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The physical mechanisms responsible for pulsar timing glitches are thought to excite quasi-normal
mode oscillations in their parent neutron star that couple to gravitational wave emission. In August
2006, a timing glitch was observed in the radio emission of PSR B0833−45, the Vela pulsar. At the
time of the glitch, the two co-located Hanford gravitational wave detectors of the Laser Interferom-
eter Gravitational-wave observatory (LIGO) were operational and taking data as part of the fifth
LIGO science run (S5). We present the first direct search for the gravitational wave emission asso-
ciated with oscillations of the fundamental quadrupole mode excited by a pulsar timing glitch. No
gravitational wave detection candidate was found. We place Bayesian 90% confidence upper limits
of 6.3×10−21 to 1.4×10−20 on the peak intrinsic strain amplitude of gravitational wave ring-down
signals, depending on which spherical harmonic mode is excited. The corresponding range of energy
upper limits is 5.0×1044 to 1.3×1045 erg.

PACS numbers: 04.80.Nn, 07.05.Kf, 95.85.Sz, 97.60.Gb

I. INTRODUCTION

Neutron stars are often regarded as a prime source of
various forms of gravitational wave emission. Recent
searches for gravitational wave emission from neutron
star systems include the search for the continuous, near-
monochromatic emission from rapidly rotating deformed
neutron stars [1] and the characteristic chirp signal as-
sociated with the coalescence of a binary neutron star
or neutron star-black hole system [2, 3]. An additional
mechanism for the radiation of gravitational waves from
neutron stars is the excitation of quasi-normal modes
(QNMs) (see, for example, [4–11] and the references
therein). This excitation could occur as a consequence
of flaring activity in soft-gamma repeaters [12–14], the
formation of a hyper-massive neutron star following the
coalescence of a binary neutron star system [15], or be
associated with a pulsar timing glitch caused by a star-
quake or transfer of angular momentum from a superfluid
core to a solid crust [16, 17].

In this paper, we report the results of a search in data
from the fifth science run (S5) of the Laser Interferome-

ter Gravitational-wave Observatory (LIGO) for a gravi-
tational wave signal produced by QNM excitation asso-
ciated with a timing glitch in the Vela pulsar in August
2006. In Sec. II, we briefly describe the radio observa-
tions of the timing glitch that motivates this search and
the status of the LIGO gravitational wave detectors. In
Sec. III, we describe the phenomenon of pulsar glitches
and the expected gravitational wave emission. Section IV
describes the details of the signal we search for and the
Bayesian model selection algorithm used for the analy-
sis. Section V reports the results of the gravitational
wave search. Characterization of the sensitivity of the
search is described in Sec. VI. In Sec. VII, we discuss
these results and the prospects for future searches.

II. A GLITCH IN PSR B0833−45

A. Electromagnetic observations

PSR B0833−45, known colloquially as the Vela pul-
sar, is monitored almost daily by the Hartebeesthoek ra-
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dio observatory (HartRAO) in South Africa. HartRAO
performed three observations per day at 1668MHz and
2272MHz using a 26m telescope in a monitoring program
that ran from 1985 to 2008 [18]. The radio pulse arrival
times collected by HartRAO indicate that a sudden in-
crease in rotational frequency, a phenomenon known as
a pulsar glitch, occurred on August 12th 2006.
Following [19], observations of pulse arrival times from

a pulsar can be converted to rotational (angular) fre-
quency residuals ∆Ω relative to a simple pre-glitch spin-
down model of the form

Ω(t) = Ω0 + Ω̇t, (1)

where Ω0 is the spin frequency at some reference time
t0 and Ω̇ is its time derivative. The post-glitch evolu-
tion of these frequency residuals can be described as a
permanent change in rotational frequency ∆Ωp and its

first and second derivatives ∆Ω̇p and ∆Ω̈p, plus one or
more transient components which decay exponentially on
a time-scale τi and have amplitude ∆Ωi. At time t, the
residuals between the frequency of pulses expected from
the model in Eq. (1) and those which are observed fol-
lowing a glitch are then,

∆Ω(t) = ∆Ωp +∆Ω̇pt+
1

2
∆Ω̈pt

2 +

N
∑

i=1

∆Ωie
−t/τi, (2)

For this analysis we determined the glitch epoch by split-
ting the HartRAO observations into pre- and post-glitch
data sets. Equation (1) was used to model 10 days of
pre-glitch data. Shorter lengths of post-glitch data (2,
3 and 4 days) were then used to determine appropriate
post-glitch decay time-scales in Eq. (2) for this event.
This yields a model for the post-glitch frequency residual
evolution. These pre- and post-glitch models were fit-
ted to the HartRAO data using the TEMPO2 phase-fitting
software [20]. The intersection of these models then de-
termines the glitch epoch.
We find that the glitch epoch is MJD 53959.9392 ±

0.0002 in terms of barycentric dynamical time at the so-
lar system barycenter (UTC 2006–08–12 22:31:22 ±17,
at the center of the Earth). The analysis presented in
this work assumes the gravitational wave emission is co-
incident in time with the reported glitch epoch and uses
120 seconds of data centered on the glitch epoch corre-
sponding to a timing uncertainty of greater than 3-σ.
The magnitude of the glitch, relative to the pre-glitch

rotational frequency of Ω0 ≈ 2π × 11 rads−1, was
∆Ω/Ω0 = 2.620× 10−6 [21]. For comparison, the largest
glitch observed to date in the Vela pulsar had magnitude
∆Ω/Ω0 = 3.1× 10−6 [22].
As well as the radio observations of the glitch in

