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Abstract 

We consider the design of optimal localized feedback gains for one-dimensional formations in which vehicles only 

use information from their immediate neighbors. The control objective is to enhance coherence of the formation by 

making it behave like a rigid lattice. For the single-integrator model with symmetric gains, we establish convexity, 

implying that the globally optimal controller can be computed efficiently. We also identify a class of convex 

problems for double-integrators by restricting the controller to symmetric position and uniform diagonal velocity 

gains. To obtain the optimal non-symmetric gains for both the single- and the double-integrator models, we solve a 

parameterized family of optimal control problems ranging from an easily solvable problem to the problem of interest 

as the underlying parameter increases. When this parameter is kept small, we employ perturbation analysis to 

decouple the matrix equations that result from the optimality conditions, thereby rendering the unique optimal 

feedback gain. This solution is used to initialize a homotopy-based Newton’s method to find the optimal localized 

gain. To investigate the performance of localized controllers, we examine how the coherence of large-scale 

stochastically forced formations scales with the number of vehicles. We establish several explicit scaling 

relationships and show that the best performance is achieved by a localized controller that is both non-symmetric 

and spatially-varying. 

 

Index Terms 

Convex optimization, formation coherence, homotopy, Newton’s method, optimal localized control, perturbation 

analysis, structured sparse feedback gains, vehicular formations. 

 

I. Introduction 

The control of vehicular platoons has attracted considerable attention since the mid sixties [1]–[3]. Recent 

technological advances in developing vehicles with communication and computation capabilities have spurred 

renewed interest in this area [4]–[12]. The simplest control objective for the one-dimensional (1D) formation shown 

in Fig. 1 is to maintain a desired cruising velocity and to keep a pre-specified constant dis- 
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tance between neighboring vehicles. This problem is emblematic of a wide range of technologically relevant 

applications including the control of automated highways, unmanned aerial vehicles, swarms of robotic agents, and 

satellite constellations. Recent work in this area has focused on fundamental performance limitations of both 

centralized and decentralized controllers for large-scale formations [5], [7], [9]–[12]. For centralized linear quadratic 

optimal control formulations based on penalizing relative position errors it was shown in [7] that stabilizability 

and detectability deteriorate as formation size increases. In [9], it was shown that merge and split maneuvers can 

exhibit poor convergence rates even upon inclusion of absolute position errors in cost functionals. In [5], it was 

shown that sensitivity of spacing errors to disturbances increases with the number of vehicles for formations with 

localized symmetric controllers that utilize relative position errors between neighboring vehicles. In [11], the 

analysis of [5] was expanded to include heterogeneous vehicles, non-zero time headway, and limited communication 

range within the formation. 

 The motivation for the current study comes from two recent papers, [12] and [10]. In [12], fundamental 

performance limitations of localized symmetric feedback for spatially invariant consensus and formation problems 

were examined. It was shown that, in 1D, it is impossible to have coherent large formations that behave like rigid 

lattice. This was done by exhibiting linear scaling, with the number of vehicles, of the formation-size-normalized  

 norm from disturbances to an appropriately defined macroscopic performance measure. In 2D this measure 

increases logarithmically, and in 3D it remains bounded irrespective of the system size. These scalings were derived 

by imposing uniform bounds on control energy at each vehicle.  

 For formations on a one-dimensional lattice, it was shown in [10] that the decay rate (with the number of 

vehicles) of the least damped mode of the closed-loop system can be improved by introducing a small amount of 

‘mistuning’ to the spatially uniform symmetric feedback gains. A large formation was modeled as a diffusive PDE, 

and an optimal small-in-norm perturbation profile that destroys the spatial symmetry and renders the system more 

stable was designed. Numerical computations were also used to demonstrate that the spatially-varying feedback 

gains have beneficial influence on the closed-loop  norm. The PDE approaches have also been found useful in 

the deployment of multi-agents [13], [14] and in coordination algorithms [15]. 

 Even though traditional optimal control does not facilitate incorporation of structural constraints and leads 

to centralized architectures, the optimal feedback gain matrix for both spatially invariant systems [16] and systems 

on graphs [17] have off-diagonal decay. Several recent efforts have focused on identification of classes of convex 

distributed control problems. For spatially invariant controllers in which information propagates at least as fast as in 

the plant, convexity was established in [18], [19]. Similar algebraic characterization for a broader class of systems 

was introduced in [20], and convexity was shown for problems with quadratically invariant constraint sets. Since 

these problems are convex in the impulse response parameters they are in general infinite dimensional. In [21], a 

state-space description of systems in which information propagates at most one unit in space for every unit in time 

was provided and relaxations were used to obtain suboptimal controllers. In [22], the optimal control problem for 

switched autonomous systems was studied and optimality conditions for decentralization of multi-agent motions 

were derived. In [23], convexity of the symmetric edge weight design for minimization of the mean-square deviation 

in distributed average consensus was shown. 

 While references [18]–[21] focus on the design of optimal dynamic distributed controllers, we develop 

tools for the design of optimal static feedback gains with pre-specified structure. Even though the framework of 

[18]–[21] does not apply to our setup, we identify a class of convex problems which can be cast as a semi-definite 

program (SDP). Furthermore, we show that the necessary conditions for optimality are given by coupled matrix 

equations, which can be solved by a combination of perturbation analysis and homotopy-based Newton’s method. 

We consider the design of both symmetric and non-symmetric feedback gains and show that departure from optimal 

symmetric design can significantly improve the coherence of large-scale formations. 

