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Abstract 

As part of the Patient Protection and Affordable Care Act, participating Medicare hospitals have part 

of their Medicare reimbursements withheld and then redistributed based on quality performance.  The 

Hospital Value Based Purchasing reimbursement plan relies partly on ordinal rankings of hospitals to 

determine how money is distributed.  We analyze the quality metric distributions used for payment and 

show that there is not enough information to reliably differentiate hospitals from one another near the 

payment cutoffs; and conclude that a large part of the payment formula is driven by sampling variability 

rather than true quality information. Alternative reimbursement plans are developed. 
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I. Introduction 

As part of the Patient Protection and Affordable Care Act of 2010, the United States Agency 

for Healthcare Research and Quality (AHRQ) formalized its commitment to improve the quality of care 

and U.S. population health by publishing the National Quality Strategy (2011). Among other 

mechanisms to achieve the quality improvement goal, a value-based purchasing plan was developed that 

reimburses hospitals based on their performance in certain quality metrics.1  The Hospital Value Based 

Purchasing (HVBP) program is implemented by the Centers for Medicare and Medicaid Services (CMS); 

CMS redistributes a percentage of the total funds designated for Medicare reimbursement to hospitals 

based on a Total Performance Score (TPS) composed of a weighted average of scores on individual 

quality metrics. There are many metrics used in a given year to calculate the TPS, such as patient survival 

rates after discharge and rates of timely delivery of appropriate intervention.2  The ultimate goal of the 

program is to provide financial incentives for hospitals to improve quality via pay-for-performance.3 

Pay-for-performance is a concept that has been historically applied within firms,4 and more 

recently been applied by governments to incentivize high quality care by health care providers.  The 

literature on pay-for-performance for health care finds modest to no quality gains after implementing 

                                                           
1 AHRQ, along with additional stakeholders, chose the metrics to address potential gaps in patient care and 
coordination that lead to unintended and costly adverse patient outcomes.  These goals are laid out in the 2011 
National Quality Strategy report to congress, which can be found at 
http://www.ahrq.gov/workingforquality/reports/annual-reports/nqs2011annlrpt.htm 
2 Many of the metrics had been continuously published since 2005 by CMS on their Hospital Compare website, 
which reports on hospital performance and outcomes. 
3 CMS reports the payment adjustment factor (a percent by which payments are adjusted) for each individual 
hospital, but only reports actual payment amounts by counts in bins, which are top coded at incentive payments of 
$1,000,000.  Using the minimum value in each bin yields a conservative underestimate of total incentive payments 
of 1.2 billion dollars in 2015 for the program.  These data can be found at  
https://www.medicare.gov/hospitalcompare/data/value-based-incentive.html 
4 See Prendergast (1999) for a review. 

http://www.ahrq.gov/workingforquality/reports/annual-reports/nqs2011annlrpt.htm
https://www.medicare.gov/hospitalcompare/data/value-based-incentive.html
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pay-for-performance schemes.5  Studies of the impact of HVBP and its pilot programs show that the 

implementation of the programs themselves had little direct impact on quality scores (Ryan, Blustein, and 

Casalino 2012; Ryan, Sutton and Doran 2014; Ryan et al. 2015; Ryan et al. 2017).  The HVBP program 

has also been shown to generate changes in hospital behavior on margins with the greatest cash returns 

(Norton et al. 2016), as opposed to margins with the greatest quality benefits.6 The above findings 

together suggest that HVBP changes hospital resource allocations, but does not change quality enough 

to justify the internal resource reallocations found in Norton et al. (2016). Indeed, the previous results in 

the literature can read as HVBP reassigning resources to the “flat of the curve” where increases in 

marginal spending do not yield any quality improvements. 

While the literature suggests that HVBP has little to no effect on hospital quality performance, 

this study demonstrates why this may be the case – a lack of useful information in the quality metrics - 

and recommends ways to improve the program. To do this, let us fix ideas. Along any quality metric, a 

given hospital has some unobservable latent quality level that each metric is attempting to quantify. 

Measures are usually rates at which some prescribed medical procedure is correctly followed (a measure 

of hospital input quality) or at which treated patients survive after discharge (a measure of hospital 

output quality). For our purposes, we think of a latent quality level as constant in a given period for each 

                                                           
5 When pay-for-performance does cause quality improvements, they are small in magnitude and only impact the 
process of care, not health outcomes (Eijkenaar et al. 2013).  There is also variation in responses to pay-for-
performance based on hospital, physician and patient demographics (Markovitz and Ryan 2016).  Additional 
evidence shows that pay-for-performance changes how hospitals structure their internal incentives, perhaps in an 
attempt to meet quality goals (Damberg et al. 2009), as well as evidence that pay-for-performance may simply 
speed up quality improvements that were already happening in the absence of pay-for-performance (Werner et 
al. 2011). 
6 Norton et al. (2016) show that hospitals focus resources on patients that have high leverage over the marginal 
dollar of pay-for-performance incentive.  For example, a hospital that is close to a quality cutoff influenced by a 
given patient will on average focus more resources on that patient than a hospital that has a lower chance of 
attaining that cutoff. 
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hospital in the universe of participating hospitals (as many at 4,000 hospitals for the most common 

measures). 

For example, one important outcome measure for assessing quality is the 30-day survival rate 

post-discharge for patients treated for pneumonia. The formula for the TPS largely depends on a 

hospital's ranking within the sampling distribution of metrics such as 30-day survival rates across all 

hospitals.  HVBP uses sampling techniques (looks at observed patient outcomes) to estimate the latent 

survival rates for each hospital, and compares the magnitudes of the estimates in the form of an order 

statistic over all participating hospitals. The program ranks approximately 4,000 hospitals based on their 

estimated 30-day survival rates for pneumonia, and hospitals with rates less than 88% (a cutoff that at 

the time of evaluation was pre-determined) receive zero points for this measure in one component of 

their TPS. Other measures include, for example, the 30-day survival rate for heart failure or the rate at 

which a given drug is properly administered. Ultimately, our empirical foci are the aforementioned 

survival rates due to the properties of their data generation process.  

A concern that arises when using a pay-for-performance scheme such as HVBP is whether the 

sampling distributions of the estimates have enough information in them to differentiate one hospital's 

quality estimate from another's in a statistically meaningful way. In other words, HVBP might compare 

the estimated pneumonia survival rates of 4,000 hospitals, but ignoring the sampling variances of the 

4,000 distributions could lead to false inferences on the relative quality of the ranked hospital. In this 

regard, the quality comparisons may be statistically meaningless. If the quality comparisons are 

statistically meaningless, then the assignment of points to the overall quality score of a given hospital is 

meaningless, causing the overall assessment to be unreliable and (perhaps) simply random. 
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This inability to make statistically meaningful comparisons will cause the policy to fail at its goal 

of paying based on quality (regardless of whether pay-for-performance works in general), as funds will 

be redistributed based on noise rather than the true latent quality of the hospitals. Incomplete or low 

information causes HVBP to become a "pay-randomly" scheme rather than a quality based payment 

scheme.  A lack of distinguishing information between hospitals would explain the lack of findings of 

quality metric improvements due to HVBP (and perhaps in other pay-for-performance schemes): the 

metrics used to implement HVBP may not capture any meaningful quality differences and would thus be 

incapable of providing any incentives for quality improvement.   

A hospital's latent quality relative to others is obfuscated by three main factors.  The first is that 

measurement of quality scores is inherently noisy. A large number of draws from each within-hospital 

distribution is required to shrink the uncertainty (variance) around the quality estimates to a point where 

comparisons between hospitals are meaningful.7  The second factor is that the large number of hospitals 

adds difficulty due to the multiplicity of the implied inference. That is, we may confidently say that 

hospital A is better that hospital B, but it is much more difficult to say with any confidence that A is 

simultaneously better than hospital B and hospital C and hospital D…, even when the quality estimates 

are not very noisy. The final factor is that many of the quality metrics used for HVBP are improvable – 

which may lead to bunching near the maximum achievable score over time.  If distribution-wide 

improvements already exist in the absence of HVBP (as shown by Ryan, Blustein, and Casalino 2012, 

Ryan, Sutton and Doran 2014, and Ryan et al. 2015; Ryan et al. 2017), then increased bunching of the 

distribution of hospital scores without a corresponding improvement in the precision of the individual 

                                                           
7 A hospital's true performance is also subject to noise that can be a function of statistical risk-adjustments (Dimick, 
Staiger and Birkmeyer 2010, Mathematica 2012), human data entry error, or additional human errors in the data 
management process (Bowman 2013).   
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scores (i.e. no increases in the size of the within hospital samples) will make it more difficult to statistically 

differentiate hospitals.8   

We examine how well HVBP performs at differentiating hospitals given the quality data that is 

fed into the formula.  We use multivariate inference techniques to simultaneously test whether individual 

hospitals are statistically different from all other hospitals in the sample, paying particular attention to 

areas around cutoffs for payment under the current HVBP program. The exercises to follow can be seen 

as a policy evaluation answering the question: how well does HVBP achieve its goal of paying based on 

true quality?  We draw on techniques for multiple comparisons within ordinal rankings (Dunnet 1955) to 

create groupings in which with a fixed probability, all members of the group are indistinguishable from 

the relevant payment cutoff.  These groupings have the benefit of appropriately accounting for 

multiplicity in inference.  By creating groups that are indistinguishable from the payment cutoff, we are 

able to say what proportion of the total number of hospitals are essentially subject to a lottery with 

respect to that payment point.9  We refer to these groupings as “lottery zones.”  