PSR B0833−45, our gravitational wave search makes use
of Chandra X-ray telescope observations which determine
the spin inclination ι and position angle ψG. The incli-
nation is the angle between the pulsar’s rotation axis and
the line of sight to the Earth. The position angle is the

PSR B0833−45

Right ascensiona α 08h35m20.61149′′

Declinationa δ −45◦10′34.8751′′

Spin inclinationb ι 63.60+0.07
−0.05 ± 1.3◦

Polarization Angle ψG 130.63+0.05
−0.07

Glitch epoch Tglitch MJD 53959.9392 ± 0.0002
GPS 839457339 ± 17

UTC 2006–08–12 22:31:22 ±17
Spin frequency Ω0/2π 11.191455227602 ± 1.8× 10−11 Hz
Frequency epoch MJD 53945
Fractional glitch sizec ∆Ω/Ω0 2.620 × 10−6

Distanced D 287+19
−17 pc

aTaken from [25, 26]
bTaken from [23]
cTaken from [21]
dTaken from [24]

TABLE I: Parameters of the Vela pulsar. The statistical and
systematic errors in ι are listed as the first and second terms,
respectively. The spin frequency and the glitch epoch were
determined from the analysis described in Sec. IIA. The error
in the glitch epoch is an estimate of the 1-σ uncertainty. The
glitch epoch quoted as MJD is defined in terms of barycentric
dynamical time at the solar system barycenter. GPS and
UTC times are terrestrial. The frequency epoch is the epoch
at which the pre-glitch spin frequency was estimated.

angle between Celestial North and the spin axis, counter-
clockwise in the plane of the sky [23]. Finally, Hubble
Space Telescope observations of parallax indicate that
Vela is a particularly nearby radio pulsar at a distance
of just 287+19

−17 pc [24]. Table I gives a summary of pa-
rameters specific to the Vela pulsar and the August 2006
glitch. Further details and measurements can be found
in the ATNF pulsar catalogue [25, 26].

B. LIGO data

At the time of the Vela glitch, LIGO was operating
three laser interferometric detectors at two observatories
in the United States. Two detectors were operating at the
Hanford site, one with 4 km arms and another with 2 km
arms. These are referred to as H1 and H2, respectively.
A third detector, with 4 km arms, was operating at the
Livingston site, referred to as L1. A full description of the
configuration and status of the LIGO detectors during
S5 can be found in [27]. There are no data from either
the GE0 600 or Virgo gravitational wave detectors which
cover the glitch epoch.
The data from the two Hanford detectors around the

time of the pulsar glitch are of very high quality and
completely contiguous for a time window centered on the
glitch epoch lasting nearly five and a half hours. The Liv-
ingston detector was operating at the time of the glitch,
but began to suffer from a degradation in data qual-
ity due to elevated seismic noise approximately thirty
seconds later, and lost lock (the resonance condition of



5

the Fabry-Perot arm cavities) less than three minutes af-
ter that. We have therefore chosen not to include L1
data in this analysis due to the instability of the detec-
tor during this period and the reduction in the amount
of off-source data available (see Sec. IV). In GPS time,
the glitch epoch is 839457339±17. There are 19586 sec-
onds of data available from H1 and H2 in the period
[839447317, 839466903) before H1 and H2 also begin to
suffer from degradations in data quality. This entire con-
tiguous segment is used in the analysis.

III. PULSAR GLITCHES & GRAVITATIONAL

RADIATION

The physical mechanism behind pulsar glitches is not
known. It is not even known if all glitches are caused
by the same mechanism. Currently most theories fall
into two classes: crust fracture (“star-quakes”) and
superfluid-crust interactions. These produce different es-
timates of the maximum energy and gravitational-wave
strain to be expected.
The magnitudes of glitches in the Vela pulsar and the

frequency with which they occur are indicative of be-
ing driven by the interaction of an internal superfluid
with the solid crust of the neutron star [28]. For these
superfluid-driven glitches, there may be a series of inco-
herent, band-limited bursts of gravitational waves due to
an avalanche of vortex rearrangements [29]. This signal
is predicted to occur during the rise-time of the glitch
(≤ 40 seconds before the observed jump in frequency). A
possible consequence of this vortex avalanche is the exci-
tation of one or more of the families of global oscillations

in the neutron star. These families are divided according
to their respective restoring forces (e.g., the fundamen-
tal (f ) modes, pressure (p) modes, buoyancy (g) modes
and space-time (w) modes) [30]. These oscillations will
be at least partially damped by gravitational wave emis-
sion on timescales of milliseconds to seconds, leading to
a characteristic gravitational wave signal in the form of
a decaying sinusoid. There may also be a continuous pe-
riodic signal near the spin frequency of the star due to
non-axisymmetric Ekman flow [31]. This emission dies
away on the same time-scale as the post-glitch recovery
of the pulsar spin frequency (∼ 14 days).
Alternatively, the glitch may have been caused by a

star-quake due to a spin-down induced relaxation of el-
lipticity [32], although the size and rate of the glitches
mean that this cannot explain all of them [33]. In this
case, it seems likely that oscillation modes will also be
excited. The amount of excitation of the various mode
families is not clear and will depend on the internal dy-
namics of the star during the quake.
Due to the gravitational-wave damping rates of the

