
Syracuse University Syracuse University

SURFACE SURFACE

Dissertations - ALL SURFACE

May 2015

Binary Program Integrity Models for Defeating Code-Reuse Binary Program Integrity Models for Defeating Code-Reuse

Attacks Attacks

Aravind Prakash
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Prakash, Aravind, "Binary Program Integrity Models for Defeating Code-Reuse Attacks" (2015).
Dissertations - ALL. 230.
https://surface.syr.edu/etd/230

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fetd%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/230?utm_source=surface.syr.edu%2Fetd%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

ABSTRACT

During a cyber-attack, an adversary executes offensive maneuvers to target computer

systems. Particularly, an attacker often exploits a vulnerability within a program, hijacks

control-flow, and executes malicious code. Data Execution Prevention (DEP), a

hardware-enforced security feature, prevents an attacker from directly executing the

injected malicious code. Therefore, attackers have resorted to code-reuse attacks, wherein

carefully chosen fragments of code within existing code sections of a program are

sequentially executed to accomplish malicious logic. Code-reuse attacks are ubiquitous and

account for majority of the attacks in the wild. On one hand, due to the wide use of

closed-source software, binary-level solutions are essential. On the other hand, without

access to source-code and debug-information, defending raw binaries is hard.

A majority of defenses against code-reuse attacks enforce ”control-flow integrity”, a

program property that requires the runtime execution of a program to adhere to a

statically determined control-flow graph (CFG) – a graph that captures the intended flow

of control within the program. While defenses against code-reuse attacks have focused on

reducing the attack space, due to the lack of high-level semantics in the binary, they lack in

precision, which in turn results in smaller yet significant attack space.

This dissertation presents program integrity models aimed at narrowing the attack

space available to execute code-reuse attacks. First, we take a semantic-recovery approach

to restrict the targets of indirect branches in a binary. Then, we further improve the

precision by recovering C++-level semantics, and enforce a strict integrity model that

improves precision for virtual function calls in the binary. Finally, in order to further

reduce the attack space, we take a different perspective on defense against code-reuse

attacks, and introduce Stack-Pointer Integrity – a novel integrity model targeted at

ensuring the integrity of stack pointer as opposed to the instruction pointer.

Our results show that the semantic-recovery-based approaches can help in significantly

reducing the attack space by improving the precision of the underlying CFG. Function-level

semantic recovery can eliminate 99.47% of inaccurate targets, whereas recovering virtual

callsites and VTables at a C++ level can eliminate 99.99% of inaccurate targets.

BINARY PROGRAM INTEGRITY MODELS FOR DEFEATING CODE-REUSE
ATTACKS

by

Aravind Prakash

B.E. Visvesvaraya Technological University, Belgaum, India, 2004
M.S. University of Miami, FL, 2009

Dissertation
Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Electrical & Computer Engineering

Syracuse University
May 2015

c© Copyright 2015

Aravind Prakash

All Rights Reserved

To my parents and my wife Pallavi...

v

ACKNOWLEDGMENTS

I would like to express my deep and sincere thanks to people who made this dissertation

possible.

I would like to thank my advisor, Dr. Heng Yin: Through your hard work, perseverance

and emphasis on “good research practices”, you have not only played an instrumental role

in carving the researcher out of me, but also have taught me how to be a good advisor.

Specifically, you taught me how to distinguish between engineering and research elements

of a project, and to succinctly capture the research contributions. For this, I am eternally

grateful.

I would also like to thank my ex-labmates Lok and Eknath, and current labmates Mu,

Qian, Xunchao, Andrew, Yue, Rundong, Jinghan, Pallavi and Abhishek, who have been

tremendously helpful. While some of them have directly contributed to my research, all of

them have helped me address concerns in early stages of projects by providing timely

feedback and reviews of my work.

Most importantly, I would like to thank my family. To my parents: You taught me that

education is a basic necessity in life, and put my needs ahead of your own. This is a fruit of

your sacrifices. To my wife, Pallavi: You, as a graduate student yourself, were able to

relate on a daily basis, to the stress and pressure that accompanies a PhD. You were

always there for me. Without you, this would not be possible.

vi

TABLE OF CONTENTS

Page

ABSTRACT . i

LIST OF TABLES . x

LIST OF FIGURES . xi

1 Introduction . 1

1.1 Dissertation Overview . 2

1.2 Our Thesis . 3

1.3 Dissertation Organization . 3

2 Background . 4

2.1 Binary-Level Attacks . 4

2.2 Binary-Level Defenses against Code-Reuse Attacks 5

2.2.1 Artificial Diversification . 5

2.2.2 Gadget Elimination . 6

2.2.3 Control-Flow Integrity . 6

2.3 Shortcomings of Current Binary-Level Defenses 8

2.3.1 Precision . 9

2.3.2 Deployment . 9

3 Attack Space Reduction . 11

3.1 Precise CFI Model through Recovery of Function Semantics 11

3.1.1 Total-CFI Overview . 11

3.1.2 Static Policy . 12

3.1.3 Dynamic Policy . 15

3.1.4 Dynamically Generated Code . 18

3.1.5 Non-relocatable binaries . 20

3.1.6 Branch Tables or Jump Tables . 20

vii

Page

3.1.7 Position Independent Code (PIC) 21

3.1.8 Security Analysis . 21

3.1.9 Summary . 22

3.2 Precise CFI Model through Recovery of C++ Semantics 23

3.2.1 Polymorphism in C++ Binary . 24

3.2.2 Problem Statement, Assumptions and Scope 26

3.2.3 Approach Overview . 28

3.2.4 Callsite Identification . 29

3.2.5 VTable Identification . 35

3.2.6 Target Accumulation and Filtering 39

3.2.7 Discussion . 42

3.2.8 Summary . 45

3.3 Attack Space Reduction through Stack-Pointer Integrity (SPI) 45

3.3.1 Motivation . 47

3.3.2 SPI – Overview . 52

3.3.3 Coarse-Grained SPI . 58

3.3.4 Fine-Grained SPI . 60

3.3.5 Discussion . 66

3.4 Evaluation . 66

3.4.1 Challenges . 67

3.4.2 Evaluation Test Set . 67

3.4.3 Recovering Function-Level Semantics 68

3.4.4 Recovering C++-Level Semantics 70

3.4.5 Quantifying Attack Space . 75

3.4.6 Stack-Pointer Integrity . 76

3.5 Summary . 78

4 Integrity-Model Enforcement . 81

4.1 System-Wide Enforcement . 81

4.1.1 Performance Evaluation . 81

viii

Page

4.2 Process-Level Enforcement . 84

4.2.1 Cross-Module Inheritance . 86

4.2.2 Performance Evaluation . 86

4.3 IR-Level Compile-Time Enforcement . 87

4.3.1 Performance Evaluation . 88

4.4 Other Enforcement Strategies . 90

5 Limitations and Future Work . 91

5.1 Attack Space in vfGuard . 91

5.2 Low precision due to indirect jmp and ret instructions 91

5.3 Stack-Pointer-Aligned Payload . 92

5.4 Pivoting through implicit SP-update instructions 93

5.5 Future Work . 94

6 Conclusion . 95

LIST OF REFERENCES . 96

VITA . 102

ix

LIST OF TABLES

Table Page

2.1 Shortcomings of current binary-level defenses against code-reuse attacks 8

3.1 Intermediate Language used by vfGuard . 31

3.2 Static information flow analysis to identify a callsite 33

3.3 SPI Defense Overview . 54

3.4 False positives on Windows OS . 69

3.5 Summary of Exploits . 69

3.6 VTable Identification accuracy. 71

3.7 Callsite Identification Accuracy . 71

3.8 Average targets for the basic policy and the filters 72

3.9 Exploit mitigation. VTable based vulnerabilities. 74

3.10 Attack space reduction . 76

3.11 Absolute gadgets in Windows OS. 77

3.12 Pivoting instructions used by recent Metasploit exploits 77

3.13 Explicit SP-Update instructions vs Gadgets 79

3.14 Scope of Integrity Models . 79

4.1 Times taken to boot Windows 7 and XP till the login screeen is reached . . . 82

4.2 Memory Overhead for whitelist cache on Windows 7 82

5.1 Profile of indirect branch instructions . 92

x

LIST OF FIGURES

Figure Page

1.1 Attack space reduction . 2

3.1 Architecture Overview of Total-CFI . 12

3.2 Shadow Call Stack Behavior During a C++ Exception 16

3.3 Position Independent Code . 21

3.4 Overview of vfGuard . 28

3.5 Actual and perceived VTable layouts under MSVC ABI. 43

3.6 Steps involved in executing a typical ROP attack. 47

3.7 Fine grained SPI. (a) Stack-Backward Pivoting (b) Stack-Forward Pivoting . . 53

3.8 Work-flow of SPI . 58

3.9 Dynamic allocation of stack space using alloca 64

3.10 Distribution of callsites across various offsets 73

4.1 Performance of Total-CFI vs Qemu 1.0.1 . 82

4.2 Performance overhead imposed by vfGuard 87

4.3 SPEC INT 2006 performance benchmark for coarse-grained SPI 88

4.4 SPEC INT 2006 performance benchmark for fine-grained SPI 89

4.5 Coarse-grained SPI performance for GNU Coreutils 89

4.6 Coarse-grained SPI performance for GNU Binutils 90

5.1 Stack-pointer-aligned payload . 92

xi

1

1. INTRODUCTION

Several of the critical public and private infrastructures – that define life as we know it –

are comprised of interconnected software components. In fact, we are so dependent on

software that their safety and reliability directly impact human life. Over the last few

years, attacks against software have increased at an alarming rate. With wide deployment

of Data Execution Prevention (DEP) [1] in the hardware, attackers have resorted to

reusing code fragments in existing code sections of a binary. Such attacks are called

code-reuse attacks. There has been a systematic transition from individuals indulging in

mischief for the purpose of attention-gaining, to well organized sometimes state sponsored

syndicates capable of executing complex attacks (e.g., Sony Hack [2], Stuxnet [3]).

Now more than ever, there is a need to automatically protect binaries from attacks.

Particularly, with wide use of closed source software, binary-only solutions are a necessity.

While source code based approaches can leverage the rich program semantics available from

source code (e.g., [4], [5], [6]) binary-only defenses are hard, and introduce key challenges.

State-of-the-art binary-level solutions enforce program integrity policies in order to

provide principled defense. This dissertation focuses on providing precise program integrity

models on the binary with focus on reducing the attack space for code-reuse attacks.

2

DEP + Stack Guard Total-CFI vfGuard SPI

ROP
[Shacham'07]

ROP Still
Dangerous
[Carlini'14]

COOP
[Schuster'15]

Defenses

Code-reuse
Attacks

Fig. 1.1.: Attack space reduction

1.1 Dissertation Overview

A program integrity solution comprises of two components: Policy Generation and

Policy Enforcement. While Policy Generation aims at generating more precise policies that

can thwart code-reuse attacks, enforcement focuses on enforcing the derived policy in a

performance-friendly manner.

Our contribution in policy generation is summarized in Figure 1.1. The figure is

annotated with code-reuse attacks that are capable of targeting each level of defense. We

present Total-CFI and vfGuard, two solutions that reduce the attack space of code-resue

attacks by enforcing precise CFI models. However, over time, attacks have evolved and are

now capable of defeating most state-of-the-art solutions. In our final solution presented in

this dissertation, we present Stack-Pointer Integrity as a novel program integrity model.

We approach the problem from the perspective of stack-pointer, which assumes the role of

a program counter (as opposed to instruction pointer) during a code-reuse attack. While

3

SPI further reduces the attack space, it provides even stronger security in combination

with CFI. We show that recovering function level semantics and C++ level semantics can

improve the precision by 99.473% and 99.999% respectively.

In order to enforce the generated policy, we discuss three enforcement models. First,

Total-CFI uses whole system monitoring wherein all the processes in the system are

simultaneously monitored for violations. Second, vfGuard uses process level emulation,

where policies are enforced by emulating each process separately. Finally, in SPI, we use

binary instrumentation to modify a binary to embed the security primitives within the

binary. We show that SPI can defend against inter-stack pivoting with a small overhead of

1%.

1.2 Our Thesis

Recovering high-level semantics from the binary can aid in reducing the attack space in

code-reuse attacks. Enforcing the integrity of stack pointer further reduces the attack space.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter 2 provides the

high-level background essential in understanding this dissertation. Chapter 3 presents three

policy generation solutions Total-CFI, vfGuard and SPI that successively decrease attack

space. Chapter 4 presents three enforcement models. Chapter 5 discusses the limitations of

this thesis and future work, and finally Chapter 6 concludes.

4

2. BACKGROUND

This section gives a survey of state-of-the-art in attacks and defenses on the binary, and

program integrity models. The section ends with shortcomings of the practical

implementations of the integrity models, which forms the basis for this dissertation.

2.1 Binary-Level Attacks

Binary-level attacks alter the target program’s control data (e.g., function pointer,

return address) directly in the memory in order to achieve arbitrary code execution. With

the advent of hardware mechanisms that prevent data execution (e.g., DEP, NX), attackers

can no longer execute the injected code after exploiting the vulnerability. Therefore,

attacks that reuse existing code – known as code-reuse attacks – are on a rise. Particularly,

Return-Oriented Programming (ROP) [7] gleans short code fragments terminated by ret

instruction (or more broadly, an indirect branch instruction) called “gadgets” from

executable sections of program code, and chains such gadgets to perform meaningful

malicious tasks. In a seminal paper, Shacham [7] showed that ROP is turing complete.

Since, several real world attacks employ ROP to bypass DEP. ROP as an attack mechanism

is so popular and mature that there exist tools to automatically extract gadgets [8] from

programs and compile them [9] (i.e., chain them) to implement program logic.

5

More recently, Carlini and Wagner [10], and Göktaş et al. [11], demonstrate practical

attacks that reuse code fragments that span several instructions, sometimes entire

functions. Such attacks not only bring the traditional definition of a gadget into question,

but also highlight that defenses lack precision.

2.2 Binary-Level Defenses against Code-Reuse Attacks

2.2.1 Artificial Diversification

The goal of artificial diversity is to randomize and hide the location of a program’s

code, data, stack, heap, etc [12–16]. STIR [17] performs static instrumentation to generate

binaries that self-randomize every time the binary is loaded. Isomeron [18], combines code

randomization with execution-path randomization, wherein code fragments that can be

indirectly targeted are duplicated, and at runtime, a randomly chosen fragment from the

duplicates is invoked. Xu and Chapin [19] [15] provide intra-modular ASLR using

code-islands in order to defend against chained return-to-libc attacks, wherein they identify

and randomize into isolated code blocks. That is, they not only randomize the base

addresses of memory mappings, but also randomize the relative offsets between each

functions.

Artificial-diversity-based defenses are fundamentally susceptible to disclosure attacks,

and are not always an effective defense [20]. Moreover, they are also susceptible in cases

where an attacker introduces the code (with predictable layout) that s/he can reuse [21].

6

2.2.2 Gadget Elimination

Two main works: in-place code randomization [22]and G-Free [23] have been proposed

to eliminate gadgets. G-Free is a compiler extension that compiles the source-code to

generate gadget-free binaries. Pappas et al. [22] operate directly on the binary by first

identifying the gadgets, and then eliminating them by performing in-place

semantic-preserving modifications. Fundamentally, these solutions suffer from two

limitations:

1. Weak Definition of Gadget: Per these solutions, a short sequence of instructions

terminated by a ret instruction is treated as a gadget. However, in principle, a

sequence of instructions of any length can be used as a gadget as long as the attacker

can negate the undesirable side effects of using a gadget by using appropriate

compensatory gadgets.

2. Lack of Coverage: Due to their intrusive nature, and the large number of gadgets

to eliminate [7], they can only eliminate a fraction of all the gadgets in the binary.

For example, Pappas et al. [22] eliminate 76.9% gadgets in Windows XP and 7,

leaving an attacker with 23.1% or 6.3M gadgets to take advantage of.

2.2.3 Control-Flow Integrity

Control-flow integrity (CFI) was first proposed by Abadi et al. in 2005 [24] as part of

the compiler framework to automatically place in-line reference monitors in the emitted

binary code to ensure the legitimacy of control transfers. CFI as a program property

7

dictates that software execution must follow a path of a Control-Flow Graph [25]

determined ahead of time. Since then, a great deal of research efforts have built on top of

it. Some efforts extended the compiler framework to provide better CFI protection.

Compile-Time Defenses MCFI [26] enables a concept of modular control flow integrity

by supporting separating compilation. KCoFI [27] provides control flow integrity for

commodity operating system kernels. RockJIT [28] aims to provide control flow integrity

for JIT compilers.

Other efforts are made to enforce control-flow integrity directly on binary code. Efforts

such as PittSFIeld [29] and CCFIR [30] enforce coarse-grained policy by aligning code.

Based on a CPU emulator, MoCFI [31] rewrites ARM binary code to retrofit CFI

protection on smart phone. While Opaque CFI [32] combines coarse-grained CFI and

artificial diversification in order to render disclosure attacks harder, it introduces other

problems like large space overhead, lack of fine-grained diversification, etc.

Several solutions have also been proposed at a source-code level [4, 6]. Lhee and

Chapin [33] associate type information with buffers during compile time in order to prevent

buffer overflows. Code-Pointer Integrity (CPI) [34] protect pointers to code, etc

Run-Time Defenses Runtime defenses monitor the execution during run time, and

identify anomalies in the control flow. Xu and Chapin [35] generate and validate a policy

that captures the legitimate control flows leading up to each system call. More recently,

kBouncer [36] and ROPecker [37] periodically examine the control flow to detect anomalies.

Particularly, they associate heuristics to “gadgets”, and by examining the “Last Branch

8

Record” (LBR) – a hardware feature provided by the Intel CPU, they identify potential

attacks. All of these defenses have been defeated by the attacks proposed in [10] and [38].

Further, PointerScope [39] performs exploit diagnosis by automatically inferring and

detecting type violations during execution. As a runtime diagnosis system, it imposes

severe performance overhead.

2.3 Shortcomings of Current Binary-Level Defenses

Shortcomings of state-of-the-art binary-level defenses against code-reuse attacks are

tabulated in Table 2.1.

Table 2.1: Shortcomings of current binary-level defenses against code-reuse attacks

Category
(Representative

Solution)
Parameter Status Reason

Precision Low Approximate CFG

CFI Deploy-ability
Not incrementally deployable,
Requires a priori knowledge

of vulnerable process
Incomplete CFG

(BinCFI [40])
Runtime

Performance
overhead

> 8% Approximate CFG

Gadget
Definition

Weak

Does not support large,
function-entry, or

call-preceded
gadgets

Artificial Diversity
ASLR [41]

Resilience Partial

Vulnerable to
memory disclosure

attacks and Just-in-time
injected gadgets

Diversification Partial
In practice,

not all modules
are diversified.

Gadget Elimination
(G-Free [23])

Coverage Low
Too many gadgets

to eliminate

9

2.3.1 Precision

Binary-level CFI-based defenses (e.g., BinCFI [40], CCFIR [30]) suffer from low

precision due to their coarse-grained nature. Without source code, these solutions take a

conservative approach and include redundant edges in the CFG, which leads to an

exploitable attack space. Practical attacks against such defenses were demonstrated by

Carline and Wagner [10], and Göktaş et al. [11].

