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ABSTRACT 
This paper considers the noise-enhanced distributed detection problem in the presence of Byzantine (malicious) 
nodes by suitably adding stochastic resonance (SR) noise. We consider two metrics - the minimum number of 
Byzantines ( ) needed to blind the fusion center as a security metric and the Kullback- Leibler divergence 
(DKL) as a detection performance metric. We show that  increases when SR noise is added at the honest 
nodes. When Byzantines also start adding SR noise to their observations, we see no gain in terms of . 
However, the detection performance of the network does improve with SR. We also consider a game theoretic 
formulation where this problem of distributed detection in the presence of Byzantines is modeled as a minimax 
game between the Byzantines and the inference network, and numerically find Nash equilibria. The case when SR 
noise is added to the signals received at the fusion center (FC) from the sensors is also considered. Our numerical 
results indicate that while there is no gain in terms of , the network-wide performance measured in terms of 
the deflection coefficient does improve in this case  
 

I. INTRODUCTION 
Inference networks have been widely investigated for the past three decades in order to detect or estimate a 
phenomenon of interest. Specifically, the distributed detection framework has been considered extensively, wherein 
several nodes sense the surrounding environment and collaboratively make a global inference at the fusion center 
(FC). It is only in the recent past that the researchers have investigated the problem of security threats in these 
networks. In this paper, we consider the problem of Data Falsification attacks (in other words, Byzantine attacks) in 
the context of distributed inference networks. Our primary focus is on designing a technique based on the stochastic 
resonance (SR) phenomenon to safeguard the network from Byzantine attacks. 
 SR is a physical phenomenon where the output signals of some nonlinear systems can be amplified by 
adding noise to the input. This counter-intuitive phenomenon was first observed by Benzi et al., in [1], and, we have, 
in the past [2], explored and developed the theory of SR for statistical inference problems. For a single sensor 
detection problem formulated under the Neyman-Pearson (NP) framework, the optimal SR noise to be added to the 
observations at the input of the detector has a probability density function (pdf) consisting of two Kronecker delta 
functions each occurring with probability  and ( ). For the Bayesian case, a single delta function with unit 
probability (i.e., a constant) is the optimal SR noise pdf. The formulation was also extended to a distributed 
detection framework in [3]. Here, we consider the case when some of the sensors deployed in a region of interest 
(ROI) deliberately report incorrect decisions to a remotely located fusion center, thus causing a reduction in the 
overall detection performance. Here, we show how one could use SR to counter such Byzantine attacks.  
 Byzantine attacks (Figure 1) are those attacks in which some of the sensors within the network send false 
information to the fusion center in order to disrupt the inference process. The Byzantines intend to deteriorate the 
detection performance of the network and therefore, modify their local decisions before transmitting to the fusion 
center. Marano et al. considered a distributed detection problem for an inference network in the presence of 
Byzantines in [4] and presented the optimal attacking distribution for the Byzantines under the error exponent 
framework. In finding the minimum fraction of Byzantines ( ) needed to make the two hypotheses 
indistinguishable to the FC, they assumed that the Byzantines have perfect knowledge about the true hypothesis. 



 
 

Rawat et al. in [5] considered the case when Byzantines did not have the knowledge regarding hypothesis present, 
and gave a closed-form expression for under both independent and collaborative Byzantine attacks.  
 In the past, reputation-based schemes at the fusion center have been suggested to counter these attacks. 
Rawat et al. analysed a similar problem in [5], for the cases of independent attack by individual Byzantines as well 
as the collaborative attack case. They developed optimal attacking strategies, analyzed limits on the network 
performance under these attacks and proposed identify-and-eliminate strategies for the fusion center to counter these 
attacks. Note that this scheme works only when the percentage of Byzantines in the network is less than 50%. On 
the other hand, the adaptive learning scheme proposed by Vempaty et al. in [6] works for any fraction of Byzantines  
 
 

 
 
in the network. They learnt the operating points of each and every node in the inference network not only to identify 
the Byzantines, but also to use the learnt Byzantine parameters in an adaptive fusion rule in order to improve the 
detection performance over Rawat et al.’s scheme [5].  
 We suggest the use of SR phenomenon to counter these attacks under more severe cases. We explore the 
optimal SR to be added, where it should be added and under what conditions, it provides improvement in security 
along with the performance gain, i.e., an increase in along with an improvement in a detection performance 
metric. We have also considered the attacks in the presence of different types of channels between the phenomenon 
of interest and the local sensors. We found analytical expressions to quantify the improvement in performance.  
 The remainder of the paper is organized as follows. Section II presents a general system model and 
performance metrics that are applicable to the different formulations of the noise-enhanced distributed inference 
problem, which are later presented in III. We present the two scenarios of SR being employed locally at the sensors 
and SR being applied at the FC. In Section IV, we present a game-theoretic formulation of the noise-enhanced 
distributed inference problem in the presence of Byzantines. Next, in Section V, we present numerical results for the 
different scenarios and formulations presented earlier. Finally, we conclude the work in Section VI with a few 
comments on our future work. 
 