Our technique provides a new contribution to the analysis of noise present in quality score 

distributions used in a policy context.  Previous work on this topic such as Chay, McEwan, and Urquiola 

(2005), and Kane and Staiger (2002) have focused on decomposing how much of an agent's (in our case 

a hospital, and in their case a school) score is true signal and how much is noise.  Their techniques focus 

on this decomposition at the agent level, whereas our technique can be seen as an analogue for the entire 

                                                           
8  The improvement over time for the quality estimates is at least partially attributable to public reporting initiatives 
such as pay-for-reporting (Lindenauer et al. 2014), although the connection between score improvement and 
public reporting initiatives has been shown to be both limited in scope and modest in size (Ryan, Nallamothu, and 
Dimick 2012). 
9 We do not suggest that every hospital in the lottery has the exact same probability of meeting a payment cutoff; 
instead, hospitals subject to the lottery are assigned to a side of the cutoff by a random process. 
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sampling distribution across agents.  Instead of saying how much of an agent's score is due to random 

assignment of a shock, we provide a measure of how much of a distribution's ranking cannot be 

differentiated from statistical noise.  We are limited because we do not recover a signal to noise ratio for 

each agent, but have the benefit of needing far less information to operationalize our method while still 

providing a single policy-relevant estimate.  We only need the individual scores that make up an across-

individual distribution and their respective errors in a cross-section, whereas previous methods need an 

individual level panel, or a set of individual level characteristics.10  Our methods provide a new and useful 

tool in the policy analysis toolbox for pay-for-performance, an area of current relevance for healthcare 

as well as other sectors, notably education.  

We find that the lottery zones around cutoffs for payment under HVBP are large, in most cases 

capturing over 60 percent of the hospitals submitting data for the metrics that make up the largest part 

of the payment formula.  This demonstrates that the current HVBP program does a poor job paying based 

on true performance, as the noise in the sampling distributions makes it impossible to detect most of the 

true differences in performance.  We show that changes in the payment formulae in recent years that 

phased out older metrics and phased in newer metrics have actually increased the amount of noise in the 

system, making the problem progressively worse.  We also demonstrate that the lottery zones cover a 

larger percentage of hospitals in regions of the quality distribution where the HVBP formula attempts to 

make the finest quality distinctions: the points assigned on the intensive margin are indistinguishable from 

random for the metrics we examine.  Lastly, we suggest an alternative, data driven approach for 

                                                           
10 We do not observe the errors in this case, but are able to recover them from the within hospital sample sizes 
given the Bernoulli nature of the data generation process. 
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generating payment cutoffs based on the limited information that is present in the relevant distributions, 

making broad categories of hospital quality that reflect differences that can be statistically detected. 

The implications from our analysis are twofold.  From a policy perspective, if the intent of HVBP 

is to incentivize high effectiveness practices within hospitals, then HVBP fails as a policy.  True quality is 

largely ignored under HVBP, and payment appears to be mostly based on shocks.  Second, as hospitals in 

the lottery zone are assigned plausibly random payments; this source of payment variation could be of 

use to future researchers who wish to learn the impacts of additional dollars of federal funding on hospital 

behavior. 

II. HVBP Programmatic Details 

Under HVBP, hospitals that are eligible for the program receive payment based on their scores 

on select measures from the Hospital Compare data.11  The payment formula uses a points system: 

hospitals earn points based on their performance for each quality metric.  A hospital can score up to 9 

points based on improvement over their old values, or can score up to 10 points based on their placement 

within the overall distribution across hospitals for a given metric.  These scores are referred to as 

improvement and achievement scores respectively.  The greater of the two values is then used as the 

hospital's point value for that quality metric. 

The final payment depends on the Total Performance Score (TPS), which is calculated as a 

weighted sum of point values from groupings of metrics, referred to as domains.  The domains as of 2017 

                                                           
11 The entirety of the HVBP payment plan can be found in the Federal Register (Centers for Medicare and 
Medicaid Services 2011).  Eligible hospitals are those that are paid via the prospective payment system, serve a 
minimum number of patients, do not have payment reductions from the Inpatient Quality Reporting program, and 
have not been cited for deficiencies that may jeopardize to patient health or safety. 
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are: Clinical Process of Care, Patient Experience of Care, Efficiency and Outcomes.12 The relative 

weighting of the domains in the TPS changes from year to year, so in different years different sets of 

metrics will have greater or less importance relative to one another.  In 2015, for example, the TPS was 

calculated as:  

(1) TPS 2015 = 0.45 × Clinical Process of Care Score + 0.30 × Patient Experience of Care Score +  

0.25 × Outcomes Score 

and in 2016:   

(2)    TPS 2016 = 0.10 × Clinical Process of Care Score + 0.25 × Patient Experience of Care Score + 

0.25 × Efficiency Score + 0.40 × Outcomes Score 

CMS funds the incentive payments via reallocation of existing Medicare reimbursement to 

hospitals. A fixed percentage (1 percent in 2013, ramping up by 0.25 percent a year until it reaches 2 

percent in 2017 where it remains onwards) of Medicare reimbursements to hospitals are withheld during 

the year and reallocated based on the TPS of the hospitals.  Data from two time-periods are used to 

calculate payments for each payment year. Data are drawn from an earlier baseline period to set 

goalposts for point allocation, and then additional data are drawn from a later performance to score 

points.  Table 1 describes the relevant time-periods used for calculating payments.13 

  

                                                           
12 These domains are still evolving, and CMS will apply different weights to each domain in order to calculate the 
TPS in the coming years. 
 
13 For the purposes of this study we will assume that during the performance period, the goalposts set by the 
baseline period data are exogenous as hospitals at that point in time have no way to influence them. 
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A. How Hospitals Score Points 

 Each hospital scores points based on their metrics during the performance period.  Data-driven 

cutoffs from the baseline period determine how points are allocated in the performance period.  Two 

relevant values are calculated from the baseline period: the threshold, or the minimum value needed to 

score a single point for a given metric, and the benchmark, or the minimum value needed to score the 

maximum number of points for a given metric.   

Points for improvement or achievement are allocated based on cutoffs set in uniform intervals 

between the threshold and the benchmark.  For example, if the achievement threshold is at a value of 60 

out of 100 for a metric, and the benchmark is at 100 out of 100, then a hospital with a value of 80 in the 

performance period would receive 5 out of the 10 possible points for achievement on that metric. 

The achievement score threshold is set at the median of all hospitals' performance during the 

baseline period.  The benchmark is set at the 95th percentile of all hospitals' performance during the 

baseline period.  If a hospital that has a value for a metric during the performance period that exceeds the 

95th percentile of that overall distribution of scores during the baseline period would receive 10 points 

for achievement. 

For improvement scores, the threshold is set at an individual level.  The threshold is each 

hospital's score on the relevant metric during the baseline period.  The benchmark is the 95th percentile 

of all hospital's performance during the baseline period, which is the same as for the achievement score.  

Although a maximum of 9 points can be earned for improvement, a hospital that earns 9 points for 

improvement also earns 10 points for achievement, and is awarded the higher of the two scores (which 

would be 10 out of 10) for that specific metric.   
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III.  Data 

 The HVBP data obtains information for each hospital from their CMS records. For most metrics, 

scores are calculated by dividing the number of patients who had a specific event occur by the number of 

patients who "qualified" to have that event occur.  Patients are included as qualifying if they meet a level 

of appropriateness (i.e. they have a relevant diagnosis and if the specific event is a treatment, that 

treatment is not counter-indicated). Visits are also deemed as qualifying or not as a way to homogenize 

the patient base studied across hospitals.  For example, patients that present with symptoms that are far 

more severe than average will not been deemed qualifying to avoid penalizing hospitals in their quality 

scores for taking on sicker patients.  The metric value for each hospital is reported, along with the number 

of qualifying patients used to calculate the value. 

