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Abstract

It is shown that a large class of higher-order (i.e. non-quadratic)
scalar kinetic terms can, without the help of potential terms, drive an
inflationary evolution starting from rather generic initial conditions.
In many models, this kinetically driven inflation (or “k-inflation” for
short) rolls slowly from a high-curvature initial phase, down to a
low-curvature phase and can exit inflation to end up being radiation-
dominated, in a naturally graceful manner. We hope that this novel
inflation mechanism might be useful in suggesting new ways of recon-
ciling the string dilaton with inflation.

I Introduction

The inflationary paradigm [1] offers the attractive possibility of resolving
many of the puzzles of standard hot big bang cosmology. The crucial in-
gredient of most successful inflationary scenarios is a period of “slow-roll”
evolution of a scalar field ϕ (the “inflaton”), during which the potential en-
ergy V (ϕ) stored in ϕ dominates its kinetic energy ϕ̇2/2 and drives a quasi-
exponential expansion of the Universe. At present there exists no preferred
concrete inflationary scenario based on a convincing realistic particle physics
model. In particular, though string theory provides one with several very
weakly coupled scalar fields (the moduli), which could be natural inflaton
candidates, their non-perturbative potentials V (ϕ) do not seem fit to sus-
tain slow-roll inflation because, for large values of ϕ, they tend either to
grow, or to tend to zero, too fast. It is therefore important to explore novel
possibilities for implementing an inflationary evolution of the early Universe.
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The aim of this work is to point out that, even in absence of any potential
energy term, a general class of non-standard (i.e. non-quadratic) kinetic-

energy terms L(ϕ̇), for a scalar field ϕ, can drive an inflationary evolution
of the same type as the usually considered potential driven inflation. By
“usual type of inflation” we mean here an accelerated expansion (in the
Einstein conformal frame) during which the curvature scale starts around a
Planckian value and then decreases monotonously. By contrast, the pre-big
bang scenario [2] uses a standard (quadratic) kinetic-energy term ϕ̇2/2 to
drive an accelerated contraction (in the Einstein frame) during which the
curvature scale increases. Though we shall motivate below the consideration
of non-standard kinetic terms by appealing to the existence, in string theory,
of higher-order corrections to the effective action for ϕ, we do not claim that
the structure needed for implementing our “kinetically driven” inflation arises
inevitably in string theory. The aim of this work is more modest. We draw
attention to a new mechanism for implementing inflation. A large class of the
(toy) models we shall consider satisfy two of the most crucial requirements of
inflationary scenarios: (i) the scalar perturbations are “well-behaved” during
the inflationary stage, and (ii) there exist natural mechanisms for exiting
inflation in a “graceful” manner. We leave to future work a more detailed
analysis of the observational consequences of our kinetically driven inflation
(spectrum of scalar and tensor perturbations, reheating, . . . ). We hope that,
by enlarging the basic “tool-kit” of inflationary cosmology, our mechanism
could help to locate which sector of string-theory (if any) has inflated a
strongly curved initial state into our presently observed large and weakly
curved Universe.

II General Model

We consider a single scalar field ϕ interacting with gravity through non-
standard kinetic terms,

S =

∫

d4x
√
g

[

− R

6κ2
+ p(ϕ,∇ϕ)

]

. (2.1)

Here, κ2 ≡ 8πG/3 and we use the signature (+ − −−). For simplicity, we
only consider Lagrangians p which are local functions of ∇µϕ and therefore,
depend only on the scalar

X ≡ 1

2
(∇ϕ)2. (2.2)

As we bar here the consideration of potential terms, we must impose that
the function p(ϕ,X) vanish when X → 0. Near X = 0, a generic kinetic
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Lagrangian p(ϕ,X) is expected to admit an expansion of the form

p(ϕ,X) = K(ϕ)X + L(ϕ)X2 + · · · . (2.3)

One of the possible particle theory motivations for taking this kind of La-
grangian seriously could be the following. Let us consider only gravity and
some moduli field ϕ (which could be the dilaton, or some other moduli) in
string theory. It is well-known that α′ corrections (due to the massive modes
of the string) generate a series of higher-derivative terms in the low-energy
effective action Seff , while string-loop corrections generate a non-trivial mod-
uli dependence of the coefficients of the various kinetic terms. This leads to
a structure of the type (in the string frame ĝµν)

Seff =
1

6κ2

∫

d4x
√

ĝ
{

−Bg(ϕ)R̂− B(0)
ϕ (∇̂ϕ)2 (2.4)

+α′

[

c
(1)
1 B(1)

ϕ (ϕ)(∇̂ϕ)4 + · · ·
]

+O(α′ 2)
}

,

where the ellipsis stands for other four-derivative terms (like (2ϕ)2, R̂2
µνρσ, . . .).

