
Syracuse University Syracuse University 

SURFACE SURFACE 

Electrical Engineering and Computer Science College of Engineering and Computer Science 

2012 

A New Framework For Distributed Detection with Conditionally A New Framework For Distributed Detection with Conditionally 

Dependent Observations Dependent Observations 

Hao Chen 
Syracuse University 

Biao Chen 
Syracuse University, Department of Electrical Engineering and Computer Science, bchien@ecs.syr.edu 

Pramod K. Varshney 
Syracuse University, Department of Electrical Engineering and Computer Science, varshney@syr.edu 

Follow this and additional works at: https://surface.syr.edu/eecs 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
H. Chen, B. Chen, and P. K. Varshney, "A new framework for distributed detection with conditionally 
dependent observations," IEEE Transactions on Signal Processing, vol. 60, pp. 1409-1419, 2012. 
http://dx.doi.org/10.1109/TSP.2011.2177975 

This Article is brought to you for free and open access by the College of Engineering and Computer Science at 
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized 
administrator of SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=surface.syr.edu%2Feecs%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


1

A New Framework For Distributed Detection with

Conditionally Dependent Observations

Hao Chen, Member, IEEE, Biao Chen, Senior Member, IEEE and Pramod K. Varshney,

Fellow, IEEE

Abstract

Distributed detection with conditionally dependent observations is known to be a challenging problem in

decentralized inference. This paper attempts to make progress on this problem by proposing a new framework for

distributed detection that builds on a hierarchical conditional independence model. Through the introduction of a

hidden variable that induces conditional independence among the sensor observations, the proposed model unifies

distributed detection with dependent or independent observations. This new framework allows us to identify several

classes of distributed detection problems with dependent observations whose optimal decision rules resemble the

ones for the independent case. The new framework induces a decoupling effect on the forms of the optimal local

decision rules for these problems, much in the same way as the conditionally independent case. This is in sharp

contrast to the general dependent case where the coupling of the forms of local sensor decision rules often renders the

problem intractable. Such decoupling enables the use of, for example, the person-by-person optimization approach

to find optimal local decision rules. Two classical examples in distributed detection with dependent observations

are reexamined under this new framework: detection of a deterministic signal in dependent noises and detection of

a random signal in independent noises.
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Index Terms – Distributed Detection, Dependent Observations, Likelihood Quantizer

I. INTRODUCTION

Distributed inference refers to the decision making process involving multiple decentralized agents or

sensors [1]. Development of the theory and methodologies for distributed inference was largely motivated

by military surveillance applications in the early days [2]. Tremendous progress has been made in this

area during the past few decades thanks to the collective effort of many researchers (see [3]–[6] and

references therein).

Of particular interest in this paper is distributed detection, or distributed hypothesis testing. Figure 1

is an illustration of a canonical distributed detection problem where the objective is to determine at the

fusion center the underlying hypothesis that drives the sensor observations. Different from a centralized

system, the sensor observations are compressed prior to being used by the fusion center in determining

the underlying hypothesis. This is typically a result of various system constraints, e.g., the communication

between the sensors and the fusion center may be severely bandlimited. The design of a distributed

detection system thus involves the design of the fusion rule γ0(·) as well as the decision rules at local

sensors γ1(·), · · · , γn(·). While the optimal fusion rule is known to be a likelihood-ratio test (LRT) at the

fusion center [7]–[9], designing decision rules at decentralized nodes is much more complicated because

of their distributed nature. For the most general problem, the optimal sensor decision rule design problem

has been shown to be an NP-complete problem [10]. On the other hand, if the local sensor observations are

conditionally independent given the hypothesis, the design of local decision rules simplifies substantially:

likelihood quantizers have been shown to be optimal for such cases under various inference regimes [4],

[11]. Therefore, the decision rule design problem reduces to that of finding the quantizer thresholds for

which the person-by-person optimization approach can be used to efficiently search for those thresholds

[3]. In the simple case of a binary hypotheses testing where each sensor sends a single bit to the fusion

center, the optimal decision rule at each sensor is simply an LRT and the remaining task is to find the

LRT threshold for each sensor. The optimality of likelihood quantizers for the distributed hypothesis

testing problem has since been extended to more complicated cases where the sensor outputs are to be

communicated through noisy, possibly coupled channels to the fusion center [12]–[14]. These extensions

are largely motivated by the emerging wireless sensor networks [15].
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p(X1, · · · , Xn|H)
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Fig. 1. A canonical distributed inference system. The kth local sensor observes Xk and sends its output Uk = γk(Xk) to the fusion center.

The fusion center makes a final decision U0 regarding θ using the fusion rule γ0(U1, · · · , Un).

In the absence of the conditional independence (CI) assumption, however, the problem of designing

the optimal local decision rules becomes much more challenging. In such a case, the form of the optimal

decision rule at a sensor is often unknown and is coupled with other sensor decision rules and the fusion

rule. Even for the binary hypotheses testing problem with binary sensor output, LRTs at local sensors are

often not optimal [16], [17]. The significant complexity of the dependent observation case is most clearly

demonstrated in a binary detection problem with two sensors observing a shift in the mean of correlated

Gaussian random variables [18], [19]. For this relatively simple problem, while the optimality of LRT can

be established for certain parameter regions, the problem becomes largely intractable in other regions. In

general, existing results for the dependent case are somewhat fragmented; only in some isolated cases do

we have a good understanding of the optimal decision structure.