 

B. Preview of Key Results 

We consider the design of optimal localized feedback gains for one-dimensional formations in which each 

vehicle only uses relative distances from its immediate neighbors and its own velocity. This nearest neighbor 

interaction imposes structural constraints on the feedback gains. We formulate the structured optimal control 

problem for both the single- and the double-integrator models. For single-integrators, we show that the structured 

optimal control problem is convex when we restrict the feedback gain to be a symmetric positive definite matrix. In 

this case, the global minimizer can be computed efficiently, and even analytical expressions can be derived. For 

double integrators, we also identify a class of convex problems by restricting the controller to symmetric position 

and uniform diagonal velocity gains.  
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We then remove this symmetric restriction for both the single and the double-integrator models and begin 

the design process with a spatially uniform controller. We develop a homotopy based Newton’s method that traces a 

continuous solution path from this controller to the optimal localized gain. Along this 
 

Table I 

Summary of aymptotoc scalings with the number of vehicles N for the optimal symmetric and non-symmetric 

position gains. The N-independent control penalty , in the quadratic performance objective leads to similar 

growth with N of formation coherence and control energy (per vehicle). On the other hand, the N-Dependent control 

penalty that provides bounded control energy yields less favorable coherence. 

 

 
 

 

homotopy path, we solve a parameterized family of the structured optimal control problems and obtain analytical 

solutions when the homotopy parameter is small. We employ perturbation analysis to decouple the matrix equations 

that result from optimality conditions, thereby rendering the unique optimal structured gain. This solution is used to 

warm-start Newton’s method in order to efficiently compute the desired optimal gains as the homotopy parameter is 

gradually increased. 

 In the second part of the paper, we examine how the performance of the optimally-controlled formation 

scales with the number of vehicles. We consider both macroscopic and microscopic performance measures based on 

whether attention is paid to the absolute position error of each vehicle or the relative position error between 

neighboring vehicles. We note that the macroscopic performance measure quantifies the resemblance of the 

formation to a rigid lattice, i.e., it determines the coherence of the formation. As shown in [12], even when local 

positions are well-regulated, an ‘accordion-like motion’ of the formation can arise from poor scaling of the 

macroscopic performance measure (formation coherence) with the number of vehicles . Our objective is thus to 

enhance formation coherence by means of optimal localized feedback design. In situations for which the control 

penalty in the quadratic performance objective is formation-size-independent we show that the optimal symmetric 

and non-symmetric controllers asymptotically provide  and  scalings of formation coherence. However, 

this introduces similar growth of the control energy (per vehicle) with .We show that bounded control energy can be 

obtained by judicious selection of an -dependent control penalty, leading to  and  scalings of formation 

coherence for the optimal symmetric and non-symmetric controllers, respectively. These results are summarized in 

Table I and they hold for both single- and double-integrators for formations in which each vehicle has access to its 

own velocity; see Sections V and VI for additional details. 

 In addition to designing optimal localized controllers, we also provide an example of a spatially uniform 

non-symmetric controller that yields better scaling trends than the optimal spatially varying controller obtained by 

restricting design to symmetric gains. This indicates that departure from symmetry can improve coherence of large-

scale formations and that the controller structure may play a more important role than the optimal selection of the 

feedback gains. On the other hand, our results also show that the optimal localized controller that achieves the best 

performance is both non-symmetric and spatially-varying. 

 If each vehicle has access to its own velocity and to relative distances from its nearest neighbors, we show 

similarity between the optimal position gains and performance scaling trends for single- and double-integrators. The 

latter observation is in agreement with analytical results obtained for spatially invariant formations [12]. We note 

that performance of controllers that rely on relative measurements or unidirectional position exchange can differ 

significantly for these two models. For spatially-invariant formations with relative position and velocity 
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measurements, it was shown in [12] that the global performance scales as  for double-integrators and as  

for single-integrators. In Section V-B, we show that spatially uniform look-ahead strategy provides   scaling of 

the global performance for the single-integrator model. On the other hand, a look-ahead strategy that is not carefully 

designed can introduce unfavorable propagation of disturbances through formation of double-integrators [3], [5]. 

 The paper is organized as follows. We formulate the structured optimal control problem in Section II, and 

show convexity of the symmetric gain design for the single-integrator model in Section III. For non-symmetric 

gains, we develop the homotopy- based Newton’s method in Section IV. We examine performance of localized 

controllers for the single- and the double-integrator models in Sections V and VI, respectively, where we provide 

several explicit scaling relations. We conclude the paper in Section VII with a brief summary of our contributions. 

 

II. Problem Formulation 

A system of N identical vehicles moving along a straight line is shown in Fig. 1. All vehicles are equipped 

with ranging devices that allow them to measure relative distances with respect to their immediate neighbors. The 

objective is to design an optimal controller that uses only local information (i.e., relative distances between the 

neighboring vehicles) to keep each vehicle at its global position on a grid of regularly spaced points moving with a 

constant velocity. 

We consider both the single- and the double-integrator models of the vehicles. The double-integrators are 

employed in many studies of vehicular formations; for example, see [1]–[3], [5], [7], [9], [10], [12], [24]. On the 

other hand, the single-integrator (i.e., kinematic) model is simpler and perhaps more revealing in understanding the 

role of network topologies [4], [23], [25]–[28]. As we show in Section VI, the singleand the double-integrator 

models exhibit similar performance for formations in which each vehicle—in addition to relative positions with 

respect to its immediate neighbors—has an access to its own velocity. In the remainder of this section, we formulate 

the localized optimal control problem for both single- and double-integrators. 

 

A. Single- and Double-Integrator Models 

We first consider the kinematic model in which control input directly affects the velocity, 

 

 

 
 

Where  is the position of the nth vehicle and is the disturbance. The desired position of the nth vehicle is given by 

, where  is the desired cruising velocity  and is the desired distance between the neighboring 

vehicles. Every vehicle is assumed to have access to both  and . In addition, we confine our attention to 

formations with a known number of vehicles and leave issue of adaptation, merging, and splitting for future study. 

