(~p1−~p2)Qij
f2(−~p2)

(
2H+

∂

∂η

)
+δf2ϕδf3

ϕ ∂

∂η

]
W̄f2f2(η,−~p2; η)

}
= (Γ̄∆S,0)f2f3 ,

(5.74)

where the time derivatives only act on the first time argument of the power spectrum.

Two different sources can potentially contribute to the symmetry breaking term on the

right hand side of the equation: The first is due to the gauge-fixing term (5.72), but,

as in the case of spatial diffeomorphisms in spatially flat gauge, combining equation

(5.56) with equation (5.91a) we immediately find that in the limit M → ∞ this

contribution vanishes for the combination of fields listed on table 5.2. The second

contribution arises because the reduced formulation of the theory is only invariant
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under space-independent diffeomorphisms (~p1 = 0), but not for time diffeomorphisms

with arbitrary spatial dependence. This implies that (Γ̄∆S,0)f2f3 must vanish at zeroth

order in ~p1, but not at higher orders. If the two hard fields are of the same type

however, f2 = f3, the invariance of (Γ̄∆S,0)f2f2(η1, ~p1; η2, ~p2; η3) under ~p2 → ~p1 − ~p2

implies that the breaking term cannot contain a linear piece in ~p1 either. In what

follows we shall restrict our consideration to the two cases in which the breaking term

certainly vanishes.

The problem with equation (5.74) is that it contains the vertex δijΓ̄
ij
f2f3 , which

does not play any role in the limit in which HL becomes infinitely heavy. But for-

tunately, we have already calculated this vertex in the analysis of Section 5.5.2 that

led to the solution (5.68), with ∂(Γ̄∆S,j)f2f3/∂p
1
i = 0 for the cases listed on table 5.2.

Substituting that solution into (5.74) we then obtain a Slavnov-Taylor identity for

time diffeomorphisms that contains the relevant vertex Γ̄ϕf2f3 alone. Convolving the

resulting equation with the ϕ propagator, integrating and evaluating at equal times

we finally arrive at the consistency relation

W̄ϕf2f3(η, ~p1; η, ~p2; η)

W̄ϕϕ(η, ~p1; η)
=

1

(2π)3/2φ̄′

{
2
[
δf2f3

(
2H +

∂

∂η

)
− 2Hδf2ϕδf3ϕ

]
W̄f2f2(η, ~p2)

−H
[
− pi2

∂W̄f2f2(η, ~p2)

∂pi2
δf2f3 + δf2f3W̄f2f2(η, ~p2)− 4δf2ϕδf3ϕW̄ϕϕ(η,−~p2)

]}
+O(~p1).

(5.75a)

This consistency relation relies on invariance under time diffeomorphisms, although

it also depends on the invariance under spatial diffeomorphisms, analyticity and

rotational and translational invariance of the quantum state of the perturbations.

Whereas most if not all of the consistency relations that have been discussed in the

literature so far involve spatial derivatives of the power spectrum, this relation also

contains its time derivatives.

Perhaps because equation (5.75a) is quite general, it is a rather formidable ex-
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pression. We can simplify its form by setting for instance f2 = ϕ and f3 = ϕ. This

was one of the cases in which the gauge fixing terms do not contribute at zeroth or

linear order in momentum, which allows to extend the previous consistency relation

to the next order in the soft momentum. The calculation progresses in the same way,

the only difference being that the equations for the vertices need to be solved to a

higher order.

W̄ϕϕϕ(η, ~p1; η, ~p2; η)

W̄ϕϕ(η, ~p1; η)
=

1

(2π)3/2φ̄′

{
2
∂W̄ϕϕ(η, ~p2; η)

∂η
− ~p1 ·

∂2W̄ϕϕ(η, ~p2; η)

∂~p2 ∂η

−H
[
−3+(3~p1−~p2)· ∂

∂~p2

+
(
~p2·

∂

∂~p2

)(
~p1·

∂

∂~p2

)
−~p1 · ~p2

2

(
∂

∂~p2

)2 ]
W̄ϕϕ(η, ~p2; η)

}
+O(~p1

2).

(5.75b)

5.6 Summary and Conclusions

We have explored the constraints that diffeomorphism invariance imposes on the

correlation functions of cosmological perturbations. Because these basically follow

from symmetry, we have relied on the Lagrangian formulation of the theory, and the

corresponding functional integral approach for its perturbative quantization. In this

approach, expectation values can be calculated by introducing a closed time contour.

Other than that, the formalism is formally identical to the one used to calculate in-out

matrix elements.