 The main component of our analysis focuses on hospital scores in the "Outcomes" domain:  

specifically we look at three scores that are the 30-day survival rate after discharge for patients 

discharged after being admitted with one of three serious diagnoses: acute myocardial infarction (AMI), 

heart failure, and pneumonia.  The score for each hospital is the number of qualifying patients that 

survived at least 30 days past discharge divided by the total number of qualifying patients discharged.   

We focus on these metrics for two reasons.  The first is that the Outcomes domain makes up the largest 

part of the payment formula at present, and is scheduled to make up the largest part of the payment 

formula for future years.  The second is that these scores have statistical properties that make our 

methods tractable: the data generation process for these metrics allows us to recover standard errors 

when we only observe the value and the sample size. 

 From a statistical point of view, each observation used to calculate a metric in the Outcomes 

domain is a draw from a within hospital Bernoulli distribution.  Either the patient survives or does not 
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survive.  Each hospital has a true latent survival probability for the patient pool, and the eventual metric 

is the usual consistent estimator of that true probability.  When ranking hospitals, making a claim that one 

hospital is ranked higher on a given metric than another is a statement about their estimate values relative 

to one another.  Whether those hospitals are distinguishable from one another in a statistical sense 

depends upon their estimate values and on their standard errors, which given the Bernoulli structure of 

the underlying data generation process are a function of the reported score and of the number of 

observations per hospital.14  Table 2 reports descriptions, mean values and number of patients for the 

Outcomes metrics used in the 2015 payment year: the most recent year that CMS has made the data 

available for this set of scores. 

 To flesh out the story of how well HVBP has performed in the past we also look at scores in the 

Clinical Process of Care domain.  These scores measure how often patients with particular diagnoses 

receive a recommended intervention in a timely manner.  For instance, the metric AMI 8a reports whether 

or not a patient who arrives with a diagnosis of acute myocardial infarction (AMI) had a stent placed 

within 90 minutes of arrival.  The Clinical Process of Care domain is of interest because it too follows a 

Bernoulli data generation process, and because it was the largest part of the HVBP formula when the 

program began.  Clinical Process of Care has in the past made up as much of 70 percent of the payment 

formula, even though it accounts for only 5 percent of the payment formula in 2017.  Appendix Table 1 

reports descriptions, mean values, and the number of patients for the Clinical Process of Care metrics for 

2015 and 2016, the two most recent years with available data. 

                                                           
14 The analysis to follow does not require an underlying Bernoulli distribution to operationalize, but does require 
sampling standard errors.  As standard errors are not reported by Hospital Compare but sample sizes are, we are 
able to proceed by relying on the Bernoulli nature of the data generation process to provide the errors. 
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IV. Methods 

To determine the amount of distinguishing information within the distribution across hospitals 

for a given quality metric, we focus on how distinguishable hospitals' values of the metric are from the 

cutoff values for payment under HVBP.  We estimate what percentage of the overall distribution for a 

given metric in a given performance period is indistinguishable from the threshold and benchmark 

payment values for the achievement score.  The goal of the exercise is to show what proportion of the 

distribution has its payment points determined by a process indistinguishable from random assignment; 

we refer to this grouping as a “lottery zone.”  If a large proportion of the hospitals fall into the lottery zone, 

then HVBP is a system that does a poor job of separating true quality differences from noise for the 

distribution across hospitals with respect to the relevant point in the payment formula. 

 We focus on achievement scores because they offer a single value for the threshold for all 

hospitals whereas improvement scores do not.  Improvement scores compare hospitals to their past 

selves, and use a different threshold value for each hospital.  Fortunately, a vast majority of hospitals rely 

of the achievement score rather than the improvement score to determine their point allocation.  This is 

demonstrated in Table 3, which shows that for every metric in the Outcomes domain, achievement scores 

are the relevant source of points over 75 percent of the time.15  That said, as the benchmark is the same 

for achievement and improvement scores, analysis relevant for achievement benchmarks applies to 

improvement benchmarks as well. 

  

                                                           
15 A similar pattern can be seen for the Clinical Process of Care Domain in Appendix Table 2.  For this domain, 
achievement scores are the relevant score for point assignment over 70 percent of the time for all metrics. 
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A. Creating Lottery Zones 

Let 𝑝𝑝𝑖𝑖 ∈ (0,1)  𝑖𝑖 = 1, …𝑛𝑛 be the mean parameter for n independent Bernoulli populations. Also, 

let 𝑝𝑝𝑙𝑙∗ ∈ (0,1) be a fixed lower threshold, such that it is on the closed unit interval [0,1]. Similarly, define 

a fixed upper benchmark, 𝑝𝑝𝑢𝑢∗ ∈ (0,1), such that 𝑝𝑝𝑙𝑙∗ < 𝑝𝑝𝑢𝑢∗ .  In what follows, we focus on the lower 

threshold 𝑝𝑝𝑙𝑙∗, but everything can be adapted for the upper benchmark, 𝑝𝑝𝑢𝑢∗ , with no modification. Interest 

centers on estimating each 𝑝𝑝𝑖𝑖  from a sample of events for each hospital  𝑖𝑖 = 1, …𝑛𝑛 and determining (in a 

statistical sense) a subset of populations (hospitals) in a neighborhood around the threshold that fall 

closest to the cutoff.  

 Let 𝑥𝑥𝑖𝑖𝑖𝑖 𝑡𝑡 = 1, … ,𝑇𝑇𝑖𝑖  be a random sample of size 𝑇𝑇𝑖𝑖  from independent Bernoulli 𝑝𝑝𝑖𝑖  populations, 

𝑖𝑖 = 1, … ,𝑛𝑛. Define the usual consistent (as 𝑇𝑇𝑖𝑖 →  ∞) estimators: 

(3)  �̂�𝑝𝑖𝑖 = 𝑇𝑇𝑖𝑖−1 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑇𝑇𝑖𝑖
𝑖𝑖=1  

(4)  𝑠𝑠𝑖𝑖2 = 𝑇𝑇𝑖𝑖−1 �̂�𝑝𝑖𝑖 (1 − �̂�𝑝𝑖𝑖) 

In what follows, we assume that the sampling distribution of �̂�𝑝𝑖𝑖  is normal (or asymptotically so). It is 

important to stress that our focus is not on inference for the underlying Bernoulli population but for the 

sampling distributions of the statistics �̂�𝑝𝑖𝑖 , which for large 𝑇𝑇𝑖𝑖  may be treated as normal for the purpose of 

statistical inference. Therefore, if we are willing to assume normality for inference (or at least asymptotic 

normality), then the underlying population can be from any non-degenerate family of distributions with 

finite mean and variance. 

 Let the set of all hospital indices be 𝑁𝑁 = {1, … ,𝑛𝑛}. We consider simultaneous confidence 

intervals for all 𝑝𝑝𝑖𝑖 : 



14 
 

(5)   𝑝𝑝𝑖𝑖 ∊ [𝐿𝐿𝑖𝑖 ,𝑈𝑈𝑖𝑖], 𝑖𝑖 ∊ 𝑁𝑁, 

where  𝐿𝐿𝑖𝑖 = �̂�𝑝𝑖𝑖 − 𝑑𝑑𝛼𝛼𝑠𝑠,  𝑈𝑈𝑖𝑖 = �̂�𝑝𝑖𝑖 + 𝑑𝑑𝛼𝛼𝑠𝑠, 𝑑𝑑𝛼𝛼  is an appropriately chosen critical value such that: 

(6) Pr{ 𝑝𝑝𝑖𝑖 ∊ [𝐿𝐿𝑖𝑖,𝑈𝑈𝑖𝑖], 𝑖𝑖 ∊ 𝑁𝑁} ≥ 1 − 𝛼𝛼, 

and 𝛼𝛼 < 0.50, is a pre-selected error rate.16 That is, we would like to construct simultaneous confidence 

intervals, [𝐿𝐿𝑖𝑖,𝑈𝑈𝑖𝑖], for all 𝑝𝑝𝑖𝑖  with a confidence level of at least (1 − 𝛼𝛼) × 100%. Then, determining the 

lottery zone around the threshold 𝑝𝑝𝑙𝑙∗ (or the benchmark 𝑝𝑝𝑢𝑢∗ ), is simply a matter creating a subset of 

hospital indices based on the selection rule: 

(7)  𝑆𝑆𝑙𝑙,𝛼𝛼 = {𝑘𝑘:𝑝𝑝𝑙𝑙∗ ∈ [𝐿𝐿𝑘𝑘,𝑈𝑈𝑘𝑘] ∀ 𝑘𝑘 ∈ 𝑁𝑁} ⊆ 𝑁𝑁. 

