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Abstract 

Whole genome duplication, or polyploidy, is the largest genomic alteration observed in 

nature. Polyploidy occurs in many different taxa, but is a widely tolerated and recurrent 

evolutionary phenomenon in plants. Although the importance of polyploidy in plants has been 

touted for approximately 100 years, we have yet to fully understand the ecological consequences 

of whole genome duplication on plant reproductive biology. Here I investigated how whole 

genome duplication impacts plant reproductive ecology. Specifically, I studied the effects of 

whole genome duplication on flowering phenotypes and the contributions of whole genome 

duplication to three premating barriers. I used a combination of genomic modifications of plants 

to induce polyploidy in experimental populations, manipulative field experiments to test 

ecological hypotheses, and literature surveys to examine evolutionary trends. In the first chapter, 

I used meta-analytical approaches based on published studies to explore the effect of whole 

genome duplication on several aspects of floral morphology, phenology, and reproductive output 

in plants. The results suggested that across a wide variety of plant species, morphological traits 

increase in size (e.g., flower diameter increases), reproductive output decreases, and there were 

no general trends in the effect of whole genome duplication on flowering phenology. I also 

observed that variation in reproductive output increases after whole genome duplication, whereas 

variation does not increase or decrease in phenology or morphology traits. In the second chapter, 

I build on existing knowledge of the mechanisms involved in premating reproductive isolation of 

polyploid lineages by investigating the factors that are important in driving assortative mating in 

the generations immediately following whole genome duplication. I accomplished this by using 

synthetic polyploids which provide the opportunity to study polyploidy in the generations 

immediately following formation when reproductive isolation will be critical to establishment. 



 

 

Trifolium pratense, or red clover, was used in an experimental study of diploids and newly 

formed polyploids to determine if the phenotypic differences caused by whole genome 

duplication facilitated premating isolation. The premating barriers examined included flowering 

phenology, self-fertilization rates, flower visitor community, and flower visitor behavior. I found 

that whole genome duplication increases flower size, but there were no cascading effects that 

facilitated premating isolation of newly formed polyploids. Together, my results suggest that 

polyploidy puts plants at a reproductive disadvantage and that if newly formed polyploids are 

found in sympatry with their diploid progenitors, rapid adaptation is likely necessary to establish 

and avoid extinction.  
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Chapter 1 

Abstract 

Polyploidy, or whole genome duplication (WGD), is a phenomenon that is ubiquitous in 

plants; this is remarkable given that theory suggests polyploids should be evolutionarily 

transitory. Recently, there has been an expanding interest in the ecological aspects of polyploids 

that could explain their pervasiveness in nature. In particular, much research has focused on the 

ecological mechanisms leading to reproductive isolation from their diploid progenitors. WGD is 

often accompanied by changes in a number of different traits, but there are numerous conflicting 

examples of the phenotypic effect of WGD in the literature. Because the phenotype dictates how 

an organism interacts with its environment, it is critical that we first have a solid understanding 

of the effects of WGD on reproductive traits to understand the ecological mechanisms leading to 

assortative mating. In this study, we used literature surveys and meta-analysis approaches to 

comprehensively describe how WGD affects floral morphology, phenology, and reproductive 

output in plants. We focused on comparisons of newly generated polyploids and their diploid 

parents to mitigate the potential confounding effects of adaptation and drift that can occur when 

examining older, established polyploid populations. The results indicated that across a broad 

representation of angiosperms, floral morphological traits tend to increase in size, reproductive 

output tends to decrease, but phenology is unaffected by WGD. Additionally, we found that 

variation in reproductive output increases after WGD, whereas variation does not change for 

phenology or size-related traits. These results provide a more comprehensive picture of the 

phenotypes resulting from WGD, which can help us understand which traits may be important in 

shifting ecological dynamics of plants in the generations immediately following 

polyploidization.  
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Introduction 

 

The consequences of large-scale genomic modifications can be extensive, and linking 

these changes to their subsequent phenotypes is important for understanding ecological and 

evolutionary dynamics (Otto and Whitton, 2000; Segraves and Anneberg, 2016). For instance, 

chromosomal rearrangements such as inversions can give rise to polytypic species with 

differences in life history or reproductive strategies (Lowry and Willis, 2010; Kupper et al., 

2016; Tuttle et al., 2016). We also know that genome size can vary greatly within a single 

species and can correlate with a number of environmental variables such as elevation, altitude, 

and moisture levels (reviewed in Levin, 2002; Smarda and Bures, 2010), suggesting that genome 

size can contribute to local adaptation (Levin, 2002). Additionally, we know that whole genome 

duplication can cause instant reproductive isolation, setting individuals with duplicated genomes 

on independent evolutionary trajectories, allowing them to diverge from their ancestors (Ramsey 

and Schemske, 2002; Otto, 2007; Ramsey and Ramsey, 2014). Ultimately, illustrating the 

relationship between genomic modifications and phenotype is central to our understanding of 

how it will impact an organism’s life history (Otto and Whitton, 2000; Segraves and Anneberg, 

2016).  

Perhaps the most substantial class of genomic restructuring is whole genome duplication 

(WGD). WGD, or polyploidy, is thought to be particularly important in the evolution of plants 

(Adams and Wendel, 2005; Soltis et al., 2009; Soltis et al., 2016). WGD is estimated to have 

given rise to 15% of speciation events in angiosperms (Wood et al., 2009), and recent 

evaluations suggest that nearly a quarter of extant plant taxa are polyploid (Barker et al., 2016). 

WGD can immediately impact gene expression (reviewed in Chen and Ni, 2006), morphology 

(summarized in Table 1 in Ramsey and Schemske, 2002), and also provides duplicated genetic 
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material that can spur the evolution of novel phenotypes ("neosubfunctionalization", reviewed in 

Flagel and Wendel, 2009). These immediate changes in polyploids can have cascading effects on 

plant ecology and evolution. Indeed, changes in ploidy level have been implicated in the ability 

to colonize new habitats (Leitch and Leitch, 2008; Parisod et al., 2010; te Beest et al., 2012), 

altering how an organism interacts with its abiotic and biotic environments (Maherali et al., 

2009; Liu et al., 2011; Ramsey, 2011; Segraves and Anneberg, 2016), and driving species 

diversification (Soltis et al., 2009). Novel phenotypes that accompany WGD may contribute to 

exaptations that mitigate difficulties in establishment (Buggs and Pannel 2007), which might be 

linked to the pervasiveness of polyploids in nature. 