The difficulty of dealing with dependent observations can be somewhat alleviated in the large sample

size regime in which the goal is to characterize or optimize error exponents of detection performance

instead of the actual error probabilities. This line of work was first proposed by Berger [20] who formulated

the multiterminal hypothesis testing problem under rate constraints. Significant progress has since been

made on this problem (see [21] and references therein); however, most concrete results are often derived

for some specialized settings, e.g., distributed test against independence under one-sided rate constraint

[22]. There have also been recent works in the use of large deviation theory for distributed detection with

correlated observations (see, e.g., [23]). There, the emphasis is typically not on local decision rule design

but instead on the analysis of asymptotic performance as a function of sensor correlation or network

size/topology. Such analysis is often feasible with simplifying assumption about local sensor decision

rules, e.g., the data are often assumed to be propagated without any compression.
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In this paper, we attempt to make progress in our understanding of the dependent cases in the finite

sample regime. Toward this end, we propose a unifying model under the Bayesian inference framework that

includes both conditionally independent and dependent observations as its special cases. Specifically, we

expand the physical hierarchical structure of the distributed detection problem by introducing a “hidden”

random variable. This hidden variable induces conditional independence of the sensor observations with

respect to this new random variable even if the original observations are conditionally dependent given

the underlying hypothesis. This new model allows for intuitive explanation of some of the known results

for distributed detection with dependent observations. More importantly, it provides a powerful framework

to identify broader classes of problems with dependent observations whose optimal sensor decision rules

can be drastically simplified. Here, the use of optimality is rather generic and most discussions about

optimality are equally applicable to both the Bayesian and the Neyman-Pearson frameworks. As this

paper focuses on the Bayesian framework, the optimality here refers specifically to the minimization of

the Bayesian cost at the fusion center. Preliminary results have been reported in [24], [25]. In addition to

expanding on the technical details of the proposed framework, the current paper include treatment of two

classical problems in distributed detection with dependent observations: the detection of a deterministic

signal in dependent noises and the detection of a random signal in independent noises. The ability to deal

with both problems demonstrate the power of the proposed framework.

Analogous approaches have been used in resolving some of the classical problems in multi-terminal

data compression involving dependent observations. Ozarow’s work in finding the rate-distortion region of

the multiple description problem for a bivariate Gaussian source relies on the use of an ‘artificial’ random

variable that induces a conditional independence of the two Gaussian random variables that are otherwise

correlated [26]. Similarly, the rate distortion region for the two terminal Gaussian source coding problem

[27] hinges on the introduction of an auxiliary Gaussian variable that induces a conditional independence

structure, thereby allowing the coupling of the two terminal Gaussian source coding problem with the

quadratic Gaussian CEO problem [28] whose rate distortion region was known [29].

The rest of this paper is organized as follows. In the next section, we review the formulation and

basic results for the M-ary distributed detection problem. The unifying system model for distributed

detection is proposed in Section III. In Sections IV and V, we identify two classes of distributed detection
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problems with dependent observations whose optimal local decision rules are reminiscent in structure of

the conditional independent case. In particular, we illustrate through two examples in Section V that the

proposed framework provides a meaningful approach to tackle two classical distributed detection problems

with dependent observations: 1) detection of deterministic signals in dependent noises and 2) detection

of random signals in independent noises. We conclude in Section VI.

Notation: Throughout this paper, we use p(x) to denote either point mass function (pmf) of a discrete

random variable X or probability density function (pdf) of a continuous random variable X . Simi-

larly, p(x, y) and p(x|y) denote respectively the joint or conditional pmf and pdf of random variables

X and Y . Boldface capital letters (e.g., X, U) denote vectors of random variables while boldface

lower case letters denote realizations of a random vector. Additionally, Xk denotes the vector X\Xk =

[X1, X2, · · · , Xk−1, Xk+1, · · ·XK ], i.e., the X vector except for the kth term.

II. MULTIPLE HYPOTHESES TESTING IN DISTRIBUTED MULTI-SENSOR SYSTEMS

Consider a canonical parallel distributed hypothesis testing system with K sensors, as illustrated in

Figure 1 and described below.

• M-ary hypothesis testing: H ∈ {0, 1, · · · ,M − 1} with prior probability πH .

• Local sensor observations Xk, k = 1, 2, · · · , K.

• Local sensor output Uk = γk(Xk) ∈ {0, · · · , L− 1}, k = 1, 2, · · · , K.

• Fusion center output U0 ∈ {0, 1, · · · ,M − 1}.

Let cu0,h be the Bayesian cost of deciding U0 = u0 when H = h is true. For the special case of minimizing

the probability of error, cu0,h takes the form of 0 − 1 cost, i.e., cu0,h = 0 when u0 = h and 1 otherwise.

The expected Bayesian cost C that needs to be minimized for this M-ary hypothesis testing problem is

given as

C =

M−1∑
u0=0

M−1∑
h=0

cu0,hp(u0, h)

=

M−1∑
u0=0

M−1∑
h=0

cu0,hπhp(u0|h)
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From the hierarchical structure of the canonical fusion model, H → X → U → U0 forms a Markov

chain. Therefore, expanding C with respect to sensor k, we have

C =

∫
X

∑
u

M−1∑
u0=0

M−1∑
h=0

cu0,hπhp(u0|u)p(u|x)p(x|h)dx

=

∫
Xk

∑
uk

p(uk|xk)fk(uk, xk)dxk (1)

where

fk(uk, xk)
�
=

∑
uk

M−1∑
u0=0

M−1∑
h=0

cu0,hp(xk|h)πhp(u0|uk, uk)

∫
Xk

p(uk|xk)p(xk|h, xk)dx
k

=
M−1∑
u0=0

M−1∑
h=0

cu0,hπhp(u0|uk, xk, h) (2)

is defined as the Bayesian cost density function (BCDF) for the kth sensor making decision uk while

observing xk and

p(u0|uk, xk, h) =
∑
uk

p(u0|uk, uk)

∫
Xk

p(uk|xk)p(xk|h, xk)dx
k. (3)

While we use integration in Equation (1) which implicitly assumes that the sensor observations are

continuous random variables, the expected Bayesian cost is similarly defined for discrete X where

integration is replaced with summation. From Equation (1), to minimize the expected Bayesian cost

C, the optimal kth sensor decision rule given fixed decision rules at all other sensors and the fusion

center is to make a decision uk such that fk(uk, xk) is minimized, that is

Uk = γk(Xk) = argmin
uk

fk(uk, Xk), (4)

for all Xk except for the set Dk with P (Xk ∈ Dk) = 0.