II. GENERALIZED SYSTEM MODEL 
We consider a binary hypotheses testing problem involving hypotheses H0 and H1, with prior probabilities 0 and   

1 respectively. Let the collaborative inference network comprise of N nodes, M of which are Byzantine (malicious) 
in nature, and a fusion center which makes a global decision based on the observations collected locally at the sensor 
nodes. The Byzantine nodes send false information to the fusion center in order to deteriorate the performance of the 
inference network. The inference network tries to employ SR noise as well as counterattack the Byzantines by 
changing its strategy of decision making in order to reduce the performance deterioration caused by Byzantines.  
 We denote the i.i.d. observations made at the ith sensor as Xi, and the distribution of Xi conditioned on the 
hypothesis Hk as  = 0, 1. In particular, we consider the signal model , where  = 0 under H0,  
= A under H1  and  for simplicity.  
 Due to the presence of a suboptimal quantizer at the local sensors, under Scenario-1 (In Scenario-2, SR 
noise will be added at the FC), SR noise is added to the observations in order to improve the detection 
performance. Hence, the updated observation at the ith sensor is given by 

 
Here, we denote the pdf of the SR noise  added at the honest node as and that of the Byzantine node as 

. Let  be defined as  

 



 
 

 Then pdf of  can be written as 

 

where is the noise pdf in the channel between the phenomenon and the sensor and is the pdf of SR at 
the sensor of type T (Honest/Byzantine).  
 We restrict our discussion to a hard quantizer at the local sensors and therefore, if the suboptimal 
quantization function is given by for a node of type , the operating point of the honest and the 
Byzantine nodes in the ROC is given by respectively. Note that, in this paper, we focus our 
discussion on the use of sign detector as the suboptimal quantizer at the local decision-making stage. These 
operating points can be expressed as follows, for a sign detector employed in the sensor of type T.  
 

 
 
 If  is the probability with which a node is Byzantine, then the effective operating point of any given node, 
as observed by the FC, is given by  
 

 
 

 Note that, empirically,  can be expressed as the fraction ( ) of Byzantine nodes in the inference network. 
We assume that the fusion center has knowledge about the fraction of Byzantines, in the network, but cannot 
differentiate between the honest and Byzantine sensors (same as Rawat et al. in [5]). 
 Assuming that the channels between the sensors and the FC are ideal, if denote the set of 
transmitted messages by the sensors to the FC, then a global decision  is made by fusing these 
individual local decisions as follows.  
 

 
A. Performance metrics 
 In this paper, we consider Kullback Leibler Divergence as the detection performance metric and as 
the security performance metric, which are described as follows.  
 Kullback-Leibler Divergence: DKL has been used as a performance metric for distributed detection systems. 
It is a measure of the distance between two probability distributions. Here, the two distributions are in the presence 
of the two hypotheses respectively. As pointed out by Rawat et al. in [5], the 
Byzantines would try to maximize the damage they can cause to the sensing process. This can be done by reducing 
DKL which results in more decision errors. 
 



 
 

 
 

 Blinding fraction of Byzantines:  is the minimum fraction of Byzantines needed to degrade the 
performance of the network (DKL = 0) to the maximum possible extent so that the network is totally blind of the 
phenomenon of interest. Similar to Rawat et al., in [5], this serves as a security metric that defines the level of 
security, a given system is offering. This can be expressed as follows. 
 

 
 
 

III. NOISE-ENHANCED DISTRIBUTED INFERENCE IN THEPRESENCE OF BYZANTINES 
In this section, we analyze the effect of stochastic resonance on the network performance in the presence of 
Byzantine attack. Chen et al., in [7], have shown that, for sub-optimal and non-linear systems, SR can be used to 
improve the detection performance under a constraint on the false alarm rate. Hence, in this paper, we employ SR 
locally at the sensors in Section III-A and do the same at the FC in Section III-B and analyze the gain in the 
detection performance.  
 