Then, the hospital indices in the subset 𝑆𝑆𝑙𝑙,𝛼𝛼  or 𝑆𝑆𝑢𝑢,𝛼𝛼  have estimated scores, �̂�𝑝𝑖𝑖, that are statistically 

indistinguishable from 𝑝𝑝𝑙𝑙∗ or 𝑝𝑝𝑢𝑢∗ , respectively. Therefore, the hospital indices s in each subset form a 

lottery around each cutoff at the pre-specified error rate 𝛼𝛼. 

All the difficulty in calculating (7) is determining the critical value 𝑑𝑑𝛼𝛼  in (5). Following standard 

multiple comparison procedures (e.g., Horrace and Schmidt, 2000), exact  (1 − 𝛼𝛼) × 100% confidence 

intervals can be found by letting  𝑑𝑑𝛼𝛼 = 𝑧𝑧𝛼𝛼,𝑛𝑛, a two-sided critical value from an 𝑛𝑛 dimensional standard 

normal distribution, such that Pr (𝑚𝑚𝑚𝑚𝑥𝑥1≤𝑖𝑖≤𝑛𝑛|𝑧𝑧𝑖𝑖| ≤ 𝑧𝑧𝛼𝛼,𝑛𝑛). See Horrace and Schmidt (2000) for a precise 

definition of the critical values, which are easily simulated (Horrace, 1998). The simulation algorithm 

provides intuition for the procedure. 

  

                                                           
16 As the usual error rates used are 𝛼𝛼 = 0.1  or less, this restriction is usually non-binding. 
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1. Draw independent standard normal random variables 𝑧𝑧𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛. 

2. Scale each draw i by the individually estimated 𝑠𝑠𝑖𝑖, respectively. 

3. Find 𝑦𝑦 = max |𝑧𝑧𝑖𝑖|. 

4. Perform steps 1-3 many times. 

5. Then 𝑑𝑑 = 𝑧𝑧𝛼𝛼,𝑛𝑛  is the (1 − 𝛼𝛼) × 100 percentile from the sample distribution of the y. 

Clearly, the 'max' operator in step 3 ensures the coverage probability for the multivariate confidence 

intervals in (5). When 𝑛𝑛 =1 and 𝛼𝛼 = 0.05, the simulated critical value will be the usual univariate 

𝑧𝑧0.05,1 = 1.96.  The critical value is increasing in n and decreasing in 𝛼𝛼. Also, the cardinality of 𝑆𝑆𝑙𝑙,𝛼𝛼  is 

increasing in 𝛼𝛼 and in the extent to which the estimated �̂�𝑝𝑖𝑖  are bunched (tightly distributed) around the 

cut-off. For our empirical analysis we let 𝑛𝑛𝑙𝑙,𝛼𝛼 ≤ 𝑛𝑛 be the cardinality of 𝑆𝑆𝑙𝑙,𝛼𝛼, so that 𝑛𝑛𝑙𝑙,𝛼𝛼/𝑛𝑛 is the lottery 

share of the hospitals. The confidence intervals in (5) are easily adapted from the Multiple Comparisons 

with a Control  (MCC) procedure of  Dunnett (1955), which we now explain.  

B. Relation to the MCC procedure of Dunnett (1955) 

Our procedure is a special case of the MCC of Dunnett (1955).  Let 𝑘𝑘 ∈ 𝑁𝑁 be the index of a pre-

specified control, then (1 − 𝛼𝛼) × 100% multiple comparisons with a control (MCC) confidence 

intervals of Dunnett (1955) are:  

(8) �𝐿𝐿𝑖𝑖𝑘𝑘,𝑈𝑈𝑖𝑖𝑘𝑘�, 𝑖𝑖 ≠ 𝑘𝑘, 𝑖𝑖 ∈ 𝑁𝑁 
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(9)  𝐿𝐿𝑖𝑖𝑘𝑘 = �̂�𝑝𝑘𝑘 − �̂�𝑝𝑖𝑖 − 𝑧𝑧𝑘𝑘,𝛼𝛼,𝑛𝑛(𝑠𝑠𝑘𝑘2 + 𝑠𝑠𝑖𝑖2)
1
2 

(10) 𝑈𝑈𝑖𝑖𝑘𝑘 = �̂�𝑝𝑘𝑘 − �̂�𝑝𝑖𝑖 + 𝑧𝑧𝑘𝑘,𝛼𝛼,𝑛𝑛(𝑠𝑠𝑘𝑘2 + 𝑠𝑠𝑖𝑖2)
1
2, 

where 𝑧𝑧𝑘𝑘,𝛼𝛼,𝑛𝑛 is a two-sided critical value from an 𝑛𝑛 − 1 dimensional standard normal distribution such 

that Pr (𝑚𝑚𝑚𝑚𝑥𝑥1≤𝑖𝑖≤𝑛𝑛−1|𝑧𝑧𝑖𝑖| ≤ 𝑧𝑧𝑘𝑘,𝛼𝛼,𝑛𝑛−1). Notice the similarities between the intervals in (5) and in (8). In 

fact, the n confidence intervals in (5) can be adapted from the 𝑛𝑛 − 1 intervals in (8), but with an nth 

component added as a non-random control: �̂�𝑝𝑘𝑘 = 𝑝𝑝𝑙𝑙∗, 𝑠𝑠𝑘𝑘2 = 0 and 𝑛𝑛 = 𝑛𝑛 + 1. In other words, any 

standard computer-program that can calculate the MCC intervals of (8) can be used to calculate those 

of (5) and conduct the inference. Additionally, (8) can be used in place of (5) even if the threshold is 

considered random (𝑝𝑝𝑙𝑙∗ = �̂�𝑝𝑘𝑘, with, for example, 𝑠𝑠𝑘𝑘2 > 0).  In other words, our selection rule for 

determining the lottery around the cutoff is a special case of MCC (but with a non-random control), 

which has been extensively studied (e.g., Dunnett, 1955), so the coverage probability in (6) is assured.  

We can then use these subsets to conduct evaluation of the policy objective of paying hospitals based on 

latent quality rather than based on noise. 

Another useful application of the above tools is to empirically determine threshold and 

benchmark values that have better properties in terms of distinguishing hospitals based on quality.  We 

will ultimately use the confidence intervals in (8) to estimate this class of cutoffs using the subset 

selection procedure due to Gupta (1956, 1965). This procedure is adaptable from the MCC intervals in 

(8), so they are important in the sequel. Let the ranked population parameters be 𝑝𝑝[1] ≤ 𝑝𝑝[2] ≤ ⋯ ≤

𝑝𝑝[𝑛𝑛].  Then Gupta (1956, 1965) defines the "subset of the best" (the subset of population indices with 

the largest parameters) as: 
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(11)  𝑆𝑆𝛼𝛼∗ = �𝑘𝑘:𝑈𝑈𝑖𝑖𝑘𝑘 > 0 ∀ 𝑖𝑖 ∈ 𝑁𝑁� ⊆ 𝑁𝑁. 

That is, our decision rule is to select populations that have all positive MCC upper bounds. The selected 

populations will simultaneously dominate all other populations in term of their outcome scores. Then, the 

selected subset based on the decision rule satisfies the probability: 

(12)  𝑃𝑃𝑃𝑃{[𝑛𝑛] ∊ 𝑆𝑆𝛼𝛼∗} ≥ 1 − 𝛼𝛼. 

That is, an implication of the MCC intervals in (8) is that we can also make the probability statement in 

(12) to identify a subset of populations that contains the best population with probability at least  1 − 𝛼𝛼. 

In other words, our ability to identify the indices of the best hospitals is confounded by the statistical 

noise in the sample rank statistic, �̂�𝑝(1) ≤ �̂�𝑝(2) ≤ ⋯ ≤ �̂�𝑝(𝑛𝑛), and it limits our ability to infer the extent to 

which (n) in the sample may equal [n] in the population.  Similar to the lottery subsets 𝑆𝑆𝑙𝑙,𝛼𝛼  and 𝑆𝑆𝑢𝑢,𝛼𝛼, which 

identify hospitals that are indistinguishable from a predetermined threshold and benchmark 

(respectively), the subset of the best (𝑆𝑆𝛼𝛼∗) identifies hospitals that are indistinguishable from an unknown 

best hospital at a pre-specified error rate, α. Later, we will propose an alternative method for estimating 

a threshold and benchmark that better fits the policy objective of paying based on detectible quality.  We 

do this by using these well-known inferential results. 