The ubiquity of polyploidy in plants is intriguing because polyploids are expected to be 

extremely uncommon. Theory predicts that polyploids should be rare and evolutionarily 

ephemeral due to frequency-dependent reproductive disadvantages associated with being the 

minority cytotype in a population; i.e., the minority cytotype exclusion principle (Levin, 1975). 

Thus, the answer to why plant polyploidy is so common remains to be explained. One hypothesis 

is that genome duplication may confer changes in phenotype that allow new polyploids to 

overcome minority cytotype exclusion by becoming, at least in part, prezygotically isolated from 

their parental species during initial establishment (Levin, 1975; Husband, 2000). For example, if 

polyploidy leads to larger flowers, pollinators may be able to detect these differences and either 

favor or avoid polyploids, leading to assortative mating (Segraves, 2017). Additionally, if 

polyploids have overall larger structures, it might be expected that they would take longer to 

develop (Cavalier-Smith, 1978; Ramsey and Ramsey, 2014). Possessing larger flowers could 

impose constraints on flowering time, resulting in later flowering dates and a shift in flowering 

phenology. To determine if phenotypic changes associated with genome duplication could play a 
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role in reproductive isolation, the first step is to fully understand the consequences of genome 

duplication with respect to phenotypic traits related to reproduction. Decades of studies have 

documented the effect of WGD on many plant phenotypes including reproductive traits 

(reviewed by Ramsey and Schemske, 2002; Vamosi et al., 2007); nevertheless, the predictability 

and magnitude of phenotypic changes due to genome duplication remains unclear.  

A common prediction of WGD is that phenotypic changes such as the increase in size 

and greater robustness that is often seen in polyploids is termed the ‘gigas effect’. The gigas 

effect is thought to be the result of polyploids having greater quantities of DNA that causes 

larger cells and cascades into larger tissues and organs (Muntzing, 1936; Stebbins, 1971). 

However, this directional effect on plant phenotype is not the rule (Stebbins, 1950; Otto and 

Whitton, 2000; Vamosi et al., 2007) as there are numerous examples of polyploids having 

smaller or identically sized floral organs (tables 1 and 2 of Vamosi et al., 2007; Ning et al., 2009; 

Trojak-Goluch and Skomra, 2013). Another phenotype other than size that might be impacted by 

the gigas effect is flowering phenology. If larger organs require more time to develop, then the 

time of reproductive peak should occur at a later date. However, similar to size traits, this 

prediction is not always observed (Nuismer and Cunningham, 2005; Thompson and Merg, 2008; 

Nghiem et al., 2011). There is considerable variation among studies in the effect of WGD, and 

that variation is probably in part caused by examining polyploids with differing evolutionary 

histories. Many studies have examined natural polyploid systems that have evolved for many 

generations and thus have had time to ameliorate the initial phenotypic effects of WGD. Indeed, 

there is some evidence to suggest that phenotypes can degrade or change in subsequent 

generations after polyploidization (Butterfass, 1987; Oswald and Nuismer, 2011; Ramsey, 2011; 
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Husband et al., 2016), suggesting that if we want to understand the direct effects of WGD, that 

we need to study newly formed polyploids. 

Therefore, the next step is to quantitatively assess how WGD impacts phenotypes 

immediately after WGD occurs. To understand if there are predictable, quantitative effects of 

WGD on plant phenotypes, results of single case studies that compare diploids with their 

polyploid offspring immediately after WGD need to be compiled and analyzed. In particular, we 

need to understand if polyploidy results in significant shifts in reproductive traits that could play 

a role in allowing new polyploids to escape minority cytotype exclusion. Here, we surveyed the 

literature and performed a meta-analysis to quantitatively assess the immediate consequences of 

whole genome duplication on reproductive traits. In our analysis, we included studies that 

contained data from newly synthesized polyploids to disentangle the effects of genome 

duplication from subsequent adaptation. This was done to mitigate confounding effects of 

adaptation and drift and because the phenotypic effects of genome duplication will be most 

critical in determining which traits might facilitate reproductive isolation during initial 

establishment immediately following WGD. Our goals were to 1) determine the impact of 

genome duplication on floral morphology, phenology, and reproductive output, and 2) identify 

the traits that are most affected by genome duplication.  
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Methods 

Literature Search 

To find relevant literature that would address our questions, we performed searches in 

three separate databases using Syracuse University Libraries’ subscription packages. First, we 

used Web of Science (ISI) to search for the terms (neopoly* or *synthes* or colchicine or 

oryzalin or trifluralin or nitrous) and (phenoty* or morphol* or phenolo*) and (flower* or floral 

or pollen or petal) and (plant* or *ploid*) from 1900 to the present. This search returned 234 

results. For the second search, we used the database Agricola open to all years with the same 

search terms as above except it excluded the precursory asterisks because Agricola does not 

support that search function; this search returned 339 results. Third, we searched JSTOR open to 

all years, with the search identical to Agricola but without the term ‘synthes*’ because removing 

it reduced the results to a feasible number to examine. This search was open to any content type 

and filtered by subject types ‘Biological Sciences’, ‘Botany & Plant Science’, ‘Ecology & 

Evolutionary Biology’, and ‘General Science’ which returned 2,805 results. This initial pool of 

3,378 publications was further narrowed by including only the subset of articles that indicated in 

the title or abstract that traits were measured before and after polyploid induction. This narrowed 

the results to 130 research papers, all of which were examined and excluded from subsequent 

analysis if they did not meet the following conditions: 1) contained extractable quantitative data 

on floral phenotype or phenology of both polyploids and their progenitors, and 2) reported 

sample sizes, means, and either standard deviation or standard error. In instances when the 

publication did not include the data necessary to calculate effect sizes, the corresponding author 

was contacted to request those data or data were extracted from the figures using Plot Digitizer 

Ver. 2.6.8. In addition to data collected from database searches, we also obtained data from two 
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unpublished studies that were shared by the authors (Comai and Wu, unpublished data; Porturas 

et al., unpublished data). When a study reported data from multiple genotypes of a single species, 

we collapsed the genotypic data into an average for the species. If a study reported data from 

multiple varieties, they were treated individually because varieties of a single species often 

display very different floral traits (e.g., Brassica oleracea). In our compiled dataset, we included 

information on the reference, species, ploidy level, chromosome number, mode of genome 

duplication, selection history (e.g., artificial selection of horticultural plants), the means of 

polyploidy synthesis (e.g., colchicine), trait types and trait measurements. Selection history type 

was assigned subjectively. If the species’ floral phenotype or related features such as fruit had 

been subject to a well-known history of strong artificial selection (e.g., maize, Brassica oleracea, 

Chrysanthemum) they were assigned to the agricultural/horticultural selection history type. 