The localized controller utilizes relative position errors between nearest neighbors,  

 

 
 

where the design parameters  and  denote the forward and backward feedback gains of the nth vehicle. In 

deviation variables, , the singleintegrator model with nearest neighbor 

interactions is given by 
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                                                                                                                                                       (1a) 

                                                                                                    (1b) 

 

where the relative position errors  and   can be obtained by ranging devices. As illustrated 

in Fig. 2(a), fictitious lead and follow vehicles, respectively indexed by 0 and N+1, are added to the formation. 

These two vehicles are assumed to move along their desired trajectories, implying that , and 

they are not considered to belong to the formation. Hence, the controls for the 1st and the Nth vehicles are given by  

 

 
 

In other words, the first and the last vehicles have access to their own global position errors , which can be 

obtained by equipping them with GPS devices. For the double-integrator model,  

 

 
 

we consider the controller that has an access to the relative position errors between the neighboring vehicles and the 

absolute velocity errors, 

 

 
 

Where  denotes the velocity feedback gain. In deviation variables,

, the double-integrator model is given by 

                                                                                                                                                        (2a) 

                                                                                     (2b) 

In matrix form, control laws (1b) and (2b) can be written as, 

 

 
 

where  p,v, and u denote the position error, the velocity error, and the control input vectors, . 

Furthermore, the N x N diagonal feedback gains are determined by 

 

 
 

And  is a sparse Toeplitz matrix with 1 on the main diagonal 

and 1 on the first lower sub-diagonal. For example, for N = 4, 

 
(3) 
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Thus,   determines the vector of the relative position errors  between each vehicle and the one in front 

of it; similarly,  determines the vector of the relative position errors  between each vehicle and the 

one behind it. 

We will also consider formations with no fictitious followers. In this case, the Nth vehicle only uses relative 

position error with respect to the (N - 1)th vehicle, i.e.,  implying that   for 

the single-integrator model and  for the double-integrator model. 

 

B. Structured Problem 

The state-space representation of the vehicular formation is given by 

 

                                                                     (SS) 

 

For the single-integrator model (1), the state vector is  the measured output is given by the relative position 

errors between the neighboring vehicles, and 

 

           (VP1) 

 

For the double-integrator model (2), the state vector is x = , the measured output is given by the relative 

position position errors between the neighboring vehicles and the absolute velocity errors, and 

 

           (VP2) 

 

Here, O and I denote the zero and identity matrices, and  are defined in (3). 

Upon closing the loop, we have 

 

 
 

where z encompasses the penalty on both the state and the control. Here, Q is a symmetric positive semi-definite 

matrix and r is a positive scalar. The objective is to design the structured feedback gain F such that the influence of 

the white stochastic disturbance, with zero mean and unit variance, on the performance output z is minimized (in the

  sense). This control problem can be formulated as [29], [30] 

 

                                                                                     (SH2) 

 

where  denotes the structural subspace that F belongs to. As shown in [29], the necessary conditions for 

optimality of (SH2) are given by the set of coupled matrix equations in F, P, and L 
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            (NC1) 

           (NC2) 

            (NC3) 

 

Here, P and L are the closed-loop observability and controllability Gramians,  denotes the entry-wise 

multiplication of two matrices, and the matrix  in (NC3) denotes the structural identity of the subspace  under 

the entry-wise multiplication, i.e., , with   for the single-integrator model and  for 

the double-integrator model. (For example, .) In the absence of the fictitious follower, an 

additional constraint  is imposed in (SH2) and thus, the structural identity for the single- and the double-

integrator models are given by  and  , respectively. Here,  is a diagonal matrix with its main diagonal 

given by . 

Remark 1: Throughout the paper, the structured optimal feedback gain F is obtained by solving (SH2) with Q = 1. 

This choice of Q is motivated by our desire to enhance formation coherence, i.e., to keep the global position and 

velocity errors and small using localized feedback. Since the methods developed in the paper can be applied to other 

choices of Q , we will describe them for general Q and set Q = I when presenting 

computational results. 

 

C. Performance of Optimal Localized Controller 

To evaluate the performance of the optimal localized controller F , obtained by solving (SH2) with , we 

consider the closed-loop system 

                                        (4) 

where  is the global or local performance output  and is the control input. Motivated by [12], we examine two 

state performance weights for the single-integrator model 

• Macroscopic (global):  

• Microscopic (local):  

where T is an N x N symmetric Toeplitz matrix with its first row given by . For example, for 

, 

 

                  (5) 

 

The macroscopic performance weight   penalizes the global (absolute) position errors, 

 

 
 

and the microscopic performance weight  penalizes the local (relative) position errors, 

 

 
with . These state weights induce the macro and microscopic performance measures [12] 

determined by the formation-size-normalized  norm 
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where  is the transfer function of (4) from   to  . The macroscopic performance measure  quantifies the 

resemblance of the formation to a rigid lattice, i.e., it determines the coherence of the formation [12]. On the other 

hand, the microscopic performance measure quantifies how well regulated the distances between the neighboring 

vehicles are. We will also examine the formation-size-normalized control energy (variance) of the closed-loop 

system (4),  

 

 
 

which is determined by the  norm of the transfer function  from to. Similarly, for the double-integrator model, 

we use the following performance weights  

 

• Macroscopic (global), ;  

 

 

• Microscopic (local) .  

 

D. Closed-Loop Stability: The Role of Fictitious Vehicles 

We next show that at least one fictitious vehicle is needed in order to achieve closed-loop stability. This is 

because the absence of GPS devices in the formation prevents vehicles from tracking their absolute desired 

trajectories. 