A. SR employed at the local sensors  
 We present our results in two different cases. First, we present an ideal case where SR is employed only at 
the honest nodes, demonstrating the potential of SR effect in terms of the gain in security. Next, we show the most 
general case when SR is applied at both honest and Byzantine nodes.  
 1) CASE-1 (SR employed only at the Honest Nodes): Here, we investigate the most favorable case to the 
network, wherein SR is added only at the honest local sensors and the Byzantines flip their decisions 
deterministically. One can achieve this system in practice if there is an underlying scheme as proposed by [5] or [6] 
in the network, which lets the FC identify the Byzantine nodes. The nodes which are tagged honest, are later 
informed to employ SR through some feedback mechanism, while the nodes that are tagged Byzantine are left 
ignorant. Presently, we do not consider the uncertainty involved in the tagging process. This is an important problem 
which will be addressed in our future work.  
 We start off with the following lemma where we analyze the behavior of  and find the optimal SR 
pdf that maximizes  from honest sensors’ perspective.  
 
Lemma 1. To maximize , the optimum SR noise at the honest nodes can be expressed as 
 

 
i.e. 1-peak SR is optimum for obtaining the maximum   
 
Proof: Define , for a given , a is a constant and also a > 0. Therefore, 
 



 
 

 
 
 Thus, is a monotonically increasing function w.r.t . Therefore, in order to maximize , we 
must maximize . This is very similar to the problem of finding the optimal SR noise pdf for Byzantine detection 
(minimizing Pe), as described in [8], and hence  is maximized by a 1-peak SR. In other words, 1-peak noise is the 
optimal SR signal that maximizes . 
 In this case, the network performance improves because the honest nodes’ performance is improved, while 
the Byzantines’ performance remains the same. Therefore, we expect an increase in , thereby improving the 
robustness of the network. We show this phenomenon in the following two examples.  
  a) Example-1 (Gaussian mixture noise): The channel noise between the primary transmitter and 
the local sensors is symmetric, Gaussian mixture with pdf, 
 

 
 

where, . Here, we set . The distribution of  under H0 
and H1 hypotheses are, 
 

 
respectively. 
 If we add 1-peak SR only at the honest nodes, we can obtain  as given in Equation 
(12). 
  b) Example 2 (Cauchy Noise): The pdf for cauchy noise is given by 
 

 
 
 We now compute the optimum 1-peak SR for this channel. Following the discussion of [8], the optimal 1-
peak SR should satisfy the following equation 
 

 
 
On solving the above equation, we get 
 

 
 
For the case when 1-peak SR is added at the honest nodes only, the  expression after substituting (13) is 
given in Equation (17).  
 It is easy to see that both the expressions in Equations (12) and (17) are greater than or equal to 0.5. 
 2) CASE-2 (SR at honest and Byzantine nodes): Both Byzantine and honest sensors apply SR noise to their 
true observations in order to improve their respective performances. But the Byzantines’ choice of the SR signal is 
the one which reduces the performance of the network to the maximum possible extent, while that of the honest 



 
 

sensors is to improve the performance of the network. It is easy to see that the optimal SR noise pdf from the 
Byzantine’s perspective is also a one-peak pdf.  
 When both honest and the Byzantine nodes use the optimal SR to improve their performance, then 
again turns out to be 0.5, as in the case of no-SR. This can be explained from Equation (8) as both the optimal pdfs 
for SR at the honest and the Byzantine nodes are the same. Intuitively, this can be explained by the fact that the 
optimal strategy for the Byzantine nodes is to employ the same strategy as that of the honest nodes which employ 
optimal strategies to improve the performance of the network. The deterministic flipping of data at the Byzantine 
nodes results in the maximum degradation in the performance of the network.  
 In the case when the honest nodes have a majority in the network, then one can immediately perceive an 
improvement in the global detection performance. This is later justified in our numerical results presented in Section 
V.  
 
B. SR employed at the FC  
 Next, we consider the addition of SR noise at the fusion center. We assume a Rayleigh fading model to 
account for the non-ideal transmissions between the local sensors and the fusion center. This model for sensor-to-
fusion center channels has been analyzed in the past (See [9]–[11]). In [10], an optimal likelihood ratio (LR)-based 
fusion was derived assuming full knowledge of the instantaneous channel state information (CSI) and local sensor 
detection performance indices. In [11], the likelihood ratio based on channel statistics (LRT-CS) was derived and 
shown to perform well as compared to the optimal LR fusion rule. The test eliminates the need for instantaneous 
CSI, but still requires knowledge of the channel statistics as well as the performance indices of the local sensors. The 
fusion rule that requires the least information is the equal gain combiner (EGC) given below.  
 

