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Do Cosmological Perturbations Have Zero Mean?

Cristian Armendariz-Picon1

1Department of Physics, Syracuse University, Syracuse, NY 13244-1130, USA

Abstract

A central assumption in our analysis of cosmic structure is that cosmological perturbations have

zero ensemble mean. This property is one of the consequences of statistically homogeneity, the

invariance of correlation functions under spatial translations. In this article we explore whether

cosmological perturbations indeed have zero mean, and thus test one aspect of statistical homo-

geneity. We carry out a classical test of the zero mean hypothesis against a class of alternatives

in which perturbations have non-vanishing means, but homogeneous and isotropic covariances.

Apart from Gaussianity, our test does not make any additional assumptions about the nature of

the perturbations and is thus rather generic and model-independent. The test statistic we employ

is essentially Student’s t statistic, applied to appropriately masked, foreground-cleaned cosmic mi-

crowave background anisotropy maps produced by the WMAP mission. We find evidence for a

non-zero mean in a particular range of multipoles, but the evidence against the zero mean hypoth-

esis goes away when we correct for multiple testing. We also place constraints on the mean of the

temperature multipoles as a function of angular scale. On angular scales smaller than four degrees,

a non-zero mean has to be at least an order of magnitude smaller than the standard deviation of

the temperature anisotropies.
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I. INTRODUCTION

The cosmological principle is one of the cornerstones of modern cosmology. Roughly

speaking, the principle states that the universe is homogeneous and isotropic on large scales.

Although large-scale homogeneity and isotropy were initially postulated, in recent decades

the principle has received mounting experimental support, and today there is little doubt

about its validity. The cosmological principle has a slightly preciser formulation, which states

that a perturbed Friedman-Robertson-Walker metric provides an accurate description of the

universe. Thus, according to the cosmological principle, the universe is well-described by

the perturbed spacetime metric

ds2 = a2(η)
[
−(1 + 2Φ(t, x))dη2 + (1− 2Ψ(t, x))d~x2

]
, (1)

with sufficiently small (scalar) perturbations at long wavelengths

Φ(t,~k)� 1, Ψ(t,~k)� 1. (2)

But apart from that, the principle has nothing to say about the properties of these pertur-

bations.

Many of the advances in modern cosmology consist in the characterization of the metric

perturbations Φ(~x) and Ψ(~x). Though not often explicitly emphasized, one of the key

assumptions is that these perturbations are just a particular realization of a random process

in a statistical ensemble. Hence, we do not really try to describe the actual perturbations

Φ(t, ~x) and Ψ(t, ~x); our goal is to characterize the statistical properties of the random fields

Φ̂(t, ~x) and Ψ̂(t, ~x).

Let φ̂(t, x) denote any random field in the universe, such as the metric perturbations

considered above, or the energy density of any of the components of our universe. The

statistical properties of the random field are uniquely specified by its probability distribution

functional. It turns to be simpler however to study the moments of the field 〈φ̂(~x1) · · · φ̂(~xn)〉,

where 〈· · · 〉 denotes ensemble average, and all the fields are evaluated at a common but

arbitrary time t, which we suppress for simplicity.

The cosmological principle has formal counterparts in the properties of the perturbations,

though, as we emphasized above, the cosmological principle itself only requires the actual

perturbations in our universe to be small. We say that a random field φ̂ is statistically
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homogeneous (or stationary), if all its moments are invariant under translations,〈
φ̂(~x1) · · · φ̂(xn)

〉
= 〈φ̂(~x1 + ~T ) · · · φ̂(~xn + ~T )〉, ∀~T ∈ R3, ∀n ∈ N. (3)

In some cases, statistical homogeneity may apply only to some field moments. The random

field is stationary in the mean if

〈φ̂(~x)〉 = 〈φ̂(~x+ ~T )〉 ∀~T ∈ R3, (4)

and it is stationary in the variance if〈
∆φ̂(~x1) ∆φ̂(~x2)

〉
=
〈

∆φ̂(~x1 + ~T ) ∆φ̂(~x2 + ~T )
〉
∀~T ∈ R3, (5)

where we have defined ∆φ̂ ≡ φ̂−〈φ̂〉. If the random field is Gaussian, the one- and two-point

functions uniquely determine all the remaining moments of the field. A Gaussian random

field stationary in the mean and in the variance is hence automatically fully stationary.

Parallel definitions apply to the properties of the perturbations under rotations. In par-

ticular, we say that a random field φ̂ is isotropic in the mean if

〈φ̂(~x)〉 = 〈φ̂ (~o+R · (~x− ~o ))〉 ∀~o ∈ R3, ∀R ∈ SO(3). (6)

Analogously, a random field is isotropic in the variance if〈
∆φ̂(~x1) ∆φ̂(~x2)

〉
=
〈

∆φ̂ (~o+R · ( ~x1 − ~o )) ∆φ̂ (~o+R · ( ~x2 − ~o ))
〉
∀~o ∈ R3, ∀R ∈ SO(3).

(7)

Since there is always a rotation that maps ~x to ~x + ~T , and because any two points related

by a rotation always differ by a translation, equations (4) and (6) imply that homogeneity

and isotropy in the mean are equivalent. But homogeneity in the variance does not imply

isotropy in the variance, though the converse is true [1],

Isotropy in the variance⇒ Homogeneity in the variance. (8)

Homogeneity and isotropy in the mean have an important consequence: Equations (4) or

(6) immediately imply that the expectation of a stationary field is constant,

〈φ̂(~x)〉 = const, (9)

and, conversely, any random field with constant mean is homogeneous and isotropic in the

mean. Because, by definition, cosmological perturbations always represent deviations from
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a homogeneous and isotropic background, it is then always possible to assume that the

constant value of their mean is zero, if they happen to be stationary. For example, in

perturbation theory we write the total energy density ρ as a background value ρ0 plus a

perturbation δρ,

ρ = ρ0(t) + δρ(t, x). (10)

This split into a background value and a perturbation is essentially ambiguous, unless we

specify what the background actually is. In cosmology, what sets the background apart

from the perturbations is symmetry. Because of the cosmological principle, the background

energy density ρ0 is defined to be homogeneous. Hence, if the constant mean of the stationary

random field δρ is not zero, we may redefine our background and perturbations by

ρ0 → ρ̃0 ≡ ρ0 + 〈δρ〉, δρ→ δρ̃ ≡ δρ− 〈δρ〉, (11)

without affecting the overall value of the energy density, ρ→ ρ̃ = ρ. In this case the redefined

perturbation δρ̃ has zero mean, while the redefined background ρ̃0 is still space-independent.