 For the single-integrator model, the state-feedback gain   is a structured tridiagonal matrix 

satisfying  where 1 is the vector of all 1’s. If neither the 1st nor the th vehicle has access to its 

own global position, i.e., , then  has a zero eigenvalue with corresponding eigenvector 1. Hence, 

the closed-loop system is not asymptotically stable regardless of the choice of the feedback gains  

. In the presence of stochastic disturbances, the average-mode (associated with the eigenvector 1) undergoes a 

random walk and the steady-state variance of the deviation from the absolute desired trajectory becomes unbounded 

[12], [23], [28]. In this case, other performance measures that render this average-mode unobservable can be 

considered [12].  

For the double-integrator model, the action of  on is given by  

 

 
 

where is the -vector of all 0’s. Thus, if then has a zero eigenvalue with corresponding eigenvector. Therefore, for 

both the single- and the double-integrator models, we need at least one vehicle with access to its global position in 

order to achieve closed-loop stability.  

 

III. Design of Symmetric Gains for the Single-Integrator Model: A Convex Problem 

In this section, we design the optimal symmetric feedback gains for the single-integrator model; see Fig. 2(b). This 

is a special case of the localized design, obtained by restricting the forward and the backward gains between the 

neighboring vehicles to be equal to each other, i.e.,  for. Under this assumption, we 

show that (SH2) is a convex optimization problem for the single-integrator model. This implies that the global 

minimum can be computed efficiently. Furthermore, in the absence of the fictitious follower, we provide analytical 

expressions for the optimal feedback gains.  

Let us denote  and let  

 

                                                                                           (6) 
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For the single-integrator model, the structured gain becomes a symmetric tridiagonal matrix 

 

 
 

Consequently,  is Hurwitz if and only if K is positive definite, in which case the Lyapunov equation in 

(SH2) simplifies to 

 

 
 

The application of [31, Lemma 1] transforms the problem (SH2) of optimal symmetric design for the single-

integrator model to 

 

 
 

Where  is a linear structural constraint given by (7). (Specifically,  is a symmetric 

tridiagonal matrix with the linear constraint (6).) By introducing an auxiliary variable , 

we can formulate (SG) as an SDP in X and K. 

 

 

 
 

which can be solved using available SDP solvers. Here, we have used the Schur complement [32, Appendix A.5.5] 

in conjunction with K > 0 to express  as an LMI. 

Next, we exploit the structure of K to express J in (SG) with K = I in terms of the feedback gains   between 

the neighboring vehicles. Since the inverse of the symmetric tridiagonal matrix K can be determined analytically 

[33, Theorem 2.3], the th entry of  is given by 

 
 

 

yielding the following expression for J 

 

 
 

The above expression for J is well-defined for   that guarantee positive definiteness of in (7); this is 

because the closed-loop A-matrix is determined by . The global minimizer of can be computed using the 

gradient method; see 

Appendix A. 
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For the formations without the fictitious follower, we next derive explicit analytical expression for the 

global symmetric minimizer  of (SG) with  . In this case  0 

 
 

Fig. 3. Optimal symmetric gains for formations with follower (o) and without follower (x) for N = 50,  Q = 1 and r = 

1 are obtained by evaluating formula (9) and (o) are computed using the gradient method described in Appendix A. 

 

0 and the ijth entry of  in (8) simplifies to  for . Consequently, the unique minimum of 

 

 
 

is attained for 

 

 
 

We also note that 

 

 
 

where the third equality follows from (9). This result is used to examine the performance of large-scale formations 

in Section V-C. 

 

Fig. 3 shows the optimal symmetric gains for a formation with  vehicles, , and r = 1. Since 

the fictitious leader and the follower always move along their desired trajectories, the vehicles that are close to them 

have larger gains than the other vehicles. When no fictitious follower is present, the gains decrease monotonically 

from the first to the last vehicle; see (x) in Fig. 3. In other words, the farther away the vehicle is from the fictitious 

leader the less weight it places on the information coming from its neighbors. This is because uncorrelated 

disturbances that act on the vehicles corrupt the information about the absolute desired trajectory as it propagates 

from the fictitious leader down the formation (via relative information exchange between the vehicles). When both 

the fictitious leader and the follower are present, the gains decrease as one moves from the boundary to the center of 

the formation; see   in Fig. 3. This can be attributed to the fact that the information about the absolute desired 

trajectories becomes noisier as it propagates from the fictitious vehicles to the center of the formation. 

 

IV. Homotopy-Based Newton’s Method 

In this section, we remove the symmetric feedback gain restriction and utilize a homotopy-based Newton’s method 
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to solve (SH2). In [29], Newton’s method for general structured  problems is developed. For (SH2) with the 

specific problem data (VP1) and (VP2), it is possible to employ a homotopy-based approach to solve a 

parameterized family of problems, which ranges between an easily solvable problem and the problem of interest. 

In particular, we consider 

 

 
 

Where  is the initial weight to be selected,   is the desired weight, and is the homotopy parameter. Note that 

 for , and   for . The homotopy- based Newton’s method consists of three steps: (i) 

For , we find the initial weight   with respect to which a spatially uniform gain  is inversely optimal. This is 

equivalent to solving problem (SH2) analytically with the performance weight . (ii) For , we employ 

perturbation analysis to determine the first few terms in the expansion . (iii) For larger values of 

, we use Newton’s method for structured  design [29] to solve (SH2). We gradually increase   and use the 

structured optimal gain obtained for the previous value of to initialize the next round of iterations. This process is 

repeated until the desired value  is reached. In the remainder of this section, we focus on the single-integrator 

model. In Section VI, we solve problem (SH2) for the double-integrator model. 