various mode families, it is reasonable to assume that
the bulk of gravitational wave emission associated with
oscillatory motion is generated by mass quadrupole (i.e.
spherical harmonic index l = 2) f -mode oscillations. Fur-
thermore, we make the simplifying assumption that a sin-
gle harmonic dominates, so that the gravitational wave
emission from the f -mode oscillations can be character-
ized entirely by the harmonic indices l = 2 and one of the
2l + 1 values of m. This assumption and its astrophysi-
cal interpretation are discussed further in Sec. VII. The
plus (+) and cross (×) polarizations for each spherical
harmonic mode in this model are:

h2m+ (t) =

{

h2mA2m
+ sin[2πν0(t− t0) + δ0]e

−(t−t0)/τ0 for t ≥ t0,

0 otherwise.
(3a)

h2m
×

(t) =

{

h2mA2m
×

cos[2πν0(t− t0) + δ0]e
−(t−t0)/τ0 for t ≥ t0,

0 otherwise.
(3b)

We refer to this decaying sinusoidal signal as a ring-

down with frequency ν0, damping time τ0 and phase
δ0. The amplitude h2m is the peak intrinsic gravita-
tional wave strain emitted by any one of the various
l = 2,m = −2, . . . , 2 modes. The amplitude terms A2m

+,×

encode the angular dependence of the gravitational wave
emission around the star for the mth harmonic and de-
pend on the line-of-sight inclination angle ι. Their ex-
plicit dependencies can be found in table II and are cal-
culated from tensor spherical harmonics as in [34].

The f -mode frequency and damping time are sensitive

Spherical Harmonic Indices A2m
+ A2m

×

l = 2, m = 0 sin2 ι 0
l = 2, m = ±1 sin 2ι 2 sin ι
l = 2, m = ±2 1 + cos2 ι 2 cos ι

TABLE II: The line-of-sight inclination angle ι dependencies
of the expected polarizations in equations 3a and 3b for each
set of spherical harmonic indices (l, m).

to the equation of state of the neutron star, which is
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not known. Calculations of the frequency and damping
time of the fundamental quadrupole mode for various
models of the equation of state, such as those in [35, 36],
indicate that the frequency lies in the range 1 . ν0 .
3 kHz and the damping time lies in the range 0.05 .
τ0 . 0.5 seconds.
If we assume that a change in rotational angular fre-

quency of size ∆Ω is caused by a change in the moment
of inertia, corresponding to a star-quake, it can be shown
that the resulting change in rotational energy is given by
∆E = 1

2I∗Ω∆Ω, where I∗ is the stellar moment of iner-
tia and we assume conservation of angular momentum.
Inserting fiducial values for the moment of inertia [37], ro-
tational velocity and pulsar glitch magnitude we see that
the characteristic energy associated with pulsar glitches
driven by seismic activity is

∆Equake ≈ 1042 erg

(

I∗

1038 kg m2

)

×

(

Ω

20π rad s−1

)2 (
∆Ω/Ω

10−6

)

, (4)

where we have used the spin-frequency of Vela and a
glitch magnitude of ∆Ω/Ω = 10−6, typical of those in
Vela. This is then the maximum energy that could be
radiated in gravitational waves.
For superfluid-driven glitches, an alternative approach

to computing the characteristic energy is to directly com-
pute the change in gravitational potential energy result-
ing from the net loss of rotational kinetic energy in the
context of a two-stream instability model [28]. In this
picture, there exists a critical difference in the rotational
angular frequency between a differentially rotating crust
and superfluid interior. Beyond this critical lag frequency
Ωlag, the superfluid interior suddenly and dramatically
couples to the solid crust. During the glitch, a fraction
of the excess angular momentum in the superfluid is im-
parted to the crust so that the superfluid spins down
while the crust spins up. It can then be shown that
the change in the rotational energy is, to leading order,
∆E ≈ −IcΩ

2 (∆Ω/Ω) (Ωlag/Ω), where Ic is the moment
of inertia of the solid crust only. Inserting fiducial values,
we find:

∆Evortex ≈ 1038 erg

(

Ic

1037 kg m2

)(

Ω

20π rad s−1

)2

×

(

∆Ω/Ω

10−6

)(

Ωlag/Ω

5×10−4

)

, (5)

where we have assumed Ωlag ∼ 5 × 10−4Ω [38] and we
have assumed that the moment of inertia of the crust is
about 10% of the total stellar moment of inertia.
An estimate of the intrinsic peak amplitude of gravi-

tational waves emitted in the form of ring-downs as de-
scribed by Eq. (3a) and Eq. (3b) can be found by inte-
grating the luminosity of that signal over time and solid
angle. Assuming that all of the rotational energy released
by the glitch goes into exciting a single spherical har-
monic and that the oscillations are completely damped

by gravitational wave emission, we find that the expected
peak amplitude of a ring-down signal is

h2m ≈ 10−23

(

E2m

1042 erg

)
1

2
(

2 kHz

ν0

)

×

(

200ms

τ0

)
1

2
(

1 kpc

D

)

. (6)