It is important to recognize that cosmological perturbations can be assumed to have zero

mean if and only if their mean is a constant. Consider again the example of the energy

density (10), but now assume that δρ is not stationary. Although the redefinitions (11)

allow us to set the mean of the perturbations δρ̃ to zero, the redefined background ρ̃0 is

inhomogeneous in this case, in contradiction with our definition of the background density

ρ0 in equation (10). Therefore, we conclude that homogeneity in the mean, isotropy in the

mean and zero mean are all equivalent,

Zero mean⇔ Homogeneity in the mean⇔ Isotropy in the mean. (12)

Homogeneity and isotropy in the variance also have important implications [1]. If a

random field is stationary in the variance, its two point function in momentum space has to

be proportional to a delta function,

〈∆φ(~k1)∆φ(~k2)〉 ≡ (2π)3δ(~k1 + ~k2)
2π2Pφ(~k1)

k3
, (13)

and if the variance is isotropic, the power spectrum Pφ can only depend on the magnitude

of ~k,

Pφ(~k) = Pφ(k). (14)
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Hypothesis
Mean Variance

Zero Homogeneous Isotropic

H0 yes yes yes

H1 yes yes no

H2 yes no no

H3 no yes yes

H4 no yes no

H5 no no no

TABLE I: The six possible different combinations of statistical properties of the primordial per-

turbations. We are concerned here with the mean and variance alone.

Based on the equivalences (8) and (12), there are hence six possible different combina-

tions of the statistical properties of the primordial perturbations, which we list in table

I. Hypothesis H0 describes the standard assumption that underlies most analyses of cos-

mological perturbations, and case H1 describes what is usually known as a violation of

statistical isotropy. In this article we focus on violations of the zero mean hypothesis, cases

H3 through H5. Our goal is to test the standard assumption H0 against one of its non-zero

mean alternatives.

II. TEMPERATURE ANISOTROPIES

At present, the arguably cleanest and widest window on the primordial perturbations

in our universe stems from the temperature anisotropies observed in the Cosmic Microwave

Background Radiation (CMB). Hence, if we want to test whether cosmological perturbations

have zero mean, we need to explore how these temperature anisotropies are related to the

random fields that we have considered in the introduction.

A. Harmonic Coefficients

In a homogeneous and isotropic universe, different Fourier modes of cosmological pertur-

bations evolve independently in linear perturbation theory. Hence, we may always assume

that the temperature anisotropies (of primordial origin) observed at point ~x in the direction
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n̂ are given by

δT̂ (~x, n̂) =

∫
d3k

(2π)3
T (~k, n̂)φ̂(~k)ei

~k·~x, (15)

where φ̂(~k) are the Fourier components of a random field at a sufficiently early time, and

T is a transfer function whose explicit form we shall not need. Say, in a standard ΛCDM

cosmology we have φ̂ = Φ̂, where Φ̂(~x) is the primordial Newtonian potential, which, because

of the absence of anisotropic stress, also equals Ψ̂(~x). Due to the linear relation between

temperature anisotropies and primordial perturbations, it immediately follows that zero

mean in the primordial perturbations implies zero mean of the temperature anisotropies.

For many purposes, it is more convenient to represent functions on a sphere, like the

temperature fluctuations, by their spherical harmonic coefficients

f`m =

∫
d2n̂ f(n̂)Y`m(n̂). (16)

Throughout this article we work with real spherical harmonics Y`m, whose properties are

summarized in appendix A. To calculate the spherical harmonic coefficients of the tempera-

ture anisotropies a`m ≡ δT`m we note that because linear perturbations evolve in an isotropic

background (by definition), the transfer function T (~k, n̂) can only depend on the two scalars

k and k̂ · n̂. Hence, we may expand the latter in Legendre polynomials P`,

T (~k, n̂) = T (k, k̂ · n̂) =
∑
`

(2`+ 1)(−i)`T`(k)P`(k̂ · n̂), (17)

with real functions T`(k). Substituting then equation (17) into (15), setting ~x = 0, and using

the addition theorem for (real) spherical harmonics in equation (A5) we get

â`m = 4π(−i)`
∫

d3k

(2π)3
T`(k)φ̂(~k)Y`m(k̂). (18)

Clearly, if primordial perturbations have zero mean, so do the spherical harmonic coefficients

of the temperature anisotropies:

〈φ̂〉 = 0⇒ 〈â`m〉 = 0. (19)

In particular, a violation of the condition 〈â`m〉 = 0 would thus imply a violation of statistical

homogeneity.

Later we shall also need to know the covariance of the temperature multipoles, which

follows from equation (18). If the random field φ̂ is homogeneous and isotropic in the
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variance, the covariance matrix of the multipoles has elements

〈∆â`1m1∆â`2m2〉 = C`1 δ`1`2δm1m2 , with C` = 4π

∫
dk

k
Pφ(k)T`(k)2. (20)

Recall that for arbitrary f we define

∆f̂`m ≡ f̂`m − 〈f̂`m〉. (21)

Thus, δ denotes departures from a homogeneous and isotropic background, whereas ∆ de-

notes deviations from the ensemble mean. In the following, we drop the hat from random

variables and fields.

B. Foreground, Noise and Masks

Unfortunately, the temperature anisotropies we actually observe in the sky are not entirely

of primordial origin. They are a superposition of primordial anisotropies δT and foreground

contributions, such as dust emission and synchrotron radiation from our very own galaxy.

Appropriate foreground templates allow the WMAP team to eliminate foregrounds in some

regions of the sky [3], but the cleaning procedure does not completely remove foreground

contamination along the galactic disc. It is thus necessary to subject these maps to additional

processing.