In the case where ϕ is the dilaton the coupling functions are of the form

Bg(ϕ) = e−ϕ + cg,0 + cg,1e
ϕ + · · · ,

B(0)
ϕ (ϕ) = e−ϕ + cϕ,0 + cϕ,1e

ϕ + · · · ,
B(1)

ϕ (ϕ) = e−ϕ + · · · ,

where the ellipsis contain higher contributions in g2
string = eϕ, including non-

perturbative ones. Transforming Eq. (2.4) to the Einstein frame gµν =
Bg(ϕ)ĝµν , and neglecting the other possible four derivative terms in Eq. (2.4),
leads to the effective action (2.1) with ϕ-kinetic terms of the form (2.3) where

K(ϕ) = 3
B′

g
2(ϕ)

B2
g(ϕ)

− 2
B

(0)
ϕ (ϕ)

Bg(ϕ)
, (2.5)

L(ϕ) = c
(1)
1

2α′

3κ2
B(1)

ϕ (ϕ). (2.6)

In the case where ϕ is the dilaton (so that gs = eϕ/2 is the string coupling), we

have, in the weak-coupling limit g2
s = eϕ ≪ 1, Bg(ϕ) ≃ B

(0)
ϕ (ϕ) ≃ B

(1)
ϕ (ϕ) ≃

e−ϕ so that K(ϕ) ≃ 1 and L(ϕ) ∝ e−ϕ. However, when gs becomes of the
order of unity it is not a priori excluded that K(ϕ) and L(ϕ) could become
more complicated functions of ϕ. We shall give below some examples of such
possible complicated behaviours.
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Returning now to a general Lagrangian p(ϕ,X) the “matter” energy-
momentum tensor reads

Tµν ≡ 2√
g

δSϕ

δgµν
=
∂p(ϕ,X)

∂X
∇µϕ∇νϕ− p(ϕ,X)gµν . (2.7)

Equation (2.7) shows that, if ∇µϕ is time-like (i.e. X > 0), our scalar field
action is “equivalent” to a perfect fluid (Tµν = (ε + p)uµuν − p gµν) with
pressure

p = p(ϕ,X), (2.8)

energy density

ε = ε(ϕ,X) ≡ 2X
∂p(ϕ,X)

∂X
− p(ϕ,X), (2.9)

and four-velocity

uµ = σ
∇µϕ√

2X
, (2.10)

where σ denotes the sign of ϕ̇ = ∇0ϕ.
As usual, in inflationary cosmology, we consider a flat background Fried-

mann model ds2 = dt2 − a2(t)dx2 and an homogeneous background scalar
field X = 1

2
ϕ̇2. A convenient minimal set of independent evolution equations

for a(t) and ϕ(t) is (with H ≡ ȧ/a)

H2 = κ2ε , (2.11)

ε̇ = −3H(ε+ p). (2.12)

It will be also useful to refer to other (redundant) forms of the evolution
equations:

ä

a
= −1

2
κ2(ε+ 3p) , (2.13)

1

a3

d

dt
(a3π) = π̇ + 3Hπ =

∂p

∂ϕ
, (2.14)

where π ≡ ∂p/∂ϕ̇ = ϕ̇ ∂p/∂X denotes the momentum conjugate to ϕ. [Note
that equation (2.9) reads ε = ϕ̇∂p/∂ϕ̇− p, which is the usual energy associ-
ated to the Lagrangian p(ϕ, ϕ̇).]

In this work we shall only consider solutions of Eqs. (2.11)-(2.14) which
describe an expanding Universe (in Einstein frame), that is H > 0. This
reduces the evolution equations (2.11), (2.12) to the master equation

ε̇ = −3
√
ε(ε+ p). (2.15)

Here, and in the following, we use units such that κ2 ≡ 8πG/3 = 1. Note
that, from Eq. (2.11), ε was constrained to be positive.
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III Kinetically Driven Inflation - Basic Idea

As a warm up, let us first consider the case where the Lagrangian p depends
only on X = 1

2
(∇ϕ)2, and not on ϕ: p = p(X). From Eq. (2.9), the

energy-density depends also only on X: ε(X) = 2X∂p/∂X − p(X). In
hydrodynamical language it means that we have here an “isentropic” fluid,
with a general equation of state relating p to ε: p = f(ε). The master
evolution equation can then be qualitatively solved by looking at the graph
of the equation of state p = f(ε). The shape of this graph depends very
much on the shape of the function p = p(X), or better, on the shape of the
function p = p(ψ) where ψ ≡ ϕ̇, so that X = 1

2
ψ2. Indeed, the relation

ε = ψ∂p/∂ψ − p (3.1)

shows that ε can be read geometrically off the graph p = p(ψ). More precisely
−ε is the “intercept”of the tangent to the curve p = p(ψ) at the point ψ, i.e.
its intersection with the vertical axis ψ = 0. The minus sign means that ε is
positive (negative) if the tangent intersects the vertical axis below (above) the
p = 0 horizontal axis. Therefore, if the function p(ψ) = 1

2
Kψ2 + 1

4
Lψ4 + · · ·

is, for instance, always convex, ∂2p/∂ψ2 > 0, as will be the case if all the
coefficients K,L, . . . appearing in the expansion (2.3) are positive, p and
ε will be always positive. In such a case, Eq. (2.15) shows that ε will
monotonically decrease towards zero, and the evolution will be driven to the
“attracting solution”

ε = H2 ≈ 1

9t2
, a ≈ a0 t

1/3. (3.2)