IV. BAYESIAN MODEL SELECTION

ALGORITHM

This search updates and deploys the model selection
algorithm previously described in [39]. Bayesian model
selection is performed by evaluating the ratio of the pos-
terior probabilities between two competing models de-
scribing the data. Following the work in [39, 40] and [41],
let us suppose our models represent some data D which
contains a gravitational wave signal, called the detection

model, denoted M+, and data which does not contain a
gravitational wave signal, called the null-detection model,
M−. Writing out the ratio of the posterior probabilities
of each model, we see that

O(+,−) =
P(M+|D)

P(M−|D)
(7a)

=
P(M+)

P(M−)

P(D|M+)

P(D|M−)
, (7b)

The first term is commonly referred to as the prior odds

and indicates the ratio of belief one has in the competing
models prior to performing the experiment. Since it can
be difficult to estimate, it is common to set this equal
to unity. The second term, the Bayes factor, is the ra-
tio of the marginal likelihoods or evidences for the data,
given each model. For a model Mi described by a set of
parameters ~µ, the evidence is computed from

P(D|Mi) =

∫

µ

p(~µ|Mi)p(D|~µ,Mi) d~µ, (8)

where p(~µ|Mi) is the prior probability density distribu-
tion on the parameters ~µ and p(D|~µ,Mi) is the likelihood
of obtaining the data D, given parameter values ~µ. The
details of the modelsM+ andM− as used in this analysis
are given in Sec. IVA.
The data analysis procedure is shown schematically

in Fig. 1. Gravitational wave detector time series data
centered on the pulsar glitch epoch and spanning the
uncertainty in the epoch is obtained. This constitutes
the on-source data and has duration Ton seconds. We
also obtain a longer segment of time series data from
before and after the on-source period. This is termed off-

source data and is used to estimate the distribution and
behaviour of the detection statistic (in our case, the odds
ratio O(+,−)). The off-source data has total duration
Toff seconds. This off-source data is then further divided
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FIG. 1: A schematic view of the analysis pipeline. The odds
ratio O(+,−) is evaluated using on and off-source data near the
pulsar timing glitch. If the odds ratio in the on-source data
is greater than that expected from the distribution of odds
ratios in in the off-source data, we have a candidate event for
follow-up investigations. If there is no significant excess in
O(+,−) in the on-source data, we obtain upper limits on the
gravitational wave amplitude and energy.

into Noff = Toff/Ton trials, each of which will be used to
compute one value of the odds ratio.
The data from each detector in the one on-source trial

and each of the Noff off-source trials are then divided into
short, overlapping time segments and a high-pass 12th

order Butterworth filter is applied with a knee frequency
of 800Hz. The power spectral density in that segment
is then computed and we form a time-frequency map of
power, or spectrogram, for each detector. The parameters
used to construct the spectrograms are given in Table III.
These spectrograms are then used as the data D1 and D2

from which we compute the odds ratio O(+,−). Values
of O(+,−) ≫ 1 indicate a significant preference for the
detection model.

The LIGO detector noise is, in general, non-stationary
and can be found to contain instrumental or environ-
mental transient signals which tend to mimic the gravi-
tational wave signal we are looking for. To mitigate the
risk of falsely claiming a gravitational wave detection,
the off-source data is used to empirically determine the
distribution of O(+,−) when we do not expect a grav-
itational wave signal to be present. This allows us to

Parameter Space

On-source data (GPS) [839457279, 839457399)
Off-source data (GPS) [839447317, 839457279)

[839457399, 839466903)
LIGO antenna factors F+ = −0.69, F× = −0.15
Signal frequency (ν0) range [1, 3] kHz
Decay time (τ0) range [50, 500]ms
Amplitude (Aeff) range [10−22, 10−19]

Spectrogram configuration

Fourier segment length 2 seconds
Overlap 1.5 seconds
Frequency resolution 0.5Hz
Data sampling frequency 16384 Hz

TABLE III: Parameters used in the gravitational wave data
analysis. The antenna factors have been computed for the
LIGO Hanford Observatory, the sky location and polarization
angle for Vela, and the time of the glitch .

estimate the statistical significance of any given value of
O(+,−). We then compare the value of the odds ratio
computed from the on-source data with this empirical
distribution. If the significance of the on-source value
of O(+,−) is greater than the most significant off-source
value then we have an interesting event candidate which
merits further investigations such as a more robust esti-
mate of its significance above the background level and
verification with other data analysis pipelines. In this
sense then, although the detection statistic itself, the
odds ratio O(+,−), is formed from Bayesian arguments,
we choose a frequentist interpretation of its significance
due to our inability to accurately model spurious instru-
mental noise features in the detector data. If no detection
candidate is found, 90% confidence upper limits on the
intrinsic gravitational wave strain amplitude h2m and en-
ergy E2m are found from their respective posterior prob-
ability density functions.