The BCDF fk(Uk, Xk) in Equations (2), and consequently the optimal decision rule at the kth sensor, is

coupled with the fusion rule γ0(·) and other sensor decision rules γi(·), i �= k. This coupling is what makes

the problem of finding the optimal set of γk(Xk) difficult since changes in other sensors’ decision rule

and/or the fusion rule may result in a change both in the form and associated parameters of fk(Uk, Xk).
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A. The Conditional Independence Case

The complexity of the optimization problem reduces significantly when the sensor observations are

independent conditioned on the underlying hypothesis H , i.e.,

p(x1, x2, · · · , xK |H) =
K∏
k=1

p(xk|H). (5)

For this conditional independence model, the BCDF fk(Uk, Xk) in Equation (2) becomes

f I
k (uk, xk) =

M−1∑
h=0

αk(uk, h)p(xk|h), (6)

where

αk(uk, h)
�
=

M−1∑
u0=0

cu0,hπhp(u0|uk, h)

=
∑
uk

M−1∑
u0=0

cu0,hπhp(u0|uk, uk)

∫
Xk

p(uk|xk)p(xk|h)dxk (7)

is a scalar function of the sensor decision Uk = uk and the underlying hypothesis H = h. Here the

superscript “I” indicates that the BCDF is obtained under the conditional independence assumption. The

optimal kth sensor decision rule γI
k(Xk) becomes

Uk = γI
k(Xk) = argmin

uk

M−1∑
h=0

αk(uk, h)p(Xk|H = h), (8)

for all Xk except for the set Dk with P (Xk ∈ Dk) = 0. Equation (8) is in essence of the same form as the

M-ary hypotheses Bayesian detection problem [30], i.e., γI
k is an optimal multiple hypotheses Bayesian

test with M hypotheses and L possible decisions with Bayesian cost coefficients αk(Uk, H). Compared

with the BCDF given in Equation (2) where even the forms of the optimal sensor decision rules are

unknown, the optimization problem reduces to determining suitable values of the scalars αk(Uk, H) under

the CI assumption. For binary hypothesis testing (M = 2 and H ∈ {0, 1}) with binary output at sensors

(L = 2 and Uk ∈ {0, 1}), γk(Xk) can be further simplified as

γI
k(Xk) =

⎧⎨
⎩ 0, if α̃k(1, 1)

p(Xk|H=1)
p(Xk|H=0)

+ α̃k(1, 0) > 0

1, otherwise,
, (9)

where α̃k(uk, h) = αk(uk, h)− αk(0, h), i.e., it is a local LRT with a suitable threshold.
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III. A HIERARCHICAL CONDITIONAL INDEPENDENCE MODEL FOR DISTRIBUTED DETECTION

Consider again the distributed detection system as shown in Fig. 1, where the variables involved follow

the following Markov chain

H → X → U → U0. (10)

Whether or not conditional independence holds depends on how the joint distribution p(X|H) factorizes,

i.e., whether or not Equation (5) is satisfied. The proposed framework hinges on the introduction of a

“hidden” random variable Y into this Markov chain, such that

1) the following Markov chain holds

H → Y → X → U → U0. (11)

2) X1, X2, · · · , XK are independent conditioned on Y, i.e.,

p(x1, x2, · · · , xK |y) =
K∏
i=1

p(xk|y). (12)

The injection of the hidden variable Y induces conditional independence of the sensor observations with

respect to this new variable regardless of the dependence structure of the original model. We refer to

this new model as the hierarchical (or hidden) conditional independence (HCI) model. Although it may

appear that the proposed HCI model (11) is less general than the traditional model (10), they are in fact

equivalent.

Lemma 1: Any general distributed inference model in Fig. 1 and Equation (10) can be represented as

a HCI model and vice versa.

Proof: Any HCI model is naturally a general distributed detection model with

p(x1, x2, · · · , xK |H) =
∑
Y

p(x1, x2, · · · , xK |y)p(y|H)

To prove the other direction, consider two cases. If X1, X2, · · · , XK are conditionally independent given

H , set Y = H . Otherwise, let Y = X. �

Compared with the traditional model, the HCI model (11) is more flexible and provides a unified

framework for analyzing distributed detection problems under various dependence assumptions.

Depending on the support of Y, we further classify the HCI model into three categories:

1) “Discrete” HCI (DHCI) model. In this case, Y is a discrete random variable or vector.
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2) “Continuous” HCI (CHCI) model. In this case, Y is either a continuous random variable or vector.

3) “Hybrid” HCI (HHCI) model. In this case, Y is composed of both discrete and continuous random

variables or vectors.

Notice that the discrete HCI model includes cases where Y can take finite or infinite values. It will

become apparent that the result presented in the next section requires Y to be of finite alphabet. For ease

of notation, we still refer to the case where Y is finite as simply discrete HCI.

One subtle difference between the CI and HCI models lies in the asymptotic detection performance

when the number of sensors increases. For the CI model, each sensor obtains a conditionally independent

“noisy” observation of H . Therefore, as long as the Chernoff distances between any two distributions

corresponding two hypotheses are not equal to 0, the probability of making a wrong decision decays

exponentially as the number of sensors K increases [31]. For the HCI model, however, each sensor

obtains a conditionally independent “noisy” observations of Y instead of H . As a result, although the

knowledge of Y can be improved as K increases, the distributed detection performance of the entire

system is limited by the clairvoyant case where Y is directly observable (c.f. the Markov chain (11)).

That is, the probability of making a wrong decision is always lower bounded by the probability of error

assuming direct knowledge of Y, regardless of the size of the sensor network K. This, of course, does

not preclude the case where the error probability may still decrease exponentially with K, e.g., in the

case of conditional independence for which one can set Y = H .