Since the actual temperature measurements involve a convolution with the detector beam

B, and also include detector noise N , we model the temperature anisotropies in a smoothed,

foreground-reduced map by

δTmap = K ∗ [B ∗ (δT + F ) +N ] , (22)

where K is the smoothing kernel, the star denotes convolution, and F represents the residual

foreground contamination. We assume that the smoothing kernel and the detector beam are

rotationally symmetric. This is actually not the case for the WMAP beam, but it should

be a good approximation at the scales we are going to consider. In that case, in harmonic

space, the convolution acts on the spherical harmonic coefficients simply by multiplication,

say,

(B ∗ f)`m = B` f`m. (23)

In order to remove the residual foregrounds F , the contaminated sky regions have

to be masked out. Let M(n̂) be the corresponding mask, which is defined by
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M(n̂)[K ∗B ∗ F ](n̂) = 0. Then, by construction, the masked sky δTM does not contain

foregrounds,

δTM(n̂) ≡M(n̂)δTmap(n̂) = M(n̂) [K ∗B ∗ δT +K ∗N ] (n̂). (24)

It proves then useful to define an hypothetical “unmasked” smoothed sky map which is free

of foregrounds, but contains the effects of noise and detector beam, and whose multipoles

are hence given by

b`m ≡ K`B`a`m +K`N`m. (25)

The multipole coefficients of the masked sky δTM are obtained by multiplication with an

appropriate convolution matrix. If M`m denotes the (real) spherical harmonic coefficients of

the mask, it is easy to show that the elements of the convolution matrix are given by

M`1m1,`2m2 =
∑
`m

1√
4π
D(`1,m1; `,m; `2,m2)M`m, (26)

where D is defined in equation (A6). In particular, the spherical harmonic coefficients of

the masked sky are given by

c`m ≡ (δTM)`m =
∑
¯̀m̄

M`m,¯̀m̄ b¯̀m̄. (27)

In practice, we need to work with finite matrices, so we restrict our attention to a finite

range of multipole values, 0 ≤ ` ≤ `max. In particular we assume that M is a square matrix.

The WMAP team has found that detector pixel noise is well described by a Gaussian

distribution with zero mean [2], which implies that

〈c`m〉 =
∑
¯̀m̄

M`m,¯̀m̄K¯̀B¯̀〈a¯̀m̄〉. (28)

Therefore, the masked temperature anisotropies have zero mean if the primordial

anisotropies do. According to the WMAP team [2], the noise variance is inversely pro-

portional to the number of times point each pixel is observed. This is not the same for all

pixels, but it is is fairly isotropic (see figure 1). Hence, assuming a constant Nobs, and that

the noise in different pixels (of area A) is uncorrelated, with variance σ2
N/Nobs, we find

〈N`1m1N`1m1〉 = N0 δ`1`2δm1m2 , (29)

where N0 = Aσ2
N/Nobs. In any case, at the scales we are interested in, the contribution of

the noise to the variance of the masked temperature anisotropies is subdominant. This is
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FIG. 1: The variance of the noise in the temperature anisotropies is inversely proportional to

the number of times each sky pixel is observed, Nobs(n̂). The figure shows a plot of the “power

spectrum” N` ≡ 1
2`+1

∑
m(N−1

obs)`m(N−1
obs)`m in units of the monopole N0. Weighted by `(` + 1),

this captures the degree of anisotropy of the noise variance on angular scales ∼ 180◦/`.

however not crucial for our analysis, which simply assumes that the noise satisfies equation

(29), without reference to the actual magnitude of N0.

C. Hypotheses

In order to test whether the primordial temperature anisotropies have zero mean (which

follows from 〈φ〉 = 0) we need additional information about the distribution of the harmonic

coefficients a`m. At this point, there is no evidence for non-Gaussian primordial pertur-

bations [4], so we assume that the latter are normally distributed. In order to uniquely

characterize their distribution, it suffices then to consider their variance. Among the hy-

pothesis with zero mean in Table I, H0 is the one that underlies most of our analyses of

structure. We shall therefore adopt H0 as our null hypothesis. If H0 is true, then, according

to equation (20), the variates ∆a`m = a`m are independent and have a common variance for

the same values of `. Therefore, the standard assumption H0 can be cast as a precise form

of the distribution of the temperature multipoles a`m, which follows from equations (19) and
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(20),

H0: Primordial perturbations are normally distributed with zero mean, homogeneous and

isotropic variance ⇒

dP (a`m) =
1√

2πC`
exp

[
−a

2
`m

2C`

]
da`m. (30)

Note that equations (20) and (29), together with the definition (25), imply that the covari-

ance matrix of the unmasked, foreground-reduced temperature anisotropies is also diagonal,

〈∆b`1m1∆b`2m2〉 = K2
`1

(B2
`1
C`1 +N0)δ`1`2δm1m2 . (31)

Clearly, if the null hypothesis H0 does not appropriately fit the data, we won’t be able to

determine whether this is because temperature fluctuations are non-Gaussian, non-isotropic,

non-homogeneous, or simply because we used the wrong power spectrum. We need to analyze

the data in the face of an alternative hypothesis, namely, that primordial perturbations do

not have zero mean. Among all the cases with non-zero mean in table I, the minimal

deviation from H0 is hypothesis H3, which also leads to the covariances (20). Therefore, we

choose as alternative

H3: Primordial perturbations are normally distributed with non-zero mean and homoge-

neous and isotropic variance ⇒

dP (a`m) =
1√

2πC`
exp

[
−(a`m − 〈a`m〉)2

2C`

]
da`m. (32)

In this case, the covariance of the unmasked, foreground-reduced temperature anisotropies

is again given by equation (31).

We test H0 against H3. What singles out our test is the ability to examine the zero mean

hypothesis against the alternative hypothesis of non-zero means. Indeed, the only difference

between H0 and H3 lies in the assumptions about the mean of the perturbations. Without

the alternative hypothesis, we would be simply conducting a goodness-of-fit test.

Mathematically it is certainly sensible to postulate hypothesis H3, but the reader may

wonder whether H3 is also physically reasonable. In fact, we think it is. Suppose for in-

stance that primordial perturbations are created during an inflationary period in a slightly

inhomogeneous universe (after all, if inflation is supposed to explain cosmic homogeneity,

it should start with an inhomogeneous universe.) If we regard these small inhomogeneities
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as first order perturbations, in linear perturbation theory the properties of the created

perturbations—vacuum fluctuations of an appropriate field—only depend on the homoge-

neous and isotropic background. Hence, the resulting seeded perturbations turn out to be

homogeneous and isotropic in the mean and the variance, as in the conventional case, but

they have to be added on top of the already existing initial inhomogeneities. In fact, similar

ideas have been already discussed in the literature [5–7].

III. TEST STATISTIC

If we just happened to know the temperature multipoles a`m (or their foreground-cleaned

counterparts b`m), a test of hypothesis H0 against its alternative H3 would be straight-

forward. Under the null hypothesis, for fixed `, the variables a`m form a set of independent,

normally distributed variates with zero mean and common variance C`. The standard and

time-honored way to test the latter involves Student’s t statistic,

t ≡
√

2`+ 1 ā`
s`

, (33)

where

ā` ≡
1

2`+ 1

∑
m

a`m and s2
` ≡

1

2`

∑
m

(a`m − ā`)2 (34)

are, respectively, unbiased estimators of the mean and variance of the distribution. Under

the null hypothesis, t follows Student’s distribution with ν = 2` degrees of freedom, while

under the alternative hypothesis, its square is distributed like a ratio of non-central chi-

squares (more about this below.) Note that we do not need to make any assumption about

the actual values of the C` in order to know how t is distributed under the null hypothesis.