Otherwise, the species was assigned to the natural selection history type. We collated data on 

three major trait categories (phenology, size, and reproductive output) that included many 

different trait measurement types (Table S1). 

 

Meta-analyses 

We used the R Statistical Software (R Development Core Team, 2016) to perform our 

meta-analyses. For all analyses, we used the log response ratio (lnRR = ln(meanafter WGD / 

meanbefore WGD)) as the effect size measure to compare trait differences before and after WGD. 

This was calculated using the ‘escalc’ function in the R package ‘metafor’ (Viechtbauer, 2010). 

We also estimated the coefficient of variation ratio (lnCVR = ln(CVafter WGD / CVbefore WGD)), 

calculated using the ‘calc.lnCVR’ function provided by Nakagawa et al. (2015) to compare 

variation in those traits before and after WGD. 
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We first determined whether phylogenetic history and genome size would be important 

covariates to account for in our models. To do this, we mapped the lnRR of size-related traits 

onto the plant phylogeny published by Zanne et al. (2014). Size-related traits were used for this 

analysis because size traits were expected to have a similar directional change and subsequent 

analysis verified that there were no differences in how WGD affected various size-related traits.  

Because many species in our dataset were not included in this phylogeny, the phylogeny was 

trimmed so that the tips represented genera instead of species. We used the ‘drop.tip’ function 

from the R package ‘phytools’ (Revell, 2012). If there was more than one representative species 

or lnRR measure per genus, the average lnRR was used. The generic name of one species in our 

database, Dendranthema nankingense, was not included in the phylogeny, so the name was 

replaced by its suggested synonym (Chrysanthemum indicum) according to The Plant List 

database (www.theplantlist.org/). We tested for phylogenetic signal in the data using Blomberg’s 

K and Pagel’s λ. Tests for non-random distribution of the effect size of WGD across the 

phylogeny were done using the ‘phylosig’ function from the R package ‘phytools’ (Revell, 

2012), specifying both Blomberg’s K and Pagel’s λ as output variables. We also determined 

whether genome size influenced the effect of genome duplication in plants. We calculated the 

Pearson’s correlation coefficient between C-values and average effect size (lnRR) of size-related 

traits for a species. C-values were obtained from the Kew Royal Botanical Gardens Plant DNA 

C-values Database.  

Linear mixed models were used to estimate the average effect size of WGD on 

phenology, reproductive output, and size. Because we found no evidence of correlation between 

the effect size and either phylogenetic history or genome size, these variables were excluded 

from our models. The first model included all our calculated effect sizes that were assigned to 
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one of three trait categories: ‘phenology’, ‘output’, and ‘size’. Trait category was used as the 

fixed effect variable for this model. The random effects variables were 1) the paper reference, 2) 

plant species nested within paper reference, and 3) trait category nested within plant species 

nested within paper reference. These were the assigned random effects because some studies 

measured multiple traits (e.g., flower length, flower width, pollen size) on multiple species. The 

log response ratio was used as the response variable for the model. The mechanism of polyploid 

formation (allopolyploid versus autopolyploid) and selection history (horticultural/agricultural 

versus natural) were analyzed as interactive fixed effects. In the second model, we tested the 

hypothesis that WGD increases variation in traits by using the same model but substituting the 

coefficient of variation ratio for the response variable.  

Next, we estimated the average effect size of WGD on the size of gametes, petals, 

flowers, and inflorescences. This model included 106 effect sizes that were grouped into four 

morphology trait categories: ‘gamete’, ‘petal’, ‘flower’, and ‘inflorescence’. Some size traits 

were excluded from this dataset because there were insufficient measurements to calculate 

reliable estimates. Morphology trait category was used as the fixed effects variable and the other 

factors were identical to the first model. Lastly, we used a similar approach to estimate the 

average effect size of WGD on the reproductive output of gametes, flowers, and inflorescences. 

This model included 29 effect sizes that were placed into three reproductive output trait 

categories: ‘gamete’, ‘flower’, and ‘inflorescence’. No interactions were tested because there 

were not enough measurements to calculate reliable estimates when parsed between the 

interaction categories.  

Estimated average effect sizes were modeled using the ‘rma.mv’ function. For all models, 

we tested for significant differences among factors of the trait categories and whether there was 
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significant evidence of interactions (Wald-type chi-square tests, QM). If there was a significant 

interaction effect, we used Tukey’s HSD post-hoc tests to determine whether there were pairwise 

differences between the levels of the trait categories; significant differences were detected using 

the function ‘ghlt’ from the R package ‘multcomp’ (Torsten et al., 2008). All null models are 

summarized in Table S2. We also tested for publication bias with Eggar’s regression test by 

including variance as a moderator to our null models. If the studies included in our analysis are 

not impacted by publication bias, then the intercept should not significantly deviate from zero at 

α = 0.10 (Egger et al., 1997).   
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Results 

Overview 

We had 185 effect size and variation size measures from 41 studies and 60 independent 

WGD events. In our dataset, we had representatives of 30 genera across 18 plant families. The 

vast majority of our measures came from diploid to tetraploid genome duplications (89.2%), and 

the remaining forms of WGD events were relatively rare (haploid to diploid 4.3%, triploid to 

hexaploid 4.3%, tetraploid to octaploid 1.6%, octaploid to hexadecaploid 0.5%). Many measures 

also came from WGDs that were induced using the mitotic inhibitor colchicine (72.4%), The 

other polyploid induction types included somaclonal variation during embryo culture (8.1%), 

oryzalin (4.9%), nitrous oxide gas (4.3%), protoplast fusion (1%), trifluralin (0.5%), or were 

unspecified (8.6%). Based on Eggar’s regression test, we found evidence of publication bias in 

all three of our datasets as the intercepts were significantly different from zero at α = 0.10: all 

trait categories (p = 0.072), size trait categories (p = 0.003), and reproductive output trait 

categories (p = 0.053). 