2.3.2 Deployment

Module-Level Deployment Key to CFI-based defenses is that they rely on recovering

the CFG of the program. However, when a module is compiled, it may not be possible to

ascertain all the other modules that would be using the module. This leads to the

incomplete CFG problem. Due to this problem, modules can not be selectively protected

unless all the modules that are used by a program are protected.

Some solutions [26] have been proposed to extend the CFG, and hence the CFI

protection at runtime, however, these solutions require changes to the loader, which may

not always be possible.

Sytem-Wide Deployment In order to defend against attacks in a performance-efficient

manner, runtime CFI-based defenses must know the precise processes to monitor. However,

vulnerabilities could exist in multiple modules spanning multiple processes. This leads to a

scalability problem wherein, CFI-based runtime defenses can not scale with the running

10

processes in the system. This is particularly important to defend against complex malware

like Stuxnet [3] that exploit multiple vulnerabilities in across the system.

11

3. ATTACK SPACE REDUCTION

In this chapter, we describe each of the three solutions that propose stringent models in

order to reduce the attack space.

3.1 Precise CFI Model through Recovery of Function Semantics

There are several challenges to enforce CFI in practice. The key challenge is that CFI

requires a complete control-flow graph (CFG), which is hard to compute without source

code. In this section, we present Total-CFI, a tool that recovers function-level semantics

from a binary in order to improve the precision of CFI policy [42].

3.1.1 Total-CFI Overview

Total-CFI leverages full system emulation to monitor the guest operating system from

its inception. Schematic overview of Total-CFI can be found in Figure 3.1. At a high level,

Total-CFI consists of 2 components, Policy Generation and Policy Enforcement. In this

chapter, we confine the scope to policy generation, we discuss policy enforcement in

Chapter 4.

Model Generation The model generated by Total-CFI consists of a static and a

dynamic component. The static policy comprises of a whitelist that succinctly captures all

12

Guest OS

Guest

HDD

G
u

est M
em

o
ry

Guest

CPU

Emulator

PVE Component

CFI Component

Exploit

Diagnostic

Report

CFI Model

Whitelist

Cache

Total CFI

Process
Info

Module
Info

Thread
Info

Opcode
Callback

Fig. 3.1.: Architecture Overview of Total-CFI

the allowable targets for indirect call/jmp instructions. A whitelist for a specific module is

made up of all the statically determinable target addresses for indirect control flow in the

module, such as the elements of relocation table and the export table. A whitelist for a

process is a union of all the whitelists of all the modules loaded in the process address

space. Whereas the dynamic or the runtime component of the policy intercepts each call

and ret instructions. The policy requires that each ret instruction return to an

instruction succeeding the previously executed call instruction.

3.1.2 Static Policy

Exploits alter the normal control flow by manipulating the derived code addresses (e.g.,

function pointers). Total-CFI’s CFI model is based on the observation that most of the

control flow is restricted by a pre-determined subset of code that forms the entry point of

branch targets. For example, targets of call, jmp instructions must adhere to the

statically determined call graph, and can not branch to any arbitrary location. Based on

13

this observation, a program is statically analyzed to generate a whitelist, a list of allowable

targets for each indirect call/jmp instruction.

Target Whitelist The addresses within the relocation table and the export table of the

binary constitute the module whitelist. With compatibility in mind, most modern binaries

are compiled to be relocatable [43]. When the loader cannot load a binary at its default

location, it performs relocation. The loader refers to the relocation table and fixes the

addresses of the entries in the relocation table. Indirectly addressable code must be

relocatable. Similarly, export table contains the functions that a given module exposes for

use by other modules. Addresses of such functions are resolved at runtime based on the

actual load address of the dependent modules. Therefore entries of the relocation table and

the export table of a module together form valid indirect branch targets for a module.

Irrespective of the guest OS being executed, the loader first needs to load the entire

module binary to memory and perform relocation fix-ups (if any) before transferring

control to the module. However, when the control reaches the module entry, it is possible

that the guest OS memory manager has flushed the page containing the relocation table

from the memory. To optimize the whitelist extraction, Total-CFI first tries to retrieve the

relocation and export tables corresponding to a module directly from the guest memory. If

the pages corresponding to relocation and export table are paged out, Total-CFI accesses

the binary file corresponding to the module on the guest file system and extracts the

relocation table and export table from the binary.

For each process in the system, Total-CFI maintains a sorted array of loaded modules

in the process address space. It also maintains a hashtable that maps the base address of a

14

module to the whitelist corresponding to the module. When a module is loaded,

Total-CFI first checks the whitelist cache for the whitelist corresponding to the module,

only if the whitelist is not present, it constructs the whitelist for the module and adds the

whitelist to the whitelist cache.

When Total-CFI encounters an indirect call or jmp instruction, it performs a binary

search for the target address in the loaded modules array of the process. Here, the binary

search returns a negative insertion point if the search failed. If the returned search value is

an even negative index, then the target address does not belong to any of the modules and

is treated as a violation of CFI model. However, if the return value is an odd negative

index, the target address belongs to the module with base address equal to the address at

index - 1 in the loaded module array. Note that it is not possible for the return value to be

positive since the target address cannot be equal to the start address or the end address of

a module. Therefore, if the return value is non-negative, the address is considered not to

be present.

The whitelist lookup is performed with a time complexity of lg(n), where n is the

number of modules in the process address space. Although maintaining a single hash-table

for each process with all the whitelists corresponding to all the modules in its address space

will suffice, such an approach leads to severe memory overhead due to redundancies,

because several common modules (like NTDLL.DLL, KERNEL32.DLL, etc.) will be

present in every process whitelist.

Whitelist caching The whitelist for a binary is statically determined and therefore

remains the same across different execution instances. As an optimization, the whitelist is

15

generated only once per binary file and the generated whitelist is stored in the whitelist

cache as a [file’s md5 checksum, whitelist] pair. When a new file is loaded, as an

optimization, Total-CFI first checks the whitelist cache to determine if the whitelist has

already been extracted, only if the file is being encountered for the first time, Total-CFI

extracts the whitelist and adds the whitelist to the whitelist cache.

3.1.3 Dynamic Policy

Runtime model for CFI enforcement in Total-CFI is based on the fact that a ret

instruction must return to an address succeeding a call instruction that was previously

encountered.

Total-CFI maintains two shadow call stacks per executing thread in the system. One

stack shadows the user level stack of the thread and the other shadows the kernel level

stack. Whenever a call instruction is encountered, Total-CFI pushes the return address

to the corresponding shadow stack (kernel level shadow stack if operating in kernel mode

and user level shadow stack if operating in user mode) of the currently executing thread.

When a ret instruction is encountered, Total-CFI pops the target address of the

return instruction from the appropriate stack of the currently executing thread. If the

target address is not found on the shadow stack and the target address does not belong to

dynamically generated code, Total-CFI infers the ret instruction to be a part of a

potential exploit.

Shadow Call Stack To keep track of the call-ret pairs during the execution of a

thread in the guest OS, Total-CFI maintains two shadow call stacks per thread - one for

16

void foo(int i)

{

 if(i == 5)

 throw 18;

 return 0;

}

int main()

{

 int i = 0;

 cout << "Enter a no: "<<endl;

 cin >> i;

 try

 {

 foo(i);

 }

 catch (int e)

 {

 if(e == 18)

 i = 0;

 cout << "Ex:" << e << endl;

 }

 return 0;

}

0040159c <_main>:
........................
4015c6: mov loc_0x401670, %edx
4015cb: mov %edx, 0x4(%eax)
........................

40163b: call 40150c <__Z3fooi> // foo(i)
401640: add $0x10,%esp
........................

401670: mov %eax,-0x14(%ebp) //callatch(int e) {
401673: cmpl $0x12,-0x14(%ebp) // if(e == 18)
401677: jne 401680 <_main+0xe4>

401679: movl $0x0,-0x18(%ebp) // i = 0
........................
401726: ret
........................

0040150c <__Z4foo2i>:
........................

401512: cmpl $0x5,0x8(%ebp) // if(i == 5)
401516: jne 40153f <__Z4fooi+0x33>
........................
401529: movl $0x12,(%eax)

40153a: call 47e820 <___cxa_throw> // throw 18
40153f: mov $0x0,%eax
........................

0047e820 <___cxa_throw>:
........................
47e9e6: mov 0x4(%eax),%edx
47e9ee: jmp *%edx
........................

// Save address of catch
block in exception object

2

1
401640

Return address of main

40153f

401640
Return address of main

3 After 401726: ret

After 40163b:
call <_Z3fooi>

After 40153a:
call <_cxa_throw>

Shadow Call Stack
(Stack grows upwards)

//Retrieve address of catch
block (loc_0x401670) from
exception object, and jump

Fig. 3.2.: Shadow Call Stack Behavior During a C++ Exception

user mode execution and one for kernel mode execution. When a call or ret instruction is

executed, the context is identified. The context constitutes the process, thread and the

user/kernel mode the instruction was executed in. From the context, Total-CFI identifies

the appropriate shadow call stack. Then, if the instruction is a call instruction, it pushes

the address of the succeeding instruction on to the identified shadow stack. Conversely, if

the instruction is a ret instruction, Total-CFI pops the target address off the shadow

stack. If the address is not present in the shadow stack, Total-CFI reports an exploit.

Though strict pairing between call-ret pairs account for a majority of control

transfers, there are certain special control transfers that make CFI enforcement via shadow

call stack monitoring challenging. Below, we consider such special control flow scenarios.

Handling of Exceptions: Exception handling is a mechanism to handle anomalous

events that often change the normal control flow of a program. Figure 3.2 describes the

handling of such exceptions by Total-CFI. Column 1 lists the source code of a program

17

that raises and handles an exception. Column 2 lists the simplified version of the

corresponding code in assembly, obtained when the code is compiled using the

MinGW-g++ cross compiler. The exception handler or the catch block is relocatable and

hence appears as an entry in the relocation table. During compile time, the compiler stores

the address of such a block in the exception object. At runtime, when an exception is

thrown, the throw statement translates to a call to cxa throw, which in turn retrieves the

address of the catch block from the exception object, rewinds the stack and transfers

control to the catch block via an indirect jump. Column 3 of Figure 3.2 shows the

contents of shadow stack at different stages during the program execution. On one hand,

during the jmp instruction, Total-CFI verifies that the branch address is a part of the

program’s whitelist and lets the instruction pass, but on the other hand, when the main

function returns (stage 4 in Column 3 of Figure 3.2), the Total-CFI recognizes that the

return address is not at the top of the shadow stack and therefore pops all the items up to

and including the return address of main function from the top of the stack.

Handling of setjmp/longjmp: In C and its flavors, setjmp and longjmp are used to save

and restore the CPU environment respectively, in order to transfer control to a

predetermined location. During setjmp, the environment including the contents of the

CPU registers are cached in a user provided buffer, and during longjmp, the CPU register

contents are restored from the buffer. Upon encountering a setjmp, Total-CFI records the

value of the program counter where the control will be transferred to during longjmp.

When a longjmp is encountered, Total-CFI verifies the target address to be the same as

the value of the program counter as recorded during the previous setjmp in the current

execution context. Mismatch in the target address is flagged as a potential exploit.

18

Kernel mode to User mode call backs: Typically, the control transfers from user

mode to kernel mode happen through the sysenter and int instructions, and back from

kernel mode to user mode via sysexit and iret instructions respectively. However, in

Windows, NTDLL maintains a set of entry points that are used by the kernel to invoke

certain functionality on behalf of the user mode [44]. Some such NTDLL APIs are:

KiUserExceptionDispatcher, KiUserApcDispatcher, KiRaiseUserExceptionDispatcher and

KiUserCallbackDispatcher. They are used by the kernel as a trampoline to invoke

functionality in the user mode. Kernel saves the processor state and alters the thread stack

to accomplish such a call. When the kernel alters the execution of a thread and transitions

to user mode, the return address may not coincide with the expected return address at the

top of the stack. To address this problem, for every stack in the system, Total-CFI

maintains a hash-table wherein, for every ESP register value encountered during a call

instruction as key, it stores the position of the entry in the stack as value. When a return

instruction is encountered, it first checks the ESP register’s value in the hash-table to find

the position on the shadow stack and then, pops all the elements up to that position off the

stack. Such an approach is reasonable because, the stack is dictated primarily by the ESP

register and a rewind of the ESP register would imply a clean-up of the stack. If the ESP

register value is not found in the hash-table, the instruction is flagged as a potential exploit.

3.1.4 Dynamically Generated Code

The key challenge with dynamically generated code (e.g., JIT code), is that the code

can not be statically analyzed and therefore, the whitelists can not be generated.

19

Execution of dynamically generated code portray the following characteristics:

(i) Firstly, the page containing the dynamically generated code must be written to

memory and made executable (particularly on DEP-enabled systems) before it is

executed.

(ii) Secondly, control transitions from non-dynamic to dynamic code follow a finite

pre-set path.

At runtime, Total-CFI tracks the entries in the code and the write caches of

Translation Lookup Buffer (TLB) of the CPU to identify dynamically generated code. If

an entry in the write cache of the TLB appears in the code cache of the TLB, the entry is

identified as dynamically generated code.

Initially, Total-CFI is trained to accumulate the possible control paths that lead to

dynamically generated code in a particular application. This is done by recording the

shadow stacks for the valid control flows that lead to dynamically generated code. An

intersection of such paths is used as a signature that is enforced during execution. Here, it

is possible that the dynamic code generation library is loaded at different locations on each

instance it is loaded. Therefore, Total-CFI maintains the signature as a [module:offset]

pair to validate across load instances.

During normal execution, when Total-CFI encounters a branch target that is not in

the whitelist, it first checks if the target belongs to dynamically generated code, next it

checks the shadow call stack to check if the shadow call stack satisfies the dynamic code

signature for the application.

20

3.1.5 Non-relocatable binaries

Though most binaries are relocatable, some legacy code can be non-relocatable. In such

cases, Total-CFI statically analyzes the binaries to extract all the statically identifiable

addresses - the ones that either occur as constant address operands in the disassembly or

the ones that have a function prologue. Though this approach includes addresses which

may not be valid targets, such a conservative approach will reduce false positives.

3.1.6 Branch Tables or Jump Tables

A jump table is an array of function pointers or an array of machine code jump

instructions. Calls to the functions (or code blocks) in the array are made through indirect

addressing using the base address of the jump table and the offset of the desired code block

in the table. We make two key observations about jump tables:

1. The base address of a jump table must be relocatable and therefore contains an entry

in the relocation table.

2. Every entry in the jump table must point to a valid code block.

Total-CFI takes a liberal approach to handle jump tables. For every entry in the

relocation table, Total-CFI checks if the content at that address points to code, if so, it

treats it as a potential base address of a jump table. It traverses the table for consecutive

entries that point to code and adds them to the whitelist.

21

00000a44 <foo>:
...................
 a69: call 9a7<__i686.get_pc_thunk>
 a6e: add $0x1586,%ebx //Offset of f()
 a74: call *%ebx
...................
000009a7 <__i686.get_pc_thunk>:
 9a7: mov (%esp),%ebx
 9aa: ret

Fig. 3.3.: Position Independent Code

3.1.7 Position Independent Code (PIC)

The addressing in PIC does not rely on any particular position in the program address

space. Conceptually, PIC identifies the current value of Program Counter (PC) and

addresses different code blocks as offsets from the PC. Figure 3.3 shows a typical example

of PIC. The current version of Total-CFI does not support PIC, however it is possible to

parse the binary to scan for target address generation patterns. For example, Wartell et

al. [45] scan the binary to identify call instructions and perform simple data-flow analysis

to identify instructions that use the generated address in an arithmetic computation.

3.1.8 Security Analysis

Evading Total-CFI In this work, we address the attacks that arise due to control flow

violations. Most attacks in the wild are control hijacking attacks, where attacker executes

malicious payload by diverting control flow. However, there exist data only attacks [46] that

do not hijack control flow (e.g., bad system configuration resulting in unintended privilege

escalation). Such attacks are out of our scope. That said, works in the past [47–49] have

focussed on addressing data integrity concerns. There also exist techniques based on

22

dynamic taint analysis [50–52] wherein, input data is marked as tainted and tracked

through memory to ensure that they do not end up in security critical data structures.

Total-CFI relies on integrity of kernel data to guarantee the correctness of perceived

events in the guest kernel. Since Total-CFI retrieves the data directly from the guest OS

kernel data structures, attacks that tamper with the kernel data will mislead Total-CFI.

Furthermore, non-control flow side channel attacks, data attacks [53, 54], physical

attacks and attacks that target the VMM are also out of Total-CFI’s scope. Attacks

against the VMM have been demonstrated in the past [55].

Exploits within whitelist Total-CFI treats the entries in the whitelist as legal entries

for indirect branch operations. Therefore, all the function entry points (such as libc

functions) belong to the whitelist. This gives rise to a possibility for an attacker to craft an

attack such that the jump/call target is an entry within the whitelist. Currently,

Total-CFI is vulnerable to such jump-or-call-to-libc type of attacks. Note that

return-to-libc will be captured by Total-CFI due to the violation in the shadow call stack.

3.1.9 Summary

Total-CFI [42] recovers the function-level semantics, specifically function entry points,

in order to improve the precision of CFI policy. In comparison with DEP-only defense,

Total-CFI provides much stronger protection, and can detect all tested exploits. Moreover,

due to a system-wide nature of deployment, Total-CFI can provide whole system CFI

protection.

23

3.2 Precise CFI Model through Recovery of C++ Semantics

While Total-CFI and other coarse-grained CFI solutions [30] [40] have significantly

reduced the attack surface, recent efforts by Göktaş et al. [11] and Carlini [10] have

demonstrated that coarse-grained CFI solutions are too permissive, and can be bypassed

by reusing large gadgets whose starting addresses are allowed by coarse-grained solutions.

We argue that the primary reason for such permissiveness is the lack of high-level program

semantics that introduce certain mandates on the control flow. For example, given a class

inheritance, target of a virtual function dispatch in C++ must be a virtual function that

the dispatching object is allowed to invoke. Similarly, target of an exception dispatch must

be one of the legitimate exception handlers. Accounting for control flow restrictions

imposed at higher levels of semantics improves the precision of CFI.

In this work, we recover C++-level semantics to generate more precise CFI policies for

dynamic dispatches in C++ binaries. We set our focus on C++ binaries because, due to

its object-oriented programming paradigm and high efficiency as compared to other

object-oriented languages like Java, it is prevalent in many complex software programs. To

support polymorphism, C++ employs a dynamic dispatch mechanism. Dynamic dispatches

are predominant in C++ binaries and are executed using an indirect call instruction. For

instance, in a large C++ binary like libmozjs.so (Firefox’s Spidermonkey Javascript

engine), 84.6% indirect function calls are dynamic dispatches. For a given C++ binary, we

aim to construct sound and precise CFI policy for dynamic dispatches in order to reduce

the space for code-reuse attacks.