In the next two sections, we study two classes of the HCI model: Section IV deals with the DHCI

model where we further assume a finite alphabet support for Y while Section V considers the CHCI

model under additional conditions on the distributions of observations as well as the fusion rule. As

it turns out, both these models admit local sensor decision rules that are reminiscent of those for the

conditional independence case.

IV. OPTIMUM SENSOR DECISION RULE DESIGN FOR THE DHCI MODEL

Without loss of generality, let Y ∈ {0, 1, · · · , N − 1} where N is the size of its support. Note that we

use Y instead of Y in this section since Y is now a scalar random variable. Under this setting, we have

p(xk|H) =
N−1∑
y=0

p(xk, y|H)
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=

N−1∑
y=0

p(y|H)p(xk|y), (13)

and

p(x|H) =

N−1∑
y=0

p(x, y|H)

=
N−1∑
y=0

p(y|H)
K∏
k=1

p(xk|y). (14)

For the general DHCI case, p(x|H) and p(xk|H) defined above do not necessarily satisfy Equation (5).

Substitute Equation (14) into (2), the BCDF fk(uk, xk) can be simplified as follows.

fD
k (uk, xk) =

N−1∑
y=0

βk(uk, y)p(xk|y), (15)

where

βk(uk, y) ≡
M−1∑
u0=0

M−1∑
h=0

cu0,hp(u0|uk, y)p(y|h)

=
∑
uk

M−1∑
u0=0

M−1∑
h=0

cu0,hπhp(y|h)p(u0|uk, uk)

∫
Xk

p(uk|xk)p(xk|y)dxk (16)

is a scalar function of uk and y. The superscript “D” indicates that the BCDF is obtained under the DHCI

model.

To minimize the expected Bayesian cost

C =

∫
Xk

M−1∑
uk=0

P (Uk = uk|Xk = xk)f
D
k (uk, xk)dxk,

the optimal kth sensor rule γD
k becomes

Uk = γD
k (Xk) = argmin

uk

N−1∑
y=0

βk(uk, y)p(Xk|Y = y), (17)

for all Xk except the set Dk where P (Xk ∈ Dk) = 0.

Comparing Equations (17) and (8), one can observe the similarity between the DHCI case and the

CI case, i.e., γD
k (Xk) under the DHCI model is an optimum multiple hypotheses Bayesian test of N

hypotheses and L decisions with the cost coefficients βk(uk, y) where k = 1, 2, · · · , K, uk = 0, · · · , L− 1

and y = 0, 1, · · · , N −1. Thus, fD
k (uk, xk) has a similar form as f I

k (uk, xk) if we replace H with Y (with

respective cardinalities M and N).
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For example, when M = 2 and L = 2, dividing f̃ I
k (·, Xk) by p(Xk|Y = 0), γD

k (Xk) can be further

simplified as

γD
k (Xk) =

⎧⎪⎨
⎪⎩

0, if
N−1∑
y=0

β̃k(1, y)
p(Xk|Y=y)
p(Xk|Y=0)

> 0,

1, otherwise,

(18)

where β̃k(Uk, y) = βk(Uk, y) − βk(0, y), i.e., γD
k (Xk) is a local LR quantizer except that the likelihood

function is defined with respect to Y instead of the original hypothesis H . In the case of N = 2,

Equation (18) reduces to a LRT, again, with the likelihood function defined with respect to the hidden

variable Y .

A. Comparison between CI and DHCI

We now examine more closely the similarities and differences between the CI and DHCI models and

the resulting decision rules. First of all, for the DHCI model, let us determine the cases for which the

optimal decision rules at local sensors are indeed likelihood ratio quantizers where the likelihood functions

are defined with respect to the hypothesis under test.

Under the DHCI model, replacing p(xk|H) in Equation (6) with (13), the BCDF f I
k (uk, xk) obtained

in the CI model becomes

f I
k (uk, xk) =

N−1∑
y=0

p(xk|y)
(

M−1∑
h=0

αk(uk, h)p(y|h)
)
. (19)

Let PH
Y = [P (y|h)]0≤y≤N−1,0≤h≤M−1 be the N ×M probability transition matrix between H and Y ,

Bk = [β(Uk, 0), β(Uk, 1), · · · , β(Uk, N − 1)]T ,

and

Ak = [α(Uk, 0), α(Uk, 1), · · · , α(Uk,M − 1)]T .

For any f I
k (uk, xk) with coefficients α(uk, 0), α(uk, 1), · · · , α(uk,M − 1), we can always find, for a given

Y , a corresponding fD
k (uk, xk) with coefficients β(uk, y) where

Bk = PH
Y Ak, (20)
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such that they are equivalent. The converse, however, is not always true as we may not be able to find a

set Ak satisfying Equation (20) for any given Bk.

However, if PH
Y is a full row rank matrix, i.e., Rank(PH

Y ) = N ≤ M , then, for any arbitrary Bk, there

exists at least one Ak such that Equation (20) holds [32]. That is, under this condition, for any f D
k (uk, xk)

with coefficients Bk, we can find a corresponding f I
k (uk, xk) with coefficients Ak such that the resulting

decision functions are the same. Therefore, when Rank(PH
Y ) = N ≤ M , the optimal detection performance

can also be achieved by fixing the form of local sensor decision rules as Equation (8) and selecting an

optimal set of parameters. In other words, the optimal decision rules take the form of likelihood quantizers

where the likelihood function is defined with respect to the original hypothesis under test.

B. An Example

Target JammerSensor 1 Sensor 2

Fusion 

Center

J1 J2

W1
W2

U1 U2

U0

T

Fig. 2. A DHCI example with two sensors, one target and one jammer.