 

Phylogenetic history and genome size correlations 

We found no evidence of a correlation between the effect of WGD on size traits and evolutionary 

history (Blomberg’s K: 0.297, p = 0.111; Pagel’s lambda: 0.252, p = 0.441; Fig. 1). We also 

found no evidence of a correlation between the effect of WGD on size traits and genome size 

(Pearson’s correlation estimate = 0.029, p = 0.937). Thus, subsequent analyses did not correct for 

phylogenetic history or genome size.  
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Overall effect of genome duplication on reproductive output, size, and phenology 

There were significant differences in how WGD impacted reproductive output, size and 

phenology (QM = 952.318, df = 2, p < 0.0001). The estimated mean effect size for reproductive 

output was negative (-0.190 ± 0.078), indicating that WGD reduced the reproductive output of 

polyploid plants. In contrast, the estimated mean effect size of size-related traits was positive 

(0.195 ± 0.075), showing that the size of floral traits generally increased following WGD. The 

estimated mean effect size of phenology (0.010 ± 0.140) was not significantly different from 

zero (Fig. 2). We found no evidence for an interaction between these trait categories and the 

mechanism of polyploid formation (QM = 1.430, df = 1, p = 0.232). Reproductive output was 

dropped from this test for an interaction because the dataset had no allopolyploids with that 

measure. In addition, we did find a significant interaction between trait category and selection 

history (QM = 32.961, df = 2, p < 0.0001), but there were no significant differences in pairwise 

comparisons of the two selection history categories for the three traits (Fig. 3).  

We were also interested in knowing whether WGD significantly increased trait variation 

after WGD. Indeed, we found significant differences in how WGD affected variation in 

reproductive output, size and phenology (QM = 5059.650, df = 2, p < 0.0001). There was no 

significant difference in the mean estimated variation in phenology and size (0.288 ± 0.476 and 

0.076 ± 0.280, respectively); however, we did see an increase in variation after WGD for 

reproductive output (0.974 ± 0.281) (Fig. 4). Similar to the trends observed in effect size, we 

found no evidence of an interaction between trait category and mechanism of polyploid 

formation (QM = 1.576, df = 1, p = 0.209). Reproductive output was dropped from this test due to 

a lack of allopolyploids with that measure. Moreover, we did find a significant interaction 

between trait category and selection history (QM = 954.605, df = 2, p < 0.0001). Pairwise 
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comparisons examining differences between the two selection history categories 

(agricultural/horticultural versus natural) for the three traits showed that reproductive output was 

significantly different (Tukey’s HSD post hoc test, p < 0.0001, Fig. 5).  

 

Effect of genome duplication on size traits  

Although we found an overall significant increase in the size-related traits after WGD 

(Fig. 3), we found no significant differences in the magnitude of effect size when comparing 

across gametes, petals, flowers, and inflorescences (QM = 1.920, df = 3, p = 0.590) (Fig. 6). 

There was also no evidence of an interaction between the size traits and mechanism of polyploid 

formation (QM = 2.274, df = 1, p = 0.132); gamete and inflorescence data were dropped from this 

test because the dataset lacked allopolyploids with either of those measures. Finally, we found no 

interaction between size and selection history category (QM = 0.731, df = 2, p = 0.694). We 

dropped inflorescence from this test because there was only one effect size measure of a natural 

inflorescence.  

When we tested for overall changes in variation after WGD, we found no significant 

impact on variation in size. However, when we tested for changes in variation after WGD within 

the size-related traits, we found WGD impacts variation in size differently among gametes, 

petals, flowers, and inflorescences (QM = 21.657, df = 3, p < 0.0001) (Fig. 7). We also found 

there was no evidence of an interaction between the size traits and mode of genome duplication 

(QM = 0.171, df = 1, p = 0.680), or between size traits and selection history category (QM = 

0.517, df = 2, p = 0.772). We dropped gamete and inflorescences from the test for interactions 

with mode of genome duplication because there were no allopolyploids with either of those 
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measures in our dataset, and for similar reasons, we also dropped inflorescence from the test for 

interactions with selection history category.  

 

Effect of genome duplication on reproductive output 

Although we found an overall significant decrease after WGD in reproductive output 

(Fig. 3), there was no significant difference in the magnitude of effect size when comparing 

across gametes, flowers, and inflorescences (QM = 1.677, df = 2, p = 0.432) (Fig. 8). When we 

tested for overall changes in variation after WGD, there was a significant increase in variation in 

reproductive output related traits. For just the reproductive traits, however, we found WGD did 

not impact variation in reproductive output differently among gamete, flowers, and 

inflorescences (QM = 0.544, df = 2, p = 0.762). Additionally, the significance observed in 

reproductive output when examining overall changes was lost in this smaller dataset when we 

excluded data on petals; petals were excluded because all data on petals came from a single 

study.  
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Discussion 

Polyploidy is a conundrum because it is so ubiquitous among plants despite theory 

suggesting polyploids should be rarely able to successfully establish natural populations (Levin, 

1983; Fowler and Levin, 1984; Felber, 1991; Baack, 2005; Fowler and Levin, 2016). Better 

understanding the phenotypes resulting from WGD can help us understand which traits might 

play key ecological roles during establishment in the critical generations immediately following 

polyploidization (Segraves and Anneberg, 2016). This study is the first to use meta-analytical 

approaches to assess how WGD impacts various aspects of floral traits in the generations 

immediately following genome duplication. Using data available in the literature, we examined 

how size traits, reproductive output, and phenology are impacted by WGD. This study builds on 

the previous work of Vamosi et al. (2007) by including a larger number of studies and estimating 

the effect sizes of WGD. Our goals were to quantify how genome duplication impacted floral 

phenotypes and phenology across a wide representation of plants, identify the traits that are more 

affected than others, and whether there are correlates that might help us to better predict variation 

after WGD. 