V. Results 

 Results for the Outcomes metrics are presented in Table 4. The first panel of the table (the first 

two columns) contains the metric under consideration and the relevant payment year, which for the 
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Outcomes metrics are always 2015.17  For example, in the first row the metric is "30-Day AMI" (the 30-

Day mortality rate for an acute myocardial infarction discharge) as used for payment year 2015 

(therefore the metrics were measured in 2013 as laid out in Table 1). The next panel of Table 4 (the 3rd, 

- 5th columns), contains information on the entire sample of hospitals for that metric in that year.  The 3rd 

column has the total number of hospitals that reported scores, the 4th column has maximum and minimum 

values of �̂�𝑝𝑖𝑖  across all n hospitals in the set N, and the 5th column has the average value of the simulated 

critical values over all n hospitals in N.  For example, in the first row of the table, for the metric 30-Day 

AMI, there were n = 2,502 hospitals reporting data for payment year 2015. The maximal value of the 

score is 0.9915 and the minimal value is 0.3000. Then, we simulated multivariate critical values to 

perform the analysis, one for each measure. Notice that down 3rd column in the table as n increases, so 

does the critical value. That is, a large number of hospitals means more (multiple) comparisons to 

consider, leading to larger critical values and less sharp inference. This demonstrates how the inference 

controls for multiplicity in the probability statement of (6). 

The next panel of the Table 4 (columns 6-9) contains our results for the subset of hospitals in the 

neighborhood of the threshold 𝑝𝑝𝑙𝑙∗. The sixth column contains the value of threshold for each metric 

(which is set by CMS based on the previous performance of the hospitals), the seventh contains the 

cardinality of the subset in the neighborhood of the threshold (𝑛𝑛𝑙𝑙,𝛼𝛼), the eighth contains that extreme 

values of �̂�𝑝𝑖𝑖  in the lottery zone, and the ninth contains the lottery share of hospitals(𝑛𝑛𝑙𝑙,𝛼𝛼/𝑛𝑛). Again, the 

sharpness of the inference is decreasing in the cardinality and the lottery share of hospitals. In all cases in 

the table, the inference around the threshold is not sharp at all.  For example, for metric 30-Day AMI, we 

                                                           
17 For simplicity, we limited our analyses to metrics that had performance periods corresponding to calendar years, 
and in which the data was readily available for public use on the CMS website. 
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see that there are 𝑛𝑛𝑙𝑙,𝛼𝛼 = 1,549 in the lottery, so the lottery share around the threshold of 0.84747 at 

the 5% error rate is 0.6191. That is, a majority of the hospitals are indistinguishable from 0.84747, and 

their estimated scores range from 0.4280 to 0.9302. The inference is just as poor for the 30-Day HF 

metric, which has a lottery share of 0.5861 around the threshold of 0.88151, and for the 30-Day PN 

metric, which has a share of 0.6192 in the lottery zone around the threshold of 0.88165. What is most 

notable about the analysis, is that even though the thresholds are fairly large across the three measures 

(0.84747, 0.88151, and 0.88165), the scores of the worst hospitals in the lottery are quite low 

(0.4280, 0.46000, and 0.4577, respectively) relatively speaking. 

The final panel of the table (columns 10-13) contains results for the benchmark analysis. The 

tenth column contains the value of benchmark for each metric, the eleventh contains the cardinality of 

the subset in the neighborhood of the benchmark, the twelfth contains that extreme values of  �̂�𝑝𝑢𝑢,𝑖𝑖  in the 

lottery (after unfolding the �̂�𝑃𝑢𝑢,𝑖𝑖), and the thirteenth contains the lottery share of hospitals. Similar to the 

threshold results, the benchmark inference is not very sharp.  For example, for the 30-Day AMI metric, 

we see that there are 1,628 hospitals in the lottery, so the lottery share around the benchmark of 

0.86237 is 0.6507 at the 5% error rate. Again, the majority of hospitals are in the lottery zone for all of 

the outcome metrics.  In general, neither the threshold nor the benchmark is useful in differentiating 

hospital performance.  There is simply too much uncertainty and multiplicity in the order statistics for the 

HVBP formula to allocate funds in a way that rewards true quality. 

A. Clinical Process of Care 

 Results for Clinical Process of Care scores are reported in Appendix Table 3, which follows the 

same layout as Table 4.  There are two patterns of note in this table.  The first is that the lottery zones for 
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Clinical Process of Care imply less sharp inference than what is possible for Outcomes.  With two 

exceptions, all of the metrics have lottery zones that capture over 50 percent of hospitals, and most 

lottery zones capture over 80 percent of hospitals.  The second pattern is that generally, the inference on 

these metrics gets worse over time.  For instance, for SCIP VTE 2 in the last two rows of the table, the 

lottery share goes from 0.6816 for 2015 to 0.9646 for 2016. The same is true for the metric SCIP Card 

2 (which goes from a lottery share of 0.8790 to 0.9899), and for SCIP INF 9 (which goes from a lottery 

share of 0.5670 to 0.9192). This result is consistent with hospitals improving their scores over time, 

bunching together, and making it more difficult to differentiate their scores.  

 The lottery zone sizes for Clinical Process of Care show that inference was poor in the older 

payment formulas and would have worsened over time if the same metrics were kept.   

B. Is Quality Differentiation Feasible with the Current Formula? 

 Given that the current payment formula generates large lottery zones, a relevant question is 

under what circumstances would the current formula be able to differentiate a large enough number of 

hospitals from payment cutoffs to be useful in achieving its policy goals?  This could be achieved through 

limiting the multiplicity of inference by using a smaller number of hospitals (perhaps by generating 

separate regional distributions), or by having each hospital generate more data, which would 

mechanically shrink each hospital's standard error for their metrics. 

 Increasing the sample size for each hospital could potentially help sharpen inference.  As hospitals 

report all of their eligible Medicare data, the sample size increases would need to come from other 

segments of the population being reported (or an overall population increase).  To examine the effect of 

larger sample sizes, we artificially rescale the number of observations for each hospital and calculate new 
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lottery zones.  This is analogous to assuming a fixed proportion of the population uses the hospital system 

in a given year and that the hospital system works through these patients without changing scale or 

efficiency, and then artificially increasing the population of the United States.  We increase each 

hospital's sample size by a factor of 3.93 (analogous to using the population of India rather than that of 

the United States), a factor of 13.88 (inflating to the population of Asia), and a factor of 22.34 (inflating 

to the global population). 

 Results of this exercise for 30-Day AMI scores with respect to the threshold are reported in Table 

5.  Increasing the sample size by a factor of 3.93 (inflating the U.S. population to that of India), decreases 

the lottery zone from approximately 62 percent of hospitals to approximately 34 percent of hospitals.  

The payment formula is still subjecting about a third of the hospitals to a lottery when the amount of data 

is almost quadrupled.  Increasing the sample size by a factor of 13.88 (inflating the U.S. population to 

that of Asia) still subjects 17 percent of hospitals to a lottery, and even an absurdly large increase of a 

factor of 22.34 (inflating the U.S. population to the global population) leaves over 13 percent of the 

hospitals in the lottery zone.  Based on these results, it seems unlikely that any feasible increase in sample 

size will overcome the shortcomings of the payment formula. 

VI. An Alternative Points System 

 Based on the above analysis, the distributions of quality metrics do not have enough information 

within them to allow the current HVBP payment formulae detect true quality differences between 

hospitals.  Rather, the cutoffs, though well intentioned, appear to create arbitrary point assignments.  

Here we suggest an alternative point system.  In broad strokes, our proposed system uses the above 

methods to construct groupings in which the little information that is contained within the distributions is 

appropriately leveraged.  We make fewer distinctions between hospitals, avoiding fine point assignment. 
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There is not enough information in the distributions of the quality metrics to merit assigning 

between 0 and 10 points to hospitals for each metric.  We propose a system in which a hospital can earn 

0, 1 or 2 points for each metric. A hospital would receive 1 point for reaching some estimated threshold, 

and 2 points for reaching some estimated benchmark, with 0 points awarded as before for not reaching 

the threshold as before.  Hence, hospitals that achieve the estimated threshold could be considered to be 

"among the best" and hospitals that achieve the estimated benchmark could be considered "among the 

best of the best."  Improvement scores could keep their previous threshold value, and reward hospitals a 

single point if they manage to surpass their previous year's score. This proposed points system would 

preserve the intent of HVBP, while at the same time allocating points to hospitals based on statistically 

relevant quality distinctions. 