As we mentioned above, though, it is not possible to subtract part of the galactic con-

tamination, so we are forced to work with the masked sky in equation (24). While masking

preserves the property of zero mean, equation (28), it does not preserve the diagonal form

of the covariance matrix. Hence, one of the key assumptions of Student’s test is lost. To

bring the problem back to the realm of Student’s t, we shall impose additional symmetries

on the problem.

On large angular scales, the main source of foreground contamination stems from the

galactic disc, which can be covered by a mask that spans galactic latitudes in the range

|b| . 15◦. Let us hence assume that the mask is symmetric under rotations around the
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galactic z-axis. Under such rotations, the real spherical harmonics transform according to

equation (A9). Hence, rotational invariance implies M`m = 0 for m 6= 0. When we substitute

the last relation into equation (26) we find, using the results in the appendix,

M`1m1,`2m2 ∝ δm1m2 and M`1m,`2m = M`1−m,`2−m. (35)

In other words, the mask matrix is diagonal in m space, and we can basically restrict our

attention to m ≥ 0. Of course, a mask with these symmetry properties cannot eliminate

all sources of foreground contamination (primarily point sources). We shall address this

problem by restricting our analysis to large angular scales, for which the contribution of

point sources is small.

For notational simplicity let us call M(m) the (symmetric) matrix with elements M`1m,`2m,

and let us collect all the multipoles f`m for fixed m into a single vector

~fm ≡ (f0m, f1m, . . . , f`maxm) , with f`m ≡ 0 for ` < |m|. (36)

In this notation then, M(m) = M(−m), and equation (27) reads

~cm = M(m)
~bm. (37)

Suppose now that we find a positive integer mmax ≤ `max and a vector ~v such that

M(m)~v = ~v, m = −mmax, . . . ,mmax. (38)

In other words, suppose that we find a sky v`m with no components along the contaminated

region, such that v`m = v` for all values of m between −mmax and mmax. If such a vector

exists, it must clearly have vanishing components for ` < mmax, since |m| cannot exceed `.

Under these conditions then, the 2mmax + 1 variables dm ≡ ~v ·~cm (with |m| ≤ mmax) satisfy

dm = ~v ·~bm, (39)

where we have used equation (38) and M(m) = MT
(m). In particular, these variates do not

contain galactic residual backgrounds, because they can be constructed from a masked sky,

they have zero mean under the null hypothesis,

〈dm〉 =
`max∑

`=mmax

v`〈b`m〉, (40)

12



and, because of equation (31), they have covariances

〈∆dm1∆dm2〉 = σ2 δm1m2 (|m1| ≤ mmax, |m2| ≤ mmax), (41)

where

σ2 ≡
`max∑

`=mmax

K2
` (B2

`C` +N0)v2
` . (42)

The off-shot of this construction is not only that the variables dm are uncorrelated (and

hence independent), but also that their variance, equation (42), is the same for all of them.

Note that, by construction, the variables ~dm only contain temperature multipoles b`m in the

range `min ≤ ` ≤ `max, where `min = mmax.

A. Test Statistic

Equation (41) states that the 2mmax + 1 variates dm (|m| ≤ mmax) form a set of normally

distributed independent variables, with common variance σ2. They are thus statistically

analogous to the primordial temperature multipoles a`m, which are independent and have

the same variance for fixed `. Under the null hypothesis H0 the dm have zero mean, and

under the alternative hypothesis H3 their mean is generically non-zero. Because the dm

are linear combinations of the normally distributed a`m, the distribution of the former is

also Gaussian. It is hence natural to choose Student’s t as test statistic, although, for later

convenience, we shall actually work with its square,

t2 ≡ (2mmax + 1)d̄2

s2
, (43)

where

d̄ ≡ 1

2mmax + 1

∑
|m|≤mmax

dm, s2 ≡ 1

2mmax

∑
|m|≤mmax

(dm − d̄)2. (44)

Intuitively, the nature of the test statistic is clear: Up to factors that involve mmax, t2 is

just the square of the ratio of sample mean to sample standard deviation. We would expect

this ratio to be small if the variables indeed have zero mean, and large if they don’t.

One of the keys of our test statistic is that we know its distribution both under the null

and the alternative hypothesis. The identity
∑

m(dm)2 = 2mmaxs
2 + (2mmax + 1)d̄2 implies

by an extension of Cochran’s theorem (section 15.20 in [8] and section 35.7 in [9]) that

the numerator and denominator of equation (43) are independent variables, both under H0
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and H3. Again by the same extension of Cochran’s theorem, the numerator (divided by σ2)

follows a non-central chi-square distribution with ν1 = 1 degrees of freedom, and non-central

parameter

λ1 = (2mmax + 1)
〈d̄〉2

σ2
, (45)

whereas 2mmaxs
2 (divided by σ2) follows a non-central chi-square distribution with

ν2 = 2mmax degrees of freedom, and non-central parameter

λ2 =
∑

|m|≤mmax

(〈dm〉 − 〈d̄〉)2

σ2
. (46)

The statistic t2 is thus a ratio of non-central chi-squares divided by their respective number of

degrees of freedom. The latter follows a doubly non-central F distribution, with probability

density given by (section 24.30 in [10])

dP (t2) = e−
1
2

(λ1+λ2)

∞∑
r=0

∞∑
s=0

1

r!s!

(
λ1

2

)r (
λ2

2

)s
ν
ν1
2

+r

1 ν
ν2
2

+s

2 (t2)
ν1
2

+r−1

(ν2 + ν1t2)
ν1+ν2

2
+r+s

dt2

B(ν1
2

+ r, ν2
2

+ s)
,

(47)

where B is the beta function. If all the ensemble means are equal, µ ≡ 〈dm〉, λ2 vanishes,

and the distribution of t2 simplifies to a non-central F -distribution with degrees of freedom

ν1 = 1 and ν2 = 2mmax, and non-central parameter λ ≡ λ1. Under the null hypothesis H0

the non-central parameter is λ = 0, and the distribution reduces to a central F with ν = 1

and ν2 = 2mmax, which is just the square of Student’s t distribution.

