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ABSTRACT  
This paper reports the results of a genetic optimisation based numerical analysis of a PV-PCM 
system integrated into a double skin façade. The aim of the research activity was to develop and 
test the performance of a proposed simulation approach to identify the optimal configuration of 
the PCM layer, in terms of temperature transition range, and thickness, to assure the best energy 
performance of the façade system.  
Furthermore, because of the intimate relationship between the PCM’s features and the 
ventilated cavity to define the performance of the façade system, the domain of exploration 
included as variable the airflow rate and ventilation schedule. 
The evaluation of the performances of the PV-PCM glazed facade is carried through an on-
purpose developed, transient 1-D (with finite difference method) heat transfer model, which 
integrates a suitable representation of the PCM’s system (through the so-called enthalpy 
method) to include the thermophysical behviour of such a type of materials. This numerical 
model is implemented in MATLAB and coupled to TRNSYS in order to calculate the dynamic 
thermal energy profiles of a fictitious building equipped with such a façade.  
The subsequent single objective optimization is based on a genetic algorithm, which looks for 
the best PCM type and schedule of ventilation in order to optimize the summer thermal energy 
performance in two case-study cities, Venice and Chicago. 
The results show how the proposed genetic optimisation algorithm is capable of identifying the 
most suitable configuration (that differs in each climate) after a relatively small number of 
generations (ca. 25). Furthermore, the optimisation approach used in this study leads to the 
identification of configurations capable of assuring a reduction in the cooling energy need 
(objective function) in the range 28% to 19 %, when compared to non-optimal configurations, 
for the two case-study cities. 
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INTRODUCTION 
Designers often use dynamic thermal simulation programs to analyse thermal and energy 
behaviours of a building and to achieve specific targets, e.g. reducing energy consumption, 
environmental impacts or improving indoor thermal environment (Garber, 2009). Two 
approaches are commonly considered at the simulation process. The first is the parametric 
method, which consists of changing the input of one variable at a time to evaluate the effect on 
the design objectives, while all other variables are kept unchanged. It is often time-consuming 
and it only results in partial improvement because such an approach cannot fully consider the 
complex and non-linear interactions of different variables in the simulation (Nguyen et al, 
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2014). The second approach is the simulation-based optimization and it usually achieved 
through iterative methods, which construct infinite sequences of progressively better 
approximations to an “optimal” solution, i.e. a point in the domain of possible values that 
satisfies an optimality condition (Wetter, 2009). The optimization of Phase change materials 
(PCMs) technology implementation has been the centre of attention of many researchers due to 
its exclusive assets for thermal regulation of buildings (Cascone et al.2018 and Soares et al., 
2014). Huang et al. (2014) performed an optimisation of the thermal properties of an envelope 
in an energy-saving renovation of existing public buildings. They concluded that the 
performance parameters for the renovation of existing buildings should be determined for each 
orientation. Ascione et al. (2014) carried out a study on the retrofitting of an office building in 
which they added a PCM plasterboard to the inner side of its exterior envelope. It was found 
that a refurbishment, by means of PCM wallboards, seemed to be more appropriate for a semi-
arid climate. Ramakrishnan et al. (2016) performed a parametric optimization for the retrofitting 
of a typical Australian residential building by installing bio-PCM mats on the ceiling. The 
investigated variables included, the phase transition temperature, the thickness of the PCM layer 
and the night ventilation rate that guaranteed the best indoor thermal comfort. It was found that 
depending on the climatic condition, the optimal phase change temperature was about 3–5 °C 
higher than the average outdoor air temperature. Furthermore, selection of a proper PCM 
thickness and night ventilation are important to maximise PCM efficiency and minimise costs. 
Saffari et al. (2017) have investigated optimum PCM melting temperature of a wallboard 
integrated into a residential building envelope. It has been concluded that the proper selection 
of PCM enhanced gypsum technology as integrated passive system into the building envelopes. 
Soares et al. (2014) have concluded that 10% to 62% savings in energy consumption can be 
achieved utilizing PCM passive technology through building prototypes located in warm 
temperate climates. However, few of the available modelling studies concerning the 
implementation of PCM-PV systems make use of simulation-based optimization. 
The present simulation based optimization is an extension of previous works (Elarga et al., 
2017). Optimizations were automated by coupling between the dynamic building simulation 
model, the PV-PCM façade module and the optimization engine. A library of 18 PCM types 
containing the specifications and thermal characteristics of these materials (obtained from 
Rubitherm) has been integrated in the algorithm and the optimization has run for two cities 
Venice and Chicago. 
 