We can use the entire set of hospitals to generate our alternative estimates for the threshold and 

the benchmark.  To develop a data-driven estimate of the threshold, we construct MCC intervals in (8) 

allowing construction of the subset of the best hospitals in (11), satisfying the multivariate probability 

statement in (12). Using this subset of hospital indices, 𝑆𝑆𝛼𝛼∗ ⊆ 𝑁𝑁,  we estimate the threshold as the lowest 

hospital score therein contained. Our estimated threshold is: 

(13) �̂�𝑝𝑙𝑙∗ = 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖∊𝑆𝑆𝛼𝛼∗ �̂�𝑝𝑖𝑖. 

That is, the threshold estimate is pegged to the worst performing hospital index in the subset of the best. 

Let the cardinality of the subset of the best hospital indices be 𝑛𝑛∗.  Based on our proposed points method, 

hospitals that do not make it into 𝑆𝑆𝛼𝛼∗  get zero points. 

To estimate the benchmark, we perform MCC on only those 𝑛𝑛∗ hospitals in the subset of the best 

hospitals, 𝑆𝑆𝛼𝛼∗ . That is, define 
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(14) �𝐿𝐿∗𝑖𝑖𝑘𝑘 ,𝑈𝑈∗𝑖𝑖𝑘𝑘 �, 𝑖𝑖 ≠ 𝑘𝑘, 𝑖𝑖 ∈ 𝑆𝑆𝛼𝛼∗  

(15)  𝐿𝐿∗𝑖𝑖𝑘𝑘 = �̂�𝑝𝑘𝑘 − �̂�𝑝𝑖𝑖 − 𝑧𝑧𝑘𝑘,𝛼𝛼,𝑛𝑛∗(𝑠𝑠𝑘𝑘
2 + 𝑠𝑠𝑖𝑖2)

1
2 

(16) 𝑈𝑈∗𝑖𝑖𝑘𝑘 = �̂�𝑝𝑘𝑘 − �̂�𝑝𝑖𝑖 + 𝑧𝑧𝑘𝑘,𝛼𝛼,𝑛𝑛∗(𝑠𝑠𝑘𝑘
2 + 𝑠𝑠𝑖𝑖2)

1
2, 

Leading to the Gupta subset: 

(17) 𝑆𝑆𝛼𝛼∗∗ = �𝑘𝑘:𝑈𝑈∗𝑖𝑖𝑘𝑘 > 0 ∀ 𝑖𝑖 ∈ 𝑆𝑆𝛼𝛼∗� ⊆ 𝑆𝑆𝛼𝛼∗ ⊆ 𝑁𝑁. 

This is the subset of the best of the best hospitals. Hospitals in 𝑆𝑆𝛼𝛼∗∗ would receive two points, and those 

hospitals in 𝑆𝑆𝛼𝛼∗  but not in 𝑆𝑆𝛼𝛼∗∗ would receive 1 point. Let the cardinality of  𝑆𝑆𝛼𝛼∗∗  be 𝑛𝑛∗∗ ≤ 𝑛𝑛∗ ≤ 𝑛𝑛. Then, 

our estimated benchmark is: 

(18) �̂�𝑝𝑢𝑢∗ = 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖∊𝑆𝑆𝛼𝛼∗∗�̂�𝑝𝑖𝑖. 

This produces a sequential inference procedure, and we can use the Bonferroni inequality to bound the 

overall error rate of the procedure. For example, if we set  𝛼𝛼 = 0.05, then the overall error rate of the 

sequential procedure is 0.10.  

 One complication with the sequential procedure is that there may be hospitals with estimated 

scores that lay slightly above the estimated threshold, �̂�𝑝𝑙𝑙∗,  yet they may not be contained in  𝑆𝑆𝛼𝛼∗ . Even 

though it may lead to more conservative inference, we may want to treat these hospitals as if they are in 

the subset of the best hospitals. After all if the threshold is set at �̂�𝑝𝑙𝑙∗, a hospital may complain if it has �̂�𝑝𝑖𝑖 >

�̂�𝑝𝑙𝑙∗, but it is not considered to be among the best hospitals contained in 𝑆𝑆𝛼𝛼∗  (and receives zero points in our 

scoring scheme). Therefore, define the alternative subset of hospitals indices that have scores above the 

estimated threshold: 
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𝑁𝑁� = {𝑖𝑖: �̂�𝑝𝑙𝑙∗ < �̂�𝑝𝑖𝑖, 𝑖𝑖 = 1, … , 𝑛𝑛}, 

with cardinality 𝑛𝑛�. By design 𝑆𝑆𝛼𝛼∗ ⊆ 𝑁𝑁� is so we have 𝑛𝑛� ≥ 𝑛𝑛∗. Then we can perform the MCC and selection 

in (14)-(17) on the set 𝑁𝑁� (as opposed to on the set 𝑆𝑆𝛼𝛼∗) with sample size 𝑛𝑛�  (as opposed to 𝑛𝑛∗). This leads 

to an alternative estimate of the benchmark: 

(19) 𝑝𝑝�𝑢𝑢∗ = 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖∊𝑁𝑁��̂�𝑝𝑖𝑖. 

The subset 𝑁𝑁� relaxes the requirement that a hospital must be in 𝑆𝑆𝛼𝛼∗   to be part of the second step of the 

inference procedure. Let the cardinality of the alternative subset of the best of the best be 𝑛𝑛�∗. By 

definition 𝑝𝑝�𝑢𝑢∗ ≤ �̂�𝑝𝑢𝑢∗ .  

Estimated thresholds and benchmarks for Outcome metrics for fiscal year 2015 using our 

proposed methods are presented in Table 6.  The first panel of the table consists of three columns: the 

outcome metric, the year (always 2015), and the total number of hospitals. The second panel (columns 

4 - 8) contains the results for estimating the threshold. Column 4 contain the HVPB threshold (𝑝𝑝𝑙𝑙∗), and 

column 5 has our estimated threshold (�̂�𝑝𝑙𝑙∗). In all cases our estimated threshold is much lower that the 

HVPB threshold. For example, compare 0.84747 to 0.7692 for the 30-Day AMI, indicating that the 

inference determined that the worst hospital in the subset of the best hospitals has a considerably lower 

score than the HVPB threshold. Under the original HVPB scheme this hospital would have received 0 

points, but under our proposed scheme it would have received 1 point. Column 6 (𝑛𝑛∗) has the number of 

hospitals that are in the subset of the best (𝑆𝑆𝛼𝛼∗): those that are indistinguishable from the unknown best 

hospital in the sample at the 95% level.  The 7th column (𝑛𝑛�) contains the number of hospitals that were 

above the estimated threshold. These hospitals are contained in the set 𝑁𝑁�. For example, for the 30-Day 
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AMI we have 1,622 hospital in the subset of the best, but if we include all hospitals above �̂�𝑝𝑙𝑙∗ = 0.7692, 

then that number grows to the 1,091 hospitals in  𝑁𝑁�. We can use either set (𝑁𝑁� or 𝑆𝑆𝛼𝛼∗) as the basis for our 

second round of inference to estimate the benchmark. 

 Panel three of Table 6 (columns 9-13) contains our estimated benchmark analysis. Column 9 has 

the HVPB benchmark (𝑝𝑝𝑢𝑢∗ ), while column 10 has our benchmark estimate (�̂�𝑝𝑢𝑢∗ ) based on analysis of the 

subset of the best, 𝑆𝑆𝛼𝛼∗ . For the 30-Day AMI, our estimate is not much lower than the HVPB benchmark. 

Compare our 0.8586 to 0.86237. This difference is much starker for the 30-day HF and PN measures. 

Continuing with the 30-Day AMI, of the 1,662 hospitals in the subset of the best, 1,360 of them were in 

the subset of the best of the best, and the lowest AMI value in this subset of the best of the best provides 

our estimated benchmark, 0.8586. Under our proposed scoring scheme, these 1,360 hospitals would 

receive another point in addition to the point they received for being in the subset of the best (𝑆𝑆𝛼𝛼∗). For 

completeness column 12 indicates that there are 1,511 hospitals above the estimated benchmark (�̂�𝑝𝑢𝑢∗ ), 

so there are hospitals above the benchmark that did not make it into the subset of the best of the best, 

S2.  

Panel four of Table 6 (columns 14-17) contains our alternative estimated benchmark analysis. 