A. Signal model and computing the evidence for

gravitational wave detection

Recall that we consider the detection and upper limits
of each spherical harmonic mode (indexed by l = 2, m)
separately. The response of an interferometric gravita-
tional wave detector to an impinging gravitational wave
is such that the time-domain signal in the detector out-
put can be written

s2m(t) = F+(Θ, ψG)h
2m
+ (t) + F×(Θ, ψG)h

2m
×

(t), (9)

where h2m+,× are given by Eqs. (3a) and (3b). The terms
F+,×(Θ, ψ) are the detector response functions to the
plus and cross polarizations of the gravitational waves,
defined in [42]. These are functions of the sky location
of the source Θ = {α, δ}, and the gravitational wave
polarization angle ψG. We take the polarization angle
to be equal to the position angle defined in [43]. For a
single detector location and short-duration signal, where
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the antenna factors F+,× are fixed, we are free to adopt a
simplified signal model and absorb all of the orientation
factors (F+,× and A2m

+,×) into a single effective amplitude
term Aeff . Our time-domain signal model is finally

s(t) =

{

Aeff sin
[

2πν0(t− t0) + δ
′

0

]

e−(t−t0)/τ0 for t0 ≥ 0,

0 otherwise,

(10)

where the phase term δ
′

0 is now primed since it has been
affected by the combination of the two signal polariza-
tions into a single sinusoidal component. Note, however,
that this analysis uses the power spectral density of the
data and is insensitive to the signal phase.
We can then use the effective amplitude, the known in-

clination dependence encoded in the A+ and A× terms
for the individual spherical harmonics, and the detec-
tor antenna factors F+ and F× to convert the effective
amplitude Aeff to the intrinsic gravitational wave strain
amplitude of the mth mode, h2m:

h2m =
Aeff

[

(

F+A2m
+

)2
+
(

F×A2m
×

)2
]

1

2

, (11)

which we note is insensitive to the sign of m. Upper
limits on gravitational wave amplitude and energy are
later presented for each value of |m|.
The likelihood function, which describes the probabil-

ity of observing the power d̃ij in the (ith, jth) spectro-
gram pixel (time, frequency) given an expected signal
power s̃ij(~µ), is a non-central χ2 distribution with two
degrees of freedom and a non-centrality parameter given
by the expected contribution to the power from the model
whose likelihood we are evaluating. For the case where a
gravitational wave signal parameterized by ~µ contributes
power s̃ij(~µ), the joint likelihood for the entire spectro-
gram is

p(D|~µ,M+) =

NT
∏

i=1

NF
∏

j=1

{

1

2σ2
j

exp

[

−
d̃ij + s̃ij(~µ)

2σ2
j

]

× I0

[

1

σ2
j

√

d̃ij s̃ij(~µ)

]}

, (12)

where there are NT total time bins in the spectrogram,
NF frequency bins and σ2

j is the variance of the noise

power in the jth frequency bin. I0 is the zeroth order
modified Bessel function. The noise power variance σ2

j is
estimated from the median noise power across time bins
at that frequency using the data segment which is being
analyzed. This method of estimating the noise is robust
against bursts of power shorter than the length of the on-
source data and avoids the potential contamination of the
estimate of σ2

j from both instrumental noise artifacts and
gravitational wave signals.
The prior probability distributions on the ring-down

frequency ν0 and damping time τ0 are guided by the
eigenmode calculations in [35] and [36]. The frequency

prior is taken to be uniform between 1 and 3 kHz and the
damping time prior uniform between 50 and 500ms. The
glitch epoch for the search described here is found to have
a 1-σ uncertainty of 17 seconds. We adopt a conservative
flat prior range on the start time of the signal t0 with a
total width of 120 seconds, corresponding to over 3-σ on
either side of the glitch epoch. In the detection stage of
the analysis, the prior on the effective amplitude is cho-
sen such that the probability density function is uniform
across the logarithm of the effective amplitude:

p(Aeff |M+) =
1

ln(Aupp
eff /Alow

eff )Aeff
. (13)

This prior probability distribution is truncated at small
(Alow = 10−22) and large (Aupp = 10−19) values to en-
sure that it is correctly normalized. The lower truncation
is chosen to be much smaller than the effective amplitude
produced by any detectable signal. That is, gravitational
wave signals with effective amplitudes this small are in-
distinguishable from detector noise and we do not bene-
fit from extending this lower limit. Similarly, the upper
truncation is chosen to be well above the effective am-
plitude of easily detectable signals. However, when we
come to form the posteriors on the amplitude and energy
of gravitational waves we instead adopt a uniform prior
on the effective amplitude on the range [0,∞), similar to
the priors placed on frequency and decay time.
The reason for using these different priors in the dif-

ferent stages of the analysis is that, in the first stage, we
wish to weight lower amplitude signals in keeping with as-
trophysical expectations and reduce the chance of falsely
identifying a loud instrumental transient as a gravita-
tional wave detection candidate. By the second stage,
however, if we have already decided that there is no de-
tection candidate, we aim to set conservative upper lim-
its on gravitational wave amplitude and energy without
introducing any additional bias towards low amplitudes.
We find that the logarithmically uniform amplitude prior
lowers (strengthens) the posterior amplitude upper limit
from the uniform-amplitude case by as much as 50%.
The linearly uniform amplitude prior is, therefore, more
appropriate for the construction of conservative upper
limits.
The search described in this work uses data D1 and D2

from two detectors. For the signal model, the data from
each detector are combined by multiplying the likelihood
of D1 with the likelihood of D2 between the detectors:

p(D|~µ,M+) = p(D1|~µ,M+)p(D2|~µ,M+). (14)