 
 
Fig. 2: Inference network model when SR is employed at the FC 

 
where  is the signal received from the kth node after the SR noise is added (Refer to Figure 2). It has been shown 
that the EGC based fusion rule, although suboptimal, performs 



 
 

 
 
reasonably well for most practical SNR values [10]. We, therefore, consider the EGC based fusion rule in this work, 
and investigate if its performance can be enhanced using SR in the presence of Byzantines. We use the deflection 
coefficient [12], 

 
as a performance criterion due to its simplicity and its strong relationship with the actual overall detection 
performance [13]. 
 

 
IV. GAME-THEORETIC MODEL FOR DISTRIBUTED INFERENCE IN THE PRESENCE OF 

BYZANTINE NODES 
In this section, we will analyse the problem of Byzantine attacks on the network in the presence of SR at the local 
sensors from a game theoretic perspective. Byzantines and the network are the two players of the game. The aim of 
the Byzantines is to deteriorate the performance of the network while the network’s goal is to survive the Byzantine 
attack and improve the performance to maximum possible extent.  
 We formulate a zero-sum game between the Byzantine nodes and the inference network as a two-player 
zero-sum minimax game between the Byzantine nodes and the network with the utility function as the KL 
divergence. The set of strategies for the Byzantine node is defined by the p.d.f. of the SR noise, employed at 
the Byzantine nodes, while that of the honest nodes is defined by . Hence, the problem statement is given as 
follows.  
 
Problem Statement. Find such that 
 

 
 
 

where , whenever . Otherwise, . This is necessary in order to take into account the 
performance domination of Byzantines in the game, which the traditional  does not provide us due to its non-
negativity and symmetry about .  
 In this paper, we consider an example where  (as given in Equation (9)) is a Gaussian mixture 
noise with two peaks. Due to the concavity of the log (·) function, one can easily show that the optimal SR noise is 
again a one-peak SR noise. This is because the optimal strategy in the case of a quasiconcave or a quasiconvex 
payoff function results in an atomic distribution for the mixed strategy [14]. Therefore,

. 
 



 
 

V. NUMERICAL RESULTS 
In this section, we present our numerical results for a network of N = 100 sensors. We consider two different cases 
to apply SR in the distributed inference network - one is the case when we apply SR only to the observations at the 
local sensors and the other being the case when SR is employed at the FC. We present these two scenarios in the 
following subsections.  
 Note that in order to analyze this system, we consider the following three types of SR noises. 
 

• Optimal 1-peak SR 

 
Note: The optimal 1-peak SR which should be added for this case can be obtained from the discussion of [8]. 
 

• Optimal 2-peak SR 
 

where   = 0.3085 
 

• Optimal Gaussian SR noise  
 
A. Scenario 1: SR applied locally at the nodes  
 As discussed earlier in Section III, we first present our results for the case when honest nodes alone employ 
SR, and later present the case when both honest and Byzantine nodes employ SR locally. 
 CASE-1 (SR employed at the honest nodes alone): First, we assume that all the sensors are identical (i.e., in 
the absence of SR, all the sensors have the same values of ) and that only the honest sensors add SR. The 
Byzantines are attacking independently without any collaboration amongst themselves by simply flipping their 
decisions before sending them to the fusion center. 

 
  
 Figure 3 shows the performance enhancement obtained by adding SR to honest nodes only. Figure 3a 
depicts the change in  with the no. of Byzantines in the network for the no- SR as well as with-SR case. Since the 
no-SR curve is barely visible, it is shown in an expanded view in Figure 3b. Clearly, all the curves follow a similar 
trajectory with the difference being their magnitudes and the values on the x-axis at which the  decays to zero 
(which correspond to for the different cases - the minimum fraction of Byzantines required to make the 
fusion center blind).  
 The no SR curve drops to zero when 50% of the sensors are Byzantines ( = 0.5), since at this point, 
both the honest and Byzantine sensors become equally strong. The Gaussian SR noise provides some improvement 
compared to the no- SR case in terms of both relative magnitudes and . The optimal 2-peak SR noise gives 
further improvement and the performance is maximized by the 1-peak SR noise. As pointed out earlier, the 1-peak 
SR is the optimal noise to be added. Table I shows the values of for all the cases. We have compared the 
results obtained from the simulations with our analytical results and both are in close agreement. 
 



 
 

 
 

 Next, we consider the case when the network is heterogeneous. To examine the robustness of the system, 
we look at the case if the Byzantines have better performance compared to the honest sensors, particularly when the 
probability of detection is higher compared to the honest sensors for the same value of probability of false 
alarm .  
 Fig. 4 shows the  vs. No. of Byzantines plot for this scenario. Optimal 1-peak SR noise is added at the 
honest local sensors. For the same values of , we plot three curves for three different increasing values of . 
One can see that as the Byzantines become stronger, the network performance deteriorates since drops to zero 
more rapidly with increasing . 
 