24

Constructing a strict CFI policy directly from C++ binaries is a challenging task. A

strict CFI policy should not miss any legitimate virtual call targets to ensure zero false

alarms, and should exclude as many impossible virtual call targets as possible to reduce the

attack space. In order to protect real-world binaries, all these need to be accomplished

under the assumption that only the binary code (without any symbol or debug

information) is available. In order to construct a strict CFI policy for virtual calls, we need

to reliably rebuild certain C++-level semantics that persist in the stripped C++ binaries,

particularly VTables and virtual callsites. Based on the extracted VTables and callsites, we

can construct a basic CFI policy and further refine it. As a key contribution, we

demonstrate that CFI policies with increased precision can be constructed by recovering

C++-level semantics. While the refined policies may not completely eliminate code-reuse

attacks, by reducing the number of available gadgets, it makes attacks harder to execute.

A complete version of the paper is available [56].

3.2.1 Polymorphism in C++ Binary

In C++, functions declared with keyword “virtual” are termed “virtual functions” [57]

and their invocation is termed “virtual call” (or vcall). Virtual functions are in the heart of

polymorphism, which allows a derived class to override methods in its base class. When a

virtual function that is overridden in a derived class is invoked on an object, the invoked

function depends on the object’s type at runtime. Modern compilers – e.g., Microsoft

Visual C++ (MSVC) and GNU g++ – achieve this resolution using a “Virtual Function

Table” or VTable, a table that contains an array of “virtual function pointers” (vfptr) –

25

pointers to virtual functions. Itanium [58] and MSVC [59] are two of the most popular

C++ ABIs that dictate the implementation of various C++ language semantics.

Objects and VTables An object contains various instance variables along with the

vptr. Due to its frequent use, modern compilers place vptr as the first entry within the

object. The vptr is followed by the member variables of the class. The location in the

VTable where the vptr points to is called the “address point”. The first vfptr in the

VTable is stored at the address point.

In addition to an array of virtual function pointers, a VTable also holds optional

information at negative offsets from address point. Optional information includes Run

Time Type Information (RTTI) and various offset fields required to adjust the this pointer

at runtime. We refer readers to [58] for more information on RTTI and various offset fields.

During compilation, all the VTables used by a module are placed in a read-only section of

the executable. Furthermore, a hidden field called “virtual table pointer” (vptr) – a pointer

to the VTable – is inserted into objects of classes that either directly define virtual

functions or inherit from classes that define virtual functions. Under normal circumstances,

the vptr is typically initialized during construction of the object.

Virtual Call Dispatch Irrespective of the compiler optimizations and the ABI, a

virtual call dispatch comprises of the following 5 steps:

GetVT Dereference the vptr of the object (this pointer) to obtain the VTable.

GetVF Dereference (VTable + offset) to retrieve the vfptr to the method being invoked.

26

SetArg Set the arguments to the function on the stack or in the registers depending on

the calling convention.

SetThis Set the implicit this pointer either on stack or in ecx register depending on the

calling convention.

CallVF Invoke the vfptr using an indirect call instruction.

GetVT, GetVF, SetThis and CallVF are required steps in all vcalls, whereas depending on

if the callee function accepts arguments or not, SetArg is optional. Though there is no

restriction with respect to relative ordering of the steps followed, some steps are implicitly

dependent on others (e.g., GetVF must occur after GetVT).

3.2.2 Problem Statement, Assumptions and Scope

Problem Statement Given a C++ binary, we aim to construct a CFI policy to protect

its virtual function calls (or dynamic dispatches). Specifically, for each virtual callsite in

the binary, we need to collect a whitelist of legitimate call targets. If a call target beyond

the whitelist is observed during the execution of the C++ binary, we treat it as a violation

against our CFI policy and stop the program execution.

More formally, this CFI policy can be considered as a function:

P = C → 2F ,

where C denotes all virtual function call sites and F all legitimate call targets inside the

given C++ binary. Therefore, as a power set of F , 2F denotes a space of all subsets of F .

27

Furthermore, we define callsite c ∈ C to be a 2-tuple, c = (displacement, offset) with

displacement from the base of the binary to the callsite and the VTable offset at the callsite.

A good CFI policy must be sound and as precise as possible. The existing binary-only

CFI solutions (e.g., BinCFI, CCFIR, etc.) ensure soundness, but are imprecise, and

therefore expose considerable attack space to sophisticated code-reuse attacks [11].

Therefore, to provide strong protection for virtual function calls in C++ binaries, our CFI

policy must be sound, and at the same time, be more precise than the existing binary-only

CFI protections.

To measure the precision, we can use source-code based solutions as reference systems.

With source code, these solutions can precisely identify the virtual dispatch callsites and

the class inheritance hierarchy within the program. Then, at each callsite, they insert

checks to ensure that (1) the VTable used to make the call is compatible with the type of

the object making the call [6] or (2) the call target belongs to a set of polymorphic

functions extracted from the inheritance tree for the type of object making the call [4].

Assumptions and Scope Since we target COTS C++ binaries, we must assume that

none of source code, symbol information, debugging information, RTTI, etc. is available.

We must also deal with challenges arising due to compiler optimizations that blur and

remove C++ semantic information during compilation. In other words, we must rely on

strong C++ semantics that are dictated by C++ ABIs and persist during the process of

code compilation and optimization. Due to the reliance on standard ABIs, we only target

C++ binaries that are compiled using standard C++ compilers (e.g., MSVC and GNU

g++). Custom compilers that do not adhere to Itanium and MSVC ABIs are out of scope.

28

C++ Binary

VTable
Identification

Callsite
Identification

Target
Accumulation

Target
Filtering Policy

Policy Generation

Fig. 3.4.: Overview of vfGuard

Moreover, since our goal is to protect benign C++ binaries, code obfuscation techniques

that deliberately attempt to evade and confuse our defense are also out of our scope.

Furthermore, our goal is to protect virtual function calls and their manifestations

through indirect call instructions in the binary. We do not aim to protect indirect jmp or

ret instructions. However, we aim to provide a solution orthogonal to existing solutions

(e.g., shadow call stack [60], coarse-grained CFI [30,40]) so as to provide a more complete

and accurate CFI.

3.2.3 Approach Overview

In order to tackle the problem stated in Section 3.2.2, we must leverage the C++ ABIs

to recover strong C++ semantics that persist in a given C++ binary. First of all, we need

to accurately discover virtual callsites C in the binary. Then, we need to identify all the

virtual function entry points, which form the legitimate call targets F . Because all

functions in F are polymorphic (virtual), and must exist in VTables, we must identify all

the VTables in the binary. After having identified virtual callsites and VTables, we can

29

construct a basic policy such that, for each callsite the legitimate targets include all the

functions in the VTables at the given offset. This basic policy is already more precise than

Total-CFI and other state-of-the-art CFI defenses – CCFIR and BinCFI. To further

improve the policy precision, we propose two additional filters to reduce this set of

legitimate targets.

Figure 3.4 presents the overview of our solution. We have implemented our solution in a

tool called vfGuard. Given a C++ binary, vfGuard will extract virtual callsites in the

“Callsite Identification” component, and VTables in the “VTable Identification”

component. With the extracted callsites and the VTables, the “Target Accumulation”

component accumulates all the functions from the VTables that individual callsites can

target. Finally, “Target Filtering” filters the targets to obtain a more precise policy. The

generated policy can be enforced using one of several ways discussed in Chapter 4.

3.2.4 Callsite Identification

Challenges The key challenge in identifying the callsites is to differentiate legitimate

callsites from other indirect call instructions. C++ binary is often mixed with non-C++

code components written in C, assembly language, etc. These code components could be

included from a dependent library or could be injected by the compiler for exception

handling, runtime binding, etc. While the steps enumerated in Section 3.2.1 provide a good

starting point to look for callsites within a binary, they present some hard challenges.

• Some steps are independent of the other and therefore follow no strict ordering – e.g.,

SetArg and SetThis may occur before GetVT and GetVF.

30

• GetVT through CallVF may span multiple basic blocks – e.g., when two or more

virtual calls are dispatched in multiple branches on the same this pointer, a compiler

may move some steps to a basic block that dominates the blocks that performs the

calls.

• Some steps may be implicit. For example, in functions that employ thiscall

convention, an incoming object pointer may be retained in the ecx register

throughout the function thereby eliminating the need for an explicit SetThis for

virtual calls on the same object.

• GetVF resembles a simple dereference if offset is 0. This bears close resemblance to a

double dereference of a function pointer in C code. To ensure soundness in our policy

generation, we cannot afford to include false virtual callsites.

To address all the above challenges, we take a principled approach and perform static

and flow-sensitive intra-procedural data flow analysis on an intermediate representation of

the binary.

Intra-Procedural Static Analysis Due to the complex nature of x86 binaries and the

complexities involved in recovering the callsites, a simple scanning-based approach for

callsite identification is insufficient. vfGuard first identifies all the candidate functions that

could host callsites by identifying functions in the binary that contain at least 1 indirect

call instruction. Each identified function is subjected to static intra-procedural analysis to

identify legitimate virtual callsites and VTable offsets at such callsites. In order to perform

31

function ::= (stmt)∗
stmt ::= var ::= exp | exp ::= exp | goto exp

| call exp | return
| if var then stmt

exp ::= exp ♦b exp | ♦uexp | var
♦b ::= =,+,−, ∗, /, ...
♦u ::= deref,−,∼
var ::= τreg | τval
τreg ::= reg1 t|reg8 t|reg16 t|reg32 t

τval ::= {Integer}

Table 3.1: Intermediate Language used by vfGuard

the data flow analysis, we modified an open source C decompiler [61]. Below, we present

the different steps in our analysis.

IR Transformation and SSA Form: x86 instruction set is large, and instructions often have

complex semantics. To aid in analysis and focus on the data flow, we make use of a simple,

yet intuitive intermediate language as shown in Table 3.1. The IR is simple enough to

precisely capture the flow of data within a function without introducing unnecessary

overhead. Each function is first broken down into basic blocks and a control-flow graph

(CFG) is generated. Then, starting from the function entry point, the basic blocks are

traversed in a depth-first fashion and each assembly instruction is converted into one or

more IR statements. A statement comprises of expressions, which at any point is a

symbolic representation of data within a variable. A special unary operator called deref

represents the dereference operation. goto, call and return instructions are retained

with similar semantic interpretations as their x86 counterparts. Edges between basic blocks

in the CFG is captured using goto.

32

In its current form, vfGuard supports registers up to 32 bits in size, however, the

technique itself is flexible and can be easily extended to support 64-bit registers. Moreover,

note that the ABIs are not restricted to any particular hardware architecture. Performing

analysis on the IR facilitates our solution to be readily ported to protect C++ binaries on

other architectures (e.g., ARM) by simply translating the instructions to IR.

Furthermore, we convert each IR statement into Single Static Assignment (SSA) [25,62]

form, which has some unique advantages. IR in SSA form readily provides the def-use and

the use-def chains for various variables and expressions in the IR.

Def-Use Propagation: The definition of each SSA variable and list of statements that use

them constitutes the Def-Use chains [25]. vfGuard recursively propagates the definitions

into uses until all the statements are comprised of entry point definitions (i.e., function

arguments, input registers and globals). Due to flow-sensitive nature of our analysis, it is

possible that upon propagation, we end up with multiple expressions for each SSA variable,

and each expression represents a particular code path. For example, consider the code

snippet:

...

1. A *pa; A a; C c;

2. if (x == 0)

3. pa = &a

4. else

5. pa = &c

6. pa->vAtest(0);

33

...

At line 6, depending on the value of x, the vfptr corresponding to vAtest could either

be &(&(&c)+0x14) or &(&(&a)+0x14). Assuming stdcall convention, per step SetThis,

the implicit object pointer could either be &c or &a. Precise data flow analysis should

capture both possibilities, and for each case ensure the existence of a corresponding this

pointer assignment on the stack. For such cases, vfGuard creates multiple copies of the

statement – one for each propagated expression.

Subsequently, each definition is recursively propagated to the uses until a fixed point is

reached. At each instance of propagation, the resulting expression is simplified through

constant propagation. For example, deref((ecx0 + c1) + c2) becomes deref(ecx0 + c3)

where c3 = c1 + c2.

Address Instruction IR-SSA form After Propagation and Constant Folding

0x798 push ebp deref(esp0) = ebp0 deref(esp0) = ebp0

esp1 = esp0 − 4 esp1 = esp0 − 4

0x799 mov ebp, esp ebp1 = esp1 ebp1 = esp0 − 4

0x79b sub esp, 0x18h esp2 = esp1 − 0x18 esp2 = esp0 − 0x1C

0x79e mov eax, [ebp+ 8] eax0 = deref(ebp1 + 8) eax0 = deref(esp0 + 4)

0x7a1 mov eax, [eax] eax1 = deref(eax0) eax1 = deref(deref(esp0 + 4))

0x7a3 add eax, 8 eax2 = eax1 + 8 eax2 = deref(deref(esp0 + 4)) + 8

0x7a6 mov eax, [eax] eax3 = deref(eax2) eax3 = deref(deref(deref(esp0 + 4)) + 8)

0x7a8 mov edx, [ebp+ 8] edx0 = deref(ebp1 + 8) edx0 = deref(esp0 + 4)

0x7ab mov [esp], edx deref(esp2) = edx0 deref(esp2) = deref(esp0 + 4)

0x7ae call eax call eax3 call deref(deref(deref(esp0 + 4)) + 8)

Table 3.2: Static information flow analysis to identify a callsite

Callsite Labeling As per the steps involved in dynamic dispatch, we need to capture

GetVT through CallVF using static data flow analysis. More specifically, for each indirect

call, we compute expressions for the call target and expressions for this pointer passed to

34

the target function. Note that due to flow-sensitive data flow analysis, we may end up

having multiple expressions for each statement or variable.

For a virtual callsite, after def-use propagation, its call instruction must be in one of the

two forms:

call deref(deref(exp) + τval) (3.1)

or

call deref(deref(exp)) (3.2)

In the first form, exp as an expression refers to the vptr within an C++ object and τval

as a constant integer holds the VTable offset. When a virtual callsite invokes a virtual

function at offset 0 within the VTable, the call instruction will appear in the second form,

which is a double dereference of vptr. Here, τval is the byte offset within the VTable and

must be divisible by the pointer size. Therefore, if τval is not divisible by 4, the callsite is

discarded.

Next, we need to compute an expression for this pointer at the callsite. this pointer can

be either passed through ecx in thiscall or pushed onto the stack as the first argument in

stdcall conventions. Expression for this pointer must be identical to the exp within the

form (1) or (2).

Table 3.2 presents a concrete example. At 0x7ae, after propagation and simplification,

the call instruction matches with form (1) and we determine the expression for this pointer

to be deref(esp0 + 4) and VTable offset as 8. Then at 0x7ab, we determine that the first

argument pushed on the stack is also deref(esp0 + 4). Now, we are certain that this callsite

is indeed a virtual callsite, and it uses stdcall calling convention.

35

Effect of Inheritance on Virtual Callsites: It is worth noting that our technique is

independent of the inheritance structure and works not only for single inheritance, but also

multiple and virtual inheritances. This is because the compiler adjusts this pointer at the

callsite to point to appropriate base object before the virtual function call is invoked.

Therefore, while the expression for this pointer may vary, it must be of the form (1) or (2)

above. Our method aims to resolve this pointer directly for each callsite, and thus can deal

with all these cases.

3.2.5 VTable Identification

Challenges Reconstructing precise inheritance tree from the binary is ideal but hard.

For instance, Dewey et al. [63] locate the constructors in the program by tracking the

VTable initializations. In commercial software, constructors are often inlined, therefore

such an approach would not yield a complete set of VTables that we seek. Other

approaches use heuristics that are not only dependent on debug information, but also

tailored for specific compilers like MSVC (e.g., IDA VTBL plugin [64]).

We propose an ABI-centric algorithm that can effectively recover all the VTables in a

binary in both MSVC and Itanium ABIs. We make the following key observations:

Ob1: VTables are present in the read-only sections of the binary.

Ob2: Offset of vfptr within a VTable is a constant and is statically determinable at the

invocation callsite.

36

Ob3: Since the caller must pass the this pointer, any two polymorphic functions must

adhere to the same calling convention.

Based on Ob1, we scan the read-only sections in the binary to identify the VTables.

The VTables that adhere to Itanium ABI contain mandatory fields along with the array of

vfpts. The mandatory fields make locating of VTables in the binary relatively easier when

compared to MSVC ABI. However, VTables generated by the Microsoft Visual Studio

compiler (MSVC ABI) are often grouped together with no apparent “gap” between them.

This poses a challenge to accurately identify VTable boundaries.

Furthermore, according to Ob2, we first scan the code and data sections and identify

all the “immediate” values. Then, we check each value for a valid VTable address point. A

valid VTable contains an array of one or more vfptrs starting from the address point. It is

possible that our algorithm identifies non-VTables – e.g., function tables that resemble

VTables – as genuine VTables. We err on the safe side, because including a few false

VTables does not compromise the policy soundness and only reduces precision to a certain

degree. A detailed algorithm for VTable identification is presented below.

VTable Scanning Algorithm The algorithm used to identify VTables is presented in

Algorithm 1. It comprises of two functions. “ScanVTables” takes a binary as input and

returns a list of all the VTables V in the binary. Each instruction in the code sections and

each address in the data sections of the binary are scanned for immediate values. If an

immediate value that belongs to a read-only section of the binary is encountered, it is

checked for validity using “getVTable” and V is updated accordingly. “getVTable” checks

and returns the VTable at a given address. Starting from the address, it accumulates

37

entries as valid vfptrs as long as they point to a valid instruction boundary within the code

region. Note that not all valid vfptrs may point to a function entry point. For instance, in

case of “pure virtual” functions, the vfptr points to a compiler generated stub that jumps

to a predefined location. In fact the MSVC compiler introduces stubs consisting of a single

return instruction to implement empty functions. To be conservative, vfGuard allows a

vfptr to point to any valid instruction in the code segments. Upon failure, it returns the

accumulated list of vfptrs as the VTable entries. If no valid vfptrs are found, an empty set

– signifying invalid VTable address point – is returned.

Furthermore, the following restriction is imposed on Itanium ABI: A valid VTable in

the Itanium ABI must have valid RTTI and “OffsetToTop” fields at negative offsets from

the address point. The RTTI field is either 0 or points to a valid RTTI structure. Similarly,

“OffsetToTop” must also have a sane value. A value -0xffffff ≤ offset ≤ 0xffffff, which

corresponds to an offset of 10M within an object, was empirically found to be sufficient.

Depending on the specific classes and inheritance, fields like “vbaseOffset” and

“vcallOffset” may be present in the VTable. To be conservative, we do not rely on such

optional fields. However with stronger analysis and object layout recovery, these

restrictions can be leveraged for more precise VTable discovery.

While vfGuard may identify some false VTables as legitimate, its conservative approach

does not miss a legitimate VTable, which is a core requirement to avoid false positives

during enforcement. Moreover, Algorithm 1 is not very effective at detecting end points of

the VTables in the binary. Pruning the VTables based on neighboring VTable start

addresses could lead to unsound policies if the neighboring VTables are not legitimate.