Notice that this expression assumes that the data streams
are uncorrelated. At the frequencies of interest to this
search (i.e. 1–3 kHz), the dominant source of noise is
photon shot noise which is not be correlated between
detectors. Studies in [44] support this assumption. In
addition, the frequentist interpretation of the odds ra-
tios obtained from off-source trials provides an additional
level of robustness against common correlated instrumen-
tal transient artifacts.
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B. Computing the evidence against gravitational

wave detection

We consider two possibilities which comprise the null-
detection model: (i) Gaussian noise (model N) and (ii)
an instrumental transient which is uncorrelated between
detectors (model T ). For the noise model, there is no
contribution from any excess power due to gravitational
waves or instrumental transients. The likelihood function
for the full spectrogram is then given by the central χ2

distribution with two degrees of freedom:

p(D|N) =

NT
∏

i=1

NF
∏

j=1

1

2σ2
j

e−d̃ij/2σ
2
j . (15)

A simple comparison between the signal model and χ2

distributed noise is insufficient to discriminate real sig-
nals from instrumental transients due simply to the
fact that any excess power tends to resemble the signal
model more closely than the noise model. Following [45],
we consider an alternative scenario for null-detection in
which there is a transient signal of environmental or in-
strumental origin in the data. This artifact can mimic
the gravitational wave ring-down signal we expect from
the pulsar glitch. However, it may be present only in a
single detector, or there may be temporally coincident
instrumental transients with signal parameters inconsis-
tent between detectors. In this case, the data D1 and D2

are independent, so the evidence for model T is simply
the product of the evidences in each data stream,

P(D|T ) = P(D1|T )P(D2|T ). (16)

The individual evidences are computed according to

P(Di|T ) =

∫

~µ

p(~µ|T )p(Di|~µ, T ) d~µ. (17)

C. Detection statistic & upper limits

The total evidence for the null-detection model is the
sum of the evidence for the instrumental transient model
T and the noise-only model N and we are left with the
following expression for O(+,−), our detection statistic:

O(+,−) =
P(D|M+)

P(D|T ) + P(D|N)
. (18)

Gravitational wave signals are correlated between detec-
tors and, therefore, lead to higher evidence for the detec-
tion model M+ than the transient model T . The tran-
sient model is also penalized relative to the signal model
by virtue of the fact that the transient model has twice
as many parameters over which it is marginalized. This
yields a lower transient model evidence since it has been
weighted down by twice the number of prior probability
distributions. More importantly, instrumental transients

are generally uncorrelated between detectors. If a tran-
sient is only present in data stream D1, for example, the
likelihood from data D2 will be very small. Multiply-
ing these likelihoods inside the evidence integral for the
detection model leads to nearly zero overall evidence for
that model. The transient model T , by contrast, does
not suffer this penalty so greatly since evidence may still
be accumulated from other regions of parameter space
before the separate evidence integrals are multiplied.
In the absence of a detection candidate, we compute

the marginal posterior probability distribution on the ef-
fective amplitude Aeff , directly from the data using the
likelihood function in equation 12 and the prior distri-
butions discussed in the preceeding section. This pos-
terior is then transformed into three separate posteriors
for each value of |m|, according to Eq. (11). These are
used to obtain Bayesian 90% upper limits on the intrinsic
strain amplitudes, h2m, by solving the following integral,

0.9 =

∫ h90%

2m

0

p(h2m|D,M+) dh2m. (19)

As described in Sec. III, we can use the expressions for the
gravitational wave polarizations in Eqs. (3a) and (3b), to
find the energy emitted by gravitational waves of differ-
ent spherical harmonic modes by integrating the gravi-
tational wave luminosity over solid angle and time. The
resulting expressions for the energy from each harmonic
all scale with the signal parameters {h2m, ν0, τ0} and
distance to the source D as,

E2m ∼ (h2mν0D)
2
τ0. (20)

The precise expression for each harmonic includes a dif-
ferent numerical factor, determined by integration of the
A2m

+,× terms over solid angle. The relationships between
the energies E2m and our signal parameters allows us to
form the marginal posterior probability density for the
energy from the mth mode. These energy posteriors can
then be used to find the energy upper limit by the same
method as described above for the gravitational wave am-
plitude.

V. RESULTS

As stated in Sec. II B, we have a total of 19586 seconds
of completely contiguous H1 and H2 data for use in the
analysis. Our on-source region is 120 seconds centered on
GPS time 839457339. This gives us 9962 seconds of off-
source data prior to and 9504 seconds of off-source data
following the on-source region. We assume that the noise
characteristics of all of the off-source data remain con-
stant and are representative of the on-source. We then
split the off-source data into segments of 120 seconds to
match the on-source region. We obtain a maximum of
161 trials which can be used to estimate the distribution
of the odds ratio lnO(+,−) in the H1, H2 data. Figure 2
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FIG. 2: The cumulative probability distribution function
(CDF) for the off-source value of lnO(+,−). lnO∗

(+,−) indi-
cates the observed value. The shaded region shows the 90%
confidence interval on the estimate of the CDF. The verti-
cal line (red in the on-line version) indicates the value of
lnO(+,−) = −5.03 obtained from the on-source data segment.
The probability of obtaining this value or greater from back-
ground alone is 0.92, where the red line intersects the black
curve. The most significant off-source trial has lnO(+,−) =
1.07 and the least significant has lnO(+,−) = −11.26.

shows the cumulative distribution of lnO(+,−) in the off-
source data. The largest value of the log odds found in
the 161 off-source trials is lnO(+,−) = 1.07. The mini-
mum value is lnO(+,−) = −11.26. Such a low value of
the odds ratio indicates that there is strong evidence in
favour of the null-detection model and that the data used
for some this off-source trial contains one or more instru-
mental transients inconsistent with gravitational wave
signals. We set a threshold equal to the loudest off-source
value, above which we consider the on-source value to be
significant enough to merit further investigation. The
loudest off-source value of lnO(+,−) = 1.07 corresponds
to a false alarm probability of 1/161. The odds of the
detection model versus the null-detection model in the
on-source data is lnO(+,−) = −5.03, shown as the verti-
cal line (red in the on-line version) in Fig. 2. Using the
results from the off-source trials, we estimate that the
probability of obtaining a value of O(+,−) greater than
the on-source value from background alone is 0.92. We
therefore find no evidence in favour of gravitational wave
emission in the form of a ring-down associated with this
pulsar glitch.