This attractor corresponds to the asymptotic equation of state p ≈ ε valid
near ε = 0 where the usual kinetic term p ≃ 1

2
Kψ2 dominates. On the other

hand, if the function p(ψ) is non-convex and has some oscillatory behaviour
as ψ increases (i.e., if we consider the general case where the expansion
coefficients K,L, . . . in Eq. (2.3) may take negative values) the graph p =
f(ε) can be more complicated and can allow for exponential-type inflationary
behaviour. Let us first note that, because of Eq. (3.1), the extrema of the
function p = p(ψ) (or p = p(X)) correspond to values where p = −ε, i.e. to
fixed points of the master evolution equation (2.15). For a general function
p = p(X) the graph of the (multiform) equation of state might resemble
Fig.1.

From the master Eq. (2.15) it follows that ε will decrease above the line
p = −ε, and increase below it. Fig. 1 then shows that all the intersection
points with the p = −ε line are attractors of the (future) evolution. The

5
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u

Figure 1: Graph of the equation of state linking p to ε for an hypothetical
general kinetic Lagrangian p(ϕ̇). The evolution for expanding, flat cosmolo-
gies proceeds along the indicated arrows. The shaded region (ε < 0) is
excluded. Except for the origin and the point above it on the vertical axis,
the attractors of the evolution are inflationary fixed points with p = −ε.

arrows in Fig. 1 indicate the evolutive flow, which reverses (along the graph)
at the extrema of ε. The region where ε < 0 is excluded because it cannot
be reached by flat cosmologies (see Eq. (2.11)). The fixed points lying at the
p = −ε line correspond to an exponential inflation

H2
att = εfixed , aatt(t) = a0 exp (

√
εfixedt) (3.3)

Apart from these inflationary attractors, there are two other attractors (in
the case depicted in Fig. 1): (i) the origin, where the evolution is driven
toward the solution (3.2) (corresponding to the “hard” equation of state
p = ε), and (ii) the point above the origin on the vertical axis. As we will
see later the latter point lies in the region of absolute instability and has
therefore no physical significance.
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In this work we shall focus on the inflationary attractors (3.3) because
they exhibit the novel possibility of getting, for a large set of initial conditions,
quasi-exponential (or power law) inflation out of a purely kinetic Lagrangian.
Note that the condition for the existence of these inflationary attractors can
also be seen in Eq. (2.14). In absence of a ϕ dependence, Eq. (2.14) says
that a3π is constant so that π is attracted toward zero. As the momentum
π = ∂p/∂ϕ̇ = ϕ̇ ∂p/∂X, we see that non trivial (ϕ̇ 6= 0) attractors can
exist if the kinetic terms are non-standard so that ∂p/∂X can vanish for non
zero values of ϕ̇ . The extremal values of p correspond to the inflationary
attractors discussed above.

The labels “s” and “u” in Fig. 1 (which stand for “stable” and “unstable”)
indicate whether, for our present isentropic equation of state p = f(ε), the
squared speed of sound c2s = dp/dε is positive or negative, respectively. This
issue will be further discussed below.

Note that the “price” to pay for having inflationary attractors as in Fig.
1 is the existence of regions, in phase space (ϕ, ϕ̇), with negative energy
density. We shall assume in this work that this is not physically forbidden.
All the cosmological evolutions that we shall consider below stay always in
the positive energy regions, and the existence, elsewhere in phase space, of
negative ε regions does not necessarily cause some instabilities along our
evolutionary tracks.

The simple case of a kinetic Lagrangian depending only on ϕ̇ considered
above is the analog, for kinetically driven inflation (or “k -inflation” for short),
of a de Sitter model with constant energy density. It is clear that both
models should have similar problems. Namely, there is no natural graceful
exit, no smooth transition to a Friedmann Universe and the cosmological
perturbations are “ill-defined”. To avoid these problems we should allow the
coefficients in the expansion (2.3) of the Lagrangian p to depend on the scalar
field ϕ.

IV “Slow-Roll” k-Inflation

The simplest way to realize successfully the idea of k -inflation is to consider
the analog of “slow-roll” potential driven inflation, in which the potential
V (ϕ) in the Lagrangian L(ϕ, ϕ̇) = 1

2
ϕ̇2 − V (ϕ) dominates the kinetic term

ϕ̇2/2 and evolves slowly. For the concept of k -inflation to have a relevance
to a large class of models, we need to consider a general kinetic Lagrangian
p(ϕ,X). The idea is therefore to find the conditions under which the influence
of the non-trivial ϕ dependence of p(ϕ,X) will represent only a relatively
small perturbation of the attraction toward exponential inflation discussed
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in Section III. To do that in a concrete manner it is convenient to focus
henceforth on the simplest kinetic Lagrangian, containing only ϕ̇2 and ϕ̇4

terms, namely

p(ϕ,X) = K(ϕ)X + L(ϕ)X2 =
1

2
K(ϕ)(∇ϕ)2 +

1

4
L(ϕ)(∇ϕ)4. (4.1)

Let us first motivate the possibility of rather arbitrary functions K(ϕ), L(ϕ)
by considering again the low-energy effective action of string theory (2.4). As
we mentioned above, in the weak coupling limit K(ϕ) ≃ 1 and L(ϕ) ∝ e−ϕ.
However, when gs becomes of order unity it is not a priori excluded that
K(ϕ) could change sign. For instance we could consider a simple model (of
the type considered in Refs. [3], [4]), where the coupling functions B(ϕ) in

the action (2.4) are the same, that is Bg(ϕ) = B
(0)
ϕ (ϕ) = B

(1)
ϕ (ϕ) = B(ϕ). In

this model

K(ϕ) = 3

(

B′(ϕ)