38

Algorithm 1 Algorithm to scan for VTables.

1: procedure getVTable(Addr)
2: Vmethods ← ∅
3: if (ABIItanium and isMandatoryF ieldsV alid(Addr)) or ABIMSV C then
4: M ← [Addr]
5: while isV alidAddrInCode(M) do
6: Vmethods ← Vmethods ∪M
7: Addr ← Addr + size(PTR)
8: M ← [Addr]
9: end while

10: end if
11: return Vmethods

12: end procedure
13:

14: procedure ScanVTables(Bin)
15: V ← ∅
16: for each Insn ∈ Bin.code do
17: if Insn contains ImmediateV al then
18: C ← immV alAt(Insn)
19: if C ∈ SectionRO and getV Table(C) 6= ∅ then
20: V ← V ∪ C
21: end if
22: end if
23: end for
24: for each Addr ∈ Bin.data do
25: if [Addr] ∈ SectionRO and getV Table([Addr]) 6= ∅ then
26: V ← V ∪ [Addr]
27: end if
28: end for
29: return V
30: end procedure

While our approach reduces precision, it keeps the policy sound. Our algorithm terminates

a VTable when the vfptr is an invalid code pointer.

While Itanium ABI provides strong signatures for VTables due to mandatory offsets,

MSVC ABI does not. In theory, any pointer to code can be classified as a VTable under

MSVC ABI. In practice however, we found that legitimate VTables contain at least 2 or

more entries. Therefore, under MSVC ABI, we consider VTables only if they contain at

least 2 entries.

39

3.2.6 Target Accumulation and Filtering

All the vfptrs and thunks within all the VTables together form a universal set for

virtual call targets. A naive policy will include all vfptrs as valid targets for each callsite.

For large binaries, such a policy would contain 1000s of targets per callsite. While still

more precise than existing defenses, it would still expose a large attack space. We leverage

the offset information at the callsite to obtain a more precise policy.

Given an offset at a callsite, during “Target Accumulation”, we obtain a basic policy for

each callsite that encompasses all the vfptrs (and thunks) at the given offset in all the

VTables in which the offset is valid. Additionally, we apply two filters to further improve

the policy precision. First, we note that target vfptrs for a callsite that is invoked on the

same object pointer as the host function must belong to the same VTables as the host

function. With this, we apply our first filter, called “Nested Call Filter”. Furthermore,

from Ob 3, the calling convention that is presumed at the callsite and the calling

convention adhered to by the target function must be compatible. Accordingly, we apply

the second filter called “Calling Convention Filter”.

We considered several other filters, but did not adopt them for various reasons. To

name a few, we could infer the number of arguments accepted by each function and require

it to match the number of arguments passed at the callsite; we could perform

inter-procedural data flow analysis to keep track of this pointers; and we could perform

type inference on function parameters and bind type compatible functions together.

However, at a binary level, such analyses are imprecise and incomplete. A function may

not always use all the arguments declared in source code, and thus we may not reliably

40

obtain the argument information in the binary. Inter-procedural data flow analysis and

type inference are computationally expensive, and by far not practical for large binaries.

We will investigate more advanced filters as future work.

Basic Policy Based on the identified callsites and the VTables V , vfGuard generates a

basic policy. For a given callsite c with byte offset o, we define index k to be the index

within the VTable that the byte offset corresponds to (i.e., k = o/4 for 4-bytes wide

pointers). The legitimate call targets of c must belong to a subset of all the functions at

index k within in all the VTables that contain at least (k + 1) vfptrs. Here we assume

VTables to be zero-based arrays of vfptrs. That is:

Targets = {Vi[k] | Vi ∈ V , |Vi| > k},

where Vi is the VTable address point. |Vi| is the number of vfptrs in the VTable at Vi.

Nested Virtual Call Filter In some cases, this pointer used to invoke a virtual function

is later used to make one or more virtual calls within the function body. We refer to such

virtual calls as “Nested Virtual Calls”. vfGuard can generate a more precise policy for

nested virtual calls.

1. class M { virtual void vMfoo() {

2. this->vFn(); //or vFn();

3. }

4. };

41

In the above example, vFn is a virtual function that is invoked on the same this pointer

as its host function M::vMfoo, which is also a virtual function. Underneath, the binary

implementation reuses the VTable used to invoke M::vMfoo to retrieve the vfptr (or thunk)

pertaining to vFn. That is, between the nested virtual calls and the host virtual function,

the vptr acts an invariant. Therefore at the nested callsite, target vFn must belong to a

VTable to which M::vfoo also belongs.

Given a virtual callsite with vfptr index k and host virtual function f , we can derive a

more precise policy for each nested virtual callsite within f :

Targets = {Vi[k] | Vi ∈ V , f ∈ Vi}

Nested virtual callsites can be easily identified using our intra-procedural data flow

analysis. First, we check whether the this pointer at the given callsite is in fact the this

pointer for the host function. That is, the expression for this pointer at that callsite should

be ecx0 for thiscall calling convention or esp0 + 4 for stdcall calling convention. Next,

we ensure that the host function is virtual. That is, there must exist at least 1 VTable to

which the host function belongs. Finally, the filtered targets are identified using the

equation above.

Note that the filter is applicable only in cases where host function is also virtual. If the

filter is inapplicable, vfGuard defaults to basic policy.

Calling-Convention based Filtering We filter the target list to be compatible with

the calling convention followed at the callsite. At the callsite, the register that is utilized to

42

pass the implicit this pointer (CallVF) reveals the calling convention that the callee

function adheres to.

First, for each of the callsite target functions in the policy, we identify the calling

convention the function adheres to. Next, for each callsite, we check if there is a mismatch

between the convention at the callsite and the target, if so, we remove such conflicting

targets from the list. If we are unable to identify the calling convention of the callee –

which is possible if the callee does not use the implicit this pointer, we take a conservative

approach and retain the target.

Incomplete Argument Utilization Conceptually, all polymorphs of a function must

accept the same number of arguments. So, one potential filter could be to check if a

function accepts the same number of arguments that are passed at the callsite. If not, the

mismatching functions can be removed from potential targets for the callsite. However, in

the binary, we only see the number of arguments used by a function and not the number of

arguments it can accept. Therefore, argument count is not feasible as a filter.

3.2.7 Discussion

How to better identify VTable end points The strictness of the policy or the attack

space depends on the number of call-targets per callsite. Ideally, we want this number to

be as close to the ideal case as possible. However, inaccurate VTable end-points – specially

in MSVC ABI – result in inclusion of incorrect vfptrs into the policy.

Consider the layout in Figure 3.5. VA and VB are 2 VTables under MSVC ABI that are

contiguously allocated, where VA is comprised of entries f1−4 and VB of entries f5−6. I1−3

43

Fig. 3.5.: Actual and perceived VTable layouts under MSVC ABI.

are addresses within the function pointer array that manifest within the binary as

immediate values, where I1 and I3 are VTable address points and I2 is noise. Per

Algorithm 1, vfGuard identifies 3 VTables V1−3 with a total of 6+4+2=12 entries.

Accordingly (due to V2) f3, f4, f5 and f6 are incorrectly included in the policy for offsets 0,

1, 2 and 3 respectively, thereby compromising precision over soundness. Similarly, f5 and

f6 are allowed as legitimate targets for offsets 4 and 5 respectively.

One solution to such a problem would be to prune VTables based on the start addresses

of succeeding VTables in the memory. However, such a solution must have no false

positives in VTable start-addresses. In Figure 3.5, since I2 is an incorrect VTable address

point, f3−4 would be incorrectly excluded from V1 thereby leading to false positives during

enforcement. Another solution could leverage more restrictions from the ABI and language

semantics to better demarcate VTables. For example, colocated functions at a given offset

must be compatible with each other with respect to types of arguments accepted and type

of value returned.

44

Virtual-dispatch-like C calls Our virtual callsite identification has captured all

required steps for a virtual dispatch according to C++ ABI specifications, but it is still

possible that some functions in the C code could resemble a legitimate C++ virtual

function dispatch. For example:

struct B{void *ptr; void (*fn) (struct A*);};

struct A{struct B *pb;};

void foo(struct A* pa) {

pa->pb->fn(pa);

}

In the binary, the above C statement resembles a C++ virtual call dispatch. pa being

passed as an argument satisfies SetThis and could be perceived as a callsite. Commercial

compilers tend to follow a finite number of code patterns during a virtual call invocation. A

potential solution could classify all the callsites based on code patterns used to perform the

dispatch and look for abnormalities. For example, to dispatch virtual calls in mshtml.dll,

the compiler typically invokes virtual calls using a call instruction of the form, “call [reg +

offset]” where as, g++ produces code that performs, “add reg, offset; call reg”. While this

is not a standard, a compiler tends to use similar code fragments to dispatch virtual calls

within a given module. Since a sound policy must prevent false callsites, one can filter the

potential incorrect callsites by looking for persistent virtual dispatch code fragments.

45

3.2.8 Summary

vfGuard recovers C++-level semantics, particularly virtual callsites and VTable

information from C++ binaries to generate precise CFI policy. It offers more stringent

protections for virtual function dispatches – over 95% more precise when compared to

Total-CFI and other state-of-the-art binary-level defenses.

3.3 Attack Space Reduction through Stack-Pointer Integrity (SPI)

While Total-CFI increased precision of CFI policies, and vfGuard improved it further

by recovering C++-level semantics, the lack of all pertinent high-level semantics lead to an

theoretical attack surface. For example, with access to source code, SafeDispatch [4] and

VTV [6] can recover precise C++ class hierarchy and therefore generate ideal policies for

virtual function dispatches.

A recent attack called Counterfeit Object Oriented Programming (COOP) [65] takes

advantage of attack surface made available by C++-level defenses including vfGuard.

While vfGuard is most resilient to COOP when compared to other binary-level defenses, it

does suffer from some limitations. Over time, attacks and defenses against code-reuse

attacks have led to a cat and mouse game that has prompted to rethink defense against

code-reuse attacks.

ROP, a particular type of code-reuse attack, is so popular and mature as an attack

mechanism that there exist tools to automatically extract gadgets [8] from programs and

compile them [9] (i.e., chain them) to implement program logic.

46

A key component of ROP attacks is stack pivoting, a technique that positions the stack

pointer to point to the ROP payload – an amalgamation of data and pointers to gadgets.

Our defense stems from the observation that during ROP, each gadget behaves like an

instruction with complex semantics, and the stack pointer performs the role of a program

counter. Therefore, traditional CFI, which imposes integrity restrictions on the program

counter under the regular execution domain, transforms into integrity restrictions on the

stack-pointer in the ROP domain. Fundamentally, SPI as a property requires that: (1) at

any point during execution, the stack pointer remains within the stack region of the

currently executing thread, and (2) stack pointer is conserved across function execution.

That is, the size of the stack frame allocated to a function for execution is equal to the size

of the stack frame deallocated after the execution of the function. During the stack-pivot

operation of an ROP attack, at least one of the two requirements is violated. Based on

location of the payload, we divide SPI into two categories: Coarse-Grained SPI, which

defends against attacks where the ROP payload is on non-stack segments (e.g., heap), and

Fine-Grained SPI, which defends against attacks where the ROP payload is on the stack.

SPI has several advantages over prior binary-level ROP defenses:

1. SPI is a non-control-flow approach and makes no assumptions regarding the size or

instruction semantics of gadgets. In fact, SPI is oblivious to the concept of a

“gadget”, and operates at the instruction level.

2. SPI is impervious to ASLR. Threat model addressed by SPI allows for ASLR to be

turned off and yet, defend against ROP.

47

3. SPI allows for incremental deployment. That is, only specific modules can be

protected, and the protected modules can inter-operate with unprotected modules.

4. Finally, coarse-grained SPI – which is sufficient to protect against all heap-based

ROP attacks – offers very low overhead.

3.3.1 Motivation

ROP Payload
Injection

Exploitation Stack Pivoting Gadget-Chain
Execution

Heap Spray,
Stack Overflow,
Stack Injection

Use-after-free,
Integer/buffer
overflow, etc.

mov %rax, %rsp; ret
xchg %rsp, %rax; ret
add $0x28, %rsp; ret
sub $0x40, %rsp; ret
etc.

Call preceeding gadget,
Function entry gadget,
Unintended instruction
gadget

Fig. 3.6.: Steps involved in executing a typical ROP attack.

Code-Reuse Attacks A schematic overview of steps involved in a ROP attack is

presented in Figure 3.6. Jump-Oriented Programming (JOP) [66], a variant of ROP uses a

pop followed by an indirect jmp instruction instead of a ret instruction as the last

instruction of the gadgets. Without loss of generality, in this work, we use the term ROP

to include JOP and other known code-reuse attacks. The attacker first injects the payload

into the victim process’ memory. Here, and in the remainder of the paper, we refer to ROP

payload or payload as the combination of data and addresses of the gadgets that the attack

executes. Note that ROP payload is different from the malicious executable payload that is

commonly executed after DEP is bypassed.

48

In theory, an attacker can inject ROP payload into any segment that is writable. In

practice however, a vast majority of browser exploits utilize a popular and convenient

technique called Heap Spray, wherein the payload is dumped onto the heap. The payload

can also be injected into the stack region, where the attacker often misuses stack variables,

or in the case of stack overflow, overflows the stack to store the ROP payload. Depending

on the nature of the vulnerability and constraints specific to the attack, an attacker may

choose to (or need to) inject payload in a specific writable section of the program memory.

The second step exploits the vulnerability in the victim process. This step is

independent of the nature of vulnerability (e.g., use-after-free, integer overflow, buffer

overflow, etc.). At the end of this step, the attacker controls the program counter. She may

also control certain registers depending on the nature of the attack.

The third step is the execution of stack-pivot gadget, which loads the address of the

location where ROP payload is stored into the stack pointer. This step definitively

transforms the execution to the ROP domain, and the stack pointer assumes the role of the

program counter. Stack pivoting is crucial for the attacker to convert an instance of single

arbitrary code execution into continuous execution of malicious logic.

Finally, an indirect branch instruction (typically ret or pop reg followed by jmp reg) at

the end of the stack pivot gadget triggers the execution of the chain of gadgets directed by

the payload.

Stack Pivoting A requirement for stack-pivot operation is to write to the stack pointer.

We refer to such instructions as “SP-update” instructions, short for stack-pointer update

49

instructions. Depending on the location of the payload and the nature of the write

operation, we further classify SP-update instructions into:

• Explicit SP-update: These instructions perform an explicit write operation that

alters the stack pointer (e.g., mov esp, eax; add esp, 0x10; etc.). Explicit

SP-update instructions occur in two forms:

– Absolute SP-update: These instructions write an absolute value or register into

the stack pointer. For example, mov esp, eax; xchg eax, esp; pop esp, etc.

are absolute SP-updates.

– Relative SP-update: These instructions alter the stack pointer by a fixed offset

(e.g., add esp, 0x10; sub esp, 0x10; etc.).

• Implicit SP-update: These instructions alter the stack pointer as an implicit effect

of another operation. pop eax, ret, retn, etc. are examples of implicit

SP-updates.

Typically, stack-pivot requires an explicit SP-update instruction. On one hand, because

absolute SP-update instructions can load an arbitrary value into the stack pointer, they are

a popular choice for stack pivot. However, they typically require that the attacker controls

a register and loads it with the address of the payload, which depending on the nature of

the exploit, may or may not be possible. On the other hand, relative SP-update

instructions are useful to move the stack pointer by fixed relative offsets, and therefore are

useful when the payload is within the stack region. Implicit SP-update instructions are

least capable because they can only move the stack pointer by small offsets. Most practical

50

attacks store payload on the heap, and utilize an absolute SP-update instruction for

pivoting. However, a determined attacker can, and will resort to using relative SP-update

instruction if defense against abuse of absolute SP-update instructions for pivoting becomes

prevalent. In this paper, we focus on eliminating stack pivot operations that utilize explicit

SP-update instructions. Whereas implicit SP-updates can in principle be used for stack

pivot, we did not find any in practice. We elaborate on implicit SP-updates in Section 5.4.

Stack Pivot within Stack Region: When the payload is located within the stack region,

stack pivot moves the stack pointer either along the direction or against the direction of

stack growth. We define Stack-Forward Pivot to signify movement of stack pointer along

the direction of stack growth, and Stack-Backward Pivot to signify movement of stack

pointer against the direction of stack growth. Since stack pointer always points to the top

of active (or live) stack region, stack-forward pivot implies that the payload is located in

the stale (or dead) region of the stack (Figure 3.7(b)). Assuming that stack grows from

higher to lower address, stack-forward pivoting is usually accomplished by subtracting an

offset from the existing value of stack pointer. Stack-backward pivoting (Figure 3.7(a))

moves the stack pointer into the active region of the current function’s or a callee

function’s stack frame by adding an offset to the stack pointer.

As an example, In Figure 3.7(a), the attacker performs stack-backward pivoting. She

first injects the payload into variables in function f2. When f3 is invoked, she exploits a

vulnerability in f3 and pivots the stack by adding an offset to stack pointer to point to the

base of the payload in f2’s stack frame. In Figure 3.7(b), the attacker performs

stack-forward pivoting by pivoting into the stale portion of the stack. First, she injects

51

payload into f6’s stack frame. When f6 returns to its caller f5, a vulnerability in f5 is

exploited. Finally, a pivot that subtracts an offset from the stack pointer to point to the

base of the payload is executed.

Legitimate Use Cases for Explicit SP-update Instructions There are some

legitimate use cases for explicit SP-update instructions. Under normal execution, the stack

pointer of a thread is indicative of stack region being used by the thread. When a function

is invoked, space on the stack – called function frame – is allocated for the function, and

when the function returns, the same amount of space that was allocated is reclaimed.

Allocation and deallocation are accomplished by simply moving the stack pointer by the

amount of stack space the function requires. Typically, when the size of the stack required

by a function is known during compile time, the compiler inserts relative SP-update

instructions to allocate and deallocate the function stack frame. For example, in LLVM

clang compiler, frame allocation is accomplished via a sub offset, %rsp instruction (or the

push instruction), and deallocation is accomplished through add offset, %rsp instruction.

In fact, other than frame allocation and deallocation, we found no legitimate uses of

relative SP-update instructions.

Furthermore, while infrequent, the compiler sometimes introduces absolute SP-update

instructions to initialize the stack pointer. When the size of a function’s stack frame is

unknown during compile time (e.g., when the function allocates stack space dynamically

using alloca), the compiler inserts code to calculate the appropriate frame size at runtime

and using an absolute SP-update instruction, initializes the stack pointer with the correct

value. There are also legitimate uses of absolute SP-update instructions when the stack is

52

unwound (e.g., during an exception). In such cases, the value of the stack pointer is

calculated and initialized at runtime. C compilers that target flavors of Windows OS utilize

a helper routine called chkstk and invoke it when the local variables for a function exceed

4K and 8K for 32 and 64 bit architectures respectively. chkstk checks for stack-overflow

and dynamically grows the stack region using an absolute SP-update instruction – if the

stack growth is within the thread’s allowable stack limit.

