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H. Radkins14, P. Raffai61, M. Rakhmanov25, C. R. Ramet5, B. Rankins42, P. Rapagnani12ab, V. Raymond59,
V. Re51ab, K. Redwine22, C. M. Reed14, T. Reed73, T. Regimbau28a, S. Reid2, D. H. Reitze10, F. Ricci12ab,
R. Riesen5, K. Riles45, P. Roberts74, N. A. Robertson1,2, F. Robinet29a, C. Robinson50, E. L. Robinson15,

A. Rocchi51a, S. Roddy5, L. Rolland3, J. Rollins22, J. D. Romano25, R. Romano4ac, J. H. Romie5, D. Rosińska38g,
C. Röver6,7, S. Rowan2, A. Rüdiger6,7, P. Ruggi17, K. Ryan14, S. Sakata63, M. Sakosky14, F. Salemi6,7, M. Salit59,
L. Sammut49, L. Sancho de la Jordana65, V. Sandberg14, V. Sannibale1, L. Santamaŕıa15, I. Santiago-Prieto2,
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ABSTRACT

Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars:
neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated
and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures
and excitation of non-radial modes which would emit gravitational waves (GWs). We present the
results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f -
modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of
them, SGR 0501+4516, is likely ∼ 1 kpc from Earth, an order of magnitude closer than magnetars
targeted in previous GW searches. A second, AXP 1E 1547.0−5408, gave a burst with an estimated
isotropic energy > 1044 erg which is comparable to the giant flares. We find no evidence of GWs
associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between
November 2006 and June 2009, in GW data from the LIGO, Virgo, and GEO600 detectors. Our
lowest model-dependent GW emission energy upper limits for band- and time-limited white noise
bursts in the detector sensitive band, and for f -mode ringdowns (at 1090 Hz), are 3.0 × 1044d21 erg
and 1.4 × 1047d21 erg respectively, where d1 = d0501

1 kpc and d0501 is the distance to SGR 0501+4516.

These limits on GW emission from f -modes are an order of magnitude lower than any previous, and
approach the range of electromagnetic energies seen in SGR giant flares for the first time.
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Subject headings: gravitational waves — stars: magnetars

1. INTRODUCTION

Magnetars are isolated neutron stars (NS) powered by
extreme magnetic fields (∼ 1015 G) (Duncan & Thomp-
son 1992). The magnetar model explains the observed
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II’b Complesso Universitario di Monte S.Angelo, I-80126 Napoli;
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(≈ 0.1 s) bursts of soft gamma rays (for a review see
Mereghetti 2008.) Fewer than twenty SGRs and AXPs
are known. The total isotropic burst energies rarely ex-
ceed 1042 erg. However, three extraordinary“giant flares”
(GFs) have been observed in ∼30 years from SGRs in
our galaxy and the Large Magellanic Cloud: one from
SGR 0526−66 in 1979 with an observed total isotropic
energy of ∼ 1.2 × 1044d255 erg (Mazets et al. 1979); one
from SGR 1900+14 in 1998 with 4.3×1044d215 erg (Tanaka
et al. 2007); and a spectacular one from SGR 1806−20
in 2004 with ∼ 5 × 1046d215 erg (Terasawa et al. 2005)
where dn = d/(n kpc). There is also evidence that some
short gamma ray bursts (GRBs) were in fact extragalac-
tic GFs. GRB 070201 might have been a GF located
in the Andromeda galaxy with an isotropic energy of
1.5 × 1045 erg (Mazets et al. 2008; Abbott et al. 2008a);
and GRB 051103 might have been a GF in M81 with an
energy of 7.5 × 1046 erg (Frederiks et al. 2007).