 

A. Spatially Uniform Symmetric Gain: Inverse Optimality for  

One of the simplest localized strategies is to use spatially uniform gain, where  and   are diagonal matrices wit 

 and  for all  and some positive  and  . In particular, for  it is easy to show closed-loop 

stability and to find the performance weight  with respect to which the spatially uniform symmetric gain 

 

 
 

is inversely optimal. The problem of inverse optimality amounts to finding the performance weight  for which an 

a priori specified  is the corresponding optimal state-feedback gain [34], [35]. From linear quadratic regulator 

theory, the optimal state-feedback gain is given by  where  is the positive definite solution of 

 

 
 

For the kinematic model (VP1),   and , with , we have . Therefore, 

the state penalty  guarantees inverse optimality  of the spatially uniform symmetric gain . The above 

procedure of finding  can be applied to any structured gain  that yields a symmetric positive definite , e.g., 

the optimal symmetric gain of Section III. 

 

B. Perturbation Analysis for  

We next utilize perturbation analysis to solve (SH2) with  given by (11) for . For small , by representing 

P,  L, and F as substituting in (NC1)–(NC3), and collecting same-order terms in , we obtain the set of equations 

(PA), shown at the bottom of the page, with . Note that these equations are conveniently coupled in 

one direction, in the sense that for any , equations depend only on the solutions of  equations for 

 .  
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In particular, it is easy to verify that the first and the third equations of   are satisfied with  

and with  identified in Section IV-A. Thus, the matrix  can be obtained by solving the second equation  

of , and the matrices  can be obtained by solving the first, the third, and the second 

 

 

 

 
 

equations of  , respectively. The higher order terms  and  can be determined in a similar fashion. The 

matrix found by this procedure is the unique optimal solution of the control problem (SH2) for . This is 

because the equations (PA), under the assumption of convergence for small , give a unique matrix 

We next provide analytical expressions for  obtained by solving the  equations in (PA) with 

When a fictitious follower is present, we have (derivations are omitted for brevity) 

 

 
 

Where  and  denote the nth diagonal entries of   and . From (12) it follows that  for 

 . When a fictitious follower is not present, we have 

 

 
 

To compute the optimal structured feedback gain for larger values of   we use  obtained from perturbation 

analysis to initialize Newton’s method, as described in Section IV-C. 
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C. Newton’s Method for Larger Values of  

In this section, we employ Newton’s method developed in [29] to solve the necessary conditions for 

optimality (NC1)–(NC3) as  is gradually increased to 1. Newton’s method is an iterative descent algorithm for 

finding local minima in optimization problems [32]. Specifically, given an initial stabilizing structured gain  , a 

decreasing sequence of the objective function   is generated by updating  according to 

 . Here,   is the Newton direction that satisfies the structural constraint and   is the step-

size. The details of computing    and choosing the step-size can be found in [29].  

For small  , we initialize Newton’s method using  obtained 

from the perturbation expansion up to the first order in , . We then increase slightly and 

use the optimal structured gain resulting from Newton’s method at the previous  to initialize the next round of 

iterations.We continue increasing   gradually until desired value = 1 is reached, that is, until the optimal 

structured gain F for the desired  is obtained.  

Since the homotopy-based Newton’s method solves a family of optimization problems parameterized by , 

the optimal feedback gain is a function of  . To see the incremental 

change relative to the spatially uniform gain , we consider the difference between the optimal forward gain  

and the uniform gain  

 

 
 

Fig. 4(a) shows the normalized profile  for a formation with fictitious follower 

 and . The values of are determined by 20 logarithmically spaced points between 

 and 1. As   increases, the normalized profile changes from an almost sinusoidal shape (cf. analytical 

expression in (12)) at   to an almost piecewise linear shape at . Note that the homotopy-based 

Newton’s method converges to the same feedback gains at  when it is initialized by the optimal symmetric 

controller obtained in Section III.  

Since the underlying path-graph exhibits symmetry between the edge pairs associated with  and , the 

optimal forward and  backward gains satisfy a central symmetry property, 

 

 
 

for all  see Fig. 4(b) for . We note that the first vehicle has a larger forward gain than other 

vehicles; this is because it neighbors the fictitious leader. The forward gains decrease as one moves away from the 

fictitious leader; this is because information about the absolute desired trajectory of the fictitious leader becomes 

less accurate as it propagates down the formation. Similar interpretation can be given to the optimal 
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backward gains, which monotonically increase as one moves towards the fictitious follower.  

Since the 1st vehicle has a negative backward gain (see Fig. 4(b)), if the distance between the 1st and the 

2nd vehicles is greater than the desired value , then the 1st vehicle distances itself even further from the 2nd vehicle. 

On the other hand, if the distance is less than , then the 1st vehicle pulls itself even closer to the 2nd vehicle. This 

negative backward gain of the 1
st
 vehicle can be interpreted as follows: Since the 1st vehicle has access to its global 

position, it aims to correct the absolute positions of other vehicles in order to enhance formation coherence. If the 

2nd vehicle is too close to the 1st vehicle, then the 1st vehicle moves towards the 2nd vehicle to push it back; this in 

turn pushes other vehicles back. If the 2nd vehicles is too far from the 1st vehicle, then the 1st vehicle moves away 

from the 2nd vehicle to pull it forward; this in turn pulls other vehicles forward. Similar interpretation can be given 

to the negative forward gain 

of the Nth vehicle that neighbors the fictitious follower. Also note that the forward gain of the Nth vehicle becomes 

positive when the fictitious follower is removed from the formation; see Fig. 5(c). This perhaps suggests that 

negative feedback gains of the 1st and the Nth vehicles are a consequence of the fact that both of them have access 

to their own global positions. 