In concert with broad expectations (Stebbins, 1971; Levin, 2002), we found that on 

average, WGD increased the size of floral traits. The gigas effect has long been recognized as a 

consequence of WGD despite some reports of WGD imparting no differences or a decrease in 

size. The data here support the gigas effect and suggest that the plants that experience no size 

increase after WGD are in the minority. We also observed a general decrease in reproductive 

output measures (Fig. 2). An increase in size traits coupled with a decrease in reproductive 

output suggest that WGD results in differences in resource allocation to reproductive structures 

(Segraves and Thompson, 1999). When we broke down size and reproductive output into 
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individual components, the data suggest that WGD had consistent effects on the components 

within their respective categories. For example, the magnitude of the effect that genome 

duplication had on the increase in size of gametes was not significantly different than the 

magnitude of the effect on petals, flowers, and inflorescences (Fig. 6). This is surprising because 

we expected the largest effect to be seen in gametes because they are single cells as opposed to 

the other anatomical structures which are aggregates of cells and different tissue types. These 

larger structures could have displayed smaller effect sizes if fewer but larger cells were used to 

compose those structures. Similar to size traits, the magnitude of the effect that WGD had on 

reproductive output was not different between pollen, flowers, and inflorescences (Fig. 8). 

In contrast to changes in morphological traits, the results suggested that WGD does not 

result in a shift in flowering phenology. This is surprising because some of the seminal studies 

that investigate the effect of WGD on phenology have identified later flowering phenology in 

polyploids (Segraves and Thompson, 1999; Husband and Sabara, 2003; Jersáková et al., 2010; 

Oswald and Nuismer, 2011; Ramsey, 2011; Roccaforte et al., 2015). Additionally, one might 

expect longer mitotic division times of polyploid cells to translate into later or longer flowering 

periods (Ramsey and Schemske, 2002). Our data trend towards that expectation, however, the 

effect size was not significantly different from zero, and our results do not provide evidence that 

WGD significantly shifts flowering phenology of plants.  

Another general expectation of polyploids is that they will likely exhibit greater 

variability in traits due to increased or fixed heterozygosity, or phenotypic and genomic 

instability in the generations following WGD (Soltis and Soltis, 1995; Comai et al., 2000; Otto 

and Whitton, 2000; Ramsey and Schemske, 2002). If this were the case, it would likely be a 

beneficial artifact of WGD for polyploids to exhibit a wide variety of phenotypes on which 
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selection can act during critical establishment periods, allowing faster evolution to the most 

appropriate phenotype for their environment. However, we did not find a general trend of greater 

variation in traits after genome duplication. The only traits that showed significantly increased 

variation after WGD were inflorescence size (Fig. 7) and reproductive output traits from non-

horticultural/agricultural species (Fig. 5). Furthermore, tradeoffs between increased size of 

polyploids with decreased reproductive output may limit the ability of selection to differentiate 

polyploids from their diploid progenitors or increase their reproductive output over diploids. At 

best, reproductive output might return to the baseline output of diploids. Because so few traits 

seemed to display greater variation after WGD, increased variation in phenotypes may be less 

common and a less important consequence of polyploidy than previously expected.  

In addition to investigating variation after WGD, we were also interested in determining 

whether phylogenetic history or genome size might reliably predict how WGD impacts floral 

phenotype. We expected evolutionary history to correlate with the magnitude of effect because 

developmental or genetic constraints on flower development could be shared within clades and 

create similar responses to WGD. However, there was no evidence of phylogenetic signal in the 

effect that WGD had on size-related traits (Fig. 1). We also predicted that genome size might 

correlate with the effect of genome duplication. We know there is a strong relationship between 

cell and genome size (Beaulieu et al., 2008), so we expected that doubling the genomic content 

of a plant with a large C-value would generate a stronger response than doubling the genomic 

content of a plant with a small C-value. Nonetheless, we did not detect a correlation between 

genome size and the effect of genome duplication on size-related traits. These results, in 

combination with a lack of effect of our other predictors, mode of genome duplication 

(allopolyploidy vs. autopolyploidy) and selective history category (agricultural or horticultural 
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vs. natural), having little to no predictive power was surprising given the large variation we see 

in the effect of WGD on traits. These four factors we predicted might be important in dictating 

the relative strength of WGD were for the most part not significant, suggesting that the processes 

dictating the effect that WGD has on various traits are dynamic. 

One possible explanation for the lack of patterns seen from our predictors is that there 

simply might not have been enough data to detect a signal. We had to exclude more than 25 

studies that compared plants before and after WGD because they did not report the data 

necessary to calculate effect sizes. Additionally, within some categories, there were too few 

samples to reliably calculate estimates so they were excluded from the model. This also meant 

that some interactions between traits and predictors such as mechanism of polyploid formation 

and selection history could not be tested.  

Despite these caveats, our study is the most extensive to date examining the effects of 

genome duplication on the floral phenotype. Our results indicate that WGD has an immediate but 

contrasting effect on morphological traits and reproductive output. There was a general increase 

in the size of floral traits, but reproductive output decreased. We also found that phenotypic 

variation did not generally increase after WGD, suggesting that neopolyploids do not necessarily 

have more variation for selection to act on than diploids.  If we are to understand the enigmatic 

ubiquity of polyploids, linking these phenotypic effects to their ecological roles in 

the generations following genome duplication is an important next step. 
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Figures and Tables 

 

 

Figure 1. Phylogenetic patterns of the effect size of whole genome duplication on size-related 

traits across 27 genera. Trait values are the average log response ratio for each genus, where 

positive values correspond to an increase in size after whole genome duplication, Blomberg’s K: 

0.297, p = 0.111; Pagel’s lambda: 0.252, p = 0.441. 
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Figure 2. The average estimated effect size of whole genome duplication on phenology, 

reproductive output, and size-related traits. Values are coefficient estimates of log response ratios 

and their corresponding 95% confidence intervals. If the confidence interval includes zero, the 

estimate is not statistically different from zero. Number of effect size measures are in 

parentheses following the trait identifier.  
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Figure 3. The average estimated effect size of whole genome duplication on phenology, 

reproductive output, and size-related traits by their selection history (agricultural/horticultural or 

natural). Values are coefficient estimates of log response ratios and their corresponding 95% 

confidence intervals. If the confidence interval passes through zero, the estimate is not 

statistically different from zero. Number of effect size measures are in parentheses following the 

trait identifier.  
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Figure 4. The average estimated effect on the amount of trait variation in response to whole 

genome duplication in phenology, reproductive output, and size related traits. Values are 

coefficient estimates of the log coefficient of variation ratios (lnCVR) and the corresponding 

95% confidence intervals. If the confidence interval passes through zero, the estimate is not 

statistically different from zero. Number of effect size measures are in parentheses following the 

trait identifier. 
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Figure 5. The average estimated effect on the amount of trait variation in response to whole 

genome duplication in phenology, reproductive output, and size related traits by their selection 

history (agricultural/horticultural or natural). Values are coefficient estimates of the log 

coefficient of variation ratios (lnCVR) and the corresponding 95% confidence intervals. If the 

confidence interval passes through zero, the estimate is not statistically different from zero. 