Although still poorly understood, magnetars are
promising candidates for the first direct gravitational
wave (GW) detection for several reasons. First, a sud-
den localized energy release could excite non-radial pul-
sational NS modes. Bursts may be caused by untwisting
of the global interior magnetic field and associated crack-
ing of the solid NS crust (Thompson & Duncan 1995),
or global reconfiguration of the internal magnetic field
and associated deformation of the NS hydrostatic equilib-
rium (Ioka 2001; Corsi & Owen 2011). The lowest- order
GW emitting mode, the f -mode, is damped principally
via GW emission and would ring down with a predicted
damping time of 100–400 ms and with a frequency in the
1–3 kHz range depending on the nuclear equation of state
and NS composition (Benhar et al. 2004), putting these
signals in the band of interferometric GW detectors (see
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Figure 1). Second, precise sky locations and trigger times
from electromagnetic (EM) bursts allow us to reduce the
false-alarm rate and increase sensitivity relative to all-
sky all-time searches such as Abadie et al. (2010). Fi-
nally, magnetars are among the closest of potential GW
burst sources.

GW signals from magnetars would give us a new win-
dow through which to probe the stellar physics and struc-
ture. However, quantitative predictions or constraints
on the amplitude of GW emission associated with mag-
netar bursts are relatively few and highly uncertain (see
e.g. Ioka 2001; Owen 2005; Horowitz & Kadau 2009; Corsi
& Owen 2011; Kashiyama & Ioka 2011; Levin & van
Hoven 2011 ); hence it is not clear when we might begin
to expect a detection.

It may turn out that the magnetar burst mechanism
does not excite global NS f -modes. If the outburst dy-
namics are confined to surface layer modes, the crust
torsional oscillations might emit GWs at frequencies of
∼ 10− 2000 Hz (McDermott et al. 1988). It is also possi-
ble that although the crust is a plausible site for trigger-
ing, bursts are confined to the magnetosphere(Lyutikov
2006), although even in this case f -modes might be ex-
cited either directly or via crust/core hydromagnetic cou-
pling. Finally we note that it is not yet clear if GFs and
common bursts are caused by the same mechanism. The
lack of theoretical understanding underlines the impor-
tance of observational constraints on GW emission.

We present results from a search for GW bursts associ-
ated with magnetar EM bursts using data from the sec-
ond year of LIGO’s fifth science run (S5y2, Abbott et al.
2009a); Virgo’s first science run (VSR1, Acernese et al.
2008); and the subsequent LIGO and GEO astrowatch
period (A5), during which the principal goal was detec-
tor commissioning, not data collection. The S5y2 epoch
involved the three LIGO detectors: a 4 km interferome-
ter in Louisiana and two interferometers (4 km and 2 km)
in Washington. The VSR1 epoch added the Virgo 3 km
detector to the global network. The A5 epoch included
only the LIGO 2 km detector and the GEO 600 m detec-
tor (Grote & the LIGO Scientific Collaboration 2010).
The Virgo and GEO600 detectors are located in Italy
and Germany, respectively.

This is the third search for GWs from magnetars sen-
sitive to f -mode ringdowns. The first (Abbott et al.
2008b) included the 2004 SGR 1806−20 GF, a 2006
storm of bursts from SGR 1900+14, and 188 other
events from SGRs 1806−20 and 1900+14 occurring be-
fore November 2006. Upper limits on f -mode GW en-
ergy emission at 1090 Hz ranged from 2.4 × 1048 erg to
2.6 × 1051 erg, and upper limits on band- and time-
limited white noise bursts at 100–200 Hz ranged from
3.1×1045 erg to 7.3×1047 erg. The second (Abbott et al.
2009b) focused on the 2006 SGR 1900+14 storm, “stack-
ing” GW data corresponding to individual bursts in the
storm’s EM lightcurve (Kalmus et al. 2009). An upper
limit on f -mode emission at 1090 Hz of 1.2×1048 erg per
burst was set on a stack of the 11 brightest storm bursts,
an order of magnitude lower than the unstacked limit on
the storm.

During the S5y2, VSR1 and A5 epochs of the search we
present here, 1217 soft gamma-ray bursts from six mag-
netars were listed by the interplanetary network of satel-
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Fig. 1.— Best detector noise spectra from the LIGO and Virgo
detectors during S5/VSR1 and the GEO600 detector during A5.
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AXP 1547