Consider the problem of target detection in the presence of a possible jammer using two sensors. Sensor

1 is placed between the jammer and the target, while sensor 2 is placed far away from the target but close

to the possible jammer. Assume that depending on whether the target and/or the jammer are present, the
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received signals at the two sensors are respectively:

X1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T + J1 +W1 both target and jammer are present;

T +W1 only target is present;

J1 +W1 only jammer is present;

W1 neither target nor jammer is present;

X2 =

⎧⎨
⎩ J2 +W2 jammer is present;

W2 jammer is absent.

where X1 and X2 are the respective received signals at sensors 1 and 2, T is the received target signal

at sensor 1, J1 and J2 are jammer signals observed at the two sensors, and W1 and W2 are the noises at

the two sensors and are independent of each other and of the target and jammer signals. Notice that in

the above model, the received signal of sensor 2 is independent of whether the target is present or not as

it is far away from the target location. Each sensor makes a binary decision independently and sends it

to a fusion center where the final decision is made. This is illustrated in Figure 2.

Let H ∈ {0, 1} represent the hypotheses of target absent and present respectively. We also denote by

J ∈ {0, 1} the random variable that represents the absence or presence of the jammer. Assume further

that both H and J have equally likely prior probabilities. Notice that due to the possible presence of the

jammer, the signals at the two sensors are no longer independent conditioned on the hypothesis under

test. However, given both H and J , X1 and X2 are independent of each other due to the assumption of

the independence of observation noises.

To illustrate the DHCI approach and to compare it with the one that assumes the CI model, let us

consider the high signal to noise ratio (SNR) case with the additional simplifying assumption that T , J1,

and J2 are all of equal power, say, P . Thus, the received signal power at sensors 1 and 2 are

P1 ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2P both target and jammer are present;

P either target or jammer is present;

0 neither target nor jammer is present;

P2 ≈
⎧⎨
⎩ P jammer is present;

0 jammer is absent.



14

Notice that in the absence of any additional information regarding target and jamming signals, any

meaningful detection schemes will be based solely on the received signal power. If we assume a conditional

independence model, then since sensor 2’s signal is independent of H , the fusion output should rely on

sensor 1 output only. For sensor 1, the optimal binary decision rule that minimizes the error probability

is to declare U1 = 1 if P1 = 2P , U1 = 0 if P1 = 0. If P1 = P , U1 can be set at either 1 or 0 without

affecting the error probability. The optimal fusion rule would be simply to set U0 = U1, achieving an

error probability of 0.25.

However, it is easy to conceive a simple scheme that achieves perfect detection: Sensor 2 first makes

a binary decision informing the fusion center about the state of the jammer, while sensor 1 implements

a non-monotone quantizer: U1 = 1 if P1 = 0 or 2P , and U1 = 0 if P1 = P . This simple scheme results

in a vanishing error probability as SNR grows.

Not surprisingly, such decision rules are exactly what would result if we follow the underlying DHCI

model with the hidden variable Y = {H, J}. Specifically, by setting Y = {H, J} which induces

conditional independence of the sensor observations, it is straightforward, albeit tedious to verify from

(17) that for certain signal parameters, sensor 1 should implement a two threshold quantizer rule whereas

for sensor 2 the decision rule is always a single threshold quantizer. As the signal to noise ratio tends

to infinity, the decision rule for sensor 1 converges precisely to the non-monotone quantizer described

above.

V. OPTIMUM SENSOR RULE DESIGN FOR THE CHCI MODEL

In this section, we consider the optimum design problem for the CHCI model where Y is a continuous

scalar random variable. Analogous to the DHCI model, by replacing summation with integration in

Equation (21), the BCDF under the CHCI model is given by

fC
k (uk, xk) =

∫
y

βk(uk, y)p(xk|y)dy, (21)

where βk(uk, y) is similarly defined as in (16) except that p(·) now denotes pdf instead of pmf. The

superscript “C” indicates that the BCDF is obtained under the CHCI model.

To minimize the expected Bayesian cost C, given that all other rules are fixed, the optimal kth local

sensor rule becomes
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Uk = γC
k (Xk) = arg

uk

min fC
k (Uk, Xk) (22)

for all Xk except for the set Dk where P (Xk ∈ Dk) = 0.

Unlike the BCDF fD(uk, xk) for the DHCI model, fC
k (uk, xk) cannot be described completely by a set

of finite parameters. Thus, unlike the optimal design problem under the CI or DHCI model, it is often

not possible to solve the optimum sensor rule design problem solely by determining proper values of a

set of parameters. However, compared to the BCDF form of the traditional model given by Equation (2),

fC
k (uk, xk) has a much simpler structure based on the hidden random variable Y and provides a better

insight for the design problem. In fact, by imposing some additional constraints on the distributions p(x k|y)
and p(y|H), the optimal local sensor decision rules can be determined by exploring certain property of

fC
k (uk, xk). In the next few subsections, we present some concrete results for the CHCI model. The power

of the proposed framework is highlighted by reexamining the binary detection problem with two sensors

observing a shift in the mean of correlated Gaussian random variables [18], [19]. While the optimal

decision rules are already known for some given parameter regimes, the new approach of solving this

problem is more potent and is broadly applicable to other cases.

A. Distributed Binary Hypotheses Testing with Monotone Likelihood Ratios

Recall that a family of densities, parameterized by θ, pθ(x), is said to have monotone likelihood ratios

in T (x) if there exists a real-valued function T (x) such that for any θ < θ′ the distributions pθ and pθ′ are

distinct and pθ′(T (x))/pθ(T (x)) is a nondecreasing function of T (x) [33]. Moreover, the distribution is

said to have monotone likelihood ratios in its observation if T (x) = x satisfies the above condition. The

monotonicity utilized in this section can be considered to be a variation of the above classical definition.