Our most general constraints take the form of master identities for the generator

of connected correlators iW and the generator of one-particle-irreducible diagrams iΓ

in an arbitrary gauge. The former are closely related to Schwinger-Dyson equations,

which merely state that the classical equations of motion hold in the quantum the-

ory, whereas the latter assume the form of Slavnov-Taylor identities that mirror the

(broken) symmetry of the underlying theory. We showed that both sets of identities

are equivalent.

Because diffeomorphism invariance has to be broken in order to quantize the the-
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ory, the change of the action under the broken diffeomorphisms plays a crucial role

in the Schwinger-Dyson and Slavnov-Taylor identities. The broken symmetry enters

through an additional generator, containing an insertion of a single vertex determined

by the change of the action under a diffeomorphism transformation. Therefore, these

identities are also a direct reflection of how the symmetry is broken, and not just

of the invariance of the theory. In order to keep such breaking under control, we

cannot gauge-fix some of the cosmological perturbations to zero, but have to give

some of these perturbations a mass term. This is analogous to the use of Rξ gauges

in gauge theories. As a result, all the fields survive in the gauge-fixed theory, even

though some of them are just gauge artifacts in the original invariant theory. A com-

promise emerges if one lets the symmetry-breaking masses approach infinity, which

effectively decouples the corresponding fields from the theory, while keeping the sym-

metry breaking under control. In theories in which the metric components h00 and

h0i are auxiliary fields, it is also possible to integrate the latter out; the thus “reduced

theory” remains invariant under spatial diffeomorphisms, although it loses invariance

under spatially dependent time diffeomorphisms, at least in their original form.

We have formulated our identities in DeWitt notation, which allowed us to fo-

cus on the conceptual aspects of the identities, rather than on the specific details

of diffeomorphism transformations. Consequently, our identities in fact hold in any

theory invariant under a set of symmetries that acts linearly (though possibly inho-

mogeneously) on the fields. For all those theories, for instance, the Slavnov-Taylor

identities state how a three-point function with an insertion of the change of one of

the fields under the inhomogeneous component of the transformation is related to the

change of the two-point function solely under the linear component of the transfor-

mation. These identities provide useful checks of the self-consistency of the theory,

and could be used to diagnose inconsistencies in any calculation of expectation values

of cosmological perturbations.

Yet perhaps the most important application of these identities is the formulation
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of consistency relations that relate expectation values of products of different num-

bers of cosmological perturbation fields. To do so, we had to appeal to the reduced

formulation of the theory in order to limit the total number of scalars to a single

field. In this case, diffeomorphism invariance alone does not suffice to extract definite

predictions from the theory, mostly because it is not possible to reduce the scalar field

sector to a single field without losing control of the symmetry. On the other hand, the

additional assumption of analyticity allowed us to derive consistency relations that

constrain the single dynamically relevant field in the gauge-fixed theory, in the limit

in which one of the field momenta approaches zero. We were thus able to reproduce in

a different field parameterization the consistency relations presented in [158]. These

are captured in our equations (5.71), which embody consistency relations that follow

from spatial diffeomorphisms in unitary gauge, and hold for the set of fields listed on

table 5.1. We also extended these results to novel relations in spatially flat gauge, still

in the reduced formulation of the theory. In this gauge, the consistency relations also

take the form of equation (5.71a), with the fields for which it applies being listed in

Table 5.2. In the same gauge, we finally derived new consistency relations that follow

from invariance under time diffeomorphisms. These relations are listed in equations

(5.75), and, as opposed to those involving invariance under spatial diffeomorphisms,

contain time derivatives of power spectra. Although it is natural to think of these

consistency relations as constraints on the properties of the primordial perturbations

created during inflation, they apply no matter what the evolution of the background

is, provided that the analyticity assumption applies.

All the consistency relations that we have discussed here are close analogues of

the relation between the gravitational vertex and matter self-energy that ultimately

enforces the equivalence principle in general relativity. In that sense, unfortunately,

our conclusions do not appear to resolve the tension between Kretschmann’s objection

to Einstein’s principle of general covariance, and the apparent physical implications

of local symmetries, such as the equivalence principle or the consistency relations we
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just derived. If it turned out that the primordial perturbations did not obey the

consistency relations we presented here, we would probably argue that they were

not generated during a period of single-field inflation, rather than concluding that

diffeomorphism invariance is somehow broken.
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Appendix

5.A Irreducible Tensors

As we discuss in the main text, in cosmological perturbation theory it is convenient

to work with perturbations that transform irreducibly under the isometries of the

cosmological background: spatial rotations and translations. We thus introduce a set

of eleven irreducible tensors Qµν
f (~x; ~p) and Qϕ(~x, ~p) that we use as basis elements in

an expansion of arbitrary cosmological perturbations,

hµν(η, ~x) =
∑
f

∫
d3pQµν

f (~x; ~p) f(η, ~p), ϕ(η, ~x) =

∫
d3pQϕ(~x; ~p)ϕ(η, ~p). (5.76)