The marginal posterior probability distributions and
90% confidence upper limits on the peak intrinsic ampli-
tude h2m and the total gravitational wave energy E2m

for each value of |m| are shown in Figs. 3 and 4. The nu-
merical values of the upper limits on amplitude and en-
ergy for different values of |m| can be found in table IV.
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FIG. 3: The posterior probability density distributions and
upper limits on the intrinsic peak amplitude of ring-downs,
assuming only a single harmonic (i.e. value of |m|) is excited.
The upper limits for each harmonic are shown as the vertical
lines in the figure. The numerical values of the 90% confidence
upper limits can be found in table IV. The l = 2, |m| = 0
posterior is shown as the solid (black) line, the dashed curve
(blue in the on-line version) shows the l = 2, |m| = 1 posterior
and the l = 2, |m| = 2 posterior is shown as the dotted curve
(red in the on-line version).

Spherical Harmonic Indices h90%
2m E90%

2m (erg)

l = 2, m = 0 1.4×10−20 5.0×1044

l = 2, m = ±1 1.2×10−20 1.3×1045

l = 2, m = ±2 6.3×10−21 6.3×1044

TABLE IV: The Bayesian 90% confidence upper limits on the
intrinsic strain amplitude and energy associated with each
spherical harmonic mode of oscillation.

We find that the different limits all lie within a factor of
∼ 2 of one another. Note that these upper limits assume
the signal model M+ is correct and, unlike the detection
statistic O(+,−), do not directly account for instrumental
transients.
During S5, the uncertainty in the magnitude of the

detector response function in the frequency band of in-
terest was ∼ 15% in H1 and ∼ 11% in H2 [46] leading
to uncertainties in the amplitude and energy upper lim-
its of ∼ 15% and ∼ 30%, respectively. Note that H1
is the more sensitive detector and its calibration error
dominates the analysis.

VI. PIPELINE VALIDATION

The analysis pipeline is validated and its perfor-
mance is characterized by performing software injections

whereby a population of simulated signals with param-
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FIG. 4: The posterior probability density distributions and
upper limits on the total gravitational wave energy in the form
of ring-downs, assuming only a single harmonic (i.e. value of
|m|) is excited. The upper limits for each harmonic are shown
as the vertical lines in the figure. The numerical values of
the 90% confidence upper limits can be found in table IV.
The l = 2, |m| = 0 posterior is shown as the solid black
line, the dashed curve (blue in the on-line version) shows the
l = 2, |m| = 1 posterior and the l = 2, |m| = 2 posterior is
shown as the dotted curve (red in the on-line version).

eters drawn from the prior distributions described in
Sec. IVA are added to detector time-series data prior
to running the search algorithm. We then count what
fraction of the injection population is recovered by the
pipeline at increasing signal strengths. This fraction is
the probability that a signal of a given strength will pro-
duce a value of O(+,−) larger than the largest off-source
value, providing a detection candidate.

Figure 5 shows the detection probabilities at increas-
ing values of initial intrinsic gravitational wave ampli-
tude for each harmonic mode. A single population of in-
jections was generated with amplitudes drawn from the
logarithmically uniform prior on the effective amplitude
Aeff , given by Eq. (13). Injection frequencies and damp-
ing times are drawn from the uniform priors on those
parameters. Injection start times, on the other hand, are
drawn uniformly from both on- and off-source times as a
check to ensure that there is no bias in detection efficiency
between the on- and off-source data. The three curves
corresponding to the harmonic modes |m| = 0, 1, 2 are
generated by scaling the effective amplitudes by the de-
tector antenna factors and appropriate inclination terms
for each mode. We characterize the sensitivity of the
pipeline by the initial amplitude required to reach 90%
detection probability. These 90% detection efficiency am-
plitudes are marked in Fig. 5. For l = 2, |m| = 0, the 90%
efficiency amplitude is h20 = 1.8× 10−20; l = 2, |m| = 1
has 90% detection efficiency at h21 = 1.6 × 10−20 and

 

 

l = 2, |m| = 2

l = 2, |m| = 1

l = 2, |m| = 0

D
et
ec
ti
o
n
p
ro
b
a
b
il
it
y

Initial intrinsic strain amplitude (hlm) × 10−20

0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

FIG. 5: Detection probabilities for software injections of ring-
downs described by Eq. (10) and with parameters drawn from
the prior distributions used in the search and described in
Sec. IVA. Efficiencies are computed by counting the number
of detections in discrete bins in amplitude. The three differ-
ent curves correspond to the different harmonics (values of
|m|). The long vertical lines indicate the 90% detection effi-
ciencies for the different harmonics, whose numerical values
are given in the text. The shorter vertical bars indicate 90%
binomial confidence intervals in the estimate of the detection
probability in each amplitude bin. The color-coding and line-
style convention is the same as that in Figs. 3 and 4: The
l = 2, |m| = 0 efficiency curve is shown as the solid black
line, the dashed curve (blue in the on-line version) shows the
l = 2, |m| = 1 efficiency curve and the l = 2, |m| = 2 effi-
ciency curve is shown as the dotted curve (red in the on-line
version).