3.3.2 SPI – Overview

The execution of stack-pivot during a ROP attack signifies the transformation from

regular execution to ROP. Post stack-pivot, the stack pointer assumes the role of program

counter. Specifically, we observe that similar to how arbitrary code execution violates the

integrity of control-flow (i.e., integrity of program counter), pivoting the stack violates the

integrity of stack pointer. With this in mind, we present Stack-Pointer Integrity (SPI), a

program property that mandates two runtime invariants:

• Stack Localization (P1): At any point during execution of a program, stack frame

(or stack pointer) of the currently executing function exists within the stack region of

the currently executing thread.

• Stack Conservation (P2): The size of the stack frame allocated before the

execution of a function is equal to the size of the stack frame deallocated after

execution of the function.

We observe that during a ROP attack, depending on the location of payload, stack

pivoting violates at least one of P1 or P2. We divide SPI into Coarse- and Fine-Grained

53

SPI. An overview of defense based on payload location is presented in Table 3.3.

Coarse-Grained SPI enforces Stack Localization in order to defeat all attacks that pivot to

payloads located outside the stack region (e.g., heap), and Fine-Grained SPI (1) enforces

Stack Conservation to defeat stack-backward pivoting to payloads within the active stack

region (Figure 3.7(a)), and (2) sets the stale stack to zero in order to eliminate gadgets in

stale region of the stack (Figure 3.7(b)), and therefore defeats stack-forward pivoting.

Note that SPI is significantly different from other stack protection schemes (e.g., [67]).

Stack protection schemes are concerned with the integrity of the contents of the stack,

whereas SPI enforces runtime invariants P1, P2 in order to ensure the integrity of the

stack pointer.

In the following, we first present the threat model that SPI addresses, then present an

overview of coarse- and fine-grained SPI.

ROP Payload

ROP Payload

Stack
Pivot

%rsp

%rsp

Stack
Growth

void f1() {
//f1 stack vars
f2();

}

void f2() {
//f2 stack vars
//accept input
f3();

}

void f3() {
//vulnerability!!!

}

f1()'s
stack
frame

f2()'s
stack
frame

f3()'s stack
frame

void f4() {
//f4 stack vars
f5();

}
void f5() {

//f5 stack vars
f6();
//vulnerability!!!

}
void f6() {

//accept input
}

f4()'s
stack
frame

f5()'s stack
frame

f6()'s
stack
frame
(stale)

(a) (b)

Stack Bottom
(High Address)

Stack Top
(Low Address)

Fig. 3.7.: Fine grained SPI. (a) Stack-Backward Pivoting (b) Stack-Forward Pivoting

Threat Model Our solution assumes an adversary who has the capability to exploit a

vulnerability in a program and achieve arbitrary code execution. Further, irrespective of

ASLR, we assume that the adversary has full knowledge of the program layout and can

54

Table 3.3: SPI Defense Overview

SPI
Granularity

Type of
Pivoting

Defense
Technique

Coarse
Outside stack

segment
StackPtr bounds

checking

Fine
Stack-Backward,

As in Figure 3.7(a)
Shadow

StackPtr stack
Stack-Forward,

As in Figure 3.7(b)
Zeroing of
stale stack

successfully locate useful gadgets in the memory. Strong ASLR will only improve the

protection provided by our solution. We impose no restrictions on the size of the gadgets

and allow an adversary to utilize large gadgets – like ones used in [11] and [10] – that can

successfully evade state-of-the-art binary-level CFI defenses.

Further, we assume that the attacker has injected the ROP payload into the victim

memory and requires to perform stack pivoting in order to trigger the execution of the

gadget chain. In fact, the only requirement for SPI to be a fruitful defense against ROP is

that the stack pivoting be required in order to carry out the attack. Our threat model is no

more restrictive than state-of-the-art ROP defenses – if not lesser.

Coarse-Grarined SPI Coarse-grained SPI is an implementation of Stack Localization

and addresses out-of-stack pivoting. Since stack pointer is indicative of the stack frame, P1

is nothing but:

StackBaseThread < StackPointer < StackLimitThread

Pivoting outside the stack region requires the stack pointer to be altered by a large

offset, which is suitably accomplished using an absolute SP-update instruction. Therefore,

55

in a nutshell, during coarse-grained SPI, we instrument each absolute SP-update

instruction and assert that the new value of stack pointer lies within the stack region.

Fine-Grained SPI Fine-grained SPI is an implementation that defends against pivoting

within the stack region. Each explicit SP-update instruction results in the movement of

stack pointer. Under normal execution, movement of stack pointer along the direction of

stack growth occurs during a function frame allocation and the reverse movement occurs

during a function frame deallocation. Stack Conservation requires that the size of

allocation is equal to the size of deallocation (P2). That is, for a given thread of execution:

StackPointerBeforeFunc() == StackPointerAfterFunc()

We maintain a per-thread shadow stack that keeps track of the stack pointer, and

update the shadow stack after every explicit SP-update instruction. The value of stack

pointer upon allocation is pushed on to the shadow stack. When a frame is deallocated,

the value of stack pointer is required to match the value of stack pointer that was stored on

the stack to ensure that there is no pivoting.

The shadow stack can only defend against attacks that violate Stack Conservation.

That is, they employ stack-backward pivoting (Figure 3.7(a)), where the payload is located

in the active region of the stack. In the case of stack-forward pivoting, one solution is to

take an approach similar to the CFI-based defenses. That is, we could statically analyze

the binary to generate a CFG and assert that the sizes of succeeding function frames are in

accordance with the CFG. The problem with such a solution is that it inherits the

coarse-grained nature of binary-level CFI approaches. Specifically the problems are two

fold: first, it requires a complete CFG, therefore the solution is not incrementally

56

deployable. Second, due to lack of source code, one is forced to provide a coarse-grained

policy, which, depending on the complexity of the program, is likely to provide sufficient

attack space. That is, even with a conservative approach, we are likely to end up with

several allowable frame sizes for succeeding functions in the CFG, thereby accommodating

an attack space. We observe that the principle of use-after-def extends to function’s stack

frame:

Use-after-def (P3): A function’s stack frame can only be used after it is defined.

Stack-forward pivoting violates this requirement. P3 must be true irrespective of the

function that is invoked. We take a conservative approach and set the allocated stack

region to 0, when a function’s stack frame is allocated. This way, we effectively destroy any

possible payload that may be present in the stale region of the stack. Details and

optimizations are presented in Section 3.3.4.

By defending against stack-pivot, SPI can afford the attacker precise knowledge of

gadgets in the memory. This feature distinguishes SPI from gadget-elimination-based

approaches. Consider the code that is embedded into JavaScript code of some real-world a

exploits:

try { l o c a t i o n . h r e f=’ms−help :// ’ } catch (e){}

The above JavaScript code loads hxds.dll, MS Office help library. hxds.dll is

non-relocatable and is always loaded at the same location in the memory. Moreover, it

contains absolute SP-update instructions that can be used to execute a pivot. By loading

hxds.dll, an attacker effectively invalidates ASLR. This is analogous to code-reuse attacks

described by Snow et al. [21], but without any JIT code.

57

Elimination of Unintended SP-update Instructions As a final step, we eliminate

all the unintended explicit SP-update instructions. SPI protects all the intended explicit

SP-update instructions in the program. However, an attacker can utilize the unintended

instructions that could result due to mis-aligned instruction access. Considerable research

has gone into removing unintended gadgets from the program (e.g., G-Free [23], in-place

code randomization [22]). We simply leverage these efforts to render the

SPI-protected-binary free of explicit SP-updates. Unlike prior efforts, our threat model

accommodates any sequence of instructions terminated by an indirect branch instruction as

a potential gadget. Therefore, we eliminate unintended SP-update instructions as opposed

to eliminating all the gadgets.

Furthermore, the number of unintended SP-update instructions are very few in number

when compared to the number of gadgets considered for elimination by [22]. This is due to

the vast number of one-byte indirect branch instructions (e.g., 0xc3 is a ret instruction)

that gadget elimination approaches must eliminate. In comparison, most explicit SP-update

instructions manifest as infrequent multi-byte instructions. Therefore, our modifications

are less intrusive and often eliminate all the unintended explicit SP-write instructions.

Interleaved Data and Code: It is possible that code and read-only data are interleaved in

the executable section of a binary. While such a binary violates the fundamental tenets of

DEP, unfortunately they do exist. For example, SPI – and other gadget elimination

solutions – can not eliminate gadgets in such read-only data. However, a source code level

implementation of SPI must ensure that no data is contained within executable regions.

58

Program (LLVM
Bitcode)

LLVM
Codegen

SPI Pass

Program
BinarySPI Runtime

Elimination of Unintended
SP-update Instructions

Fig. 3.8.: Work-flow of SPI

Work-flow of our defense is presented in Figure 3.8. The implementation comprises of

SPI Pass, a LLVM code generation pass that performs instruction-level instrumentation to

capture the explicit SP-updates, and a runtime that provides the implementation of the

core functionality like assertion of P1, P2.

3.3.3 Coarse-Grained SPI

Algorithm The algorithm for coarse-grained SPI is presented in Algorithm 2. Given a

Program, EnforceCoarseSPI iterates over each instruction in the program and identifies

absolute SP-update instructions. When such an instruction is found, a call to

CoarseCheck is inserted after the instruction. The StackPtr is passed as an argument.

Generally, displacement of stack pointer due to intended relative SP-update instructions is

small when compared to the size of the stack region (8 MB on 64 bit Linux). Therefore, we

limit the coarse-grained protection to absolute SP-update instructions. However, if tighter

protection is needed, relative SP-update instructions can also be instrumented to invoke

CoarseCheck.

59

The goal of CoarseCheck is to assert P1 – that is, the value of stack pointer lies within

the stack region of the currently executing thread. Every thread of execution has

associated with it, a Thread-Specific Data (TSD) structure (Thread Information Block

(TIB) in flavors of Windows OS), that contains information regarding the currently

executing thread. For example, TIB contains addresses of bottom and top of stack, process

ID, thread ID, exception handling related information, etc. TSD structure is directly

mapped to the base of gs or fs segment registers for 64 and 32 bit variants respectively.

First, StackBase and StackLimit of the current thread is retrieved from the TDS of the

thread. If the StackPtr does not lie within the interval (StackBase, StackLimit), a

violation of P1 is inferred, and the execution is aborted.

EnforceCoarseSPI is implemented within the SPI code generation pass, and the

implementation dependent CoarseCheck is implemented within the target-dependent

runtime.

Algorithm 2 Coarse-Grained SPI. Given the llvm bitcode Program, a call to CoarseCheck
is inserted after each absolute SP-Update instruction.

1: procedure EnforceCoarseSPI(Program)
2: for each Inst in Program do
3: if Inst is SP -UpdateAbsolute then
4: Save Live Registers
5: InsertCall CoarseCheck(StackPtr)
6: Restore Saved Registers
7: end if
8: end for
9: end procedure

10: procedure CoarseCheck(StackPtr)
11: StackBase← TSD.GetStackBase()
12: StackLimit← TSD.GetStackLimit()
13: if StackPtr /∈ (StackBase, StackLimit) then
14: abort()

15: end if
16: end procedure

60

Coarse-grained SPI can protect against all attacks that contain non-stack payloads.

3.3.4 Fine-Grained SPI

Fine-Grained SPI defends against ROP attacks that contain stack-based payloads.

Specifically, P2 and P3 are enforced to protect against stack-backward and stack-forward

pivoting respectively.

Algorithm 3 presents the algorithm for fine-grained SPI. Similar to coarse-grained SPI,

the instrumentation function: EnforceF ineSPI is implemented as a LLVM code

generation pass (SPI Pass), and the target-dependent implementation of GetSize and

UpdateSP are implemented within the runtime.

Stack-Pointer Shadowing We use a shadow stack to guard against stack-backward

pivoting. Goal of the shadow stack is to track the movement of stack pointer across stack

allocations and deallocations. Specifically, a thread-specific stack is created and stored

within the TSD, and when a new stack frame is allocated, the value of stack pointer before

allocation is pushed on to the shadow stack, and when the frame is deallocated, the value

at the top of the shadow stack is popped, and the new value of stack pointer is checked

against the popped value. A match ensures that stack frame is conserved.

In Algorithm 3, UpdateSP determines if an SP-update instruction is an allocation or

deallocation by comparing the current value of StackPtr against previously encountered

value. A lower value (assuming the growth of stack from higher to lower address) indicates

allocation and a higher value indicates deallocation (line 20 in Algorithm 3).

61

In 64 bit Linux, the TSD structure can only be accessed through the gs segment

register 1. In order to prevent an attacker from gaining access to the TSD structure, during

code generation and through elimination of unintended explicit SP-update instructions, we

limit access to TSD within SPI runtimes.

In some cases, specifically during exception handling, it is possible that multiple stack

frames are unwound and the execution does not resume at the immediate caller function.

In such cases, the stack pointer is restored to an earlier stack frame using an absolute

SP-update instruction. To accommodate such cases, if the value of the stack pointer during

UpdateSP does not match the top of the stack, elements from the shadow stack are

popped till a match is found. If no match is found, violation of P2 is inferred.

Stale-Stack Zeroing We zero the stale (or inactive) stack region in order to defend

against stack-forward pivoting. In principle, if a function frame utilizes x bytes on the

stack, once the function returns, the x bytes are dead and ready for reuse. By zeroing the

deallocated stack region, we ensure that any possible gadgets in the region are eliminated

(P3). Zeroing the stack frames of all the functions upon return is redundant and

performance intensive. Suppose all the functions in a binary: (1) contain only direct branch

instructions, and (2) contain no absolute SP-update instructions, such a binary can not be

used for stack pivot operation. Conversely, only functions that contain either indirect

branch instruction or absolute SP-update instruction can be used for stack pivoting.

Pivot-Safe Functions: We define Pivot Safe functions, the functions that can not be used for

stack-forward pivoting, and exclude such functions from zeroing. A function is Pivot Safe if:

1. It contains no absolute SP-update instructions, and

62

Algorithm 3 Fine-Grained SPI. Instrumentations are performed after the SP-Update in-
structions.

1: procedure EnforceFineSPI(Program)
2: for each Function in Program do
3: if Function is not PivotSafe then
4: Save Live Registers
5: InsertCall zbytes← GetSize(StackPtr)
6: InsertCodeToZero . Set zbytes bytes from StackPtr to 0
7: Restore Saved Registers
8: end if
9: for each Inst in Function do

10: if Inst is SP -UpdateExplicit then
11: Save Live Registers
12: InsertCall UpdateSP (StackPtr)
13: Restore Saved Registers
14: end if
15: end for
16: end for
17: end procedure
18: procedure UpdateSP(StackPtr)
19: Stack ← CreateOrGetShadowStackTLS()
20: if StackPtr < Stack.Top then . Allocation
21: Stack.Push(StackPtr)
22: if StackPtr < Stack.Lowest then
23: Stack.Lowest← StackPtr
24: end if
25: else . Deallocation
26: Stack.PopUntil(StackPtr)
27: if Stack.Empty() then
28: abort() . Pivoting detected
29: end if
30: end if
31: end procedure
32: procedure GetSize(StackPtr)
33: Stack ← GetShadowStackTLS()
34: if Stack.Lowest < StackPtr then
35: size← (StackPtr − Stack.Lowest)
36: Stack.Lowest← StackPtr
37: return size
38: end if
39: end procedure

2. It contains no indirect branch instructions

Stack-forward pivot instructions are found in frame allocations. In pivot-safe functions,

there is direct flow of control between each allocation and the corresponding deallocation of

stack frame. Therefore, every potential stack-forward pivot instruction is met with an

63

opposite stack-backward pivot instruction that nullifies the effect of pivoting. All other

functions are Pivot Unsafe.

It is not necessary to zero the stale stack before a pivot-safe function. When a

pivot-unsafe function is encountered, it is possible that the allocated frame contains

potential payload. It is necessary to zero the stale stack before the function executes.

However, we are only required to zero the amount of stack that was used between the

previous and current pivot-unsafe functions. In order to accomplish this, within the TSD

structure, we also maintain the lowest value of the stack pointer (line 23 in Algorithm 3),

which is the farthest the stack has grown between any two successive pivot-unsafe functions.

During stack allocation within the prologue of a pivot-unsafe function, we first obtain the

size of the stack that needs to be zeroed from GetSize, and then zero those many bytes

from the stack pointer (line 6). GetSize accordingly adjusts the lowest point (line 36).

This way, we vastly reduce the number of functions in which the stack must be zeroed. For

example, in 64 bit gnu libc library, we found that over 70% of functions are pivot-safe.

An example of zeroing code (line 6): the one we use in our proof-of-concept

implementation of SPI is as follows:

mov zbytes, %rax;

mov %rsp, %rdi; //rsp is the StackPtr

mov %rax, %rcx;

shr $0x3, %rcx;

xor %rax, %rax;

rep stosq;

64

With precise analysis, it may be possible to exclude certain SP-unsafe functions as

SP-safe (e.g., if it can be proven that the indirect branch instruction can not be used

achieve stack-forward pivoting) thereby further reducing the number of functions that

require stack zeroing. However, we do not conduct such analysis in this work.

Partial Zeroing: In theory, we do not have to zero all the stale stack region between 2

successive pivot unsafe functions. In fact, zeroing a “few” bytes starting from the stack

pointer may be sufficient to render stack-forward pivoting useless. However, it is important

to note that since implicit SP-update instructions are unprotected, an attacker could

leverage intended or unintended sequence of implicit SP-update instructions pop, retn to

walk-across the zeroed bytes and reach the payload. One solution would be to statically

analyze and identify the maximum number of bytes an attacker could move the stack

pointer using implicit SP-update instructions (intended or unintended), and set at least as

many bytes to 0. This solution is a trade-off between performance and incremental-deploy

ability because, it involves analysis of all the modules in the process memory, which may

not be known ahead of time.

voi d f oo1(i nt y) {
voi d * p = al l oca(y) ;
. . .
}

voi d f oo2() {
voi d * p = al l oca(128) ;
. . .
}

foo1:
push %rbp
mov %rsp, %rbp
sub $0x20, %rsp
...
mov %rsp, %r8
sub %rax, %r8
mov %r8, %rsp
...
mov %rbp, %rsp
pop %rbp
ret

foo2:
push %rbp
mov %rsp, %rbp
sub $0xa0, %rsp
...
add $0xa0, %rsp
pop %rbp
ret

Allocation

Deallocation

1

2

3

5

41, 2, 3

4, 5

Fig. 3.9.: Dynamic allocation of stack space using alloca

65

Dynamically Allocated Stack Memory When stack space is dynamically allocated

using a function like alloca, the user does not need to explicitly free the memory.

Implementations of alloca are often provided by the compiler. At the time of invocation,

the stack pointer is adjusted to claim the additional stack space, and when the function

returns, the stack pointer is restored to its original value to account for frame deallocation.

If the compiler can statically compute the requested size, it can perform the stack allocation

using a relative SP-update instruction, otherwise it uses an absolute SP-update instruction.