We carry out a one-sided test of the null-hypothesis H0 at significance α (say, α = 5%)

by rejecting the null hypothesis if t2 is larger than (t2)α, where (t2)α is the α-point of the

central F (ν1 = 1, ν2 = 2mmax) distribution,

α = P (t2 ≥ (t2)α|H0). (48)

This amounts to a two-sided test of H0 using Student’s t, in which we reject the null hy-

pothesis for sufficiently large deviations (of either sign) of t from zero. In order to evaluate

the power of this test, 1 − β, we need to determine the probability of rejecting the null

hypothesis when the alternative hypothesis H3 is true,

1− β ≡ P (t2 ≥ (t2)α|H3). (49)

The power is a function of the hypothetical standardized non-zero ensemble means

〈dm〉/σ. In the absence of any particular model, and for the purpose of illustration, we shall
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FIG. 2: Power curves as for a test with α = 5% significance and mmax = 100 as a function of

a standardized common mean. The solid curve shows the power of a test based on Student’s t,

equation (43). The dashed curves show the power of a test based on the statistic (55) for k = 0, 25

and 50. Clearly, Student’s t-test is more powerful than any of the tk tests. (Note that we can restrict

our attention to k ≤ 50, since for higher k values the statistic tk has the same distribution as 1/tk̃,

with k̃ < 50.) For different choices of parameters, the power curves have the same qualitative form.

Evidently, as the number of degrees of freedom ν2 = 2mmax increases, so does the power of any of

these tests.

consider the simple (though perhaps somewhat unrealistic) case of equals means: µa ≡ 〈a`m〉.

Using equations (39) and (25) this translates into

µd ≡ 〈dm〉 = Zµa, where Z ≡
`max∑

`=mmax

K`B` v`. (50)

In general, we may regard µa as a measure of the order of magnitude of the mean of the

primordial temperature anisotropies in the corresponding multipole range, even if the means

are not common. We plot the power of the test as a function of µd/σ, for mmax = 100, in

figure 2. We see for instance that in a test with mmax = 100, if the mean of our variables is

about 0.3 times their standard deviation (or larger), the t2 statistic will fall in the critical

region almost with certainty.
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B. Confidence Intervals

The value of the t2 statistic tells us not only whether the null hypothesis holds, but also

how far from zero the mean may be if the alternative hypothesis H3 is the correct one. Let

t2α denote the α-point of Student’s t2 distribution, and, for simplicity, let us assume again

that all the means of the primordial anisotropies have a common value µa. Then, since the

statistic

t2µ ≡
(2mmax + 1)(d̄− µd)2

s2
(51)

is distributed like t2 under the alternative hypothesis H3, we can write P (t2µ ≤ t2α) = 1− α.

Following the conventional approach to classical interval estimation, we can cast the last

relation as a confidence interval that formally involves µd,

P

(
d̄− tα s√

2mmax + 1
≤ µd ≤ d̄+

tα s√
2mmax + 1

)
= 1− α. (52)

This is a frequentist interval: If we repeat the same procedure to derive the confidence

interval N times, as N approaches infinity our interval will contain the true mean µa in

(1− α)N cases.

C. Extension to Several Statistics

We can also extend this analysis to a set of several independent t2 statistics, designed to

probe the temperature anisotropies at different angular scales. Suppose for instance that we

find not one, but a set of n different vectors ~v(i) (i = 1, . . . n) that satisfy the set of equations

(38), with mmax = m
(i)
max and `max = `

(i)
max. Then, for fixed i, the variates d

(i)
m ≡ ~v(i) · ~cm still

have a common variance, as in equation (41). We can therefore define a set of n different

statistics t2 simply by replacing ~d by ~d(i) and mmax by m
(i)
max in equations (43) and (44). But

if the ranges m
(i)
max ≤ ` ≤ `

(i)
max are disjoint, the vectors ~v(i) do not have any common element,

and the variables ~d(i) and ~d(j) are also uncorrelated for i 6= j. In that case, the different t2

statistics are mutually independent, and probe the temperature anisotropies in the disjoint

multipole ranges

`
(i)
min ≤ ` ≤ `(i)

max, with `
(i)
min = m(i)

max. (53)
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D. Alternative Tests

A perhaps undesirable property of our test statistic is that t2 is not a scalar under

rotations. Since the mask breaks rotational symmetry anyway, this is not a problem by

itself. Nevertheless, the mask does preserve the symmetry under azimuthal rotations, so it

would be natural to demand at least invariance of our statistic under this unbroken subgroup.

Under an azimuthal rotation by an angle φ, the variates dm transform as in equation

(A9), with a`m replaced by dm. Clearly, the statistic t2 in equation (43) does not remain

invariant under such rotations. But the transformation law (A9) immediately suggests how

to address the problem. Indeed, the variables

q2
0 ≡ d2

0, q2
m ≡

1

2

(
d2
m + d2

−m
)

(m > 0) (54)

are invariant under azimuthal rotations by construction, and they also share the same vari-

ance. Hence, any ratio of the sum of two disjoint subsets of these squared variables is

distributed like a ratio of independent (eventually non-central) χ2 distributions.

Consider for instance the set of statistics

t2k ≡
mmax − k

1 + k

k∑
m=0

q2
m

mmax∑
m=k+1

q2
m

, (55)

where k is an arbitrary parameter. As before, under the alternative hypothesis H3 the

probability density of t2k is given by equation (47), with degrees of freedom and non-central

parameters given by, respectively,

ν1 = 1 + k, λ1σ
2 = 〈d0〉2 +

1

2

k∑
m=1

(
〈dm〉2 + 〈d−m〉2

)
, (56)

ν2 = mmax − k, λ2σ
2 =

1

2

mmax∑
m=k+1

(
〈dm〉2 + 〈d−m〉2

)
. (57)

In particular, under the null hypothesis H0, t2k follows a central F distribution with ν1 and

ν2 degrees of freedom.

Using equation (47) we calculate the power of the set of alternative tests based on the

statistic (55). Assuming that all the means are common, as above, we find the power curves

in figure 2. Inspection of the figure quickly reveals that the test based of Student’s t2 statistic

is uniformly more powerful than any test based on a t2k statistic. This is no coincidence at all;
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Student’s t test is widely employed because of its optimal properties (see example 23.14 in

[10].) Therefore, in this article we just focus on Student’s t2. As long as we stick to a single

(random) orientation of the sky, our results have a straight-forward statistical interpretation,

since all we need to know is how the test statistic is distributed for an arbitrary (but fixed)

sky orientation. In addition, the non-scalar nature of the statistic may help us to identify

that area of the sky eventually responsible for a violation of the zero mean hypothesis. To

conclude, we should also point out that Student’s t test is known to be robust to departures

from normality, at least for independent variables drawn from the same distribution (section

31.3 in [10]).