As shown in Fig. 5(a) and (b), the normalized optimal gains for the formation without the fictitious 

follower also change continuously as increases to 1. In this case, however, the optimal forward and backward gains 

do not satisfy the central symmetry; see Fig. 5(c). Since the optimal controller puts more emphasis on the vehicles 

ahead when the fictitious follower is not present,  the forward gains have larger magnitudes than the backward gains. 

As in the formations with the fictitious follower, the optimal forward gains decrease monotonically as one moves 

away from the fictitious leader. On the other hand, the optimal backward gains at first increase as one moves away 

from the 1st vehicle and then decrease as one approaches the Nth vehicle in order to satisfy the constraint . 

 

 

 

V. Performance Versus Size for the Single-Integrator Model 

In this section, we study the performance of the optimal symmetric and non-symmetric gains obtained in 

Sections III and IV-C. This is done by examining the dependence on the formation size of performance measures 

  and introduced in Section II-C. Our results highlight the role of non-symmetry and spatial variations 
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on the scaling trends in large-scale formations. They also illustrate performance improvement achieved by the 

optimal controllers relative to spatially uniform symmetric and non-symmetric feedback gains. 

For the spatially uniform symmetric gain with  , we show analytically that  is an 

affine function of N. This implies that the formation coherence scales linearly with N irrespective of the value of  . 

We also analytically establish that the spatially uniform non-symmetric gain with   (look-

ahead strategy) provides a square-root asymptotic dependence of  . Thus, symmetry breaking between the 

forward and backward gains may improve coherence of large-scale formations. Note that the forward-backward 

asymmetry also provides more favorable scaling trends of the 

 

Table II 

Asymptotic Dependence of  and  on the formation size N for uniform symmetric, uniform non-

symmetric (look ahead strategy), and optimal symmetric and non-symmetric gains of sections III and IV-C with Q = 

I and r = 1. The scalings displayed in red are determined analytically; other scalings are estimated based on 

numerical computations 

 

 
  

least damped mode of the closed-loop system [10]. We then investigate how spatially varying optimal feedback 

gains, introduced in Sections III and IV-C, influence coherence of the formation. We show that the optimal 

symmetric gain provides a square-root dependence of  on N and that the optimal non-symmetric gain provides a 

fourth-root dependence of  on N. 

Even though we are primarily interested in asymptotic scaling of the global performance measure , we 

also examine the local performance measure  and the control energy . From Section II-C we recall that the 

global and local performance measures quantify the formation-size-normalized  norm of the transfer function 

from    of the closed-loop system, 

 

 
 

And that  is the formation-size-normalized  norm of the transfer function from . These can be 

determined from  

 

 
 

Where L denotes the closed-loop controllability of Gramian 

 

 
 

 

The asymptotic scaling properties of   for the above mentioned spatially uniform 

controllers and the spatially varying optimal controllers, obtained by solving (SH2) with Q = 1 and  r=1, are 

summarized in Table II. For both spatially uniform symmetric and look-ahead strategies, we analytically determine 

the dependence of these performance measures on the formation size in Sections V-A and V-B. Furthermore, for the 
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formation without the fictitious follower subject to the optimal symmetric gains, we provide analytical results in 

Section V-C. For the optimal symmetric and non-symmetric gains in the presence of fictitious followers, the scaling 

trends are obtained with the aid of numerical computations in Section V-C.   

Several comments about the results in Table II are given next. .First, in contrast to the spatially uniform 

controllers, the optimal symmetric and non-symmetric gains, resulting from an N-independent control penalty r in 

(SH2), do not provide uniform bounds on the control energy per vehicle,  . This implies the trade-off between 

the formation coherence   and control energy  in the design of the optimal controllers. It is thus of interest to 

examine formation coherence for optimal controllers with bounded control energy per vehicle (see Remark 2). 

Second, the controller structure (e.g., symmetric or non-symmetric gains) plays an important role in the formation 

coherence. In particular, departure from symmetry in localized feedback gains can significantly improve coherence 

of large-scale formations (see Remark 3). 

 

A. Spatially Uniform Symmetric Gain 

 For the spatially uniform symmetric controller with  , we next show   that is an affine 

function of and that, in the limit of an infinite number of vehicles, both  become formation-size-

independent. These results hold irrespective of the presence of the fictitious follower.  

 For the single-integrator model with the fictitious follower we have  (see (5) for the 

definition of  T), and  solves the Lyapunov equation (14) [31, Lemma 1]. Since the nth diagonal entry 

of  is determined by (cf. (8)) 

 

 
 

 from (13) we conclude that the global performance measure  is an affine function of N, and that both  

are formation-size-independent,  

 

 
 

For the formation without the fictitious follower, the following expressions  

 

 
 

imply that, for the spatially uniform symmetric controller, the asymptotic scaling trends do not depend on the 

presence of the fictitious follower (derivations omitted for brevity).  

 

B. Spatially Uniform Non-Symmetric Gain (Look-Ahead Strategy) 

 We next examine the asymptotic scaling of the performance measures for the spatially uniform non-

symmetric gain with . We establish the square-root scaling of with and the formation-size-

independent scaling of . Furthermore, in the limit of an infinite number of vehicles, we show that  becomes N-

independent. 



17 
 

 

 
 

For the single-integrator model with   (see (3) for the definition of  ), the solution of the Lyapunov 

(14) is given by 

 
As shown in Appendix B, the inverse Laplace transform of  can be used to determine the analytical 

expression for  , yielding the following formulae: 

 

 
 

 With  denoting the Gamma function. These are used in Appendix B to show that, in the limit of an infinite 

number of vehicles, a look-ahead strategy for the single-integrator model provides the square-root dependence of  

on N and the formation-size-independent  . 