For example, in Figure 3.9, in function foo1, the argument to alloca is a variable.

Therefore, the compiler allocates 0x20 bytes (marking 1) required by the function, then

adjusts stack pointer (%rsp) using an absolute SP-update instruction, by subtracting a

value corresponding to the argument to alloca (marking 2). When the function completes

execution, the stack pointer is simply restored to the value at function entry (marking 4),

thereby satisfying Stack Conservation (P2). However, in the case of foo2, the compiler

statically determines the argument to alloca and allocates (and deallocates) 0x20 + 0x80

= 0xa0 bytes (markings 3 and 5) using relative SP-update instructions. In both cases, a

call to UpdateSP (as in Algorithm 3) is inserted after the explicit SP-update instructions

in order to update the shadow stack correspondingly. When UpdateSP is invoked after

marking 4 in foo1, two elements are popped out of the shadow stack, one for each

allocation at markings 1 and 2 respectively.

Explicit SP-update Injection through JIT Gadgets injected into Just-In Time (JIT)

code by an attacker are particularly hard to protect against [21]. However, code generator

66

within a JIT engine can be modified to instrument all explicit SP-update instructions to

enforce SPI. Also, all unintended SP-update instructions can be removed.

3.3.5 Discussion

Code-Reuse Attacks without Stack-Pivot The key requirement for code execution is

a reliable means to repeatedly move the program counter. Under normal execution, x86

hardware increments the instruction pointer after every instruction, similarly, under

traditional ROP, pop and ret instructions allow for movement of the stack pointer, which

assumes the role of program counter. In principle, as long as an attacker has access to

repeated indirect branching, code-reuse attacks can not be eliminated.

Schuster et al. introduce COOP [65], code reuse attacks for C++ programs. They

leverage loops that execute virtual functions as program counter. By controlling the loop

counter and the array of virtual functions that are executed, they achieve arbitrary code

execution. In such code-reuse attacks, there is no need for stack pivoting. However,

because different virtual functions do not accept the same number of arguments, when

executed from the same callsite, Stack Conservation property of SPI is violated, and can

therefore be stopped by SPI.

3.4 Evaluation

In this section, we evaluate each of the three solutions presented in this dissertation

with particular focus on attack space reduction. The performance evaluation and

enforcement is presented in Chapter 4.

67

3.4.1 Challenges

Obtaining real-world exploits: Obtaining real-world exploits is a challenging task and

not the focus of this dissertation. Therefore, in our work, we utilize synthetic exploit

samples available through the Metasploit [68] penetration test framework. Note that this

step does not affect the quality of evaluation since the vulnerabilities exploited by the

samples from Metasploit are recent and real, and are used by real-world exploits.

Evaluating attack space reduction through SPI: SPI is a non-control-flow-based

approach. Therefore, unlike semantic recovery based approaches, the idea of “allowable

targets” for each indirect branch instruction does not hold. The primary means to evaluate

SPI is the execution overhead (more in Chapter 4) it presents when compared to the lack

of it. In this section, we evaluate the feasibility of SPI as a solution when compared against

gadget elimination techniques.

3.4.2 Evaluation Test Set

We evaluate Total-CFI on a corpus of exploits from Metasploit. We include a kernel

exploit to demonstrate the ability of Total-CFI to perform system-wide detection.

Furthermore, to evaluate vfGuard, we consider a set of C++ program modules

presented in Tables 3.6, 3.7 and 3.8. Firstly, our test set comprises of programs containing

between 100 and 2000 VTables, thereby providing sufficient complexity for analysis.

Secondly, the modules in the test set are a part of popular browsers like Firefox and

Internet Explorer, which are known to contain several vulnerabilities. SpiderMonkey is the

68

JavaScript engine employed by FireFox and Table 3.8 presents some of the modules used

by Internet Explorer that contain reported vulnerabilities. Finally, the test set contains

both open (Table 3.6, 3.7) and closed source programs (Table 3.8). While vfGuard

operates on raw COTS binaries, open source programs provide the ground truth to

evaluate vfGuard’s accuracy. Along with SpiderMonkey and the modules used by IE, the

set consists of dplus browser, an open source browser and TortoiseSVN, an open source

Apache subversion client for Windows.

Finally, to evaluate SPI, we consider popular opensourced suites such as GNU Binutils

and Coreutils and SPEC-INT 2006 benchmark. We also evaluate the number of SP-update

instructions in popular (and vulnerable) DDLs in Windows XP and Windows 7.

3.4.3 Recovering Function-Level Semantics

Total-CFI was implemented as a plugin for DECAF [69], which is a modification of

Qemu [70] version 1.0.1, a full system emulator. Qemu offers transparency and the ability

to monitor the entire system, and has been widely used [71,72] in research. DECAF

modifies dynamic translation code of Qemu to incorporate opcode specific callbacks into

the translation blocks. It also modifies the TLB cache manipulation code to dispatch a

callback whenever an entry is made to the TLB cache. In all, Total-CFI consists of 3.8K

lines of C code. In this section, we present the evaluation of Total-CFI. All the

experiments were performed on a system with Intel core i7, 2.93GHz Quad core processor

and 8GB of RAM, running Ubuntu 10.04 with Linux kernel 2.6.32-44-generic-pae.

69

Name Version .reloc

present?
Fiber
present?

Dyn
Code
present?

Calculator 6.1 7 7 7

Notepad 6.1 7 7 7

Internet Ex-
plorer

8.0 3 3 3

Firefox 3.5 3 7 3

Adobe Reader 8.1.1 7 7 3

Google Talk 1.0.72 3 7 3

Microsoft Paint 6.1 7 7 7

Windows Media
Player

12.0 3 7 3

XPS viewer 6.1 3 3 3

Yahoo Messen-
ger

8.1.0.29 7 7 7

Apple Quick-
time

7.69.80.9 3 7 3

Apple iTunes 10.2 3 7 7

Process Ex-
plorer

15.05 3 7 7

Filezilla 0.9.40.0 7 7 7

Google chrome 18.0.1025 3 7 3

Windows Mes-
senger

4.7 7 7 7

RealPlayer 11 7 7 3

DivX Player 6.2.5 7 7 3

Winamp 5.2 7 7 3

VLC Media
Player

1.1.11 7 7 3

Skype 5.10.0.116 3 7 3

Registry Editor 6.1 7 7 7

Table 3.4: False positives on Windows OS

CVE
Application
(Version)

Attack Technique Exploit EIP Target EIP
Vulnerable

Module

CVE-2010-0249 Internet Explorer (6.0) Uninitialized memory. Heap spray 0x7dc98c85 0x0c0d0c0d mshtml.dll
CVE-2010-3962 Internet Explorer (6.0) Incorrect variable initialization. Heap spray 0x71a51440 0x71a52c66 mswsock.dll
CVE-2011-0073 FireFox 3.5.0 Dangling pointer abuse 0x00346e54 0x01730ee5 js3250.dll

CVE-2011-0257 QuickTime 7.6 Buffer overflow 0x0044888d 0x00194ab0
QuickTime-
Player.exe

CVE-2006-1016 Internet Explorer (6.0) Stack Overflow 0x773f67a8 0x0c112402 ws2 32.dll
CVE-2009-3672 Internet Explorer (6.0) Incorrect variable initialization. Heap-spray 0x74913ff2 0x0013e0d4 mshtml.dll
CVE-2006-1359 Internet Explorer (6.0) Incorrect variable initialization. Heap-spray 0x7c8097f3 0x77c3210d mshtml.dll
CVE-2010-4398∗ Windows 7 kernel Improper driver interaction. Buffer overflow 0x95dca042 0xb8cb8694 win32k.sys

Table 3.5: Summary of Exploits

False-Positive evaluation To measure its accuracy, we tested benign applications and

exploits on Total-CFI to check for false positives and false negatives. We ran Total-CFI

on 25 common applications that are listed in Table 3.4, on Windows XP and Windows 7.

70

We observed that several pre-loaded application executables in Windows do not contain

relocation table in them. For such executables, we parsed the PE file and extracted

statically determinable addresses into the whitelist. 0 exploits were reported in all 25

applications.

False-Negative evaluation To check the effectiveness of Total-CFI on detecting

exploits, we ran Total-CFI on 7 recent real-world exploits that have exploits available in

the MetaSploit framework, and one Windows 7 kernel exploit. All the exploits were

detected. The summary of exploits and their detection are listed in Table 3.5. It is worth

noting that the kernel exploit, CVE-2010-4398, which starts as a user mode program,

exploits a vulnerability in Win32k.sys and eventually escalates privilege. A crafted

REG BINARY value for SystemDefaultEUDCFont registry key is inserted to cause a

stack-based buffer overflow in the RtlQueryRegistryValues function in Win32k.sys.

Monitoring a user program (or a set of user programs) alone is insufficient in identifying

such an attack. It is essential to monitor both the kernel code and the user level code to

diagnose such attacks. Detailed results are tabulated in Table 3.5.

3.4.4 Recovering C++-Level Semantics

We implemented vfGuard in the following code modules. The CFI model generation

part of vfGuard is implemented as a plugin for IDA-pro v6.2. An open source

IDA-decompiler [61] was modified to perform data flow analysis for callsite identification.

The platform consists of 5.6K lines of Python code and 3.4K lines were added to it.

71

We evaluated vfGuard in several respects. We first evaluated the accuracy of virtual

callsite and VTable identification using several open source C++ programs, because source

code is needed to obtain ground truth. Then, we measured the policy precision and

compare with BinCFI [40] and SafeDispatch [4]. To evaluate the effectiveness of vfGuard,

we tested multiple realworld exploits. Finally, we measured vfGuard’s coverage with

respect to number of indirect branches protected, and performance overhead of policy

enforcement.

Program
Ground
Truth

vfGuard FP FN

SpiderMonkey 811 942 13.9% 0

dplus-browser 0.5b 270 334 19.1% 0

TortoiseProc.exe 568 595 4.7% 0

Table 3.6: VTable Identification accuracy.

Program
Ground
Truth

vfGuard FP FN

SpiderMonkey 1780 1754 0 1.4%

dplus-browser 0.5b 309 287 0 7.1%

Table 3.7: Callsite Identification Accuracy

Identification Accuracy To ensure policy soundness, vfGuard must identify all

legitimate VTables and must not identify any false virtual callsites. To measure the

accuracy, we picked SpiderMonkey and dplus-browser for the Itanium ABI, and

TortoiseProc for the MSVC ABI. We constructed the “ground truth” by using compiler

options that dump the VTables and their layouts in the binary. Specifically,

-fdump-class-hierarchy and /d1reportAllClassLayout compiler options were used to

72

compile the programs on g++ and Visual Studio 2013 respectively. The results are

tabulated in Table 3.6. The compilers emit meta-data for (1) each class object’s layout in

the memory, and (2) each VTable’s structure. We compared each of the VTables obtained

from the ground truth against vfGuard. None of the legitimate VTables were missed in

each of the cases. In all the cases, VTables identified by vfGuard contained some noise

(from 4.7% to 19%). This was expected due to the conservative nature of vfGuard’s

VTable scanning algorithm.

To evaluate callsite identification accuracy of vfGuard, we leveraged a recent g++

compiler option, -fvtable-verify [6] that embeds checks at all the virtual callsites in the

binary to validate the VTable that is invoking the virtual call. We compiled SpiderMonkey

with and without the checks, and matched each of the callsites that contained the compiler

check to the callsites identified by vfGuard. Out of the functions that were successfully

analyzed, vfGuard reported 0 false positives. It reported 1.4% and 7.1% false negatives

(i.e., missed during identification) for SpiderMonkey and dplus-browser respectively.

These experiments indicate that the generated policies should be sound but a little

imprecise, due to the noisy VTables and missing callsites.

Program

Avg.
Targets
per CS

(Basic Policy)

Nested
CS

Avg.
Targets
per CS
(NCF)

Avg.
Targets
per CS
(NCF+
CCF)

Estimated
call Targets
– BinCFI

Call Target
Reduction

w.r.t BinCFI

ExplorerFrame.dll 231 257 227 223 8964 97.5%
msxml3.dll 96 219 88 84 6822 98.8%
jscript.dll 39 55 38 38 2314 98.4%
mshtml.dll 292 211 258 257 16287 98.3%

WMVCore.dll 268 562 256 244 8845 97.3%

Table 3.8: Average targets for the basic policy and the filters

73

Policy Precision To measure how precise our generated policies are, we generate

policies for C++ binary modules in Internet Explorer 8. Table 3.8 presents the average

number of targets per callsite under 3 configurations – basic policy, basic policy with

Nested Callsite Filter (NCF) and basic policy with Nested Callsite Filter and Calling

Convention Fiilter (CCF). Additionally, for each case, we estimated the number of targets

in a policy generated by BinCFI. We included into the policy all the function entry points

in the program. The exact reduction in the number of targets is tabulated in the last

column. We can see that even with the basic policy generated by vfGuard, we were able to

refine BinCFI’s policy by over 95%. Here, the refinement numbers pertain to the virtual

callsites protected by vfGuard and not all the indirect branch instructions within the

module. An optimal defense will combine vfGuard’s policy for virtual callsites along with

those generated by BinCFI (or CCFIR) for other branch instructions.

N
um

be
r o

f C
al

ls
ite

s

1

10

100

1000

10000

Offset
0 10 20 30 40 50 60 70 80 90 100 110 120

mshtml.dll WMVCore.dll

N
um

be
r o

f V
Ta

bl
es

1

10

100

VTable Size
0 75 150 225 300

mshtml.dll WMVCore.dll

Fig. 3.10.: Distribution of callsites across various offsets

In general, we found no obvious correlation between the number of callsites and

VTables in the binary to the effectiveness of the filters. While the filters improved precision

in some cases, they did not in others. Graphs in Figure 3.10 show the scattered

distribution of number of callsites with respect to offset within the VTable at the callsite,

74

and the number of VTables that contain a particular VTable size for mshtml.dll and

wmvcore.dll. As expected, we found several VTables with small sizes of less than 10

elements. However, we also found a significant number of VTables between sizes 50 and

125. While the algorithm used by vfGuard is efficient in detecting the VTable start

address, it is not very accurate in detecting the end points. This is the main hurdle for

lowering the average call targets per callsite.

We also evaluate the precision of the policy generated by vfGuard as compared to

SafeDispatch, a source code based solution. To estimate the policy produced by

SafeDispatch, we modified g++ compiler option -fvtable-verify implementation. For

every invoked callsite, it will insert code to output the number of possible targets. We

compiled SpiderMonkey with this modified g++ compiler and ran its test cases. We

observed that the average number of call targets per callsite is 109, and the maximum is

335. In comparison, vfGuard generated a policy for SpiderMonkey with 199 call targets per

callsite on average and a maximum of 943 targets. This result indicates that the precision

of CFI policies generated by vfGuard is within the same order of magnitude as those

generated from a source code based solution.

CVE Target Application Module Remark

2010-0249 Internet Explorer mshtml.dll Fake VTable

2013-1690 Firefox xul.dll Fake VTable

2011-1255 Internet Explorer mshtml.dll Fake VTable

2010-3962 Internet Explorer mshtml.dll
Mis-aligned

VTable access

2013-3893 Internet Explorer mshtml.dll Fake VTable

Table 3.9: Exploit mitigation. VTable based vulnerabilities.

75

Policy Effectiveness To assess the policy effectiveness, we conducted a survey on

VTable related exploits. In particular, we found five working exploits towards Internet

Explorer and Firefox, and listed them in Table 3.12. We tested the two exploits that target

mshtml.dll. Being protected with the generated policy for mshtml.dll, Internet Explorer

was able to detect these exploits successfully.

In CVE-2010-0249, an attacker sprays the heap with fake VTables and corrupts a stale

object pointer by setting its vptr to the heap sprayed region. Then, at a callsite inside

mshtml.dll!CElement::GetDocPtr(), attacker controlled vfptr is retrieved and executed.

Since the attacker supplied vfptr is not a part of the policy for the callsite, it is flagged by

vfGuard as an exploit.

In the case of CVE-2010-3962, mshtml.dll inadvertently increments the vptr of an

object. So, in the virtual dispatch in CLayout::EnsureDispNodeBackground(),

[address-point + offset + 1] is retrieved as the address of the vfptr instead of

[address-point + offset]. Since the mis-aligned pointer does not belong to the policy,

vfGuard flags it as an exploit. While we tested the above exploits successfully, more

exploits in Table 3.12 follow the same modus operandi.

3.4.5 Quantifying Attack Space

Semantic recovery based approaches enforce CFI, which is dictated by the precision of

the CFG. Attack space available to an attacker can be quantified by considering the

possible number of targets at a particular indirect branch instruction.

76

Program

Avg.
Targets
per CS

(DEP Only)

Avg.
Targets
per CS

(Total-CFI)

Avg.
Targets
per CS

(vfGuard)
ExplorerFrame.dll 842,091 8964 223

msxml3.dll 640,727 6,822 84
jscript.dll 548,490 2,314 38
mshtml.dll 4,585,953 16,287 257

WMVCore.dll 1,589,907 8,845 244

Table 3.10: Attack space reduction

Table 3.10 presents the reduction in attack space across two semantic recovery

approaches presented in this thesis. Since vfGuard protects only the virtual callsites, we

compare the attack space available between DEP-only, Total-CFI and vfGuard for virtual

callsites. While Total-CFI was able to improve precision by eliminating 99.473% targets,

vfGuard was able to eliminate 99.999% targets in comparison with DEP-only protection.

3.4.6 Stack-Pointer Integrity

We implemented a prototype for coarse- and fine-grained SPI. The instrumentation

phase (Figure 3.8) was implemented by adding a code-generation pass to the LLVM-3.5.0

compiler. As a proof-of-concept, we also implemented the target-dependent runtime for 64

bit Linux (version 3.2.0). SPI LLVM pass comprises of 315 lines of C++ code for

coarse-grained, and 2K lines of C++ code for fine-grained SPI. The runtime for

coarse-grained and fine-grained SPI are 20 and 230 lines of assembly code, respectively.

Pivoting in Practice In Table 3.11, we present some modules in Windows OS and the

common absolute SP-update instructions within them. We found xchg eax, esp to be the

most common pivoting instruction. Also, in Table 3.12, we present a corpus of recent

77

Table 3.11: Absolute gadgets in Windows OS.

Program
Gadget
Module

Gadget
Address

Pivot Instruction .reloc?

SPI
defeats
pivot?

Office 2007 hxds.dll 0x51c2213f xchg eax, esp NO X
Office 2010 hxds.dll 0x51c00e64 xchg eax, esp NO X

Win XP SP3 msvcrt.dll 0x77C3868A xchg eax, esp Yes X
Java Runtime NPJPI.dll 0x7c342643 xchg eax, esp Yes X

Apple QT QickTime.qts 0x20302020 pop esp Yes X

Adobe Flash
flashplayer.exe
v11.3.300.257

0x1001d891 xchg eax, esp Yes X

Win 7 uxtheme.dll 0x6ce7c905 mov esp, ebp Yes X

Win 7 uxtheme.dll 0x6ce8ab5e
mov esp,

[edi + 0xffffffcd]
Yes X

exploits on Metasploits and the instructions they utilize to accomplish pivoting.