B(ϕ)

)2

− 2 (4.2)

might become negative when gs reaches values of order unity. In fact a model,
incorporating string loop corrections, considered in Ref. [5] has

K(ϕ) = 1 − 3k eϕ 6 + k eϕ

(3 + k eϕ)2
, (4.3)

where k = 3δGS/8π2 is a positive parameter. The R.H.S. of Eq. (4.3) be-
comes negative when eϕ > 3(

√
6 − 2)/2k. Motivated by these examples, we

shall assume, as simplest toy model exhibiting interesting dynamics, a La-
grangian of the form (4.1) with a function K(ϕ) which is positive in some
range of values of ϕ (“weak-coupling-domain”) and becomes negative in some
other range (“strong-coupling-domain”). On the other hand, to ensure the
positivity of ε for large field gradients X, we shall assume that the function
L(ϕ) remains always positive.

The equation of state in the model (4.1) is parametrically given by

p = K(ϕ)X + L(ϕ)X2, (4.4)

ε = K(ϕ)X + 3L(ϕ)X2. (4.5)

We represent in Fig. 2 the change in the form of the equation of state
p = f(ε, ϕ) as ϕ varies from the weak-coupling region (K > 0) to the strong-
coupling one (K < 0). Note that for large values of X, the equation of state
asymptotes the one of radiation (p = ε/3), while it is tangent to the hard
equation of state (p = ε; with sgn(ε) = sgn(K)) when X → 0. In the strong
coupling domain there appears (in the adiabatic approximation where ϕ is
treated as constant) an inflationary fixed point where pfixed = −εfixed.

8



Let us investigate under what conditions on the functions K(ϕ) and L(ϕ)
one can indeed approximately solve the master evolution equation (2.15) by
considering that the variation of ϕ brings only a small perturbation onto
the simple ϕ-independent evolution studied above. We shall simplify this
study by redefining the scalar field and working with the new field variable
ϕnew =

∫

dϕoldL1/4(ϕold) (which is well defined because we assume L(ϕ) > 0).

With this definition Lnew(ϕnew) = 1 and Knew(ϕnew) = Kold(ϕ
old)/L

1/2
old (ϕold).

In other words, we can assume, without loss of generality, that L(ϕ) = 1.
With this simplification the zeroth-order “slow-roll”, or “adiabatic”, solution
to Eq. (2.15), i.e. the instantaneous attractive fixed point of Eq. (2.15)
(solution of 0 = ε+ p = 2X∂p/∂X) corresponds to

Xsr =
1

2
K(ϕsr), (4.6)

ϕ̇sr = σ

√

K(ϕsr), (4.7)

ε

p=-

p=

p

u s

weak coupling

strong coupling

ε

ε

ε/3p=

Figure 2: Change of form of the equation of state p = f(ε, ϕ) in the model
(4.1) as ϕ varies from the weak-coupling region (K(ϕ) > 0) to the strong-
coupling one (K(ϕ) < 0).

9



εsr =
1

4
K

2
(ϕsr), (4.8)

Hsr =
1

2
K(ϕsr). (4.9)

Here K(ϕ) ≡ −K(ϕ) is positive (in the slow-roll domain) and σ denotes the
sign of ϕ̇. The time evolution of the slow-roll k -inflation is given, from Eqs.
(4.6)-(4.9), by simple quadratures (the subscript “in” denotes initial values)

t− tin = σ

∫ ϕ

ϕin

dϕ
√

K(ϕ)
, (4.10)

N ≡ ln

(

a(t)

ain

)

=
σ

2

∫ ϕ

ϕin

√

K(ϕ)dϕ. (4.11)

[The notation N is introduced to denote the number of e-folds of inflation.]
The post-slow-roll approximation, X = Xsr + δX, is then obtained by

rewriting the master equation (2.15) as

∂p

∂X
= −K + 2X = 2δX = − ε̇

6X
√
ε
, (4.12)

and replacing the slow-roll approximations (4.6)-(4.9) in the R.H.S. This
yields

δX

Xsr
≃ − 1

12

ε̇

ε3/2
≃ −σ

3

K
′

K
3/2

≃ +
2σ

3

(

1√
K

)

′

, (4.13)

where the prime denotes a derivative with respect to ϕ. The criterion for the
validity of our previous slow-roll solution (4.6)-(4.9) is

δX

X
≪ 1, (4.14)

i.e. (K
−1/2

)′ ≪ 3/2 (when keeping L(ϕ) 6= 1 it would read L−1/4∂(L1/4K
−1/2

)
/∂ϕ ≪ 3/2). This condition is as easily satisfied as the usual slow-roll condi-
tion for potential driven inflation. Examples of functions K(ϕ) that satisfy
this condition are: (i) any power law or exponential (or super-exponential)

growth as ϕ→ ∞, (ii) any levelling off ofK(ϕ) (K(ϕ) → limit, withK
′

(ϕ) →
0) as ϕ→ ∞, or (iii) a sufficiently fast pole-like growth ofK(ϕ) ∝ (ϕ∗−ϕ)−α,
with α > 2, as ϕ→ ϕ∗.