SGR 1627

SGR 1806

SGR 1900

discovery

storm

ring event

discovery

giant flare

storm

S5y1 S5y2/VSR1 A5

Fig. 2.— Each mark represents a burst from one of the six
magnetar sources. Exceptional events are annotated in the figure;
SGR 0501+4516 and SGR 0481+5279 were discovered in the A5
epoch. The LIGO S5y1 epoch was the subject of the first f - mode
search (Abbott et al. 2008b). The current search includes bursts
which occurred during the LIGO S5y2 and Virgo VSR1 epochs
for which usable data were available, as well as the A5 astrowatch
commissioning period. The VSR1 epoch, which is a subset of the
S5y2 epoch, is indicated by cross-hatching and darker shading.
(NB: unabbreviated source names are given in Table 1.)

lites 97 or IPN (Table 1 and Figure 2). Four of the sources
are being examined for GW signals for the first time.
Two of those (SGR 0501+4516 and SGR 0418+5729)
are thought to be much closer to Earth than SGRs ex-
amined in previous GW searches. SGR 0501+4516 might
be associated with the supernova remnant HB9 (Gaensler
& Chatterjee 2008), which is (800 ± 400) pc from Earth
(Leahy & Tian 2007); proper motion measurements could

97 http://ssl.berkeley.edu/ipn3

exclude this association. The probable locations of both
SGR 0501+4516 and SGR 0418+5729 in the Perseus
arm of our galaxy imply distances of ∼1–2 kpc (van der
Horst et al. 2010). AXP 1E 1547.0−5408 (also known as
SGR 1550–5418) gave two exceptional bursts on 2009
January 22. Observations of expanding rings around
the source, caused by X-ray scattering off dust sheets,
set the source distance at 4–5 kpc and imply an EM
energy for one or both of these “ring event” bursts of
1044−45 erg (Tiengo et al. 2010), comparable to the GFs.
In addition to the IPN triggers, we include eight triggers
from the Fermi GBM detector: seven bright AXP 1E
1547.0−5408 bursts and one SGR 0418+5729 burst. We
also identified 54 individual peaks in a storm from SGR
1627−41 lasting ∼ 2000 s by combining the 15–25 keV
and 25–50 keV Swift/BAT 64 ms-binned light curves98 99

and selecting peaks above 450 counts / 64 ms. The search
thus includes a grand total of 1279 EM triggers.

2. METHOD

We analyze magnetar bursts using the strategy
from Abbott et al. (2008b), which is less dependent on
a particular emission model than the stacking approach
of Abbott et al. (2009b). The analysis is performed by
the Flare pipeline (Kalmus et al. 2007; Kalmus 2008),
which produces a time-frequency excess power pixel map
from calibrated detector data streams in the Fourier ba-
sis. Pixels are characterized by excess power relative to
the background (“loudness”) and loud adjacent pixels are
grouped into “events.” The generalized pipeline accepts
arbitrary networks of GW detectors by including detector
noise floor measurements and antenna responses in the
detection statistic (Kalmus 2010). We divide the search
into three frequency bands: 1–3 kHz where f -modes are
predicted to ring; and 100–200 Hz and 100–1000 Hz. We
include the latter two frequency bands in order to search
also at lower frequencies where the detectors are most
sensitive (see Figure 1). Although there are no pre-
dictions of GW burst signals from magnetars at these
lower frequencies, we note that quasiperiodic oscillations
(QPOs), lasting for tens of seconds and possibly associ-
ated with stellar torsional modes, have been observed in
GF EM tails at frequencies as low as 18 Hz and as high
as 1800 Hz (Strohmayer & Watts 2005; Israel et al. 2005;
Steiner & Watts 2009). QPOs in the tail of the 2004
GF were targeted by a tailored GW search(Abbott et al.
2007) distinct from the one presented here.

As in Abbott et al. (2008b), we choose 4 s signal regions
centered on each EM trigger time. Delays between EM
and GW emission are unlikely to be significant (Kalmus
et al. 2009); the 4 s duration accounts for uncertainties
in the geocentric EM peak time due e.g. to satellite trig-
gering algorithms and rounding. Overlapping signal re-
gions are merged. We analyze 1000 s of background on
either side of each signal region (2000 s total) in order
to estimate the significance of events in that signal re-
gion. Background regions are not necessarily continuous,
as we require the same detector network coverage and
data quality as for the signal region; in addition, signal

98 http://heasarc.gsfc.nasa.gov/FTP/swift/data/
obs/2008 05/00312582000

99 http://heasarc.gsfc.nasa.gov/FTP/swift/data/obs/
2008 05/00090056009
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TABLE 1
Summary of source sky locations and estimated distances. The nominal distances dN are the distance used in the search
for setting upper limits. Energy upper limits can be scaled to any distance d via the factor d2/d2N . Some EM triggers

occurred when there was no GW data available (i.e. N = 0).