 

C. Optimal Symmetric and Non-Symmetric Controllers 

We next examine the asymptotic scaling of the performance measures for the optimal symmetric and non-symmetric 

gains of Sections III and IV-C. For the formation without the fictitious follower, we analytically establish that the 

optimal symmetric gains asymptotically provide , , and  scalings of  

respectively. We then use numerical computations to (i) confirm these scaling trends for the optimal symmetric 

gains in the presence of the fictitious follower; and to (ii) show a fourth-root dependence of  and   on N and an

  dependence of  for the optimal non-symmetric gains. All these scalings are obtained by solving (SH2) 

with the formation-size-independent control penalty  and . We also demonstrate that uniform control 

variance (per vehicle) can be obtained by judicious selection of an N-dependent . For the optimal symmetric and 

non-symmetric gains, this constraint on control energy (variance) increases the asymptotic dependence of  on N to 

linear and square-root, respectively. For the formation without the fictitious follower, the optimal symmetric gains 

are given by (9). As shown in (10),  , thereby yielding  
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 In the limit of an infinite number of vehicles,  

 

 
 

which, for an N-independent , leads to an asymptotic squareroot dependence of  

 

 
 

Similar calculation can be used to obtain  asymptotic scaling of  .  

 We next use numerical computations to study the scaling trends for the optimal symmetric and non-

symmetric gains in the presence of fictitious followers. The optimal symmetric gain (cf. in Fig. 3) provides a square-

root scaling of   with N; see Fig. 6(a). On the other hand, the optimal non-symmetric gain (cf. Fig. 4(b)) leads to a 

fourth-root scaling of  with N; see Fig. 6(b). The local performance measure  decreases monotonically with N 

for both controllers, with  scaling as  for the optimal symmetric gain and as  for the optimal non-

symmetric gain; see Fig. 7. For both the optimal symmetric and non-symmetric controllers, our computations 

indicate equivalence between the control energy 

 

 
Fig. 7. (a)  using the optimal symmetric gain of Section III,   (curve); and (b)  using the 

optimal non-symmetric gain of Section IV-C (curve). The optimal controllers are obtained by solving 

(SH2)   with  and for the formation with the fictitious follower. 

 

and the global performance measure when . (For the optimal symmetric gain without the fictitious follower 

and ,we have analytically shown that ; see formula (16).) Therefore, the asymptotic scaling of the 

formation-size-normalized control energy is  for the optimal symmetric gain and   for the optimal non-

symmetric gain. Finally, for the formations without the fictitious follower, our computations indicate that the 

optimal non-symmetric gains also asymptotically provide , , scalings of , 

, and , respectively. 

 Remark 2: In contrast to the spatially uniform controllers, the optimal structured controllers of Sections III 

and IV-C, resulting from an N-independent control penalty  in (SH2), do not provide uniform bounds on the 

formation-size-normalized control energy. These controllers are obtained using  framework in which control 

effort represents a ‘soft constraint’. It is thus of interest to examine formation coherence for optimal controllers with 

bounded control energy per vehicle. For formations without the fictitious follower, from (17) we see that the 
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optimal symmetric controller with  asymptotically yields . 

Similarly, for formations with followers, the optimal gains that result in  for large N can be obtained by 

changing control penalty from   to  for the optimal symmetric gain and to  for 

the optimal non-symmetric gain.
2
 These -dependent control penalties provide an affine scaling of  with N for the 

optimal symmetric gain and a square-root scaling of  with N for the optimal non-symmetric gain; see Fig. 8. The 

asymptotic scalings for formations without followers subject to the optimal symmetric gains are obtained 

analytically (cf. (17)); all other scalings are obtained with the aid of computations. Remark 3: Fig. 8 illustrates the 

global performance measure  obtained with four aforementioned structured controllers that asymptotically yield 

 for formations with fictitious follower. Note that the simple look-ahead strategy outperforms the optimal 

symmetric gain; scaling. Thus, departure from symmetry in localized feedback gains can 

significantly improve coherence of large-scale formations. In 

 

 
 

 

Fig. 8.  using four structured gains with   for formations with fictitious follower: spatially uniform 

symmetric  (blue curve), spatially uniform non-symmetric  (green curve), optimal 

symmetric  (black curve), and optimal non-symmetric  (red curve). 

 

particular, we have provided an example of a spatially uniform non-symmetric controller that yields better scaling 

trends than the optimal spatially varying controller obtained by restricting design to symmetric gains. Given the 

extra degrees of freedom in the optimal symmetric gain this is perhaps a surprising observation, indicating that the 

network topology may play a more important role than the optimal selection of the feedback gains in performance of 

large-scale interconnected systems. On the other hand, our results showthat the optimal localized controller that 

achieves the best performance is both non-symmetric and spatially-varying. 

 

VI. Double-Integrator Model 

In this section, we solve (SH2) for the double-integrator model using the homotopy-based Newton’s method. We 

then discuss the influence of the optimal structured gain on the asymptotic scaling of the performance measures 

introduced in Section II-C. For a formation in which each vehicle—in addition to relative positions with respect to 

its immediate neighbors—has access to its own velocity, our results highlight similarity between optimal forward 

and backward position gains for the single- and the double-integrator models. We further show that the performance 

measures exhibit similar 

                                                           
2 Both spatially uniform symmetric and look-ahead strategies with yield  in the limit of an infinite number of vehicles. 
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Fig 9. Double-integrator model with fictitious follower N = 50, Q = 1 and r = 1. (a) The optimal forward  and 

backward gains (+); (b) the optimal velocity gains . 

 

scaling properties to those found in single-integrators. We also establish convexity of (SH2) for the double-

integrator model by restricting the controller to symmetric position and uniform diagonal velocity gains. 