Note that during slow-roll k -inflation the following useful relation

ε+ p

ε
≃ 4

δX

Xsr
, (4.15)

10



is satisfied, that is, the fractional compensation of the energy density by the
negative pressure is proportional to the small parameter δX/Xsr. Therefore,
in those models where ε+p > 0, or equivalently, the energy density decreases
in the course of expansion, δX is positive. It is also obvious from (4.15), that
inflation ends when δX/Xsr becomes of the order of unity, i.e. when the
slow-roll condition (4.14) is violated.

For any function K(ϕ) (and more generally for any p(ϕ,X)) satisfying
the slow-roll criterion we can visualize our k -inflationary behaviour as being
one point (i.e. one value of X = Xsr + δX) on an adiabatically varying
equation of state graph of the type of Figs. 1 or 2. [The adiabatic variation
we mention corresponding to the fact that each graph corresponds to some
specific, instantaneous value of ϕ , which is itself evolving]. Eq. (4.13) (or its
generalization to a generic p(ϕ,X)) then tells us that the point X = Xsr+δX
is always displaced away from the intersections of the (ϕ-instantaneous) graph
with the p = −ε line.

Overall, the qualitative behaviour of the solutions we are focussing on
is the following: Initially, we start with some representative point in the
(ε, p) plane lying on an equation of state graph corresponding to some initial
value of ϕ, deep into the strong coupling domain. We assume that, for strong
coupling, the slow-roll criterion is very well satisfied. In a first evolution stage,
we can neglect the ϕ-dependence of the equation of state because there is a
fast attraction taking just a few e-folds of the representative point toward
the nearest inflationary attractor (this stage is described by the arrows in
Fig. 1). After this initial stage, we can consider that our representative
point follows the (post-) slow-roll motion X = Xsr + δX, corresponding to
a representative point near but away from the p = −ε line (such a point is
indicated in Fig. 2). As the evolution continues, the slow-roll condition is
less and less well satisfied and the representative point straggles more and
more away from the p = −ε line. At some point in the evolution the slow-roll
criterion (4.14) becomes violated (δX/X ∼ 1) and one naturally exits the
inflationary stage. We shall come back later to this exit mechanism.

The qualitative picture of the evolution just represented (based on a suc-
cession of graphs in the (ε, p) plane) can also be globally visualized by a
phase-space picture in the (ϕ, ϕ̇) plane (see Fig. 3). “Slow-roll” inflation on
this graph corresponds to the portion of the separatrix (attractor) given by

ϕ̇ = σ

√

K

(

1 +
δX

Xsr
+ ...

)1/2

, (4.16)

where δX/X ≪ 1. When δX/X becomes of the order of one a graceful exit
from inflation takes place, see Section VII. The phase diagram Fig. 3 is

11
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ϕ.

strong couplingweak coupling

ε+p=0

����������������
ε<0

Figure 3: Schematic phase diagram of “slow-roll” k-inflation. Trajectories
approach the attractor but do not reach the line ǫ+p = 0 where the speed of
sound vanishes. Around the point where the slow-roll condition is violated,
the solutions leave the inflationary stage and approach then smoothly the
vacuum ϕ̇ = 0.

very similar to the one of potential driven slow-roll inflation [9]. We see that
the set of initial configurations of the scalar field which lead to inflation has
nonzero measure. Therefore the problem of initial conditions here is very
similar to what one has in the case of chaotic inflation [1]. We expect that
in analogy to the other models of inflation self-reproduction of the Universe
[10] can take place in our k-inflationary model. However this question needs
a special investigation and we leave it to future work.

Let us also mention that one can easily build a model in which one starts
initially in the weak coupling regime, with the field ϕ evolving towards the
strong coupling regime. The function K can then be arranged in such a way
that the Universe leaves the weak coupling regime to enter an inflationary
stage and finally exits inflation.

V “Power Law” k-Inflation

It is well known that, in the usual potential driven inflationary scenario, if the
potential depends exponentially on the scalar field, there exists an attractor

12



solution which describes a power law inflating Universe (see for instance
[11]). There is no graceful exit from inflation if the potential is exponential
everywhere. Therefore to solve the graceful exit problem one should assume
that the exponential potential is a valid approximation of a more realistic
and complicated potential only within some limited range of values of the
scalar field ϕ. As we show in this section, one can get an analogous power
law k -inflation within the class of models which we consider in this paper.