Source Position Distances (kpc) EM triggers Analyzed with N detectors
J2000 Estimated Nominal total N = 1 N = 2 N ≥ 3

SGR 0418+5729a 04h18m33.867 ± 0.35s ∼2 2 3 3 - -
+57◦32′22.91 ± 0.35′′

SGR 0501+4516b 05h01m06.8 ± 1.4s ∼2, 0.8±0.4 1 166 105 24 -
+45◦16′35.4 ± 1.4′′

AXP 1E 1547.0−5408c 15h50m54.11 ± 0.01s 4-5, 9, 4 4 844 315 512 -
−54◦18′23.7 ± 0.1′′

SGR 1627–41d 16h35m51.84 ± 0.2s 11±0.3 11 56 - 56 -
−47◦35′23.31 ± 0.2′′

SGR 1806−20e 18h08m39.32 ± 0.3s 8.7+1.8
−1.5, 6.4–9.8 10 207 11 36 136

−20◦24′39.5 ± 0.3′′

SGR 1900+14f 19h07m14.33 ± 0.15s 3–9, 12–15 10 3 - 1 -
+09◦19′20.1 ± 0.15′′

aposition: Woods et al. (2009); distance: Esposito et al. (2010); van der Horst et al. (2010)
bposition: Evans & Osborne (2008); distance: van der Horst et al. (2010); Gaensler & Chatterjee (2008); Leahy & Tian (2007)
cposition: Camilo et al. (2007); distance: Tiengo et al. (2010); Camilo et al. (2007); Gelfand & Gaensler (2007)
dposition: Wachter et al. (2004); distance: Corbel et al. (1999)
eposition: Kaplan et al. (2002); distance: Bibby et al. (2008); Cameron et al. (2005)
fposition: Frail et al. (1999); distance: Marsden et al. (2001); Vrba et al. (2000)

regions of other magnetar bursts are masked out. Sig-
nal and background regions are chosen after data quality
cuts have been applied to the GW data, so as to remove
data segments coincident with instrumental or data ac-
quisition problems, or excessive noise due to challenging
environmental conditions. For the S5y2 portion of this
search, we applied category 1 and 2 data quality cuts
(i.e. cutting only data certain to be unfit for analysis) as
described in Abadie et al. (2010). For A5, which focused
on detector commissioning, the boolean “science mode”
designator and other basic data quality treatments were
applied to the data, but the full categorical data quality
treatment was not performed. Statistically significant
events in the signal regions from any epoch are subject
to follow-up investigations before being considered de-
tection candidates. Follow-ups might include correlation
with environmental data channels and more refined esti-
mates of significance.

We set model-dependent upper limits on f -mode ring-
downs with circular and linear polarizations and frequen-
cies sampling the range for f -modes (1–3 kHz, which ac-
counts for plausible NS equations of states and magnetic
fields), and with a decay time constant of τ = 200 ms. We
observed no more than 15% degradation in strain upper
limits using ringdowns with τ in the range 100–300 ms
as compared to the nominal value of 200 ms. We set ad-
ditional limits on band- and time- limited white noise
bursts with 11 ms and 100 ms durations (motivated by
observed rise times and durations of magnetar burst light
curves) spanning the 100–200 Hz and 100–1000 Hz search
bands. While these frequencies are chosen principally to
explore the detectors’ most sensitive region below the f -
mode frequencies, the observed range of QPO frequencies
provides astrophysical motivation. Upper limits depend
on the frequency sensitivity of the detectors (Figure 1).