Number of coefficient of variation ratio measures are in parentheses following the trait identifier. 

Asterisks signify significant differences between the selection history category within that trait as 

determined by Tukey’s HSD post hoc tests.  
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Figure 6. The average estimated effect size of whole genome duplication on size-related traits. 

Values are coefficient estimates of log response ratios and their corresponding 95% confidence 

intervals. Number of effect size measures are in parentheses following the trait identifier.  
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Figure 7. The average estimated effect on variation in response to whole genome duplication in 

size-related traits. Values are coefficient estimates of the log coefficient of variation ratios 

(lnCVR) and the corresponding 95% confidence intervals. If the confidence interval passes 

through zero, the estimate is not statistically different from zero. Number of coefficient of 

variation ratio measures are in parentheses following the trait identifier. 
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Figure 8. The average estimated effect size of whole genome duplication on the reproductive 

output traits. Values are coefficient estimates of log response ratios and their corresponding 95% 

confidence intervals. Number of effect size measures are in parentheses following the trait 

identifier.  

 

  



 

 

27 

Table S1. Trait table for completed dataset including all the measures collected from the 

literature that fell within the three main categories. 

Phenology Size Reproductive Output 

Weeks to flowering Flower diameter No. of inflorescences 

Days to flowering Pollen diameter Percent pollen viability 

Days to first flower Pistillate corolla length No. of ovules 

Days to first inflorescence Staminate corolla length No. of ligulate florets 

Days to peak flower Staminate calyx length No. of tubular florets 

Flower date Staminate pedicle No. of flowers 

Length of flowering Pollen size No. of pollens 

 Disc flower diameter No. of capitula 

 Inflorescence diameter No. of ray flowers per capitulum 

 Ligulate flower dry weight No. of flowers per inflorescence 

 Tubular flower dry weight No. of basal inflorescences 

 Floral bud length No. of lateral inflorescences 

 Petal length No. of petals 

 Petal width No. of scapes 

 Style length  

 Pollen area  

 Flower length  

 Flower lip height  

 Flower lip width  

 Flower tube length  

 Pollen length  

 Pollen width  

 Ligulate flower length  

 Ligulate flower width  

 Tubular flower diameter  

 Tubular flower length  

 Flower weight  

 Calyx width  

 Flower corolla length  

 Flower corolla width  

 Pistil length  

 Stamen length  

 Ovary length  

 Spathum length/width ratio  

 Spathum thickness  

 Petal back width  

 Petal front width  

 Calyx tube length  

 Standard of corolla breadth  

 Standard of corolla width  

 Ray flower length  

 Anther length  
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 Anther width  

 Calyx diameter  

 Filament length  

 Ovary diameter  

 Banner petal length  

 

 

Table S2. Table listing the null models used in the meta-analysis. 

Dataset Response variable Null models 

Entire dataset 

Effect types = 

phenology, 

reproductive 

output, and size 

Effect size lnRR = fixed(effect type) + random(paper reference + 

plant species nested within paper reference + trait type 

nested within plant species nested within paper 

reference) 

 Coefficient of 

variation ratio 

lnCVR = fixed(effect type) + random(paper reference 

+ plant species nested within paper reference + trait 

type nested within plant species nested within paper 

reference) 

Size dataset 

Trait types = 

Gametes, petals, 

flowers, 

inflorescences 

Effect size lnRR = fixed(trait type) + random(paper reference + 

plant species nested within paper reference + trait type 

nested within plant species nested within paper 

reference) 

 Coefficient of 

variation ratio 

lnCVR = fixed(trait type) + random(paper reference + 

plant species nested within paper reference + trait type 

nested within plant species nested within paper 

reference) 

Reproductive 

output dataset 

Output types = 

gametes, flowers, 

inflorescences 

Effect size lnRR = fixed(output type) + random(paper reference + 

plant species nested within paper reference + trait type 

nested within plant species nested within paper 

reference) 

 Coefficient of 

variation ratio 

lnCVR = fixed(output type) + random(paper reference 

+ plant species nested within paper reference + trait 

type nested within plant species nested within paper 

reference) 
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Chapter 2 

Abstract 

Although polyploidy has been studied since the early 1900’s, most attention has focused 

on the genomic consequences of polyploidy and consequently, fundamental aspects of polyploid 

ecology and evolution remain unexplored. In particular, surprisingly little is known about how 

newly formed polyploid species become demographically established. Models predict that most 

polyploids should go extinct within the first few generations due to reproductive disadvantages 

associated with being the minority in a primarily diploid population (i.e., the minority cytotype 

principle), yet polyploidy is extremely common. Therefore, a key goal in the study of polyploidy 

is to determine the mechanisms that promote polyploid establishment in nature. Because 

premating isolation will be critical for newly formed polyploids (neopolyploids) to avoid 

minority cytotype exclusion and thus help facilitate establishment, we induced polyploidy in 

Trifolium pratense and examined changes in floral morphology and three common premating 

barriers to determine their importance in generating reproductive isolation from diploids. These 

premating barriers included isolation by self-fertilization, flowering time asynchrony, and 

pollinator mediated isolation. We found significant differences in the morphology of diploid and 

neopolyploid flowers, but these results did not in turn facilitate differences in premating barriers 

that would generate reproductive isolation of neopolyploids from diploids. Our results indicate 

that none of the three common premating barriers that we tested are important in facilitating 

reproductive isolation of neopolyploid Trifolium pratense. This work adds to the current paucity 

of studies investigating premating isolation of neopolyploids from their diploid progenitors in the 

generations immediately following polyploid formation. 