 
 

 Table II shows the decay in the network performance as PD increases in the form of decreasing values of
. 

 

 
 

 Finally, we present our results for the two examples considered earlier - Gaussian mixture noise and the 
Cauchy noise. We present the results for the Cauchy noise case alone in Figure 5, while Table III shows the 
performance comparison in terms of  of both the noisy channels.  
 Figure 5 shows the plot of KL divergence against the number of Byzantines in the network when μ = 1 and 

 = 1. Again, the significant improvement in the network performance after adding SR as compared to the no-SR 
case is articulated through our results.  
 CASE-2 (SR employed at both honest and Byzantine nodes): We present this case for three different types 
of SR signals. Fig. 6 shows the  vs. No. of Byzantines curve. The curves 
 



 
 

 
 
start from the same point on the y-axis as in the SR-only-at-honest sensors case. However, all the three curves decay 
quite rapidly and reach zero when 50% of the sensor population becomes Byzantines. This happens in the same way 
as we had in the no SR case where  dropped to zero when Byzantines became as strong as the honest sensors. So, 
the result is intuitively correct. For all the three cases, we get  = 0.5. 
 

 
 
 Although this case did not provide the necessary robustness in terms of security, later in the paper, we will 
analyze the problem from a game-theoretic perspective in order to find the optimal strategies employed by the 
Byzantine nodes and the inference network.  
 
B. Scenario 2: SR applied at the FC 
 In this scenario, we consider a simple example where a one-peak noise is applied at the FC. We simulate 
the example scenario for about 100,000 Monte-Carlo runs and calculate the deflection coefficient as given by 
Equation (19). Figure 7 shows how the deflection coefficient varies with increasing number of Byzantines in the 
network. It is evident from the figure that SR provides detection performance improvement, but since the deflection 
coefficient becomes zero when  =  = 0.5, there is no improvement in the design from a security perspective. 
This can be attributed to the fact that SR is employed at both the Byzantine and the honest sensors. In the future, we 
will investigate the case where SR is applied to the honest nodes’ receptions alone at the FC. 



 
 

 
 
C. Game-Theoretic Formulation of Inference in the presence of SR and Byzantine attacks 
  
 In this paper, we present results only for the example in which  and as 
discussed earlier, the SR noise  is a one-peak noise with p.d.f. given by for a node of type T (Example 
considered by Chen et al., in [7]). Here, T = H/B, where H stands for Honest and B stands for Byzantine. Note that 
we focus on finding those saddle points that minimize  with respect to cB, while maximize the same with 
respect to cH. Figure 8 depicts how the contours of  vary with the SR noise parameters cH and cB respectively, 
when  = 0.5. In this case, we find that when cH = cB = 0 (the case when no SR is applied at either the honest or the 
Byzantine node), the network is blinded since  = 0. One can clearly observe that, for a given SR signal at the 
honest node, a deviation in cB from zero results in a performance degradation and vice versa. Also, note that the 
Nash equilibria are the points (-3.5, -3.5), (-3.5, 2.5), (2.5, -3.5) and (2.5, 2.5). These are very similar to the optimal 
SR signals computed by Chen et al., in [7] when SR is not applied locally at the sensors. Due to symmetry in the 
example considered in Figure 8, all the equilibria correspond to  = 0. 
 Figure 9 plots the contours of  against cH and cB, when  = 0.2. Note that the equilibria points are very 
close to those in the case of  = 0.5 case (with a slight skew), but the detection performance at the equilibria in 
terms of  improved with decreasing . 
 

 
 
 
 



 
 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we have shown that SR phenomenon provides robustness to the designs along with the performance 
improvement, especially when the scenario is favorable to the inference network. If the Byzantines simply attack by 
flipping their decisions and not employ SR noise in their designs, then the  increased beyond 50%, providing 
us with better security. In the case when Byzantines are equally powerful with SR being employed in the designs, 
then the robustness is not different from the no-SR case, but we found a performance improvement in terms of 
detection if the honest nodes form the majority. We also found that the p.d.f. of the optimal SR noise in the presence 
of Byzantine attackers is the same as that of the results given by Chen et al., in [7], when there are no Byzantines in 
the network. 
 Future work will involve the case when SR is employed at both local sensors and the FC. Also, we will 
investigate other channel-aware fusion strategies. Another important problem that we will look at is the problem of 
SR at honest nodes when the Byzantine-identification scheme is not error-free. It will also be interesting to 
investigate the different game-theoretic formulations, such as the case where SR is employed at FC and Bayesian 
game models are considered with incomplete information. 
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