Unsurprisingly, they use the xchg eax, esp instruction. It must be noted that exploits on

Metasploit are proof-of-vulnerability, and pivoting is independent of the vulnerability. That

is, depending on the attack specifics, a feasible pivot can be utilized for multiple exploits.

However, in practice absolute SP-update instructions are most popular to perform

stack-pivot.

Table 3.12: Pivoting instructions used by recent Metasploit exploits

CVE Number Instruction
2013-3897
2013-3163
2013-1347
2012-4969
2012-4792
2012-1889
2012-1535

xchg eax, esp

2014-0515 mov esp, [eax]

2013-1017 pop esp

78

Moreover, hxds.dll – the help library for MS Office is not relocatable and always loads

at the same address. An attacker can simply load and utilize the pivot gadgets within the

module. SPI is particularly useful in protecting such non-relocatable modules.

Coarse-grained SPI can defeat pivoting in all cases listed in Table 3.11 except the gadget at

uxtheme.dll:0x6ce8ab5e. uxtheme.dll contains read-only data interleaved with code in the

.text segment, and data item char s keyPublic1[] is at address 0x6ce8ab38. So SPI

and other gadget-elimination solutions can not eliminate the gadget.

SPI vs Gadget Elimination In order to demonstrate the effectiveness of SPI when

compared to gadget-elimination-based solutions, we list the number of explicit SP-update

instructions that SPI needs to protect as opposed to the total number of gadgets in

coreutils and binutils. The results are tabulated in Table 3.13. On one hand, we found that

benign programs contain none or very few absolute SP-update instructions. On the other

hand, the relative SP-update instructions are exclusive to function frame allocation and

deallocation. Absolute SP-update instructions, the most popular for stack-pivoting are a

very small fraction when compared to the total instructions in a program. Also, explicit

SP-update instructions that SPI needs to protect are much smaller when compared to total

number of gadgets that gadget elimination tools would need to eliminate.

3.5 Summary

In this section, we presented three integrity models in decreasing order of attack space.

Table 3.14 presents the scope of each of the integrity models proposed in this

dissertation in comparison with shortcomings of current defenses as presented in Table 2.1.

79

Table 3.13: Explicit SP-Update instructions vs Gadgets

Suite Program
Total

Instructions

Absolute
SP-update

Instructions

Relative
SP-update

Instructions

Total
Gadgets

rm 9470 0 117 705
cp 17403 14 170 985

factor 9907 4 118 890
sha512 9969 0 77 547

coreutils sort 19471 0 158 1053
cat 6704 4 133 475
wc 5400 0 77 490

md5sum 5659 0 71 441
split 9888 4 108 579

objdump 265075 49 1524 11673
objcopy 230226 16 1366 9921

ld 48964 1 705 2860
binutils nm 189299 16 1104 8604

ar 192428 16 1118 8936
readelf 60170 31 207 3868

Table 3.14: Scope of Integrity Models

Category Parameter Total-CFI vfGuard SPI
Precision X X

Deploy-ability X

CFI
Runtime

Performance
X X

Gadget
Definition

X

Artificial Diversity Resilience X
Diversification X

Gadget Elimination Coverage X

A check mark (X) indicates that the limitation is either eliminated or reduced by either

improving the parameter or by circumventing it. For example, SPI is independent of

diversification or definition of a gadget, therefore eliminates the limitation. Similarly, by

improving the precision of the CFI model, vfGuard can reduce the runtime overhead of

80

enforcement because the number of indirect targets per virtual call instruction is reduced,

thereby reducing the number of lookups.

81

4. INTEGRITY-MODEL ENFORCEMENT

Integrity model and its enforcement are independent of each other. That is, models can be

independently enforced using one of many enforcement mechanisms. In this chapter, we

present three different enforcement mechanisms we used in Total-CFI, vfGuard and SPI.

4.1 System-Wide Enforcement

We often do not know the vulnerable process or worse, processes that are exploited in a

target system. In such cases, it is essential to monitor the entire system to record any

violations that may occur. Moreover, system-wide enforcement has the advantage of

monitoring the OS kernel, which has not received sufficient investigation. As a result,

kernel exploit detection and diagnosis is still missing.

4.1.1 Performance Evaluation

Total-CFI was implemented as a plugin for DECAF [69], which is a modification of

Qemu [70] version 1.0.1, a full system emulator. DECAF modifies dynamic translation

code of Qemu to incorporate opcode specific callbacks into the translation blocks. It also

modifies the TLB cache manipulation code to dispatch a callback whenever an entry is

made to the TLB cache. In this section, we evaluate the performance of system-wide

enforcement of Total-CFI. All the experiments were performed on a system with Intel core

82

Guest OS Qemu Total-CFI
Total-CFI +
WL Cache

WinXPSP3 48s 1m 27s 1m 15s
Win7SP1 1m 57s 3m 26s 3m 12s

Table 4.1: Times taken to boot Windows 7 and XP till the login screeen is reached

System
state

files in
cache

Total Size
(B)

Avg. size
per file
(KB)

files
without
.reloc

Login screen 263 1725024 6.405 0
Desktop

UI visible
385 2853392 7.237 7

Boot
completed

454 3496120 7.52 9

3 programs
running

504 3900312 7.557 9

5 programs
running

645 5672224 8.588 13

Table 4.2: Memory Overhead for whitelist cache on Windows 7

Fig. 4.1.: Performance of Total-CFI vs Qemu 1.0.1

i7, 2.93GHz Quad core processor and 8GB of RAM, running Ubuntu 10.04 with Linux

kernel 2.6.32-44-generic-pae.

We capture the performance overhead introduced by Total-CFI under two categories.

(1) Execution overhead and (2) Memory overhead. We conducted experiments to measure

the boot time execution overhead introduced by Total-CFI on Windows 7 and XP. The

83

results are listed in Table 4.1. We consider boot time execution overhead under

performance evaluation because variety of activities occur during the system boot that

span across system level, user level and IO. Moreover, most module loads happen during

the system boot. Therefore, the boot process is perhaps the worst case scenario with

respect to performance overhead imposed by Total-CFI. Optionally, Total-CFI can be

turned on after the boot process and it can monitor the execution of all the newly created

processes from that point forward.

In Table 4.1 Total-CFI is configured in 2 modes, with and without caching of the

whitelists. With whitelist caching enabled, the overhead on Windows XP and 7 were found

to be 56.2% and 64.1% respectively. Keeping integration with hardware in mind, we also

captured the memory overhead introduced by Total-CFI to maintain the shadow whitelist

during the boot process on Windows 7. The memory overhead indicates the amount of

memory required to store the whitelists. The results are tabulated in Table 4.2. We found

the average overhead per file to be 7.46KB. We observed that the whitelist for files without

.reloc section tend to be larger in size since Total-CFI takes a conservative approach to

extract all the statically determinable addresses from the binary. Furthermore, from our

experiments, we found that even with large number of programs in the memory (such as

Microsoft Office applications, Adobe flash, IE, Google Chrome and so on), no more than

1000 files were present in the whitelist cache. At the rate of 7.46KB per file, one would

need to set aside approximately 8MB in the hardware for the whitelists, which is

conceivable. In combination with a carefully designed cache flush policy to accommodate

for even larger number of files in the memory, we believe that integrating whitelist

management into the hardware is not far fetched.

84

Furthermore, we ran the Pass Mark [73] CPU and Memory benchmark on Total-CFI.

The results are shown in Figure 4.1. The CPU benchmark on Total-CFI showed an

average overhead of 4.4% over Qemu and the memory benchmark showed an average

overhead of 19.8%.

4.2 Process-Level Enforcement

In process-level enforcement, the monitoring is restricted to a particular process.

Because the kernel is not monitored, performance of process-level monitoring is better than

whole-system monitoring.

We enforced the policy generated by vfGuard by running the program on Pin [74]: a

dynamic binary translator. A PinTool was written using 850 lines of C++ code to perform

policy enforcement. In our proof-of-concept approach, we intercept the control flow at

every previously identified callsite and check if the call target is allowable for the callsite. If

the target is dis-allowed, the instance is recorded as a violation of policy. Effective

enforcement must impose low space and runtime overheads. Under the basic policy,

vfGuard captures the policy within 2 maps. The first map Mcs maps a callsite to the

VTable offset at the callsite, and the second map Mtarget maps a given target to a

160-bitvector1 that represents the valid VTable offsets for the given target. That is, ith bit

set to 1 indicates that the target is valid for offset i ∗ 4. For a given CS, a Mcs entry is

readily derived from τval in Equation 3.1 in Section 3.2.4. Mtarget is populated from the

identified VTables (Section 3.2.5). For each VTable entry, the corresponding bitvector is

1The size of the bitvector is dictated by the size of the largest VTable in the binary. We found 160 to be
sufficient.

85

updated to indicate a 1 for the offset at which the entry exists within the VTable. vfGuard

performs 2 map lookups and 1 bitvector masking to verify the legitimacy of a given target

at a callsite. That is, for a given callsite (CS) and target (T), the target is validated if:

BitMask(Mcs(CS)) & Mtarget(T) 6= 0 (4.1)

Such a design enables quick lookup and limits space overhead from duplication of

callsites and targets within the maps. While the map lookups and bitvector masking result

in constant time runtime overhead, the space requirements of Mcs and Mtarget are linear

with resepct to number of callsites and targets respectively.

In case of callsites whose targets were filtered, the target lookup is different from basic

policy. Each callsite CS – whose targets were filtered – is associated with a map

MFiltered(CS) that maintains all the allowable call targets for CS. During enforcement,

vfGuard first checks if the callsite is present in MFiltered(CS) and validates the target. If

callsite is not present in MFiltered (i.e., targets for the callsite were not filtered), vfGuard

performs the 2 map lookup and verifies the target through Equation 4.1. Enforcing the

filtered policy introduces greater space overhead. The main reason being: targets reappear

in multiple MFiltered for each of the callsites that the targets are valid at. We wish to

investigate better enforcement in our future work.

Effect of Module-Level ASLR: vfGuard performs policy enforcement with or without

module-level ASLR enabled. At a module granularity, the base addresses of the modules

are randomized. That is, the modules are loaded at different addresses during each

86

instance of loading. The callsite and targets in Mcs, Mtarget and MFiltered are stored as

(module, offset) tuple rather than the concrete virtual address. When a module is loaded,

the virtual addresses of callsite and target addresses are computed from the load address of

the module.

4.2.1 Cross-Module Inheritance

In practice, classes in one module can inherit from classes defined in another

module [75]. Therefore, as new modules are loaded into a process address space, the

allowable call targets for callsites in existing modules need to evolve to accommodate the

potential targets in the new module. Given a list of approved modules that a program

depends on, vfGuard can analyze each of the modules to generate the intra-module policy.

From the execution monitor, vfGuard monitors module loads to capture any newly loaded

modules and their load addresses. Intra-module policies are progressively adjusted (for

ASLR) and maps Mcs, Mtarget and MFiltered are updated so as to capture the allowable

targets for various callsite offsets across all approved modules. If a target in an unapproved

modules is invoked, vfGuard records it as a violation.

4.2.2 Performance Evaluation

vfGuard performs policy enforcement using PinTool, a publicly available process-level

runtime execution monitor. To measure the performance overhead imposed by vfGuard, we

opened load-intensive webpages on Internet Explorer and recorded the overhead on 3

individual modules with respect to Pin as baseline. The results are graphed in Figure 4.2.

87

0

10

20

30

40

50

60

70

mshtml.dll msxml3.dll jscript.dll
Pin Baseline ‐ Time Taken (in secs) vfGuard ‐ Time Taken (in secs)

Fig. 4.2.: Performance overhead imposed by vfGuard

Overall, we found an average overhead of 18.3%. We made no attempt to optimize the

runtime performance of policy enforcement. While this performance overhead is not

impressively low, it is aligned with other binary-level CFI protection solutions, such as

BinCFI.

4.3 IR-Level Compile-Time Enforcement

In SPI, the enforcement is performed at the LLVM IR level. IR-level enforcement is

accomplished purely through static analysis, and therefore has the advantage of not

requiring any changes to the system. Moreover, the LLVM IR can either be derived from

the program source code using a front-end like clang, or by lifting the binary using a

platform like McSema [76].

88

4.3.1 Performance Evaluation

We evaluate the performance of coarse- and fine-grained SPI on SPEC-INT 2006

benchmark, and performance of coarse-grained SPI on GNU coreutils (ver 8.23.137) and

GNU binutils (ver 2.25). The results for SPEC benchmark are presented in Figure 4.3 and

4.4, and results for coreutils and binutils are presented in Figure 4.5 and 4.6. Overall, we

found that coarse-grained SPI imposes very little overhead. Average overhead of

coarse-grained SPI was found to be 1.04% for SPEC benchmark, 1.99% for binutils and

0.7% for coreutils. This is due to the infrequent use of absolute SP-update instructions in

the binary. For example, 5 out of 9 programs that we tested in coreutils contained no

absolute SP-update instructions.

50	 60	 70	 80	 90	 100	 110	

400.perlbench	
401.bzip2	
429.mcf	

445.gobmk	
456.hmmer	
458.sjeng	

462.libquantum	
464.h264ref	

471.omnetpp	
473.astar	

483.xalancbmk	
Average	

Coarse	 Grained	 Vanilla	 (baseline)	

Fig. 4.3.: SPEC INT 2006 performance benchmark for coarse-grained SPI

As expected the overhead imposed by fine-grained SPI was higher, with an average of

29.93%. We found two main causes for the overhead. Firstly, C++ programs tend to

89

0	 50	 100	 150	 200	

401.bzip2	

429.mcf	

456.hmmer	

458.sjeng	

462.libquantum	

464.h264ref	

473.astar	

Average	

Fine	 Grained	 Vanilla	 (baseline)	

Fig. 4.4.: SPEC INT 2006 performance benchmark for fine-grained SPI

50	 60	 70	 80	 90	 100	 110	

rm	
cp	

factor	
sha512	

sort	
cat	
wc	

md5sum	

Coarse	 Grained	 Vanilla	 (baseline)	

Fig. 4.5.: Coarse-grained SPI performance for GNU Coreutils

contain several virtual function dispatches, which are implemented using indirect call

instruction. Each function that invokes a virtual function is pivot-unsafe, and therefore

results in frequent zeroing. For example, in Figure 4.4, astar, which is a C++ program

imposes the most overhead of 87.16%. Secondly, a significant part of the overhead occurs

due to zeroing, which is O(n) with respect to the amount of space to be set to zero. In

astar, 52% of the overhead occurs due to zeroing. At the cost of deploy-ability, the cost of

90

50	 60	 70	 80	 90	 100	 110	 120	

objdump	

objcopy	

gas	

ld	

nm	

ar	

readelf	

Coarse	 Grained	 Vanilla	 (baseline)	

Fig. 4.6.: Coarse-grained SPI performance for GNU Binutils

zeroing can be lowered by incorporating the “partial zeroing” technique described in

Section 3.3.4.

4.4 Other Enforcement Strategies

Other enforcement techniques such as Binary Rewriting([77] and [78]) as used

by [24,30,40], in-memory enforcement by injecting code into process memory (e.g., using

Browser Helper Objects [79]), etc. are equally feasible. Prior approaches (e.g., [24, 30,40])

have leveraged static instrumentation to introduce Inline Reference Monitors (IRMs) to

check the legitimacy of a branch target at runtime. We believe such approaches can

improve the performance of vfGuard. Furthermore, depending on the number of modules

loaded, the size of callsite and target maps can increase to result in significant memory

overhead, specially in case of filtered targets. In such cases, cross-module dependencies can

be analyzed to only allow cross-module calls in cases where known dependencies exist,

thereby controlling the size of various enforcement maps.

91

5. LIMITATIONS AND FUTURE WORK

In this section we discuss the limitations of each of the solutions described in Chapters 3

and 4, and derive motivation for future work.

5.1 Attack Space in vfGuard

While vfGuard improves the precision with respect to state-of-the-art binary-level

defenses like BinCFI, it still has several inaccurate edges in the CFG. For example, in

Figure 3.5, while ground truth contains 6 function pointers, vfGuard identifies 3 VTables

with a total of 6+4+2 = 12 function pointers. This results in an attack space that only

increases with the number of VTables in the system. In future, we intend to investigate

techniques to improve VTable demarcation.

COOP [65] demonstrates an attack that leverages such redundancy in VTable-based

defenses. However, it is important to note that the nature of defense provided by vfGuard

ensures that turing-completeness can not be achieved within the attack space [65].

5.2 Low precision due to indirect jmp and ret instructions

vfGuard only improves the precision for indirect call instructions. From Table 5.1, we

can see that indirect call instructions form a significant fraction of the overall indirect

branch instructions. However, other indirect branch instructions – indirect jmp and ret

92

Program
Indirect call

instructions
Indirect jmp

instructions
ret

instructions

Total #
Indirect branch
instructions

ExplorerFrame.dll 7797 (51.2%) 87 7266 15227
msxml3.dll 5439 (46.6%) 78 6157 11674
jscript.dll 2235 (33.5%) 5 4430 6670
mshtml.dll 9843 (38.3%) 352 15479 25674

WMVCore.dll 9748 (53.3%) 50 8497 18295

Table 5.1: Profile of indirect branch instructions

instructions continue to suffer from low precision. As a part of future work, we will

investigate generic approaches that recover high-level semantics to impose restrictions on

all indirect branch instructions, and not just indirect call instructions.

5.3 Stack-Pointer-Aligned Payload

Fig. 5.1.: Stack-pointer-aligned payload

SPI addresses the integrity of the stack pointer, which is violated during stack pivoting.

While stack pivoting is required in accomplishing most real-world ROP exploits, some

93

exceptions exist. Specifically, if an attacker can inject the payload to a location already

pointed to by stack pointer, there is no need for stack pivoting. This is specially the case

when the attacker can overflow the stack and control the return address (e.g., through a

buffer overflow attack). For example, in Figure 5.1, through a buffer overflow in the callee

function, an attacker can overwrite the return address to point to the first gadget in the

ROP payload. When the callee function returns, the ROP payload is executed.

Our solution can not protect against attacks that do not modify the stack pointer.

However, buffer overflow is a well studied problem (e.g, [5, 80,81]) with practical

implementations. StackGuard [80], a popular solution incorporated into modern compilers

e.g., -fstack-protector in GCC and clang), introduces a randomly generated canary

between the return address and the local variables of a function. When the function

returns, if the canary is altered, an overflow is inferred. Most modern compilers not only

include support for stack canaries, but some also incorporate them as a default setting.