Let us again consider the model with the Lagrangian (4.1). For the
purposes of this section it is convenient to make a new field redefinition
(valid only in the region where K < 0) and rewrite the Lagrangian (4.1)
in terms of the new field variable ϕnew =

∫
√

L(ϕold)/|K(ϕold)| dϕold. This
yields

p = f (ϕ)
(

−X +X2
)

, (5.1)

where f (ϕ) ≡ f(ϕnew) = K2(ϕold)/L(ϕold) and X ≡ Xnew = (L/|K|)Xold.
Working with this Lagrangian one can try to find out whether there is

a function f (ϕ) for which the master equation (2.15) has an exact solution
which describes power law inflation. In the case of power law inflation

ε+ p = γε, (5.2)

where γ is a constant. Substituting ε and p into the last equation we find
immediately that if a solution exists, then

X = X0 =
2 − γ

4 − 3γ
= const. (5.3)

Expressing ε in terms of p from (5.2) and substituting (5.1) with X given
by (5.3) into the master Eq. (2.15), we get a simple equation for f , which is
solved by

f (ϕ) =
4

9

(4 − 3γ)

γ2

1

(ϕ− ϕ∗)
2 . (5.4)

Therefore, a model with Lagrangian (5.1), with f (ϕ) given by Eq. (5.4), has
an attractor solution which describes power law expansion,

a (t) ∝ t
2

3γ . (5.5)

If 0 < γ < 2/3 then this solution describes the usual power law inflation. If
one takes a negative value of γ then one gets pole-like super-inflation in Ein-

stein frame. However, this pole-like inflation has a “graceful exit problem”
which is very similar to the one of the pre-big bang scenario [2]. We were
unable to find a simple solution to this problem and we doubt that such a
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solution can be meaningfully discussed within the effective field Lagrangian
formalism considered here. Therefore we think that pole-like inflation does
not help toward bringing a solution of the main cosmological problems. In
distinction from pole-like inflation, in the model of power law inflation the
graceful exit problem can be easily solved if in some range of ϕ the function
f is modified in an obvious way.

A natural generalization of the Lagrangian (5.1),

p = f (ϕ) g (X) , (5.6)

where g is a rather arbitrary function of X, opens the possibility to realize
power law inflation in a wide class of theories. Actually, taking the function
f to be

f (ϕ) = −4

9

(1 − γ)

γ2

2X0

g (X0)

1

(ϕ− ϕ∗)
2 , (5.7)

where X0 is a solution of the equation

2X
∂ ln g

∂X
=

γ

γ − 1
, (5.8)

one can easily verify that power law inflation (5.5) is a solution of the corre-
sponding theory.

VI Stability

A detailed study of the spectrum of quantum perturbations in our slow-
roll k -inflation scenario will be done in a forthcoming publication. We shall
only discuss here a necessary condition for the stability of our models with
respect to arbitrary, high-frequency scalar perturbations. The equation for
the canonical “quantization variable” v describing the collective metric and
scalar field perturbations in the case of the action (2.1) can be written down
in the standard way [6] and takes the form [12]

v′′ − c2s∇2v − z′′

z
v = 0, (6.1)

where the only relevant piece of information for our stability analysis is the
appearance of the “speed of sound”

c2s =
p,X

ε,X
=

p,X

p,X + 2Xp,XX
(6.2)

in front of the Laplacian. Here a comma denotes a partial derivative with
respect to X. It is clear that if c2s is negative then the model is absolutely
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unstable. The increment of instability is inversely proportional to the wave-
length of the perturbations, and therefore the background models for which
c2s < 0 are violently unstable and do not have any physical significance.

This stability requirement (c2s = p,X/ε,X > 0) is non trivial within our
scenario, because, for instance, in slow-roll k -inflation in the zeroth-order
slow-roll approximation the inflationary attractors are defined by p,X = 0,
and therefore c2s = 0. However, as discussed in Section IV, in the post-slow-
roll approximation, with X = Xsr + δX, p,X does not vanish. To first order
in δX we can write p,X ≃ psr

,XXδX. Using the second equation (6.2) we get

c2s ≃
δX

2Xsr
. (6.3)

Therefore stability requires that δX > 0, i.e. that on the equation of state
graphs of Figs. 1 and 2, the ϕ-gradients of p(ϕ,X) be such that they displace
the real, non-adiabatic, slow-roll attractor beyond the p = −ε line (“beyond”
meaning here “further away” as one runs along the p = f(ε, ϕ) graph fol-
lowing the natural X parametrization). These stable stretches of the (ε, p)
graphs are labelled s in Fig. 1. They are also the stretches where the slope
(dp/dε) is positive (as is clear from Eq. (6.2) which says that the velocity of
sound is given by the usual formula c2s = dp/dε, when keeping ϕ fixed).

Let us now discuss the simple model (4.1). For this model we have com-
puted δX/Xsr, and we can therefore assess under what conditions k -inflation
will be stable under scalar perturbations. We see from Eq. (4.13) that the
conditions can be expressed in two (equivalent) forms: (i) the energy density

ε =
√
K must decrease during the slow-roll of ϕ, or (ii) −σK ,ϕ = σK,ϕ must

be positive. The satisfaction of this condition is very natural within the intu-
itive picture we have in mind: namely, starting at some high (∼ Planckian)
energy density, i.e. a large negative value of K(ϕ) = −ε2, and then letting
ϕ evolve toward the weak-field coupling domain where K(ϕ) vanishes before
becoming positive. During the slow-roll phase (with K(ϕ) < 0), it is natural
(and even necessary if K(ϕ) is monotonic) to have a decreasing K = −K.