METHODS  
The optimization numerical approach consists of two steps: the pre-processing phases and the 
optimization phases. 
− The Pre-processing step included the following elements. 
The definition of a fictitious double skin façade that integrates a PV-PCM system where the 
façade consists of outer clear glass layer (g1) with a thickness of 8 mm and U value of 
5.3(W/m2K), middle and inner glass layers (g2 &g3) with a thickness of 4mm and U value of 
5.6(W/m2K). The applied Cavity ventilation technique is outside to outside and the considered 
PV-PCM area equals 70m2 which is 100% from the overall façade area, a future study will 
address the optimum façade composition percentage, scheme is illustrated in Figure 1a. 
− The modelling and the definition of the design conditions of a double glazed skin, ventilated 

facade office zone area of 80m2 was carried out with TRNSYS software (Klien et al. 2004).  
− Since TRNSYS does not include a defined TYPE to model a glazed PV-PCM facades, it was 

necessary to separately model the PV-PCM façade in MATLAB. This model is based on a 
finite difference method scheme (based on a grid with 15 fixed nodes grid as shown in Figure 
1b. Each glass layer has been represented by 2 nodes and for the PCM layer a sensitivity 
analysis has been carried out to estimate the required nodes number i.e. 5 nodes, combined 
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with the enthalpy method (Voller, 1997) in order  to model the non-linear behaviour of the 
PCM layer. For more details, refer to (Elarga et al., 2016). The governing equations are: 

𝐶𝐶𝐴𝐴 =  
𝑑𝑑𝑑𝑑
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Where: 
𝜖𝜖: is an arbitrarily small value representing half the phase change temperature interval. 
𝑐𝑐𝑠𝑠 : Solid specific heat capacity 
𝑐𝑐𝑙𝑙 : Liquid specific heat capacity  
𝑑𝑑: Enthalpy  
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Where: 
𝑑𝑑𝑃𝑃° : Enthalpy node value of the previous time step 
𝑑𝑑𝑃𝑃𝑛𝑛−1: Enthalpy node value of iteration n-1 
𝑑𝑑𝑝𝑝 : Nodal temperature value 
anb: Nodal coefficients of neighbor nodes to control volume P 
𝜏𝜏: Time Step 
Tnb: Nodal Temperature of neighbour nodes to control volume P 
 

 
 

a) b) 
Figure 1: a) Sketch of the glazed PV-PCM façade; b) PV-PCM façade with fixed nodal grid 

 
The integration between the MATLAB model and the TRNSYS model has been carried out 
using TYPE155 from TRNYS library, which reads external codes executed by MATLAB. The 
numerical algorithm starts by linking the required weather condition from TYPE16 to both the 
MATLAB and the zone built in TRNbld TYPE-56. Generally, it is mandatory to link the 
weather to TYPE-56 in order to operate the simulation model. On the other hand, for each listed 
inner zone on TYPE-56, there is availability to set its input data and boundary conditions as a 
user defined option. The PV-PCM 1D numerical code estimates the temperature and transmitted 
solar radiation for each of the fixed grid nodes including the last node which represents the 
inner surface layer temperature i.e. node 15. However, the transient interface between TRNSYS 
and MATLAB models occurs in air node 13. Climatic data of the Test Reference Year (TRY) 
are then used. For the case study presented in this paper, TMY for Chicago and Venice were 
adopted. The Optimization step included the following elements: 
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− Setting the objective function: the objective function is the reduction of required thermal 
energy for cooling purpose during summer season. However, in the present study, the 
simulation has run for the entire year to assure PCM thermal storage and transition 
consistency. 

− Selecting and setting independent (design) variables that are part of the domain of search: i) 
PCM layer thickness, ii) schedule and starting hour of cavity ventilation, iii) PCM type 
selected from the integrated 18 PCM types library on-purpose developed for this study. The 
technical data of the PCM list are shown in Table1: 

 
Table 1 List of properties of 18 commercial-grade PCMs (source: Rubitherm GmbH)) 

Type temp/ storage cap. Type temp/ storage cap. Type temp/ storage cap. 

PCM-1 21°C /155kJ/Kg PCM-7 25°C /180kJ/Kg PCM-13 43°C /250kJ/Kg 

PCM-2 21°C / 190kJ/Kg PCM-8 28°C /250kJ/Kg PCM-14 46°C /165kJ/Kg 

PCM-3 22 °C/190kJ/Kg PCM-9 31°C /165kJ/Kg PCM-15 49°C /160kJ/Kg 

PCM-4 24°C /160kJ/Kg PCM-10 33°C /160kJ/Kg PCM-16 54°C/200kJ/Kg 

PCM-5 25 °C/170kJ/Kg PCM-11 35°C /240kJ/Kg PCM-17 55°C /170kJ/Kg 

PCM-6 25°C /230kJ/Kg PCM-12 41°C/165kJ/Kg PCM-18 60 °C/160kJ/Kg 
 
− Selecting an appropriate optimization algorithm and its settings: the adopted optimization 

algorithm was the mono-objective (MATALB-GA) and it was set to consider 6 design 
variables (mass flows of cavity 1 and 2, PCM type, PCM thickness and ventilation schedule 
in terms of starting hour and duration). The imposed lower and upper boundaries represent 
the space of exploration of the design variables, as reported in Table 2. The population 
consists of 20 individuals and the analysis run for 50 generations. 