Simulations are constructed using knowledge of the tar-
get magnetar’s sky location and the EM burst time. Fol-
lowing Abbott et al. (2008b), h2rss = h2rss+ +h2rss×, where

h2rss+,× =
∫∞
−∞ h2+,×dt and h+,×(t) are the two GW po-

larizations. The relationship between the GW polariza-

tions and the detector response h(t) to GW signals ar-
riving from an altitude and azimuth (θ, φ) and with po-
larization angle ψ is:

h(t) = F+(θ, φ, ψ)h+(t) + F×(θ, φ, ψ)h×(t), (1)

where F+(θ, φ, ψ) and F×(θ, φ, ψ) are the antenna func-
tions for the source at (θ, φ). The polarization angle for
each simulation was randomly chosen from a flat distri-
bution between 0 and 2π. The GW emission energy (if
the integrand is averaged over inclination angle) is

EGW = 4πd2
c3

16πG

∫ ∞
−∞

(
ḣ2+ + ḣ2×

)
dt. (2)

We estimate model-dependent upper limits on EGW or
hrss for a given signal region as follows:

(1) We determine the loudest event in the signal region.
(2) For a specific simulated signal type, we inject a sim-

ulation at a specific EGW and hrss in a randomly
selected 4 s interval of the background data and find
events in that region. We compare the loudest sig-
nal region event to the loudest event with a cluster
centroid time near the known injection time (within
100 ms for ringdowns and within 50 ms for white noise
bursts).

(3) We repeat (2) for a range of EGW and hrss values, and
at each value we determine the fraction of injections
with associated events louder than the loudest signal
region event.

(4) We repeat (3) using different simulated signal types.
For each signal type, we estimate the 90% detection
efficiency loudest event upper limit, E90%

GW or h90%rss , at
which 90% of injection events would be louder than
the loudest signal region event.

3. RESULTS AND DISCUSSION

We find no evidence of a GW signal in any of the sig-
nal regions analyzed. The loudest event of the search
occurred at 2009 January 22 05:48:43.2 UTC and was
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the only event with a false-alarm rate below our prede-
termined follow-up threshold of 1/(3 × 4808 s) = 6.9 ×
10−5 Hz as estimated via extrapolation from the 2000 s
local background region. This event cannot be consid-
ered a GW candidate because it was found when only
the Hanford 2 km detector was observing and was co-
incident with a strong glitch caused by fluctuations in
the AC power picked up by a magnetometer, and thus is
highly likely to be an instrumental artifact.

We estimate h90%rss and E90%
GW for each signal region,

which depend on detector sensitivities and antenna fac-
tors, the loudest signal region event, and the simulation
waveform type. E90%

GW upper limits also depend on nom-
inal source distance dN and can be scaled to any source
distance d via the factor (d/dN)2.

Figure 3 shows EGW upper limits for each of the EM
triggers from the six magnetar candidates, for each wave-
form type. The complete table of upper limits is on-
line100. We spotlight bright bursts from SGR 0501+4516
and AXP 1E 1547.0−5408; however it is unknown
whether EEM and EGW are correlated. Table 2 presents
EGW and hrss upper limits for three exceptional EM trig-
gers; and for a burst from SGR 0501+4516 occurring in
the signal region centered at 2008 August 23 16:31:22
UTC which yielded the lowest limits of the search. Each
was analyzed with a network of the LIGO 2 km and
GEO600 detectors. The SGR 0501+4516 burst with the
largest EM fluence (2.21 × 10−5 erg/cm 2 (Aptekar et al.
2009), which corresponds to a 1 kpc isotropic energy of
2.7 × 1039 erg) occurred in the signal region centered at
2008 August 24 01:17:58 UTC. The two candidate pro-
genitor bursts for the expanding X-ray rings around AXP
1E 1547.0−5408 occurred at 2009 January 22 6:45:14
UTC and 6:48:04 UTC, with estimated isotropic EEM of
1044−45 erg (Tiengo et al. 2010). Table 2 also gives upper

limits on the ratio γ ≡ E90%
GW/EEM for the three bursts

with EEM estimates. The γ upper limits for the two ring
bursts were estimated using EEM = 1045 erg, and beat
the best previous upper limits on γ, set for the SGR
1806−20 GF (Abbott et al. 2008b), by a factor of a few.

Superscripts in Table 2 give uncertainties at 90% con-
fidence. The first is uncertainty in detector amplitude
calibrations. The second is the statistical uncertainty
(via the bootstrap method) from using a finite number
of injected simulations. Both are added linearly to final
hrss upper limit estimates; corresponding uncertainties
are added to EGW upper limit estimates.