5.4 Pivoting through implicit SP-update instructions

In principle, implicit SP-update instructions can be used to perform stack pivoting,

however they are not as powerful as the explicit SP-update instructions. Unlike explicit

SP-update instructions, implicit SP-update instructions can only move the stack pointer by

small increments. Considering that an attacker has just one attempt at stack pivoting after

exploitation, unless the payload is close to the existing value of stack pointer, pivoting

through implicit SP-updates is hard. In fact, preventing pivoting through implicit

SP-update instructions presents two hard challenges. Firstly, several unintended implicit

94

SP-update instructions like pop reg, push reg, ret, etc., which are all one-byte

instructions can be found in the memory. Eliminating each of them would compound the

complexities faced by gadget elimination approaches [22,23]. Secondly, tracking the

movement of stack pointer at each of the implicit instructions would introduce a much

higher overhead than fine-grained SPI. This is the reason we limit SPI to tracking explicit

SP-update instructions.

However, as shown in Figure 1.1, SPI, in combination with CFI approaches can address

the problem of pivoting through implicit SP-update instructions.

5.5 Future Work

The redundancy in the CFI model generated by vfGuard arises due to two reasons: (1)

Incorrect VTable bounds, and (2) Lack of precise hierarchy information. In future, we

would like to perform analysis to more precisely generate class hierarchy information.

Particularly, corresponding entries in any two polymorphic VTables must be polymorphic

to each other. Therefore, the type of corresponding arguments must be compatible with

each other. We plan to leverage type analysis to generate more precise class hierarchy.

Furthermore, by combining training and theorem proving, we wish to recover more

semantics, specially the scope (i.e., visibility) related semantics like public, private,

protected, etc. in C++ binaries and incorporate them to generate a more precise CFI

model.

95

6. CONCLUSION

In this dissertation, we sought to reduce the attack space in code-reuse attacks through

program integrity models. Particularly, we operated directly on the binary and addressed

several challenges including recovery of high-level semantics.

We proposed Total-CFI, which recovered function-level semantics from the binary to

generate more precise CFI model. Further, we proposed vfGuard, which recovers

C++-level semantics to provide a more precise CFI model for C++ binaries. In particular,

it protects C++ virtual function calls in the binary. In an attempt to further reduce the

attack space, we observed that stack pointer assumes the role of the instruction pointer in

code-reuse attacks. Therefore, CFI in regular execution domain is analogous to SPI in

code-reuse attacks. We implemented the SPI model, which provides strict protection with

low overhead.

Finally, we presented three modes of enforcement of the integrity models. Total-CFI

performed system-wide enforcement that enabled whole-system protection. vfGuard

performed process emulation by enforcing at a process level, and finally, SPI incorporated

the security checks by performing alterations the the LLVM-IR level.

96

LIST OF REFERENCES

[1] “Data execution prevention.”
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366553(v=vs.85).aspx.

[2] N. News, “Sony hack.” http://www.nbcnews.com/storyline/sony-hack, 2014.

[3] E. C. Nicolas Falliere, Liam O Murchu, “Symantec stuxnet dossier.”
http://www.symantec.com/content/en/us/enterprise/media/security_
response/whitepapers/w32_stuxnet_dossier.pdf.

[4] D. Jang, Z. Tatlock, and S. Lerner, “SafeDispatch: Securing C++ virtual calls from
memory corruption attacks,” in Proceedings of 21st Annual Network and Distributed
System Security Symposium (NDSS’14), 2014.

[5] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang,
“Cyclone: A safe dialect of C.,” in USENIX Annual Technical Conference, General
Track, pp. 275–288, 2002.

[6] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson, L. Lozano, and
G. Pike, “Enforcing forward-edge control-flow integrity in GCC & LLVM,” in
Proceedings of 23rd USENIX Security Symposium (USENIX Security’14),
pp. 941–955, 2014.

[7] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86),” in Proceedings of the 14th ACM conference on Computer
and communications security, pp. 552–561, ACM, 2007.

[8] J. Salwan, “Ropgadget tool, 2012,” URL http://shell-storm. org/project/ROPgadget.

[9] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit hardening made easy.,” in
20th USENIX Security Symposium, 2011.

[10] N. Carlini and D. Wagner, “ROP is still dangerous: Breaking modern defenses,” in
23rd USENIX Security Symposium (USENIX Security’14), 2014.

[11] E. Göktaş, E. Anthanasopoulos, H. Bos, and G. Portokalidis, “Out of control:
Overcoming control-flow integrity,” in Proceedings of 35th IEEE Symposium on
Security and Privacy (Oakland’14), 2014.

[12] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address obfuscation: An efficient
approach to combat a broad range of memory error exploits.,” in USENIX Security,
vol. 3, pp. 105–120, 2003.

[13] P. team, “PaX: Address space alyout randomization (ASLR).”
http://pax.grsecurity.net/docs/aslr.txt, 2003.

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf

97

[14] S. Bhatkar and R. Sekar, “Data space randomization,” in Detection of Intrusions and
Malware, and Vulnerability Assessment, pp. 1–22, Springer, 2008.

[15] H. Xu and S. J. Chapin, “Address-space layout randomization using code islands,”
Journal of Computer Security, vol. 17, no. 3, pp. 331–362, 2009.

[16] M. Chew and D. Song, “Mitigating buffer overflows by operating system
randomization,” Tech. Rep. CMU-CS-02-197, Carnegie Mellon University, 2002.

[17] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring: Self-randomizing
instruction addresses of legacy x86 binary code,” in Proceedings of the 2012 ACM
conference on Computer and communications security (CCS’12), pp. 157–168, ACM,
2012.

[18] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose, “Isomeron: Code
randomization resilient to (just-in-time) return-oriented programming,” in Symposium
on Network and Distributed System Security (NDSS’15), 2015.

[19] H. Xu and S. J. Chapin, “Improving address space randomization with a dynamic
offset randomization technique,” in Proceedings of the ACM symposium on Applied
computing, pp. 384–391, ACM, 2006.

[20] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh, “On the
effectiveness of address-space randomization,” in Proceedings of the 11th ACM
conference on Computer and communications security, pp. 298–307, ACM, 2004.

[21] K. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A. Sadeghi,
“Just-in-time code reuse: On the effectiveness of fine-grained address space layout
randomization,” in IEEE Symposium on Security and Privacy (S&P’13), pp. 574–588,
2013.

[22] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the gadgets:
Hindering return-oriented programming using in-place code randomization,” in IEEE
Symposium on Security and Privacy (S&P’12), pp. 601–615, IEEE, 2012.

[23] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, “G-free: defeating
return-oriented programming through gadget-less binaries,” in Proceedings of the 26th
Annual Computer Security Applications Conference (ACSAC’10), pp. 49–58, ACM,
2010.

[24] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity,” in
Proceedings of the 12th ACM Conference on Computer and Communications Security
(CCS’05), pp. 340–353, 2005.

[25] S. S. Muchnick, Advanced Compiler Design and Implementation. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1997.

[26] B. Niu and G. Tan, “Modular control-flow integrity,” in Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’14), 2014.

[27] J. Criswell, N. Dautenhahn, and V. Adve, “KCoFI: Complete control-flow integrity for
commodity operating system kernels,” in Proceedings of 35th IEEE Symposium on
Security and Privacy (Oakland’14), 2014.

98

[28] B. Niu and G. Tan, “RockJIT: Securing just-in-time compilation using modular
control-flow integrity,” in Proceedings of 21st ACM Conference on Computer and
Communication Security (CCS ’14), 2014.

[29] S. McCamant and G. Morrisett, “Evaluating SFI for a CISC Architecture,” in
Proceedings of the 15th Annual USENIX Security Symposium (Usenix Security’06),
2006.

[30] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and
W. Zou, “Practical control flow integrity and randomization for binary executables,”
in Proceedings of the IEEE Symposium on Security and Privacy (Oakland’13),
pp. 559–573, 2013.

[31] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund, S. Nürnberger, and
A.-r. Sadeghi, “MoCFI: A framework to mitigate control-flow attacks on
smartphones,” in Proceedings of the 19th Annual Network and Distributed System
Security Symposium (NDSS’12), 2012.

[32] V. Mohan, P. Larsen, S. Brunthaler, K. Hamlen, and M. Franz, “Opaque control-flow
integrity,” in Symposium on Network and Distributed System Security (NDSS), 2015.

[33] K.-s. Lhee and S. J. Chapin, “Type-assisted dynamic buffer overflow detection.,” in
USENIX Security Symposium, pp. 81–88, 2002.

[34] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2014.

[35] H. Xu, W. Du, and S. J. Chapin, “Context sensitive anomaly monitoring of process
control flow to detect mimicry attacks and impossible paths,” in Recent Advances in
Intrusion Detection, pp. 21–38, Springer, 2004.

[36] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent rop exploit
mitigation using indirect branch tracing.,” in USENIX Security, 2013.

[37] Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng, “Ropecker: A generic and
practical approach for defending against rop attacks,” in Symposium on Network and
Distributed System Security (NDSS), 2014.

[38] E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos, and G. Portokalidis, “Size
does matter: Why using gadget-chain length to prevent code-reuse attacks is hard,” in
Proceedings of the 23rd USENIX conference on Security Symposium, 2014.

[39] M. Zhang, A. Prakash, X. Li, Z. Liang, and H. Yin, “Identifying and analyzing pointer
misuses for sophisticated memory-corruption exploit diagnosis,” in Proceedings of 19th
Annual Network & Distributed System Security Symposium, 2012.

[40] M. Zhang and R. Sekar, “Control flow integrity for COTS binaries,” in Proceedings of
the 22nd USENIX Security Symposium (Usenix Security’13), pp. 337–352, 2013.

[41] “Address space layout randomization (aslr).” http://pax.grsecurity.net/docs/aslr.txt,
2003.

[42] A. Prakash, H. Yin, and Z. Liang, “Enforcing system-wide control flow integrity for
exploit detection and diagnosis,” in Proceedings of the 8th ACM SIGSAC Symposium
on Information, Computer and Communications Security (ASIACCS’13),
pp. 311–322, 2013.

99

[43] M. Pietrek, “Msdn magazine, march 2002: An in-depth look into the win32 portable
executable file format, part 2.”
http://msdn.microsoft.com/en-us/magazine/cc301808.aspx.

[44] M. Russinovich, D. A. Solomon, and A. Ionescu, Windows Internals. 5th Ed.
Microsoft press, 2009.

[45] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring: self-randomizing
instruction addresses of legacy x86 binary code,” in Proceedings of the ACM
conference on Computer and communications security, CCS ’12.

[46] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-data attacks are
realistic threats,” in Proceedings of the 14th conference on USENIX Security
Symposium - Volume 14, SSYM’05, 2005.

[47] A. Chaudhuri, P. Naldurg, and S. Rajamani, “A type system for data-flow integrity on
windows vista,” SIGPLAN Not., vol. 43, pp. 9–20, Feb. 2009.

[48] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado, “Bouncer: securing
software by blocking bad input,” in Proceedings of 21st ACM SIGOPS Symposium on
Operating Systems Principles (SOSP’07).

[49] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing data-flow
integrity,” in Proceedings of the 7th symposium on Operating systems design and
implementation, OSDI ’06, USENIX Association, 2006.

[50] M. G. Kang, S. McCamant, P. Poosankam, and D. Song, “DTA++: dynamic taint
analysis with targeted control-flow propagation.,” in Proceedings of the 18th Annual
Network and Distributed System Security Symposium (NDSS’11).

[51] H. Yin, D. Song, E. Manuel, C. Kruegel, and E. Kirda, “Panorama: Capturing
system-wide information flow for malware detection and analysis,” in Proceedings of
the 14th ACM Conference on Computer and Communication Security (CCS’07).

[52] J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint analysis framework,”
in Proceedings of the 2007 International Symposium on Software Testing and Analysis
(ISSTA’07).

[53] A. Prakash, E. Venkataramani, H. Yin, and Z. Lin, “On the trustworthiness of
memory analysis – an empirical study from the perspective of binary execution,” IEEE
Transactions on Dependable and Secure Computing, vol. PP, no. 99, pp. 1–1, 2014.

[54] A. Prakash, E. Venkataramani, H. Yin, and Z. Lin, “Manipulating semantic values in
kernel data structures: Attack assessments and implications,” in 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’13),
pp. 1–12, June 2013.

[55] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan, J. Rhee, and D. Xu,
“DKSM: subverting virtual machine introspection for fun and profit,” in Proceedings
of the 29th IEEE International Symposium on Reliable Distributed Systems
(SRDS’10), 2010.

[56] A. Prakash, X. Hu, and H. Yin, “vfGuard: strict protection for virtual function calls
in COTS C++ binaries,” in Proceedings of the 22nd Annual Network and Distributed
System Security Symposium (NDSS’15), 2015.

[57] B. Stroustrup, The C++ Programming Language. Addison-Wesley, 4th ed., 2013.

http://msdn.microsoft.com/en-us/magazine/cc301808.aspx

100

[58] “Itanium C++ ABI.” http://mentorembedded.github.io/cxx-abi/abi.html.

[59] J. Ray, “C++: Under the hood.”
http://www.openrce.org/articles/files/jangrayhood.pdf, March 1994.

[60] “Stack Shield.” http://www.angelfire.com/sk/stackshield/.

[61] F. Chagnon, “IDA-Decompiler.” https://github.com/EiNSTeiN-/ida-decompiler.

[62] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Efficiently
computing static single assignment form and the control dependence graph,” ACM
Transactions on Programming Languages and Systems (TOPLAS), 1991.

[63] D. Dewey and J. T. Giffin, “Static detection of C++ vtable escape vulnerabilities in
binary code.,” in Proceedings of 19th Annual Network and Distributed System Security
Symposium (NDSS’12), 2012.

[64] Nektra, “Vtbl – IDA plugin.” https://github.com/nektra/vtbl-ida-pro-plugin, 2013.

[65] F. Shuster, T. Tendyck, C. Liebchen, L. Davi, A.-r. Sadeghi, and T. Holz, “Counterfeit
object-oriented programming, on the difficulty of preventing code reuse attacks in
c++ applications,” in Proceedings of 36th IEEE Symposium on Security and Privacy
(Oakland’15), 2015.

[66] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented programming: a new
class of code-reuse attack,” in Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security, pp. 30–40, ACM, 2011.

[67] X. Chen, A. Slowinska, D. Andriesse, H. Bos, and C. Giuffrida, “Stackarmor:
Comprehensive protection from stack-based memory error vulnerabilities for binaries,”
in Proceedings of the 22nd Annual Network and Distributed System Security
Symposium (NDSS’15).

[68] “Metasploit penetration testing framework.” http://www.metasploit.com.

[69] A. Henderson, A. Prakash, L. K. Yan, X. Hu, X. Wang, R. Zhou, and H. Yin, “Make
it work, make it right, make it fast: building a platform-neutral whole-system dynamic
binary analysis platform,” in Proceedings of the 2014 International Symposium on
Software Testing and Analysis (ISSTA), pp. 248–258, ACM, 2014.

[70] F. Bellard, “Qemu, a fast and portable dynamic translator,” in USENIX Annual
Technical Conference, FREENIX Track, April 2005.

[71] Y. Gu, Y. Fu, A. Prakash, Z. Lin, and H. Yin, “Os-sommelier: memory-only operating
system fingerprinting in the cloud,” in Proceedings of the Third ACM Symposium on
Cloud Computing, SoCC ’12.

[72] Y. Gu, Y. Fu, A. Prakash, Z. Lin, and H. Yin, “Multi-aspect, robust, and memory
exclusive guest os fingerprinting,” IEEE Transactions on Cloud Computing, 2014.

[73] “Passmark benchmark.” http://www.passmark.com, 2014.

[74] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building customized program analysis tools with
dynamic instrumentation,” in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’05), pp. 190–200, 2005.

http://www.metasploit.com

101

[75] “Using dllimport and dllexport in C++ classes.”
http://msdn.microsoft.com/en-us/library/81h27t8c.aspx.

[76] A. Dinaburg and A. Ruef, “McSema: Static Translation of X86 Instructions to
LLVM.” http://recon.cx/2014/slides/McSema.pdf, 2014.

[77] A. Srivastava, A. Edwards, and H. Vo, “Vulcan: Binary transformation in a distributed
environment,” Tech. Rep. MSR-TR-2001-50, Microsoft Research, April 2001.

[78] M. Laurenzano, M. Tikir, L. Carrington, and A. Snavely, “PEBIL: Efficient static
binary instrumentation for linux,” in Proceedings of IEEE International Symposium
on Performance Analysis of Systems Software (ISPASS’10), March 2010.

[79] “Browser Helper Objects.” http://sysinfo.org/bhoinfo.html.

[80] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,
Q. Zhang, and H. Hinton, “Stackguard: Automatic adaptive detection and prevention
of buffer-overflow attacks.,” in Usenix Security, vol. 98, pp. 63–78, 1998.

[81] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken, “A first step towards automated
detection of buffer overrun vulnerabilities.,” in Symposium on Network and Distributed
System Security (NDSS’00), pp. 2000–02, 2000.

102

VITA

Aravind Prakash is a PhD student in the Department of Electrical and Computer

Engineering at Syracuse University. His research interests lie in system security with

emphasis on binary analysis.

In 2004 Aravind obtained a degree of Bachelor of Engineering from Visvesvaraya

Technological University, Belgaum, India, and in 2009, he obtained a degree of Master of

Science from University of Miami, FL, USA. After obtaining his PhD, Aravind will join the

Department of Computer Science at SUNY Binghamton as an assistant professor.

	Binary Program Integrity Models for Defeating Code-Reuse Attacks
	Recommended Citation

	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Dissertation Overview
	Our Thesis
	Dissertation Organization

	Background
	Binary-Level Attacks
	Binary-Level Defenses against Code-Reuse Attacks
	Artificial Diversification
	Gadget Elimination
	Control-Flow Integrity

	Shortcomings of Current Binary-Level Defenses
	Precision
	Deployment

	Attack Space Reduction
	Precise CFI Model through Recovery of Function Semantics
	Total-CFI Overview
	Static Policy
	Dynamic Policy
	Dynamically Generated Code
	Non-relocatable binaries
	Branch Tables or Jump Tables
	Position Independent Code (PIC)
	Security Analysis
	Summary

	Precise CFI Model through Recovery of C++ Semantics
	Polymorphism in C++ Binary
	Problem Statement, Assumptions and Scope
	Approach Overview
	Callsite Identification
	VTable Identification
	Target Accumulation and Filtering
	Discussion
	Summary

	Attack Space Reduction through Stack-Pointer Integrity (SPI)
	Motivation
	SPI – Overview
	Coarse-Grained SPI
	Fine-Grained SPI
	Discussion

	Evaluation
	Challenges
	Evaluation Test Set
	Recovering Function-Level Semantics
	Recovering C++-Level Semantics
	Quantifying Attack Space
	Stack-Pointer Integrity

	Summary

	Integrity-Model Enforcement
	System-Wide Enforcement
	Performance Evaluation

	Process-Level Enforcement
	Cross-Module Inheritance
	Performance Evaluation

	IR-Level Compile-Time Enforcement
	Performance Evaluation

	Other Enforcement Strategies

	Limitations and Future Work
	Attack Space in vfGuard
	Low precision due to indirect jmp and ret instructions
	Stack-Pointer-Aligned Payload
	Pivoting through implicit SP-update instructions
	Future Work

	Conclusion
	LIST OF REFERENCES
	VITA