These tensors are plane waves, and although they depend on time through the scale

factor, we suppress the time argument for simplicity,

Qµν
f (~x; ~p) ≡ a2 ei~p·~x

(2π)3/2
Qµν

f (~p), Qϕ(~x; ~p) ≡ ei~p·~x

(2π)3/2
Qϕ(~p), (5.77)
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with non-vanishing momentum-dependent components

scalars Qϕ = 1, (5.78a)

Q00
A = −2, (5.78b)

Q0i
B =

ipi
p
, (5.78c)

Qij
HL = 2δij, (5.78d)

Qij
HT = 2

(
1

3
δij −

pipj
p2

)
, (5.78e)

vectors Q0i
B± = −ε̂±i (5.79a)

Qij
H± = −i

(
pi
p
ε̂±j +

pj
p
ε̂±i

)
, (5.79b)

tensors Qij
H±± = 2ε̂±i ε̂

±
j . (5.80)

Here, ε̂±(~p) are two orthonormal transverse vectors with2

~p · ε̂± = 0, (5.81a)

~p× ε̂± = ∓ i p ε̂±. (5.81b)

Note that the polarization vectors are complex, and that (ε̂±)∗ = ε̂∓. Hence, it follows

that (ε̂±)∗ · ε̂± = ε̂∓ · ε̂± = 1, but ε̂± · ε̂± = (ε̂∓)∗ · ε̂± = 0.

Given arbitrary metric and scalar perturbations hµν(x) and ϕ(x) we would like to

find their components in the basis of tensors above. We thus introduce a correspond-

2These vectors can be taken to be ε̂± = R(p̂) 1√
2
(êx ± iêy), where R(p̂) is a standard rotation

mapping the z axis to the p̂ direction.
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ing set of projection operators to project onto those components,

f(η, ~p) =

∫
d3xQf

µν(~p; ~x)hµν(η, ~x), ϕ(η, ~p) =

∫
d3xQϕ(~p; ~x)ϕ(η, ~x). (5.82)

These tensors are

Qf
µν(~p; ~x) ≡ 1

a2

e−i~p·~x

(2π)3/2
Qf

µν(~p), Qϕ(~p; ~x) ≡ e−i~p·~x

(2π)3/2
Qϕ(~p), (5.83)

where the non-vanishing momentum-dependent components read

Qϕ = 1, (5.84a)

QA
00 = −1

2
, (5.84b)

QB
0i = − i

2

pi

p
, (5.84c)

QHL
ij =

1

6
δij, (5.84d)

QHT
ij =

3

4

(
1

3
δij − pipj

p2

)
, (5.84e)

QB±
0i = −1

2
ε̂i∓, (5.85a)

QH±
ij =

i

2

(
pi

p
ε̂j∓ +

pj

p
ε̂i∓

)
, (5.85b)

QH±±
ij =

1

2
ε̂i∓ε̂

j
∓, (5.86)

and vector and tensor indices are raised with the Euclidean metric δij (note that

this convention does not apply to the projectors Q themselves.) These projection
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operators satisfy the completeness relation

∫
d3xQf1

µν(~p1; ~x)Qµν
f2(~x; ~p2) = δf1

f2 δ(3)(~p1 − ~p2). (5.87)

It is also convenient to work with the irreducible components of the four-vectors

ξµ that parameterize the different infinitesimal diffeomorphisms. We hence write

ξα(η, ~x) =

∫
d3pQα

ᾱ(~x; ~p) ξᾱ(η, ~p) and ξᾱ(η, ~p) =

∫
d3xQᾱ

α(~p; ~x) ξα(η, ~x),

(5.88)

where the non-vanishing components of these tensors are

Q0
0(~x; ~p) =

ei~p·~x

(2π)3/2
, Q0

0(~p; ~x) =
e−i~p·~x

(2π)3/2
, (5.89a)

Qi
L(~x; ~p) = −ipi

p

ei~p·~x

(2π)3/2
, QL

i(~p; ~x) =
ipi
p

e−i~p·~x

(2π)3/2
, (5.89b)

Qi
±(~x; ~p) = εi±(~p)

ei~p·~x

(2π)3/2
, Q±i(~p; ~x) = ε∓i (~p)

e−i~p·~x

(2π)3/2
. (5.89c)

As we discuss in the main text, relations that involve all these projection tensors

simplify considerably in DeWitt notation.