Column 14 has our alternative benchmark estimate (𝑝𝑝�𝑢𝑢∗ ) based on analysis of the subset of the best, 𝑁𝑁�, 

with consists of all hospitals above our estimated threshold.  For the 30-day AMI, there were 1,901 

hospitals above �̂�𝑝𝑙𝑙∗ (who would receive 1 point under our scheme). Of these, 1,449 hospitals were in our 

best of the best subset and would receive and additional point in our scheme. For completeness column 

16 indicates that there are 1,675 hospitals above the estimated benchmark (𝑝𝑝�𝑢𝑢∗ ), so there are hospitals 
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above the benchmark that did not make it into the subset of the best hospitals in 𝑁𝑁�; this subset which 

only contains 𝑛𝑛�∗ = 1,449 hospitals. 

VII. Discussion and Conclusions 

 Though the intent of HVBP is to pay hospitals based on their true latent quality, it appears that 

most hospitals are indistinguishable from one another on the metrics used for evaluation.  In summary, 

CMS is effectively paying hospitals based on shocks that bump their metrics to one side or another of 

payment thresholds, rather than for truly distinguishable differences in quality.  Although CMS "tops out" 

and removes metrics as their distributions collapse towards the maximum attainable values, the above 

analyses show that the metrics that are being used for HVBP even after the removal of “topped out” 

metrics still do not contain enough ordinal information in them to meet the goal of creating cash incentives 

for quality. 

 Fund redistribution may not be necessary to prompt quality improvement.  Quality scores have 

been improving over time to reasons that appear to be unrelated to the HVBP program (Ryan, Blustein, 

and Casalino 2012; Ryan, Sutton and Doran 2014; Ryan et al. 2015; Ryan et al. 2017).  However, a 

possibility exists that the program creates perverse incentives: a hospital that enacts a useful program to 

try to meet quality thresholds may be adversely impacted by the program's imprecision and receive a 

smaller payment.  Similarly, a hospital that enacts a wasteful program to try to meet quality thresholds 

may benefit from the variability and receive a larger payment.  Fortunately, there is no reason to think 

that this would be systematically the case.  It is also possible that hospitals could receive payments that 

correspond with good practices.  In the current world of HBVP, statistical noise dominates the true quality 

performance signal for most of the hospitals participating in the program. As a result, the program will not 
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likely generate payments that consistently reward hospitals for effective performance in administering 

the desired treatments. 

Potentially inconsistent reimbursement for hospital quality improvement efforts is supported by 

Norton et al. (2016), who show that hospitals respond to the incentives presented by HVBP based on 

their marginal future reimbursement from a given outcome for a given patient.  The calculated marginal 

future reimbursements demonstrate a large amount of heterogeneity across hospitals and metrics.  If the 

cutoffs that generate these marginal future reimbursements do not divide hospitals based on statistically 

useful differences in quality, then the widely varying incentives imposed on hospitals found by Norton et 

al. (2016) can be seen as a product of statistical noise.  In other words, the inability of the HBVP formula 

to adequately recognize true underlying quality could be creating incentives and provoking hospital 

behaviors that do not correspond with the government's stated goal of addressing potential gaps in 

patient care and coordination that lead to adverse patient outcomes. 

For researchers, HVBP may be an untapped opportunity.  To the extent that payments under 

HVBP are a random redistribution of funds to hospitals, which is especially the case for hospitals that 

scored between the threshold and the benchmark, HVBP offers a new identification strategy for 

researchers studying the impact of the marginal dollar of government transfers to hospitals on any of an 

array of hospital behaviors and outcomes. 
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Table 1. Relevant Time Periods for Payment Calculation under HVBP 
 Baseline Period Performance Period 

Payment Year Start Date End Date Start Date End Date 
FY 2013 7/1/2009 3/31/2010 7/1/2011 3/31/2012 
FY 2014 4/1/2010 12/31/2010 4/1/2012 12/31/2012 
FY 2015 1/1/2011 12/31/2011 1/1/2013 12/31/2013 
FY 2016 1/1/2012 12/31/2012 1/1/2014 12/31/2014 
FY 2017 1/1/2013 12/31/2013 1/1/2015 12/31/2015 

 

 

Table 2. HVBP Outcomes Metrics Descriptions 

Metric Fiscal Years 
Used for 

HVBP 

Description Mean 
Value 

Mean 
Observations 

 
30-Day AMI 2014-

current 
30 day survival rate for AMI 

discharges 
83.980 191.360 

30-Day HF 2014-
current 

30 day survival rate for heart failure 
discharges 

87.977 256.906 

30-Day PN 2014-
current 

30 day survival rate for pneumonia 
discharges 

89.293 228.770 

 

 

Table 3. Percent of Hospitals using Achievement Score 

Metric Year Percent of Hospitals using 
Achievement Score 

30-Day AMI 2015 0.8042 
30-Day HF 2015 0.7612 
30-Day PN 2015 0.7535 
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Table 4. Outcome Metric Lottery Around the Threshold and Benchmark with α = 0.05 Error Rate 
Metric Year Total 

Hospital
s 
n 

Total Extrema 
𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖∈𝑁𝑁�̂�𝑝𝑖𝑖 , 
𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖∈𝑁𝑁�̂�𝑝𝑖𝑖 , 

𝑧𝑧𝛼𝛼,𝑛𝑛 𝑝𝑝𝑙𝑙∗ Lotter
y 

Count 
𝑛𝑛𝑙𝑙,𝛼𝛼  

Lottery Extrema 
𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖∈𝑆𝑆𝑙𝑙,𝛼𝛼�̂�𝑝𝑖𝑖 , 
𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖∈𝑆𝑆𝑙𝑙,𝛼𝛼�̂�𝑝𝑖𝑖  

Share 
in 

Lottery 

𝑝𝑝𝑢𝑢∗  Lotter
y 

Count 
𝑛𝑛𝑢𝑢,𝛼𝛼  

Lottery Extrema 
𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖∈𝑆𝑆𝑢𝑢,𝛼𝛼�̂�𝑝𝑖𝑖 , 
𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖∈𝑆𝑆𝑢𝑢,𝛼𝛼�̂�𝑝𝑖𝑖  

Share 
In 

Lottery 

30-Day 
AMI 

201
5 

2,502 0.3000, 
0.9915 

4.27 0.847
47 

1,549 0.4280, 0.9302 0.6191 0.8623
7 

1,628 0.4400, 0.9370 0.650
7 

30-Day HF 201
5 

3,781 0.4200, 
0.9961 

4.34 0.881
51 

2,216 0.4600, 0.9490 0.5861 0.9003
2 

2,462 0.4760, 0.9578 0.641
6 

30-Day PN 201
5 

4,191 0.3920, 
0.9955 

4.39 0.881
65 

2,595 0.4577, 0.9512 0.6192 0.9041
8 

2,923 0.4808, 0.9610 0.697
5 

Simulation sample size 10,000. 

Table 5. AMI Lottery Around the Threshold with α = 0.05 Error Rate – Rescaled Sample Sizes 
Metric Year Total 

Hospitals 
n 

Sample Size 
Rescaling 

Total Extrema 
𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖∈𝑁𝑁�̂�𝑝𝑖𝑖 , 
𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖∈𝑁𝑁�̂�𝑝𝑖𝑖 , 

𝑧𝑧𝑘𝑘,𝛼𝛼,𝑛𝑛  𝑝𝑝𝑙𝑙∗ Lottery 
Count 
𝑛𝑛𝑙𝑙,𝛼𝛼  

Lottery Extrema 
𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖∈𝑆𝑆𝑙𝑙,𝛼𝛼�̂�𝑝𝑖𝑖 , 
𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖∈𝑆𝑆𝑙𝑙,𝛼𝛼�̂�𝑝𝑖𝑖  

Share 
in Lottery 

30-Day AMI 2015 2,502 ×1 0.3000, 0.9915 4.27 0.8474
7 

1,549 0.4280, 0.9302 0.6191 

30-Day AMI 2015 2,502 ×3.93 0.3000, 0.9915 4.27 0.8474
7 

859 0.6976, 0.9031 0.3433 

30-Day AMI 2015 2,502 ×13.88 0.3000, 0.9915 4.27 0.8474
7 

430 0.7862, 0.8816 0.1719 

30-Day AMI 2015 2,502 ×22.34 0.3000, 0.9915 4.27 0.8474
7 

330 0.8057, 0.8757 0.1319 

Simulation sample size 10,000. 
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Table 6. Estimated Threshold and Benchmark with α = 0.05 Error Rate 

Metric Year Total 
n 

𝑝𝑝𝑙𝑙∗ �̂�𝑝𝑙𝑙∗ 𝑛𝑛∗  𝑛𝑛�  Average 
𝑧𝑧𝑘𝑘,𝛼𝛼,𝑛𝑛  

*
up  �̂�𝑝𝑢𝑢∗  𝑛𝑛∗∗ Above 

𝑝𝑝�𝑢𝑢∗  
Average 

1, ,k nz α
 

𝑝𝑝�𝑢𝑢∗  𝑛𝑛�∗ Above 
𝑝𝑝�𝑢𝑢∗  

Average 
, ,k nz α 

 

30-Day 
AMI 

2015 2,502 0.84747 0.7692 1,662 1,901 4.00 0.86237 0.8586 1,360 1,511 3.90 0.8275 1,449 1,675 3.93 

30-Day HF 2015 3,781 0.88151 0.7114 3,075 3,344 4.09 0.90032 0.7750 2,787 3,026 4.04 0.7595 2,916 3,155 4.06 

30-Day PN 2015 4,191 0.88165 0.7243 3,594 3,858 4.11 0.90418 0.7714 3,348 3,556 4.07 0.7486 3,437 3,785 4.09 

Simulation sample size 10,000. 