To ease our notation and presentation, we focus in this subsection on binary hypothesis testing with binary

sensor outputs, i.e., M = 2, L = 2 and Uk ∈ {0, 1}. Both sensor observations as well as the “hidden” Y

are scalar random variables. Also, the fusion rule is assumed to be monotonic such that

P (U0 = 1|Uk = 1, y) ≥ P (U0 = 1|Uk = 0, y), (23)
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for all k = 1, 2, · · · , K and all y. Notice that

P (U0 = 1|Uk = uk, y) =
∑
uk

P (U0 = 1|Uk = uk,u
k)p(uk|y), (24)

and this monotonicity definition is a slight deviation from the traditional definition of a monotonic fusion

rule where P (U0 = 1|Uk = 1,uk) ≥ P (U0 = 1|Uk = 0,uk) is required for all possible Uk [3].

Without loss of generality, for this binary hypothesis testing problem, we assume the 0-1 Bayesian

cost, resulting in the expected Bayesian cost to be the error probability Pe. The following proposition

establishes the optimality of single threshold quantizers at the local sensors under suitable conditions.

Proposition 1: Consider a distributed binary hypothesis testing system with scalar sensor observations

and binary sensor outputs. Suppose that the distributed hypothesis testing problem can be described

equivalently by the CHCI model where the “hidden” random variable Y is a scalar random variable.

Furthermore,

1) The fusion center implements a monotone fusion rule that satisfies (23);

2) The ratio g(y)
�
= p(y|H=1)

p(y|H=0)
is a nondecreasing function of y;

3) The ratio h(y; xk, x
′
k)

�
= p(xk|y)

p(x′
k|y)

is also a nondecreasing function of y for any xk > x′
k.

Then there exists a single threshold quantizer at sensor k, i.e.,

Uk =

⎧⎨
⎩ 1, if Xk ≥ τk,

0, if Xk < τk,
(25)

for some suitable τk, that minimizes the error probability Pe.

Proof: As the expected Bayesian cost C is the error probability Pe, we have c11 = c00 = 0 and

c10 = c01 = 1. The coefficient β(Uk, Y ) becomes

β(uk, y) = π0P (U0 = 1|uk, y)p(y|H = 0) + π1P (U0 = 0|uk, y)p(y|H = 1)

= (π0p(y|H = 0)− π1p(y|H = 1))P (U0 = 1|uk, y) + π1p(y|H = 1) (26)

Thus,

f̃C
k (1, xk)

�
= fC

k (1, xk)− fC
k (0, xk) (27)

=

∫
Y

(β(1, y)− β(0, y))p(xk|y)dy

=

∫
Y

p(xk|y)(P (U0 = 1|Uk = 1, y)− P (U0 = 1|Uk = 0, y))
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(π0p(y|H = 0)− π1p(y|H = 1))dy

= −
∫
Y

p(xk|y)φ(y)dy (28)

where

φ(y)
�
= (P (U0 = 1|Uk = 1, y)− P (U0 = 1|Uk = 0, y)) (π1p(y|H = 1)− π0p(y|H = 0))

= (P (U0 = 1|Uk = 1, y)− P (U0 = 1|Uk = 0, y))π1p(y|H = 0)

(
p(y|H = 1)

p(y|H = 0)
− π0

π1

)
. (29)

Since p(y|H = 1)/p(y|H = 0) is nondecreasing in y and P (U0 = 1|Uk = 1, Y = y) ≥ P (U0 =

1|Uk = 0, Y = y), φ(y) is a function with a single change of sign. In other words there exists a value

−∞ ≤ τk,y ≤ +∞ such that φ(y) ≥ 0 when y ≥ τk,y and φ(y) ≤ 0 when y < τk,y. The exact value of

τk,y can be obtained by solving the likelihood ratio equation p(τk,y|H = 1)/p(τk,y|H = 0) = π0/π1.

From (22) and (28), the optimal kth sensor rule γk is

Uk =

⎧⎨
⎩ 1 if

∫
y
p(xk|y)φ(y)dy > 0,

0 otherwise.

To establish the sufficiency of a single threshold quantizer as defined in (25), it suffices to show that for

xk > x′
k, ∫

Y

p(x′
k|y)φ(y)dy > 0

implies ∫
Y

p(xk|y)φ(y)dy > 0.

To show this, let

c =
p(xk|τk,y)
p(x′

k|τk,y)
.

Hence, by the monotone property specified in condition 3), i.e., the ratio p(xk|y)
p(x′

k|y)
is also a nondecreasing

function of y for any xk > x′
k, we have⎧⎨

⎩
p(xk|y)
p(x′

k|y)
≥ c, for y ≥ τk,y,

p(xk|y)
p(x′

k|y)
≤ c, for y ≤ τk,y.
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Thus, ∫
Y

p(xk|y)φ(y)dy =

∫
Y

p(x′
k|y)

p(xk|y)
p(x′

k|y)
φ(y)dy

=

∫ τk,y

−∞
p(x′

k|y)
p(xk|y)
p(x′

k|y)
φ(y)dy +

∫ ∞

τk,y

p(x′
k|y)

p(xk|y)
p(x′

k|y)
φ(y)dy

≥
∫ τk,y

−∞
cp(x′

k|y)φ(y)dy +
∫ ∞

τk,y

cp(x′
k|y)φ(y)dy

= c

∫
Y

p(x′
k|y)φ(y)dy > 0

Notice that the proof of this proposition is similar in spirit to that of Lemma 2 (iii) of [33, Section 3.3].

For the general case when the number of possible sensor outputs L > 2, we have the following result

whose proof can be constructed analogously.

Theorem 1: Consider a distributed binary hypothesis testing system with scalar sensor observations

and L-level sensor outputs. Suppose that the distributed hypothesis testing problem can be described

equivalently by the CHCI model where the “hidden” random variable Y is a scalar random variable.