5.B Transformation under Diffeomorphisms

In order to calculate how the irreducible perturbations introduced above transform

under diffeomorphisms, we need to combine equations (5.12) and (5.13) with (5.17).

Using the results of Appendix 5.A we find for time diffeomorphisms (α = ξ0), lon-

gitudinal diffeomorphisms (α = L) and transverse diffeomorphisms of either helicity

(α = ±)

Sf(η1,~p1)ξ0(η2,~p2) = δ(~p1−~p2)

[
δf
A

(
H1 +

∂

∂η1

)
− p1δf

B +H1δf
HL +

∂φ̄

∂η1

δf
ϕ

]
δ(η1−η2),

(5.90a)
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Sf(η1,~p1)ξL(η2,~p2) = δ(~p1 − ~p2)

[
−δfB

d

dη1

+
p1

3
δf
HL − p1δf

HT

]
δ(η1 − η2), (5.90b)

Sf(η1,~p1)ξ±(η2,~p2) = δ(~p1 − ~p2)

[
−δfB±

d

dη1

− p1δf
H±

]
δ(η1 − η2). (5.90c)

In these equations a prime denotes a derivative with respect to conformal time η,

H ≡ a′/a and p ≡ |~p|. The components of the transformations linear in the fields are

Tf1(η1,~p1)
f2(η2,~p2)

ξ0(η3,~p3) =
δ(~p2 + ~p3 − ~p1)

(2π)3/2

[
δAf1δ

f2
A

(
2H1 −

∂

∂η2

− 2
∂

∂η3

)
−4ip3

iQf1
0i(~p1)δf2A +Qf1

0i(~p1)Q0i
f2(~p2)

(
4H1 − 2

∂

∂η2

− 2
∂

∂η3

)
+2ip3

jQf1
ij(~p1)Qi0

f2(~p2)+

+Qf1
ij(~p1)Qij

f2(~p2)

(
2H1 −

∂

∂η2

)
− δϕf1δ

f2
ϕ

∂

∂η2

]
δ(η1 − η2)δ(η1 − η3), (5.91a)

Tf1(η1,~p1)
f2(η2,~p2)

ξk(η3,~p3) =
δ(~p2 + ~p3 − ~p1)

(2π)3/2

[
δAf1Q0k

f2(~p2)
∂

∂η3

+ iδAf1δ
f2
A p

2
k+

+ 2iQf1
0i(~p1)Q0k

f2(~p2)p3
i − 2Qf1

0i(~p1)Qik
f2(~p2)

∂

∂η3

+ 2iQf1
i0(~p1)Qi0

f2(~p2)p2
k+

+ 2iQf1
ij(~p1)Qik

f2(~p2)p3
j + iQf1

ij(~p1)Qij
f2(~p2)p2

k + iδϕf1δ
f2
ϕ p

2
k

]
δ(η1 − η2)δ(η1 − η3),

(5.91b)

where the non-vanishing components of the tensors Qf
µν(~p) and Qµν

f (~p) are given in

Appendix 5.A. Contracting equation (5.91b) with Qk
L and Qk

± one readily recovers

the transformations under longitudinal and transverse diffeomorphisms. Note that for

some choices of the fields, these expressions can be further simplified. For instance,

for f1 = HL, Qf1
ij(~p1)Qij

f2(~p2) = δf2HL .
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[164] P. Creminelli, J. Norea, M. Simonović, and F. Vernizzi, JCAP 1312, 025 (2013),

1309.3557.

[165] B. Horn, L. Hui, and X. Xiao, JCAP 1409, 044 (2014), 1406.0842.

189

hep-ph/0311233
hep-ph/0311233
astro-ph/0409513
http://link.aps.org/doi/10.1103/PhysRev.104.254
http://link.aps.org/doi/10.1103/PhysRev.104.254
http://link.aps.org/doi/10.1103/PhysRev.105.1413
http://link.aps.org/doi/10.1103/PhysRev.105.1413
1309.4461
1303.1193
1304.5527
1309.1793
1401.7991
1406.2689
1309.3557
1406.0842


[166] P. Creminelli and M. Zaldarriaga, JCAP 0410, 006 (2004), astro-ph/0407059.

[167] C. Cheung, A. L. Fitzpatrick, J. Kaplan, and L. Senatore, JCAP 0802, 021

(2008), 0709.0295.

[168] L. Senatore and M. Zaldarriaga, JCAP 1208, 001 (2012), 1203.6884.

[169] P. Creminelli, J. Norena, and M. Simonović, JCAP 1207, 052 (2012), 1203.
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