IV. DATA AND ANALYSIS

Our data analysis pipeline consists of four main steps. First, we construct an appropriate

mask to eliminate residual galactic foregrounds. Then, we identify a vector ~v that belongs

to the range of all the mask matrices Mm for |m| ≤ mmax. We degrade the cosmic microwave

maps to lower resolution, and apply our test statistic to these maps. Finally, we check for

an eventual residual contamination in our results. This section lists the details of each of

these steps. The reader not interested in technical details is welcome to skip this part and

jump to the next section for the actual results.

Mask

As mentioned above, in order to eliminate galactic contamination, and preserve azimuthal

symmetry at the same time, we construct a mask invariant under rotations along the galactic

z-axis. Our starting point is a HEALPix1 pixelization of the sphere with Nside = 64. We set

all pixels in the mask with galactic latitude |b| ≤ 20◦ to zero, and all the remaining pixels to

one. The effective area covered by the mask is 66% of the full sky. We label the components

of the pixelized mask by M(n̂i), where i runs over all the Npix ≡ 12× 642 = 49152 pixels of

the mask. This particular mask is in fact also symmetric under parity, but we do not make

explicit use of this symmetry.

1 http://healpix.jpl.nasa.gov/
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Vector ~v

In order to find a ~v that satisfies equation (38), we look for a common solution of the set

of equations

(1−M(m))~v = 0, m = −mmax, . . . ,mmax. (58)

Since M(m) is the mask matrix, the linear operator 1 −M(m) gives the components of the

vector along the contaminated galactic region. Hence, equation (58) states that the vector

~v should have a vanishing component along such region.

In order to find the components of ~v, it is numerically more convenient to work in real

space. We fix the values of `max and mmax and calculate a matrix D whose elements are

defined by

Di` = (1−M(n̂i))
∑

|m|≤mmax

Y`m(n̂i), (59)

where i runs over all pixels in a HEALPix pixelization of the sphere with Nside = 64, and

` = mmax, . . . , `max. Then, the set of equations (58) reads
∑

`Di` v` = 0, or

D~v = 0. (60)

We find an approximate solution of equation (60) by singular value decomposition,

D =
∑
α

~Uα Σα
~V T
α . (61)

Here, the ~Uα is a set of Npix-dimensional orthonormal vectors, the Σα are the singular values

(arranged in order of decreasing magnitude), and the ~V is a set (`max−mmax+1)-dimensional

orthonormal vectors. We choose the vector ~v to be the last right singular vector, that is,

~v = ~Vα, with α = `max −mmax + 1. We label the corresponding singular eigenvalue Σlast.

Because the vectors ~Uα and ~Vα are orthogonal, the singular value Σlast is the norm of D~v,

∑
i

(∑
`

Di` v`

)2

= Σ2
last. (62)

In general, this singular value is non-zero, so our solution of equation (60) is not exact but

only approximate. Modulo a normalization factor, the value of Σlast is then an indicator

of the potential degree of contamination, i.e., the overlap between our vector ~v and the

contaminated galactic region. The latter typically increases with increasing mmax, since the

number of non-zero elements of v` freely available to solve equation (60) decreases with
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FIG. 3: The logarithm of the absolute value of the sky defined by equation (63), for `max = 212

and mmax = 177. Those regions of the sky with the largest values are those that are more heavily

weighted in our statistic, as implied by equation (39). As seen in the figure, the galactic region is

basically excluded from our analysis. For other choices of `max and mmax the structure of the sky

is the same, as long as the singular eigenvalue Σlast remains sufficiently small.

increasing mmax. Because the power of the t2 test increases with the number of degrees

of freedom, ν2 = 2mmax, we choose the maximum possible value of mmax for which Σlast,

divided by the norm of the mask times the norm of sky encoded in ~v, remains under 5 ·10−8.

Indeed, the resulting vector can be represented visually, by defining the sky

v`m =

v`, |m| ≤ mmax, mmax ≤ ` ≤ `max

0, otherwise,
(63)

which captures those regions of the sky that enter our statistic. As an example, the corre-

sponding real space sky for `max = 212 and mmax = 177 is shown in figure 3.

The same process can be repeated for different choices of `max and mmax. If the corre-

sponding intervals (53) do not overlap, we can use the resulting set of vectors ~v to construct

a set of mutually independent t2 statistics, as explained in subsection III C.

20



Maps and Processing

We analyze the seven-year (version 4), full resolution, foreground-reduced Q2, V2 and W1

differencing assembly cosmic microwave anisotropy maps provided by the WMAP mission.2

Since these maps probe different frequencies of the microwave spectrum, a dependence of

our results on the particular map would indicate non-thermal foreground contamination.

We expect the latter to be smallest for the W and V maps, and largest for the Q map. We

thus take the W1 assembly to be our fiducial map, and keep the V2 and Q2 assemblies just

for comparison.

The WMAP has subtracted the dipole and primordial monopole from the three differenc-

ing assemblies, and the latter have been smoothed with a Gaussian kernel K of FWHM = 1◦.

The sky maps are expanded into (real) spherical harmonics, and band-limited to a maximum

multipole value ` = `max. The different values of `max are chosen iteratively to cover the

multipole range 0 ≤ ` ≤ 212 with non-overlapping intervals. We choose ` = 212 as the

absolute maximum for ` because we expect point sources to significantly contaminate the

temperature anisotropies at higher multipoles. Note that it is not necessary to mask the

sky prior to processing, since the vector ~v has no components along the galactic region by

construction.

Contamination

There are two main possible sources of systematic errors in our analysis: Galactic con-

tamination due to an insufficiently resolved mask or an imperfect solution of equations (58),

and point source contamination due to unmasked high-latitude point sources. In order to

estimate both we basically follow the same approach.

Let us assume that the values of `max and mmax have been fixed. To estimate the amount

of galactic contamination, we subtract from the cosmic microwave maps the portion of the

sky covered by the WMAP seven-year temperature analysis mask and run the resulting sky

map through the analysis pipeline described above. The change in the P -value of the t2

statistic is then a measure of galactic contamination. For `max = 212 and mmax = 177 for

instance, the change in the t2 statistic after subtraction of the galaxy is less 0.01% for the

2 Available at http://lambda.gsfc.nasa.gov/.
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W1 map.

Similarly, to estimate the amount of point source contamination we construct a sky map

of temperature anisotropies from the point source fluxes listed in the WMAP point-source

catalog [11]. We subtract the point source map from the cosmic microwave background

and run the resulting sky map through our data analysis pipeline. The change in the

corresponding P -value of the t2 statistic is then a measure of point source contamination.