The perturbation analysis and the homotopy-based Newton’s method closely follow the procedure described in 

Sections IV-B and IV-C, respectively. In particular,  yields . As shown in [35], for 

positive  with , this spatially uniform structured feedback gain is stabilizing and inversely optimal 

with respect to 

 

 
 

In what follows, we choose  and employ the homotopy-based Newton’s method to solve (SH2) for 

the double-integrator model. For a formation with fictitious follower,  , and  the optimal 

forward and backward position gains are shown in Fig. 9(a) and the optimal velocity gains are shown in Fig. 9(b). 

We note remarkable similarity between the optimal position gains for the singleand the double-integrator models; cf. 

Fig. 9(a) and Fig. 4(b). For a formation without fictitious follower, the close resemblance between the optimal 

position gains for both models is also observed. As in the single-integrator model, our computations indicate that the 

optimal localized controller, obtained by solving (SH2) with  , provides a fourth-root dependence 

of the macroscopic performance measure  ; see Fig. 10(a). Furthermore, the microscopic performance 

measure and control energy asymptotically scale as  and respectively; see Fig. 10(b) and (c). For 

comparison, we next provide the scaling trends of the performance measures for both the spatially uniform 

symmetric and look-ahead controllers. As in the single-integrator model, the spatially uniform symmetric gain 

 provides linear scaling of  with N and the formation-size-independent  

 

 
 

On the other hand, for the double-integrator model the performance of the look-ahead strategy  

heavily depends on the choices of  and . In particular, for  and , using similar techniques as in Section 

V-B, we obtain 

 

 
 

which asymptotically leads to the formation-size-independent scaling of  and the square-root scaling of  with 

N, i.e., . This is in sharp contrast to  which leads to an exponential dependence 

of  on N. Therefore, the design of the look-ahead strategy is much more subtle for double-integrators than for 
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single-integrators. Remark 4: For the double-integrator model with   and fixed  we next 

show convexity of (SH2) with respect to . The Lyapunov equation in (SH2), for the block diagonal 

state weight  with components , can be rewritten in terms of the components of  

, 

 

 
 

Linearity of the trace operator in conjunction with  and (18c) yields 

 

 
 

where the last equation is obtained by multiplying (18a) from the left with  and using  

For  similar argument as in Section III can be used to conclude convexity of J with respect to . 

 

VII. Conclusion 

We consider the optimal control of one-dimensional formations with nearest neighbor interactions between the 

vehicles. We formulate a structured optimal control problem in which 

 

 
 

local information exchange of relative positions between immediate neighbors imposes structural constraints on the 

feedback gains. We study the design problem for both the single- and the double-integrator models and employ a 

homotopy-based Newton’s method to compute the optimal structured gains. We also show that design of symmetric 

gains for the single-integrator model is a convex optimization problem, which we solve analytically for formations 

with no fictitious followers. For double-integrators, we identify a class of convex problems by restricting the 

controller to symmetric position and uniform diagonal velocity gains. Furthermore, we investigate the performance 

of the optimal controllers by examining the asymptotic scalings of formation coherence and control energy with the 

number of vehicles. For formations in which all vehicles have access to their own velocities, the optimal structured 

position gains for single- and a performance index rather than by performing spectral analysis. 

We also show how a homotopy-based Newton’s method can be employed to obtain non-infinitesimal variation in 

feedback gains that minimizes the desired objective function. Furthermore, we establish several explicit scaling 

relationships and identify a spatially uniform non-symmetric controller that performs better than the optimal 
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symmetric spatially varying controller  vs. scaling of coherence with  control energy per 

vehicle). This suggests that departure from symmetry can improve coherence of large-scale formations and that 

the controller structure may play a more important role than the optimal feedback gain design. On the other hand, 

our results demonstrate that the best performance is achieved with the optimal localized controller that is both non-

symmetric and spatially-varying. Currently, we are considering the structured feedback design for formations on 

general graphs [6], [8], [23], [36], [37] with the objective of identifying topologies that lead to favorable system-

theoretic properties [28], [38], [39]. Even though this paper focuses on the optimal local feedback design for one-

dimensional formations with path-graph topology, the developed methods can be applied to multi-agent problems 

with more general network topologies. 

 

Appendix 

A. Gradient Method for (SG) 

 

We next describe the gradient method for solving (SG). Let us denote . Starting with an initial 

guess  that guarantees positive definiteness of , vector  is updated , until the norm of 

gradient is small enough,  . Here,  is the step-size determined by the backtracking line search [32, 

Section 9.2]: let  and repeat  with until a sufficient decrease in the objective function is 

achieved, 

 

 
 

where . Note that  is defined as infinity if K in (7) determined by is not positive definite. For , 

 

 
 

the entries of the gradient  are given by 

 

 
 

B. Performance of Look-Ahead Strategy 

We next derive the analytical expressions for the performance measures  obtained with the look-ahead 

strategy for the single-integrator model. The solution of the Lyapunov equation (14) with  is determined 

by (15). Since the ith entry of the first column of the lower triangular Toeplitz matrix  is , 

 

 
 

the corresponding entry of the matrix exponential in (15) is determined by the inverse Laplace transform of 

, Thus, the nth element on the main diagonal of the matrix L in (15) is given by 
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thereby yielding 

 

 
 

A similar procedure can be used to show that the th entry of L is determined 
 

 
 

Now, from (21) and the fact that  we obtain 

 

 
 

Similarly, 

 

 
 

Using Stirling’s approximation  for large n, we have 

 

 
 

where we used the fact that . Consequently, 

. From (19) and (20), it follows 

That  and thus, . We conclude that  asymptotically scales as a 

square-root function of N and that  is formation-size-independent 

as increases N to infinity. 
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