Furthermore,

1) The fusion center implements a monotone fusion rule: P (U0 = 1|Uk = u, Y = y) ≥ P (U0 = 1|Uk =

u′, Y = y) for u ≥ u′ and all possible y;

2) The ratio g(y)
�
= p(y|H=1)

p(y|H=0)
is a nondecreasing function of y;

3) The ratio h(y; xk, x
′
k)

�
= p(xk|y)

p(x′
k|y)

is also a nondecreasing function of y for any xk > x′
k,

Then there exists a L− 1-threshold quantizer at sensor k such that

Uk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Uk = L− 1, Xk ≥ τk,L−1

Uk = L− 2, τk,L−2 ≤ Xk < τk,L−1

· · · , · · ·
Uk = 0, Xk < τk,1

, (30)

that minimizes the error probability Pe.

We now examine two examples, the first one being the detection of a deterministic signal in dependent

noises while the second one is the detection of a random signal in independent noise. These are the two

classical cases of distributed detection with dependent observations. In both cases, the proposed approach

leads to an optimal detection system, demonstrating the power of the proposed framework.
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B. Detection of a Deterministic Signal in Correlated Gaussian Noise

We now revisit the binary hypothesis testing problem with two sensors observing correlated Gaussian

data with different mean values under the two hypotheses. This problem was first considered in [18] and

further explored in [19]. Specifically, the sensor observations are:

H = 0 : X1, X2 ∼ N(0, 0, 1, 1, ρ)

H = 1 : X1, X2 ∼ N(s1, s2, 1, 1, ρ)
(31)

where N(s1, s2, σ
2
1 , σ

2
2, ρ) is the usual bivariate Gaussian density function with means s1 ≥ 0, s2 ≥ 0,

variances σ2
1 , σ2

2 , and covariance ρσ1σ2. Binary sensor output is assumed such that L = 2, with Uk ∈ {0, 1}.

Without loss of generality, we assume ρ ≥ 0. Otherwise, one can always multiply X1 by −1. It was shown

in both papers that, by restricting to the AND fusion rule, there exists the so-called “good ” region defined

by the set of parameters satisfying

(s1 − ρs2)(s2 − ρs1) ≥ 0, (32)

for which the optimal local sensor decision rules are single threshold quantizers with suitably chosen

thresholds. Such local decision rules have exactly the same form as that when ρ = 0, i.e., when the

sensor observations are conditionally independent of each other. For parameter sets that are outside of

the “good” region, the optimal form of sensor decision rules remains largely unknown. The proof used in

establishing the condition for the good region [19] relies on some particular properties of the Gaussian

density functions.

We now provide a much more intuitive proof of the so-called good region using Proposition 1. Assume

without loss of generality that s1 > 0 and s2 > 0. We note that condition (32) requires that either s1 > 0

and s2 > 0 or s1 < 0 and s2 < 0 and the latter case is equivalent to the former through multiplying

both X1 and X2 with −1. Recall that any bivariate Gaussian random variables (Z1, Z2) ∼ N (0, 0, 1, 1, ρ)

admits a decomposition

Z1 =
√
ρY ′ +

√
1− ρW ′

1

Z2 =
√
ρY ′ +

√
1− ρW ′

2

where (Y ′,W ′
1,W

′
2) are independent Gaussian random variables with zero mean and unit variance. Fol-

lowing similar approach, we can show that the sensor observations X1, X2 for the hypothesis testing
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problem admit the following decomposition

X1 = s1Y +W1

X2 = s2Y +W2,
(33)

where
W1 ∼ N (0, 1− ρs1

s2
),

W2 ∼ N (0, 1− ρs2
s1
),

Y ∼ N (H, ρ
s1s2

).

(34)

Note that the dependence of Y on H is in its mean value: Y is zero mean under the H = 0 hypothesis and

unit mean under the H = 1 hypothesis. Clearly, such a Y satisfies the Markov chain condition for the HCI

model (11) and induces conditional independence of X1 and X2 given Y . From Equations (33) and (34),

as W1, W2 and Y are all Gaussian random variables, one can easily verify the monotone properties 2)

and 3) in Proposition 1. Thus, given that the AND fusion rule is monotonic, optimality of single threshold

quantizers for both sensors follows from Proposition 1 directly.

Now we turn to the condition for the good region (32). For the above decomposition to hold, the

variances for both W1 and W2 need to be non-negative, therefore(
1− ρ

s1
s2

)(
1− ρ

s2
s1

)
≥ 0.

For s1 > 0 and s2 > 0, this condition is easily seen to be equivalent to (32). Therefore, the good region

condition specified in Equation (32) is precisely what is needed for the desired decomposition so that

Proposition 1 can be applied.

For the above binary hypothesis testing problem with Gaussian observations, one can generalize the

result to that of a multiple-sensor system. To illustrate this, consider the following hypothesis testing

problem

H = 0 : X ∼ N(0,ΣX)

H = 1 : X ∼ N(s,ΣX),
(35)

where 0 = [0, 0, · · · , 0]T and s = [s, s, · · · , s]T are the mean vectors of X under H = 0 and H = 1
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hypotheses, respectively. If ΣX has the following structure:

ΣX =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦

then the sensor observations admit the following decomposition:

Xk = sY +Wk, for k = 1, · · · , K

where Y ∼ N (H, ρ
s2
) and Wk ∼ N (0, 1 − ρ), k = 1, · · · , K are independent of each other. It is then

straightforward to verify that the conditions set forth in Proposition 1 are thus satisfied thus a single

threshold quantizer is optimal for each sensor. The above result can also be extended to multi-sensor

Gaussian hypothesis testing problem under more general conditions.

We now turn our attention to the other case, namely the detection of a random signal in independent

noises.

C. Distributed Detection of a Random Signal

Consider the detection of a random signal S using K sensors. The random signal follows two different

distributions under the two hypotheses: S ∼ p0(s) if H = 0 and S ∼ p1(s) if H = 1. The observation at

sensor k is given by

Xk = akS +Wk, (36)

where ak is the attenuation factor that is determined by the distance between the source emitter and the

sensor and Wk is the observation noise at the kth sensor. Each sensor makes a binary decision and sends

it to a fusion center which makes a final decision regarding the hypotheses under test.