Our best EGW f -mode upper limits are an order of
magnitude lower (better) than the best f -mode lim-
its from previous searches, and approach the range of
EM energies seen in SGR GFs for the first time. The
best SGR 0501+4516 f -mode limit of 1.4 × 1047 erg (at
1090 Hz and a nominal distance of 1 kpc) probes be-
low the available energy predicted in a fraction of the
parameter space explored in Ioka (2001) and Corsi &
Owen (2011), the predicted maximum being ∼ 1048–
1049 erg. The best 100–200 Hz white noise burst limit
of 3.5 × 1044 erg is—for the first time—comparable to
the EEM seen in “normal” GFs.

Improved upper limits and perhaps detection will come
in the future via the following routes:

100 https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=25737

(1) Additional GFs could push down upper limits on γ ≡
E90%

GW/EEM.
(2) An analysis which stacks isolated bursts (from e.g.

SGR 0501+4516 and AXP 1E 1547.0−5408) using
the method of Abbott et al. (2009b). Stacking 100 or
more bursts observed with a constant detector sen-
sitivity, as in Abbott et al. (2009b), might yield up
to an additional order of magnitude improvement in
E90%

GW .
(3) The GW detectors will become more sensitive. Sec-

ond generation detectors (Advanced LIGO and Ad-
vanced Virgo) are expected to begin observing by
2015, promising more than two orders of mag-
nitude improvement in EGW sensitivity over the
LIGO 2 km + GEO600 network which observed SGR
0501+4516 (Abbott et al. 2009a). Recently Levin &
van Hoven (2011) made semi-quantitative predictions
on f -mode excitations in GFs. Their predictions are
pessimistic that an f -mode signal from a GF at 1 kpc
would be detectable in the second generation, though
they do not consider crustal cracking. Third gener-
ation detectors could yield two additional orders of
magnitude in energy sensitivity.

We look forward to further predictions on GW emission
amplitudes from these enigmatic sources.
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Fig. 3.— E90%
GW upper limits for the entire SGR burst sample for various circularly/linearly polarized ringdowns (RDC/RDL) and white

noise burst (WNB) signals (see Section 2). For each of twelve waveform types, we show six rows of dots marking upper limits for the sources
(from top to bottom) SGR 1900+14 (violet); SGR 0418+5729 (purple); SGR 1627–41 (orange); SGR 1806−20 (green); SGR 0501+4516
(teal); and AXP 1E 1547.0-4508 (blue) for that waveform type. The limits shown in Table 2 for SGR 0501+4516 and AXP 1E 1547.0-4508
are indicated in the figure by circles.
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TABLE 2
GW strain and energy upper limit estimates at 90% confidence (h90%rss and E90%

GW ), for the burst trigger yielding the lowest

E90%
GW upper limits (top left), the brightest SGR 0501+4516 burst (top right), and the two ‘ring’ events from AXP 1E

1547.0−5408 (bottom). Upper limits on the ratio γ ≡ E90%
GW /EEM are given when estimates for EEM are available; for the

ring events γ = E90%
GW /1045 erg. Upper limits were estimated using the circularly and linearly polarized ringdowns

(RDC/RDL) and white noise burst (WNB) waveforms (see Section 2). Uncertainties, from detector calibration and using a
finite number of injected simulations, are added to the final upper limit estimates. These are given for the hrss limits as

superscripts, with the first showing detector calibration uncertainty and the second showing statistical uncertainty
from finite injected simulations.

SGR 0501+4516 Best Limits SGR 0501+4516 Brightest Burst

Simulation type h90%rss (10−22 Hz−
1
2 ) E90%

GW (erg) γ h90%rss (10−22 Hz−
1
2 ) E90%

GW (erg) γ
WNB 11ms 100-200 Hz 7.0 +1.0 +0.89 = 8.9 6.8 × 1044 - 13 +1.9 +1.3 = 16 2.2 × 1045 8 × 105

WNB 100ms 100-200 Hz 5.1 +0.76 +0.26 = 6.1 3.1 × 1044 - 11 +1.6 +0.69 = 13 1.4 × 1045 5 × 105