RESULTS  
Optimization solutions evolution through generations 
The mono-objective optimizations ran for 50 generation and succeeded in archiving an 
improvement for both the considered cities. The convergence trends show some similarities, 
with an important decrease of thermal load approx. (-16% for Chicago, -40% for Venice) 
reached around the 5th generation. After this, the optimization further improves the thermal 
performances by small steps. Finally, the overall decrease in thermal load is 17% for Chicago 
and about 43% for Venice. 
 
Analysis of best solution  
The best solution for each city is defined by the set of variables that led the minimum required 
thermal loads. For Venice city, the best individual was:  PCM type-16 with melting temperature 
of 54°C and a storage capacity of 200 kJ/Kg; a PCM thickness of 0.03m; a ventilation duration 
of 18 hrs. The ventilation schedule has allowed an efficient PCM melting/solidification cycle 
to be exploited in order to take advantage of higher values of the material heat storage capacity 
occurred only during this transition. Seasonal cooling thermal loads have reached in this case 
2793 kW h. Optimization of PCM dimensions was important to be investigated: the expected 
weight for this PCM layer in Venice case is about 0.072kg for a PV module area of (2m x 1.5m).  
On the other hand, in Chicago, the optimum solution was found to be: PCM Type 17 of 55°C 
melting temperature and 170 kJ/Kg storage capacity; PCM thickness of 5mm. With a ventilation 
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schedule of 18 hrs, cooling thermal loads have reached 2622 kW h and the layer weight equals 
0.012kg for PV module area of (2m x 1.5m).  
 

Table 2: Optimization upper and lower pounds 
 

cav1 
kg/s 

cav2 
kg/s 

PCM type PCM thick 
m 

Vent. start  
hr 

Vent. duration  
hrs 

Lb 60 60 1 0.001 12:00am 0 

Ub 360 360 18 0.1 11:45am 5 
 

Table 3: Best solution of variables 

City   cav1 
kg/s 

cav2 
kg/s 

PCM type PCM thick 
m 

Vent. start  
hr 

Vent. duration  
hrs 

Venice 0.2 0.09 16 0.03 9:00am 10 

Chicago  0.15 0.10 17 0.005 10:00am 9 
 
DISCUSSIONS 
The influence of the PCM type on the building configuration has been highlighted through a 
parametric study its only variable is the PCM type. While, the best solutions achieved through 
the optimization process remains constant (Table 2). In Venice, for the same indoor air operative 
temperature, seasonal thermal loads of the best configuration, 2.0 kW h m-2 (PCM-16), are 
increased up to 2.6 kW h m-2 by implementing a non-optimized type (PCM- 8), see Figure 3a. 
Furthermore, the energy savings for the overall season is 28% if the optimized (PCM-16) and 
non-optimized solution (PCM-8) are compared. In a similar way, the daily cooling energy 
consumption in Chicago (1.5 kW h m-2 in the best case) is increased up to 1.8 kW h m-2 when 
a different type is adopted (PCM-6) (Figure 3b) and the seasonal energy savings are 19% when 
the optimal solution is compared to a non-optimal one.  
 

  
a) b) 

 
Figure 2: Daily thermal loads and operative air temperature profile a) Venice, b) Chicago 

 
CONCLUSIONS 
The ventilation schedule, proper selection of the type and layer thickness of PCM are among 
the fundamental design parameters to achieve an efficient implementation of the latent heat 
storage technology in buildings. The present mono objective algorithm has focused on 
minimizing the cooling energy requirements of an office building at Venice and Chicago. The 
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optimized solutions have been analysed varying only the PCM type through a parametric study. 
It has been shown that thermal energy savings could be achieved by selecting the proper PCM 
type. However, designers may also need to evaluate different trade-off settings, taking into 
consideration multidisciplinary aspects and their interactions in order to identify the best, 
suitable, solutions. Accordingly, the present optimization algorithm might be increased in 
comprehensiveness to include more objectives such as the indoor comfort, the PV electrical 
performance, the cost of the material and the electrical consumption of the ventilation system; 
façade composition leading to a multi-objective optimisation process, where the complexity lies 
in the definition of the optimisation function.  
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