l = 2 |m| = 2 has 90% detection efficiency at 8.3×10−21.
These are ∼ 30% larger than the corresponding Bayesian
90% confidence upper limits shown in Fig. 3. This dis-
crepancy is not unexpected: the Bayesian amplitude pos-
terior and the frequentist efficiency curve ask entirely dif-
ferent questions of the data. We therefore present the effi-
ciency curve purely as evidence that the analysis pipeline
could have detected a putative gravitational wave signal,
if there was one present. The Bayesian upper limits, on
the other hand, represent the strength of a gravitational
wave signal we believe could have been present, given the

on-source observations.

VII. DISCUSSION

We have performed a search for gravitational wave
emission associated with a timing glitch in PSR
B0833−45, the Vela pulsar, during the fifth LIGO sci-
ence run. This search targeted ring-down signals in the
frequency range [1, 3] kHz, with damping times in the
range [50, 500]ms. No gravitational wave detection can-
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didate was found. We place Bayesian 90% confidence
upper limits on the intrinsic peak gravitational wave am-
plitude and total gravitational wave energy emitted by
each quadrupolar spherical harmonic mode, assuming
that only a single mode dominates any neutron star os-
cillations associated with the glitch. The amplitude and
energy upper limits for the different modes are reported
in table IV. The upper limits for each value of |m| agree
with one another to within a factor of ∼ 2. Investigations
of the impact of calibration uncertainties under a variety
of scenarios suggest that the uncertainties in these upper
limits are no more than ∼ 15% and ∼ 30% in amplitude
and energy, respectively.
Having presented upper limits on the gravitational

wave emission for the different possible values of the in-
dex m, we may ask what the physical interest is in the
different cases. In the absence of a definitive model of
the glitch mechanism, it is not possible to say in ad-
vance which m value is likely to be dominant. However,
the different symmetries corresponding to the differentm
values offers some insight into the possible glitch mech-
anism. The |m| = 0 case corresponds to the excitation
of modes whose eigenfunctions are symmetric about the
rotation axis. In the context of glitches, this would be
rather natural, as glitches are thought to be caused either
by the build-up of a rotational lag (as in the superfluid
model) or by a build-up of elastic strain energy in re-
sponse to a decreasing centrifugal force (the star-quake
model); both of these are axisymmetric in nature. The
|m| = 1 case might correspond to a glitch that begins at
one point in the star before propagating outwards. The
|m| = 2 case might correspond to a glitch that inherits
the symmetry of the magnetic dipole field that is believed
to power the bulk of the star’s spindown and radio pul-
sar emission. Clearly, a gravitational wave observation
indicating which value of m (if any) of these is dominant
will provide a unique insight into the glitch mechanism.
It is natural to compare the upper limits presented

here with other gravitational wave searches for f -mode
ring-downs. The only other search for a single f -mode
event [13] presents a best upper limit of E90%

GW = 2.4 ×
1048 erg on the energy emitted in gravitational waves via
f -mode induced ring-down signals associated with a flare
from SGR 1806−20 on UTC 2006–08–24 14:55:26. In
that analysis, however, the upper limits assume isotropic
gravitational wave emission. In addition, the nominal
distance of SGR 1806−20 is 10 kpc. To compare our re-
sults with those in [13], we must rescale our upper limit
on the effective amplitude Aeff to a source distance of
10 kpc, assume isotropic gravitational wave emission and
use the average antenna factor of (F 2

+ + F 2
×
)1/2 = 0.3.

We then find our equivalent, isotropic energy upper limit
to be 1.3 × 1048 erg, a factor of ∼ 2 lower than that
in [13]. This improvement is to be expected since the

analysis presented here assumes that the signal waveform
is a decaying sinusoid. The analysis in [13], by contrast,
does not rely on a particular waveform and is designed
to search for bursts of excess power with durations and
frequencies compatible with f -mode ring-down signals.

Following the arguments laid out in Sec. III, the char-
acteristic energy of a pulsar glitch is believed to be of or-
der 1038 or 1042 erg, depending on the mechanism. Our
current energy upper limits are 2–3 orders of magni-
tude above (weaker than) the more optimistic theoretical
limit. The next generation of gravitational wave obser-
vatories currently under construction, such as advanced
LIGO [47] and advanced Virgo [48], is expected to have
noise amplitude more than an order of magnitude lower
than in the current LIGO detectors at f -mode frequen-
cies. This corresponds to probing energies more than
two orders of magnitude lower than is currently possible,
comparable to the order 1042 erg of the most optimistic
theoretical predictions. The detection of gravitational
waves associated with a Vela glitch in the advanced in-
terferometer era is therefore possible and would provide
compelling observational evidence for the star-quake the-
ory of pulsar glitches. According to current conceptual
design [49], the planned Einstein Telescope would im-
prove noise amplitude at f -mode frequencies another or-
der of magnitude beyond advanced LIGO, thereby im-
proving the Vela glitch energy sensitivity two orders of
magnitude to of order 1040 erg.
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