  



 

 

41 

Introduction 

Understanding the factors that drive speciation and reproductive isolation is a major focus 

in evolutionary ecology. One common mode of speciation in plants is polyploidy, or the 

duplication of an entire set of chromosomes (Reisberg and Willis, 2007; Wood et al., 2009); and 

although polyploidy has been studied since the early 1900’s, most attention has focused on the 

molecular and genomic consequences of whole genome duplication (Soltis et al., 2010). 

Consequently, fundamental aspects of polyploid ecology and evolution remain unexplored. In 

particular, surprisingly little is known about how newly formed polyploid species (hereafter 

‘neopolyploids’) become established in nature. Models predict that under many conditions, 

polyploids should be relatively ephemeral and go extinct within a few generations due to 

reproductive disadvantages associated with being the minority in a primarily diploid population 

(Levin, 1975; Fowler and Levin, 1984; Felber, 1991; Rodriguez, 1996; Baack, 2005; Rausch and 

Morgan, 2005; Fowler and Levin, 2016). Yet, polyploidy is extremely common (Barker et al., 

2016, 24% in extant plant species); thus, a key goal in the study of polyploidy is to determine the 

mechanisms that promote neopolyploid establishment in populations. 

For neopolyploids to establish and persist in a predominantly diploid population, 

neopolyploids must be at least partially reproductively isolated from their diploid progenitor. If 

no reproductive isolation exists between neopolyploids and their diploid progenitors and the two 

cytotypes mated freely, we would expect one of two outcomes. First, if the two cytotypes were 

capable of producing offspring, the offspring would be triploid which are often semi-fertile due 

to meiotic irregularities and a high production of gametes with an abnormal number of 

chromosomes (Ramsey and Schemske, 1998). The second outcome would be that no offspring 

could be generated, known as the “triploid block” (Marks, 1966). Both of these scenarios would 



 

 

42 

lead to reduced fecundity of neopolyploids and fewer successful pollinations relative to diploids. 

Because neopolyploids will be fewer in number in a population than their diploid counterparts, 

the disadvantage of the minority cytotype will increase with each successive generation until the 

neopolyploids become extinct. This is known as the minority cytotype exclusion principle 

(Levin, 1975). Minority exclusion can be mitigated through reproductive isolation, and although 

many polyploids experience instant postzygotic isolation from their diploid sister group, 

prezygotic barriers must also exist to facilitate assortative mating and avoid ineffective 

pollinations that result in wasted gametes and proportionally fewer offspring (Levin, 1975; 

Husband and Sabara, 2003; Husband et al., 2016).  

To date, studies investigating the role of prezygotic barriers in reproductive isolation of 

polyploids have primarily compared systems of established polyploids and their diploid sister 

group (Segraves and Thompson 1999; Husband and Sabara, 2003; Schranz and Osborn 2004; 

Thompson and Merg 2008; Jersáková et al., 2010; Gross and Schiestl 2015; Roccaforte et al., 

2015; Husband et al., 2016; Pegoraro et al., 2016). For example, Husband and Sabara (2003) 

estimated mechanisms of reproductive isolation in natural populations of Chamerion 

angustifolium and determined that the majority of isolation between cytotypes was due to 

prezygotic isolation, specifically pollinator fidelity and the spatial distribution of cytotypes 

within populations. Similarly, Roccaforte et al. (2015) quantified the contribution of isolating 

barriers between diploid Erythronium mesochoreum and its tetraploid sister species Erythronium 

albidum. They found that geographic isolation was driving reproductive isolation in this 

polyploidy complex, followed by pollinator mediated-isolation and floral phenology, with 

postzygotic barriers contributing the least to reproductive isolation. Polyploidization is also 

known to break down reproductive self-incompatibility mechanisms, be correlated with changes 
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in mating systems, and alter the rate of selfing (Ramsey and Schemske, 1998; Glick et al., 2016). 

There is evidence from phylogenetic comparative studies that polyploids generally tend to self-

fertilize at higher rates than diploids and this propensity towards selfing may help neopolyploids 

to overcome minority cytotype exclusion (Barringer, 2007; Robertson et al., 2011). Together, 

these studies suggest that established polyploids and diploids are often isolated through at least 

one, but often a combination of prezygotic barriers, particularly when living in sympatry. 

Although this previous work investigating the mechanisms maintaining reproductive isolation 

and promoting persistence of established polyploids has been instrumental in the study of 

polyploid reproductive ecology, there remains a gap in our understanding of how polyploids 

establish given their reproductive disadvantages. Specifically, we have yet to understand which 

prezygotic mechanisms promote isolation and facilitate establishment in the generations 

immediately following polyploid speciation (Husband et al., 2016). 

To the best of our knowledge, only one study to date has quantified the relative 

importance of various prezygotic isolating mechanisms of neopolyploids from their diploid 

progenitors. Husband et al. (2016) found that in Chamerion angustifolium, neopolyploids had 

some phenotypic traits that were more similar to diploids than established polyploids, and other 

traits that more closely resembled established polyploids and differed from diploids. 

Additionally, they found differences in the degree to which the various reproductive barriers 

contributed to reproductive isolation of neopolyploids and established polyploids from diploids. 

This study provides direct evidence that the mechanisms and degree of reproductive isolation 

experienced by established polyploids may not be the same for neopolyploids especially during 

the critical generations immediately following whole genome duplication. These results highlight 

how the phenotypes of neopolyploids can be significantly different from older generation 
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polyploids (Butterfass, 1987; Oswald and Nuismer, 2011) and suggest that to truly understand 

the pervasiveness of polyploidy, we require more studies investigating the mechanisms of 

prezygotic isolation of neopolyploids. 

To address this deficit and build upon the foundational work of Husband et al. (2016), we 

induced neopolyploidy in red clover, Trifolium pratense, and observed changes in floral 

morphology and three common prezygotic barriers to determine their importance in generating 

reproductive isolation from diploids. This study is the first to assess multiple modes of 

prezygotic isolation on a single set of neopolyploids under common garden conditions. The 

prezygotic barriers that we examined were temporal isolation via flowering phenology, the 

breakdown of self-incompatibility, pollinator-mediated isolation via differences in flower visitor 

communities and flower visitor behavior.  
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Methods 

Study organism 

To investigate whether prezygotic isolation occurs in neopolyploids relative to their 

diploid parents, we used the herb Trifolium pratense, or common red clover. Red clover is 

frequently planted as fodder and although it has origins in Europe, T. pratense is now globally 

naturalized (GBIF). Red clover is an excellent species to use for studies of reproductive isolation 

in neopolyploids for a number of reasons. First, there are published methods for inducing 

polyploidy in this species (Taylor et al., 1976), diploid red clover naturally produce unreduced 

gametes at low frequencies (Parrott and Smith, 1986), tetraploid populations have been identified 

in nature (Pinar et al., 2001; Buyukkartal, 2008; Buyukkartal, 2013), the species is outcrossing 

and diploids are known to be strongly self-incompatible, and lastly, it reaches reproductive 

maturity relatively quickly (3-4 months).  