Consider first a simple Gaussian model where p0 ∼ N (0, σ2
0) and p1 ∼ N (0, σ2

1) with

0 ≤ σ2
0 < σ2

1. (37)

Furthermore, let us assume that the sensor noise is also zero mean Gaussian, i.e., Wk ∼ N (0, σ2). For

such a Gaussian model, if there is only a single sensor (i.e., centralized detection), the hypotheses testing

problem reduces to that of the detection of zero mean Gaussian signals with different variances for which
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the simple energy detector is optimal. Or, equivalently, the optimal detector is a threshold test of the

statistics |X|.
For the multiple sensor case, let the hidden variable be defined as Y = S. Apparently, given the signal

model, H−Y −X forms a Markov chain and that X is conditionally independent given Y . Assume also

that a monotone fusion rule, e.g., an L out of K majority rule, that satisfies (23) is used at the fusion

center. From the proof of Prop. 1, we have

f̃C
k (1, xk) = −

∫
y

p(xk|y)φ(y)dy. (38)

where f̃C
k (1, xk) is defined in (28) and φ(y) = P (H = 1) p(y|H=1)

p(y|H=0)
− P (H = 0). However, p(y|H=1)

p(y|H=0)
is not

a monotonic function of y ∈ R where R is the entire real line. Thus we can not directly use Proposition

1 in obtaining the optimal sensor decision rules.

Nevertheless, the symmetry in the signal model allows us to still derive the optimal sensor decision

rules under the proposed framework. Specifically, since φ(y) is symmetric at Y = 0, equation (38) can

be rewritten as

f̃C
k (1, xk) = −

∫ ∞

0

(p(xk|y) + p(xk| − y))φ(y)dy. (39)

We first verify the monotonicity of φ(y) for y > 0 which is straightforward under the Gaussian model.

Now comparing (39) and (38) and from the proof of Proposition 1, we need to verify that,

r(y) =
p(xk|y) + p(xk| − y)

p(x′
k|y) + p(x′

k| − y)
=

eakxky + e−akxky

eakx
′
ky + e−akx

′
ky
ex

′2
k −x2

k ,

is a monotone function of y for xk > x′
k ≥ 0. Differentiate ln r(y) with respect to y, we have,

d

dy
ln r(y) = akxk

eakxky − e−akxky

eakxky + e−akxky
− akx

′
k

eakx
′
ky − e−akx

′
ky

eakx
′
ky + e−akx

′
ky

> akx
′
k

{
1− e−2akxky

1 + e−2akxky
− 1− e−2akx

′
ky

1 + e−2akx
′
ky

}

> akx
′
k

{
1− e−2akx

′
ky

1 + e−2akx
′
ky

− 1− e−2akx
′
ky

1 + e−2akx
′
ky

}
= 0

for xk > x′
k ≥ 0 and y > 0. We have thus established that, for Xk > 0, the optimal local decision rule is

Uk =

⎧⎨
⎩ 1 if Xk ≥ τk,

0 otherwise.
(40)
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where τk ≥ 0 is a suitable parameter. Furthermore, due to the symmetry of the observation model, f̃C
k is

a symmetric function of Xk, i.e., f̃C
k (1, xk) = f̃C

k (1,−xk). Therefore, the decision rule for the kth sensor

is symmetric around 0 such that γk(xk) = γk(−xk), or, equivalent, it is a function of |Xk| only. Thus, the

optimal local decision rule for all Xk is

Uk =

⎧⎨
⎩ 1 if |Xk| ≥ τk,

0 otherwise.
(41)

Perhaps it does not come across as surprising that the optimal local decision rule bears the same form as

the optimal decision rule when only a single sensor is used. However, this is not true in general: absent

of conditional independence among sensor observation, it is known that the optimal local sensor decision

rules often differ from that of the optimal detector using a single sensor, i.e., an LRT may not be optimal

in general for distributed detection with dependent observations.

Furthermore, it is not imperative to have a Gaussian model for the above detector structure to be optimal.

The monotone properties can be also verified by assuming other uni-modal distribution symmetric at S = 0.

Consider, for example, that S is a Laplacian distributed random signal with pdf

1

2σi

e
− |s|

σi

with 0 < σ0 < σ1 where σ0 and σ1 are the respective parameters under the two hypotheses. Again, by

setting Y = S, Y satisfies the Markov chain conditions of a HCI model and also induces conditional

independence. Compared with the Gaussian case and from the proof of Proposition 1, all we need to

verify is the monotonicity of p(y|H=1)
p(y|H=0)

for y ≥ 0. Straightforward calculation leads to

p(y|H = 1)

p(y|H = 0)
=

σ0

σ1

e
y
(

1
σ0

− 1
σ1

)
, y ≥ 0.

Thus, it is indeed monotone increasing in y for y ≥ 0. As such, simple thresholding of |Xk| is also

optimal when S is a Laplacian distributed random signal.

VI. CONCLUSION

We proposed a hierarchical conditional independence model that encompasses distributed detection

problems with conditionally dependent and independent observations as its special cases. This model

allowed us to develop a novel framework in dealing with distributed detection with dependent observations.
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We have identified classes of distributed detection problems with dependent observations whose optimal

sensor decision rules are uncoupled in their form. This decoupling effect is reminiscent of that of the

conditional independence case thereby allowing the use of efficient algorithms to find these optimal

sensor decision rules. The unifying power is most easily illustrated by providing a satisfying explanation

of why single threshold quantizers are optimal for distributed detection of a constant signal in correlated

Gaussian noises.

This general model will enable us to identify and solve new classes of distributed inference problems

with dependent observations and the proposed framework can be adapted for distributed detection with

other topological structures, e.g., the serial network, and under different inference regimes, e.g., the

Neyman-Pearson problem.
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