WNB 11ms 100-1000 Hz 13 +3.6 +0.62 = 17 3.5 × 1046 - 25 +7.3 +1.6 = 34 1.4 × 1047 5 × 107

WNB 100ms 100-1000 Hz 13 +3.7 +0.56 = 17 3.2 × 1046 - 26 +7.3 +1.4 = 34 1.2 × 1047 4 × 107

RDC 200ms 1090 Hz 15 +2.4 +1.3 = 18 1.4 × 1047 - 35 +5.8 +1.7 = 42 7.6 × 1047 3 × 108

RDC 200ms 1590 Hz 30 +4.9 +2.1 = 37 1.2 × 1048 - 59 +9.7 +2.9 = 71 4.6 × 1048 2 × 109

RDC 200ms 2090 Hz 32 +5.3 +1.6 = 39 2.4 × 1048 - 69 +11 +4.7 = 85 1.1 × 1049 4 × 109

RDC 200ms 2590 Hz 40 +6.7 +2.9 = 50 6.1 × 1048 - 77 +13 +5.2 = 96 2.1 × 1049 8 × 109

RDL 200ms 1090 Hz 40 +6.6 +8.1 = 54 1.3 × 1048 - 58 +9.6 +5.0 = 73 2.3 × 1048 9 × 108

RDL 200ms 1590 Hz 86 +14 +9.8 = 110 1.1 × 1049 - 80 +13 +6.5 = 100 9.3 × 1048 3 × 109

RDL 200ms 2090 Hz 96 +16 +20 = 130 2.7 × 1049 - 110 +19 +12 = 140 3.4 × 1049 1 × 1010

RDL 200ms 2590 Hz 110 +19 +17 = 150 5.5 × 1049 - 120 +21 +10 = 160 6.1 × 1049 2 × 1010

AXP 1E 1547.0−5408 2009 Jan 22 6:45:14 UTC AXP 1E 1547.0−5408 2009 Jan 22 6:48:04 UTC
WNB 11ms 100-200 Hz 7.9 +1.2 +1.3 = 10 1.5 × 1046 10 7.6 +1.1 +1.0 = 9.8 1.3 × 1046 10
WNB 100ms 100-200 Hz 5.3 +0.80 +0.41 = 6.6 5.8 × 1045 6 5.8 +0.86 +0.47 = 7.1 6.8 × 1045 7
WNB 11ms 100-1000 Hz 16 +4.5 +1.0 = 21 8.4 × 1047 8 × 102 18 +5.2 +0.91 = 24 1.2 × 1048 1 × 103

WNB 100ms 100-1000 Hz 15 +4.5 +0.73 = 21 7.1 × 1047 7 × 102 16 +4.5 +0.80 = 21 7.2 × 1047 7 × 102

RDC 200ms 1090 Hz 19 +3.2 +1.4 = 24 3.8 × 1048 4 × 103 21 +3.5 +1.0 = 25 4.4 × 1048 4 × 103

RDC 200ms 1590 Hz 30 +4.9 +2.5 = 37 1.9 × 1049 2 × 104 31 +5.1 +1.6 = 37 2.1 × 1049 2 × 104

RDC 200ms 2090 Hz 39 +6.6 +2.8 = 49 6.0 × 1049 6 × 104 44 +7.4 +3.8 = 56 7.4 × 1049 7 × 104

RDC 200ms 2590 Hz 57 +9.4 +3.9 = 70 1.9 × 1050 2 × 105 60 +1.00 +3.3 = 73 2.0 × 1050 2 × 105

RDL 200ms 1090 Hz 60 +1.00 +9.9 = 80 4.4 × 1049 4 × 104 66 +11 +10 = 87 5.3 × 1049 5 × 104

RDL 200ms 1590 Hz 84 +14 +13 = 110 1.8 × 1050 2 × 105 110 +18 +22 = 150 3.1 × 1050 3 × 105

RDL 200ms 2090 Hz 110 +19 +16 = 150 5.5 × 1050 6 × 105 130 +22 +18 = 170 7.4 × 1050 7 × 105

RDL 200ms 2590 Hz 150 +25 +33 = 210 1.6 × 1051 2 × 106 180 +30 +29 = 240 2.2 × 1051 2 × 106
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