One consequence applicable to a general model p(ϕ,X) is that slow-roll
implies a small value |c2s| ≪ 1. It is interesting to ask for which (non slow-
roll) models one can have both a continued k -inflation and a constant speed
of sound of order unity. Let us consider for that purpose power law inflation.
In the case where the Lagrangian takes the form (5.1) the speed of sound
during the inflationary stage is

c2s =
γ

8 − 3γ
. (6.4)

If we restrict ourselves to the inflationary range 0 < γ < 2/3 this speed can
not exceed c2s = 1/9. The smaller values of γ correspond to very fast (nearly
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exponential) expansion and small speed of sound in complete agreement with
our analysis of slow-roll k -inflation. Pole-like inflation is violently unstable
in this model.

However, if we consider more general Lagrangians (5.6) we can avoid these
restrictions. Actually in this case the speed of sound during the inflationary
stage is given by the expression

c2s =
g,X (X0)

g,X (X0) + 2X0 g,XX (X0)
, (6.5)

where X0 is the solution of equation (5.8). The necessary conditions for
power law inflation given in Section V imply that g,X (X0) 6= 0 and do not
involve any restrictions on the second derivative g,XX (X0). Therefore, for a
power law inflationary stage with any a priori given value of the parameter γ,
one can always find a corresponding function g (X) to arrange any required
speed of sound. Note that it follows from here that one can also easily
build a theory with pole-like inflation which is stable with respect to scalar
perturbations.

VII Exit Mechanisms

In the simple model of Section IV (and in the normalization L(ϕ) = 1) the
total number of inflationary e-folds is (considering for definiteness that ϕ
decreases during slow-roll)

Ninf =
1

2

ϕin
∫

ϕend

√

K(ϕ) dϕ. (7.1)

Here ϕin is the initial value of ϕ, and ϕend the end of slow-roll, i.e. the value
of ϕ where δX/X becomes of order unity, i.e. (from Eq. (4.13)), such that

K
−3/2

(ϕend)K
′

(ϕend) ∼ 1. (7.2)

We shall not investigate here the problem of the choice of initial conditions
within our model. We shall assume that some large parameter is present (or
at least possible) in the problem and allows Ninf to be larger that 60 or so.
[One simple possibility would be a function K(ϕ) of the type of Eq. (4.3)
which levels off to a negative constant when ϕ increases. All the couples
(ϕ,X) where X ∼ 1 (in Planck units) and ϕ is arbitrary large lead to an
energy density of order 1. A random initial condition with ε(ϕin, Xin) ∼ 1
could have an arbitrary large ϕ.] Assuming this we note not only that our
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mechanism contains a natural exit from inflation (because of the evolution of
K and its final change of sign), but that this exit is generically expected to
take place within a small number of e-folds. Indeed, condition (7.2) signalling
the end of slow-roll k -inflation can be rewritten (using Eqs. (4.6)-(4.9))
as [K̇/(KH)]end ∼ 1, which means that K changes by 100% in a Hubble
time, around the time of exit of k -inflation. One therefore expects that one
can approximately match slow-roll k -inflation with a post-inflationary phase
where K(ϕ) has become positive.

We think that, in most cases, this way of exiting k -inflation provides a
naturally graceful exit. Indeed, it is clear from Fig. 2 that, after the tran-
sition to the K > 0 (“weak-coupling”) branch, the cosmological evolution
will quickly be attracted toward an approximate p ≈ ε equation of state.
The corresponding expansion was discussed in Eq. (3.2) and corresponds to
a very fast decrease of the energy density: εϕ ∝ a−6. As this decrease is
much faster than the decay of the energy density in radiation (εrad ∝ a−4)
[and in non relativistic matter (εmatter ∝ a−3) if any is present], even small
traces of the latter forms of energy present at the end of k -inflation will
ultimately dominate the expansion. The situation is very similar to what
has been recently discussed in Ref. [7]. As we have in mind that, in our
model, the scalar ϕ could be the dilaton (or a moduli), i.e. a field which
modifies the coupling constants of all the other matter fields, we expect that
the nearly uniform time variation of ϕ during k -inflation will generate quan-
tum particles at a uniform spacetime rate. During k -inflation the produced
particles are constantly diluted by the fast expansion and are not expected
to cause a strong back reaction, but the particles produced in the last e-fold
of k -inflation should be sufficiently numerous to dominate soon the expan-
sion. Even without this assumption (that the couplings of ϕ are efficient in
producing particles), the mere effect of the variable gravitational coupling
(at the end of inflation) is sufficient to create any scalar particle with energy
density (at birth) ∼ 10−2H4

end [8] [4].
To discuss more precisely the evolution of the inflaton after it exits from

k -inflation, i.e. when K(ϕ) has become positive, and the higher-derivative
term LX2 has become negligible, it is convenient to introduce the canonical
scalar field φ =