Certainly, there are unresolved point sources that the WMAP catalog does not contain,

but the contribution of these sources is small compared to the contribution of the actually

detected sources that we are not able to mask. Say, if we choose `max = 212 and mmax = 177,

the change in the t2 statistic after point source subtraction is less 1% for the W1 map. Point

sources do not typically have thermal spectra, so an inspection of our results for different

differencing assemblies gives us yet another handle on such contamination.

An alternative way to estimate point source contamination involves the ratio

R` ≡
∑

m s
2
`m∑

m a
2
`m

, (64)

where the s`m are the multipoles of the temperature map constructed from detected point

sources alone, and the a`m are the spherical harmonic coefficients of the analyzed sky (say,

the W1 map). The sums in R` only run over m, because our statistics are sensitive only to

a relatively small window of multipoles in ` space. As shown in figure 4, R` remains below

1% up to ` ≈ 256, which is in broad agreement with our direct estimate of point source

contamination using the t2 statistic. Because point source contamination decreases with the

frequency of the map [11], the W1 differencing assembly is less contaminated than the other

two assemblies. This is why we take W1 to be our fiducial map.

Note by the way that none of the procedures described above is an actual attempt to

subtract galactic or point source contamination. Instead, it is just a way to estimate the

contribution of the unmasked foregrounds to the P -value of our statistic.

V. RESULTS

A. P -values

Our results are summarized in table II and represented graphically in figure 5. There are

two multipole ranges in which the P -value of our t2 statistic is smaller than 5%. In the first
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FIG. 4: Power in detected W-band point sources relative to actual cosmic microwave anisotropies,

equation (64). The point source contribution is subdominant at low multipoles, and reaches 1% at

` ≈ 256.

case, for ` = 61 → 86, the P -value across the three differencing assemblies remains under

1.5%, so it does not seem that this result is due to residual foregrounds alone. In particular,

in this multipole range point source contamination is negligible. In the second case, for

` = 177→ 212, the P -value of the statistic for the Q2 map is normal, so we may tentatively

attribute the difference in the values of t2 among maps to foreground contamination. This

explanation however is somewhat problematic, because we expect foregrounds to make the

actual value of t2 less likely, and because contamination is stronger in the Q2 map, whose

t2 is normal.

Can we speak then of statistically significant evidence against the null hypothesis? To

answer this question, we need to realize that we have constructed a set of n = 8 independent

tests of the null hypothesis, one for each multipole range. Hence, if we would like the

P -values of all individual statistics to be larger than α with probability 1− αtot (under the

null hypothesis), we should choose the size α of each individual test to satisfy

1− αtot = (1− α)n. (65)

For n = 8 and 1− αtot = 95%, this yields α = 0.64%. None of the P -values in table II is as

low.
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Range Q2 V 2 W1

`min `max t2 P -value t2 P -value t2 P -value

1 18 1.957 29.7% 2.367 26.4% 2.457 25.8%

19 38 0.269 60.7% 0.208 65.1% 0.200 65.7%

39 60 1.963 16.5% 2.212 14.1% 2.525 11.6%

61 86 6.341 1.3% 6.431 1.2% 7.397 0.7%

87 112 0.699 40.4% 0.275 60.1% 0.639 42.5%

113 142 0.473 49.2% 0.816 36.7% 0.406 52.5%

143 176 0.029 86.5% 0.012 91.4% 0.025 87.5%

177 212 2.582 10.9% 4.615 3.2% 4.091 4.4%

TABLE II: The value of the t2 statistic and the corresponding P -value (the probability for the

statistic to be larger than the value we observe.) The range column indicates the multipoles that

enter the calculation of the statistic (`min ≤ ` ≤ `max). We perform the same analysis for three

different differential assembly maps, Q2, V 2 and W1. The P -value is anomalously small (less than

5%) for all three maps just in one multipole range: 61 to 86.

We reach similar conclusions by calculating the value of a statistic often used to combine

the results of multiple independent tests of a single hypothesis: Stouffer’s weighted Z test

[12]. Let Pi be the P -value of our t2 test in the i-th multipole range, and let Zi be the Pi

point of a standard normal distribution. Then, the variate

Z ≡
∑n

i=1wiZi√∑n
i=1w

2
i

, (66)

where the wi are the weights assigned to each test, follows a normal distribution with zero

mean and unit variance. We weigh each test by the number of degrees of freedom of the

corresponding t2 test, νi = 2m
(i)
max. For the eight P -values listed in table II, and the W1

differencing assembly map, the value of Stouffer’s statistic is

Z = 1.21, (67)

clearly under two sigma away from the mean of the standard normal distribution.
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FIG. 5: Visual representation of table II. We plot the P -values of the t2 statistic under the null-

hypothesis for different multipole ranges and different differencing assemblies (blue for W1, red for

V 2, green for Q2.) For reference, the horizontal line marks 5% probability. Clearly, the value of t2

in the multipole range 61 ≤ ` ≤ 86 is anomalously small.

B. Goodness of Fit

The reader may also wonder how much better the data are fit by a distribution with

non-zero mean. In order to find that out, we calculate first an effective χ2 by extremizing

the likelihood under both the null and the alternative hypothesis,

χ2
i ≡ −2Lmax(~d |Hi). (68)

Since the variates dm are normal and independent, the likelihood is simply a product of

Gaussian density functions. Therefore, sample mean sample variance respectively are the

maximum-likelihood estimators for the population mean and the population variance.

The difference ∆χ ≡ χ2
0−χ2

3 is a measure of how much the fit improves when we relax the

assumption of zero mean. Because of equation (68), this difference is a monotonic function

of the ratio of maximum likelihoods under H0 and H3, which also happens to be a monotonic

function of the t2 statistic (example 24.1 in [10]). For illustration, we list the corresponding

values of ∆χ2 in table III. Clearly, since we have an additional parameter to fit the data, we

expect a better fit under H3. To correct for the presence of additional parameters, several
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`min `max dof ∆χ2 ∆AICc ∆BIC

1 18 3 2.40 − 1.31

19 38 39 0.21 −2.02 −3.46

39 60 79 2.52 0.41 −1.85

61 86 123 7.24 5.17 2.43

87 112 175 0.64 −1.40 −4.52

113 142 227 0.41 −1.63 −5.02

143 176 287 0.02 −2.00 −5.63

177 212 355 4.08 2.06 −1.79

TABLE III: Comparison of fits to the W1 data under the null and alternative hypotheses. Positive

values indicate that the alternative hypothesis is a better description of the data. The change

in χ2 simply shows that the temperature anisotropies are better fit in the presence of additional

parameter. The AICc corrects for the latter, and indicates strong evidence for the alternative

hypothesis in the multipole range 61→ 86. The BIC heavily penalizes the presence of an additional

parameter, but still indicates substantial evidence for a non-zero mean in that multipole range.

model selection measures have been proposed in the literature [13]. In table III we list

the difference in the corrected Akaike information criterion (AICc) and the difference in

the Bayesian Information Criterion (BIC). From a Bayesian perspective, the difference in

information criteria ∆ is a measure of relatively model likelihood

L(H0|~d )

L(H3|~d )
= exp

(
−∆

2

)
. (69)

This equation allows us then to interpret ∆/2 as a number of standard deviations. Again,

a distribution with non-zero mean seems to be a better model to describe the data in the

multipole range 61→ 86. But as we emphasized above, this is relatively likely to happen if

multiple ranges of multipoles are considered.