 

  



APPENDIX 

Table A1. HVBP Clinical Process of Care Metrics Descriptions 

Metric Fiscal Years 
Used for 
HVBP 

Description Mean 
Value 

Mean 
Observations 
per Hospital 

 
AMI 8a 2013-2015 Percutaneous coronary intervention (stent 

placement) performed within 90 minutes 
of arrival for heart attack patients 

75.857 128.231 

HF 1 2013-2015 Discharge instructions given to heart failure 
patients 

72.935 581.787 

PN 3b 2013-2015 Blood culture performed before 1st 
antibiotic given to pneumonia patients 

90.140 478.994 

PN 6 2013-2016 Most appropriate initial antibiotic given to 
pneumonia patients 

86.315 336.343 

SCIP 1 2013-2015 Antibiotics given within 1 hour before 
surgery (within 2 hours if certain drugs are 
used) 

88.173 1,074.331 

SCIP 2 2013-2016 Received recommended prophylactic 
antibiotics with surgery 

93.871 1,086.577 

SCIP 3 2013-2016 Prophylactic antibiotics discontinued 
within 24 hours of surgery (48 hours for 
cardiac surgery) 

85.689 1,050.943 

SCIP 4 2013-2015 Post-operative serum glucose for cardiac 
surgery 

92.405 528.329 

SCIP 9 2014-2016 Post-operative catheter removed within 
two days of surgery 

89.229 609.090 

SCIP VTE 1 2013-2014 Patients for venous thromboembolism 
(blood clots in veins) surgery received 
correct prophylactics 

87.555 805.662 

SCIP VTE 2 2013-2016 Patients for venous thromboembolism 
surgeries received anti-clotting treatment  

86.636 761.496 

SCIP Card 2 2013-2016 Surgery patients on beta-blockers pre-
hospitalization given beta blockers during 
hospitalization 

91.125 494.769 

  



 
 

 

Table A2. Percent of Hospitals using Achievement Score for Clinical Process of Care 

Metric Year Percent of Hospitals using 
Achievement Score 

   
AMI 8a 2015 0.7480 
HF 1 2015 0.7060 
PN 3b 2015 0.7467 
PN 6 2015 0.7603 
PN 6 2016 0.7480 
SCIP 1 2015 0.7478 
SCIP 2 2015 0.7491 
SCIP 2 2016 0.7917 
SCIP 3 2015 0.7244 
SCIP 3 2016 0.7348 
SCIP 4 2015 0.7204 
SCIP 9 2015 0.7035 
SCIP 9 2016 0.7114 
SCIP Card 2 2015 0.7250 
SCIP Card 2 2016 0.7558 
SCIP VTE 2 2015 0.7033 
SCIP VTE 2 2016 0.9091 

 

  



Table A3.  Clinical Process of Care Metric Lottery Around the Threshold and Benchmark with α = 0.05 Error Rate 

Metric Year Total 
Hospitals 
n 

Total Extrema 
𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖∈𝑁𝑁�̂�𝑝𝑖𝑖, 
𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖∈𝑁𝑁�̂�𝑝𝑖𝑖, 

 
𝑧𝑧𝛼𝛼,𝑛𝑛 

𝑝𝑝𝑙𝑙∗ Lottery  
Count 
𝑛𝑛𝑙𝑙,𝛼𝛼  

Lottery Extrema 
𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖∈𝑆𝑆𝑙𝑙,𝛼𝛼�̂�𝑝𝑖𝑖, 
𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖∈𝑆𝑆𝑙𝑙,𝛼𝛼�̂�𝑝𝑖𝑖 

Share 
in 
Lottery 

𝑝𝑝𝑢𝑢∗  Lottery  
Count 
𝑛𝑛𝑢𝑢,𝛼𝛼  

Lottery Extrema 
𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖∈𝑆𝑆𝑢𝑢,𝛼𝛼�̂�𝑝𝑖𝑖, 
𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖∈𝑆𝑆𝑢𝑢,𝛼𝛼�̂�𝑝𝑖𝑖  

Share 
In 
Lottery 

AMI 8a 2015 1,192 0.1598, 
0.9967 

4.08 0.95349 1,061 0.4500, 0.9913 0.8901 1 1,021 0.4500, 0.9967 0.8565 

HF 1 2015 3,194 0.0239, 
0.9980 

4.32 0.94118 1,860 0.3600, 0.9884 0.5823 1 1,491 0.4200, 0.9980 0.4668 

PN 3b 2015 3,290 0.1800, 
0.9971 

4.33 0.97783 2836 0.5500, 0.9948 0.8620 1 2,613 0.5500, 0.9972 0.7942 

PN 6 2015 3,655 0.1513, 
0.9972 

4.35 0.95918 3,057 0.4300, 0.9928 0.8364 1 2,720 0.4300, 0.9972  0.7442 

PN 6 2016 3,304 0.1100, 
0.9900 

4.32 0.96552 3,243 0.4400, 0.9900 0.9815 1 3,183 0.4500, 0.9900 0.9634 

SCIP 1 2015 2,793 0.1021, 
0.9976 

4.28 0.98639 2,408 0.4200, 0.9971 0.8622 1 1,915 0.4200, 0.9976 0.6856 

SCIP 2 2015 2,777 0.0846, 
0.9979 

4.27 0.98637 2,441 0.5400, 0.9973 0.8790 1 2,074 0.5400, 0.9979 0.7469 

SCIP 2 2016 2,176 0.5600, 
0.9900 

4.22 0.99074 2,154 0.6400, 0.9900 0.9899 1 2,108 0.6400, 0.9900 0.9688 

SCIP 3 2015 3,054 0.1332, 
0.9973 

4.25 0.97494 2,296 0.5616, 0.9958 0.7518 1 1,652 0.6400, 0.9973 0.5409 

SCIP 3 2016 2,717 0.1900, 
0.9900 

4.27 0.98086 2,646 0.5500, 0.9900 0.9739 1 2,435 0.5300, 0.9900 0.8962 

SCIP 4 2015 1,137 0.6161, 
0.9969 

4.05 0.95798    871 0.7967, 0.9909 0.7661 0.99767    745 0.7967, 0.9969 0.6552 

SCIP 9 2015 2,956 0.1317, 
0.9973 

4.29 0.94891 1,676 0.5200, 0.9903 0.5670 0.99991 1,349 0.6400, 0.9973 0.4564 

SCIP 9 2016 2,586 0.2500, 
0.9900 

4.28 0.97059 2,377 0.5700, 0.9900 0.9192 1 2,111 0.5700, 0.9900 0.8163 

SCIP 
Card 2 

2015 2,771 0.1700, 
0.9972 

4.27 0.97175 2,256 0.4700, 0.9941 0.8142 1 1,917 0.4700, 0.9972 0.6918 

SCIP 
Card 2 

2016 2,347 0.0500, 
0.9900 

4.23 0.97727 2,308 0.5700, 0.9900 0.9834 1 2,246 0.5700, 0.9900 0.9570 

SCIP 
VTE 2 

2015 3,090 0.1694, 
0.9977 

4.32 0.97403 2,106 0.5300, 0.9941 0.6816 0.99998 1,583 0.5300, 0.9977 0.5123 

SCIP 
VTE 2 

2016 2,683 0.0800, 
0.9900 

4.28 0.98225 2,588 0.5400, 0.9900 0.9646 1 2,347 0.5400, 0.9900 0.8748 

Simulation sample size 10,000. 
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