∫

dϕ
√

K(ϕ). In terms of φ the equation of motion reads

φ̈ + 3Hφ̇ = a−3d(a3φ̇)/dt ≈ 0, with H =
√
εφ + εrad. Hence a3φ̇ ≃ c = const

and φ evolves according to φ(t) ≈ c
∫

dt a−3. In a first phase after k -inflation
εφ probably dominates over εrad and the evolution follows the p = ε attractor
solution Eq. (3.2). During this initial phase a(t) ∝ t1/3 so that φ(t) drifts
logarithmically: φ(t) ∝

∫ t

tend

dt/t = ln(t/tend). Later, εrad ∝ a−4 will take

over εφ ∝ a−6 and the evolution will become radiation dominated. In this
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second phase, a(t) ∝ t1/2 and φ(t) ≃ c
∫ t
dta−3 ∝

∫ t
dt t−3/2 stops drifting

logarithmically to converge toward some final value φf : φ(t) ≈ φf − c′t−1/2.
Note that, in this generic exit mechanism, the final value ϕf of the original

field (corresponding to the final value φf of the canonical field) is arbitrary.
Therefore, if ϕ is the dilaton or a moduli our k -inflationary mechanism does
not, by itself, provide a mechanism for fixing ϕ to a particular value. To
do that one must appeal either to the presence, at low-energies, of a ϕ-
dependent potential energy term V (ϕ) (which may have been negligible at
high energies), or to a non-trivial structure of couplings to matter [3]. We
wish, however, to point out that some variants of our general model can
also provide another way of fixing the end location of ϕ very near a partic-
ular value. Indeed, if the kinetic function K(ϕ) (of the original ϕ variable)
happens to have a pole singularity K(ϕ) ∝ (ϕ − ϕp)

−α with α ≥ 2 in the

positive-K domain the corresponding canonical field φ =
∫

dϕ
√

K(ϕ) di-
verges when ϕ → ϕp. Therefore, if this pole singularity is in the way of the
evolution of ϕ after the exit from k -inflation (e.g., if ϕp < ϕend < ϕin in
the case where ϕ̇ < 0), the typically large logarithmic drift of the canonical
field φ during the first phase after exit, ∆φ ≃ c

∫ trad
tend

dt a−3 ∝ ln(trad/tend)

(where trad denotes the beginning of radiation domination), will mean that
the original field ϕ will end up very near ϕp.

Evidently, this mechanism assumes that, except for K(ϕ), all the func-
tions describing the coupling of ϕ to matter (like the one giving the ϕ-
dependence of the gauge couplings) are regular (or, at least, less singular) at
ϕ = ϕp. Then, in the notation of Ref. [3], the observable coupling strength
of ϕ to matter αA(ϕ) = d lnmA(φ)/dφ = (K(ϕ))−1/2d lnmA(ϕ)/dϕ is driven
near zero by our mechanism.

VIII Conclusions

We have pointed out that a general class of higher-order scalar kinetic terms
p(ϕ,∇ϕ) = 1

2
K(ϕ)(∇ϕ)2 + 1

4
L(ϕ)(∇ϕ)4 + · · · can drive an inflationary evolu-

tion starting from rather arbitrary initial conditions. Under not very restric-
tive conditions on the ϕ-dependence of the kinetic term p(ϕ,∇ϕ) the early
cosmological evolution will be attracted toward a slow-roll kinetically driven
inflationary stage. In a large class of models this slow-roll behaviour has the
following attractive features: (i) it drives the evolution from an initial high-
curvature phase down to lower curvatures while dilating space in a quasi-
exponential or power law manner, (ii) it is stable under (high-frequency)
scalar perturbations, and (iii) it contains a natural exit mechanism because
of the ϕ-dependence of the kinetic terms.
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We have briefly discussed the exit of kinetically driven inflation and found
that it seems to be naturally “graceful” in lending itself to a smooth transition
toward a stage dominated by the radiation produced (either through the ϕ-
dependence, or through purely gravitational effects) at the end of slow-roll.
We have also pointed out that the presence of pole-like singularities in the
ϕ-dependence of the kinetic terms can have some useful consequences: (i) a
ϕ-dependence of the form ∼ (ϕ−ϕ∗)

−2p̃(∇ϕ) in the initial field domain can
ensure a nearly constant speed of sound of order unity, while (ii) a pole-like
singularity in the coefficient (∇ϕ)2 in the final field domain can help to fix
the value of ϕ to a specific value.

We leave to future work the investigation of general important issues: the
choice of (a measure on the) initial conditions, and the computation of the
perturbation spectra generated by this new type of inflation. We are aware
that the compatibility of the latter issues with observations will probably
necessitate the presence of some small (or large) dimensionless parameters in
p(ϕ,∇ϕ).

In this work, we have used the structure of the effective action in string
theory as a partial motivation for considering higher-order kinetic terms
p(ϕ,∇ϕ). Having found that such terms can generically drive an inflation-
ary behaviour, we hope that our mechanism might be useful in suggesting
new ways in which the dilaton and moduli fields of string theory might be
compatible with inflation.
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