C. Confidence Intervals

The actual values of the test statistic for our choices of `max and mmax also allow us

to place the first limits on the magnitude of an eventual common mean of the primordial
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Range Q2 V 2 W1

`min `max µmin µmax µmin µmax µmin µmax

√
C`

1 18 −7.061 3.596 −6.989 3.308 −6.962 3.244 7.20

19 38 −0.275 0.464 −0.283 0.448 −0.278 0.438 2.87

39 60 −0.335 0.058 −0.336 0.049 −0.347 0.039 1.92

61 86 −0.278 −0.033 −0.278 −0.034 −0.286 −0.045 1.46

87 112 −0.156 0.063 −0.137 0.079 −0.153 0.065 1.30

113 142 −0.134 0.065 −0.140 0.052 −0.129 0.066 1.17

143 176 −0.112 0.094 −0.106 0.095 −0.108 0.092 1.09

177 212 −0.230 0.023 −0.251 −0.011 −0.249 −0.003 0.98

TABLE IV: Lower and upper limits on a common mean of the primordial temperature multipoles µa

in the given multipole range at 95% confidence level. Temperature units are µK. For comparison we

list WMAP’s best-fit estimate of the binned power spectrum around the center of the corresponding

multipole range.

perturbations in the given range of multipoles. These limits are collected in table IV and

graphically represented in figure 6. At angular scales smaller than about four degrees, the

limits are typically one order of magnitude below the standard deviation of the temperature

multipoles. In two cases, the confidence interval does not contain zero, which is again an

expression of an anomalously high value of the t2 statistic in the corresponding multipole

range. But, as before, since these are 95% confidence intervals, the probability that all of

them contain the true mean is only 66%. In any case, these limits should not be taken

too literally. The assumption of a common mean is somewhat unrealistic, so these intervals

should be rather interpreted of an order of magnitude estimate of possible deviations from

the zero-mean assumption, even if the means of the anisotropies do not share a common

value in the corresponding multipole range.

VI. CONCLUSIONS

Our results show significant evidence for a non-zero mean of the temperature multipoles

in the range ` = 61 to ` = 86, at the 99.3% confidence level. Taken as a whole however,
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FIG. 6: Limits on the value of a common mean at 95% confidence limit (in µK units), as in

table IV. Again, blue, red and green label the limits derived from the W1, V2 and Q2 band maps

respectively. The extent of the interval on the ` axis indicates the range in values of ` for which

the limit applies. For comparison we also plot the variance of the multipole components for the

best WMAP’s estimate of the binned power spectrum, ±
√
C`. Note that the temperature scale is

logarithmic, with positive and negative values on either side of the axis.

because this range is just one among eight different multipole bins, the evidence against the

zero-mean assumption is statistically insignificant, falling under the 95% confidence level.

Whatever the case, the limits we have set on the mean of the primordial anisotropies in

a set of multipole bins indicate that an eventual non-zero mean has to be about an order

of magnitude smaller than the standard deviation of the temperature anisotropies. In that

sense, observations constrain the mean to be small. In retrospective, we have therefore par-

tially justified the common assumption of vanishing mean of the cosmological perturbations.
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Appendix A: Real Spherical Harmonics

In this article we expand functions defined on a sphere in real spherical harmonics Y`m.

These are related to the conventional complex spherical harmonics Y`m by

Y`m ≡


√

2 ImY`−m, m < 0

Y`m, m = 0

√
2 ReY`m, m > 0.

(A1)

It follows that the real multipole coefficients a`m and their complex counterparts A`m are

related to each other by

a`m =


−
√

2 ImA`−m, m < 0

A`m, m = 0

√
2 ReA`m, m > 0.

A`m =


(−1)m√

2
(a`−m + ia`m) , m < 0

a`m, m = 0

1√
2

(a`m − ia`−m) , m > 0,

(A2)

where we have assumed that the function on the sphere being expanded is real. The trans-

formation (A1) is unitary, that is, we can write

Y`m =
∑
m̄

Um,m̄ Y`m̄, (A3)

with U a unitary matrix, whose matrix elements are implicitly defined by equation (A1).

Because of the unitary transformation, real spherical harmonics are orthonormal,∫
d2n̂ Y`1m1Y`2m2 = δ`1`2δm1m2 , (A4)

and they also satisfy the addition theorem

P`(n̂1 · n̂2) =
4π

2`+ 1

∑
m

Y`m(n̂1)Y`m(n̂2), (A5)

where P` is a Legendre polynomial.

Sometimes we need to integrate over the product of three spherical harmonics. We define

D(`1,m1; `2,m2; `3,m3) ≡
√

4π

∫
d2n̂ Y`1m1Y`2m2Y`3m3 , (A6)
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which clearly is totally symmetric in its three arguments. Since the real spherical harmonics

are related to the complex spherical harmonics by a unitary transformation, this expression

is closely related to the integral of the product of three complex spherical harmonics D. The

latter can be expressed as a product of Clebsch-Gordan coefficients (or Wigner symbols), so

we have

D(`1,m1; `2,m2; `3,m3) =
∑

m1,m2,m3

Um1m̄1Um2m̄2D(`1, m̄1; `2, m̄2|`3, m̄3)U †m̄3m3
, (A7)

with

D(`1,m1; `2,m2|`3,m3) =

√
(2`1 + 1)(2`2 + 1)

2`3 + 1
〈`1, 0; `2, 0|`3, 0〉〈`1,m1; `2,m2|`3,m3〉. (A8)

It follows then for instance that D(`1,m1; `2,m2|`3,m3) = D(`1,−m1; `2,−m2|`3,−m3).

Under (active) azimuthal rotations by an angle φ the complex spherical harmonic coeffi-

cients transform according to A`m → e−imφA`m. Therefore, it follows from the left equation

in (A2) that real spherical harmonic coefficients a`m transform according to

a`m → cos(mφ)a`m − sin(mφ)a`−m. (A9)
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