 

Generating neopolyploids 

Neopolyploid red clover seeds were generated following the methods described by 

Taylor et al. (1976). In brief, diploid plants were grown from seed (Dirt Works, New Haven VT, 

Organic Medium Red Clover) and cross pollinated by hand. Twenty-four hours after pollination, 

we clipped the inflorescences with fertilized flowers and placed the inflorescence stalks in 2% 

w/v sucrose. These were then incubated in a pressure chamber filled with nitrous oxide at 90 psi 

for either 24 or 36 hours, and seeds were then allowed to develop with a constant supply of 

sucrose solution until the inflorescence tissue was dried. 
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Cytological analysis 

We identified the cytotype of plantlets grown from nitrous oxide treated seeds by 

evaluating nuclear DNA content using flow cytometry (Kron et al., 2007). Flow cytometric 

methods followed the protocols of Godsoe et al. (2013). In brief, plant nuclei were isolated from 

leaf tissues by chopping leaves in magnesium sulfate buffer ([10 mM MgSO4-7H2O, 50 mM 

KCl, 5mM Hepes, adjusted to pH 8], 6.8 mM dithiothreitol, Triton X 100 at 1mg/mL, and 1 mM 

PVP-40). The resulting supernatant was filtered through a 30 µm nylon filter, and samples were 

centrifuged and supernatant discarded. We then stained the nuclei with propidium iodide solution 

containing a rainbow trout red blood cell standard (Rainbow trout blood diluted with 1:11 

Alsever’s solution, 5mg/mL propidium iodide, and magnesium sulfate buffer). Our propidium 

iodide solution differed from Godsoe et al. (2013) recipe by omitting RNase from the solution. 

Samples were processed on a BDAccuri C6 flow cytometer at the Syracuse University Flow 

Core facility, and cytotype was determined by analyzing the data using Flowing Software 

(Version 2.5.1, Perttu Terho, Turku Centre for Biotechnology, Finland; 

www.flowingsoftware.com).  

Plants identified as tetraploids via flow cytometry analysis were then subject to 

chromosome counts from root tip cells. We sampled fine roots, and soaked them in Farmer’s 

Fixative (3:1 absolute ethanol to glacial acetic acid) for approximately 24 hours, followed by 

treatment with 10% HCl at 60C for 5 minutes, and last stained the roots with acetocarmine at 

60C for approximately 1.5 hours. Four plants identified as tetraploids via flow cytometry were 

confirmed as tetraploids with direct counts of chromosomes. Two other tetraploids identified via 

flow cytometry had approximately double the number of chromosomes as determined by 

chromosome squashes, but small overlapping chromosomes made it difficult to provide 
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definitive confirmation. However, these two plants displayed similar phenotypes to the 

chromosome squash verified tetraploids, and did not display characteristics of the aneuploids 

such as stunted growth and bumps over the leaf and stem surfaces.   

 

Seed stocks for experiments 

To obtain enough tetraploid plants to do a comparative study between neopolyploids and 

diploids, and to ensure that our neopolyploid and diploid plants were treated identically, both 

nitrous oxide treated red clover and untreated diploids were grown to flowering together in a 

greenhouse at 14-16°C day and 11-13°C night temperature cycles and 15-hour daylight 

conditions. We cross pollinated 14 diploids to generate a stock of diploid seeds. Once nitrous 

oxide treated plants were confirmed as tetraploids via flow cytometry or both flow cytometry and 

chromosome counts, we cross pollinated these six neopolyploids to generate a stock of 

neopolyploid seeds.  

 

Plant care 

Diploid and neopolyploid seeds were grown in the Syracuse University greenhouse. 

These seeds were germinated in Miracle-Gro Potting Mix and sown in individual cells of 

propagation trays. We set the greenhouse room conditions at 20-22°C day and 17-19°C night 

temperature cycles with light conditions that mimicked natural sunrise and sunset conditions of 

Syracuse NY, USA. Four weeks after planting, the seedlings that germinated were transplanted 

to 1.89 L pots. Both diploid and neopolyploid seeds had low germination success. Therefore, in 

an attempt to increase germination rates, we cold treated the remaining seeds that had not yet 

germinated. Cold treatment lasted for two weeks at 6-8°C in a reach-in growth chamber. 
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Following the cold treatment, seeds were returned to the greenhouse and grown under standard 

growing conditions as before. Approximately four weeks after being returned to the greenhouse 

this second group of plants was transplanted into 1.89 L pots. For the remainder of the 

experiment, both groups were grown in the same greenhouse conditions, then moved to the 

Syracuse University experimental gardens by ‘group’ once they began bolting. Once transferred 

to the common garden, plants remained there through the end of the experiment. In total, 85 non-

cold treated seeds (hereafter group 1) germinated (diploids, N = 31 and neopolyploids, N = 54) 

and 89 cold treated seeds (hereafter group 2) germinated (diploids, N = 39 and neopolyploids, N 

= 50). Once neopolyploid seedlings had at least three trifoliate leaves, they were screened via 

flow cytometry against the rainbow trout red blood cell standard and a diploid red clover 

individual to confirm cytotype.  

 

Flower morphology 

Three flowers from the top, middle, and base of an inflorescence were collected from 

each flowering plant. Flowers were placed on ice and transported to the lab to photograph. 

Flowers were photographed individually and pictures were taken using an Olympus Camedia c 

7070 wide-zoom 7.1 MP camera with a Leica S8 APO dissecting microscope, including a 0.5 cm 

Minitool Micro-Scale ruler (BioQuip). Total length (TL), length of the banner petal (LB), 

distance between the tip of wing petals (WD), width of banner petal (BW), width of the tube 

(WT), stigma-anther separation (SA), wing length (WL), and the angle of the banner (AB) were 

measured (Fig. 1). All morphological traits were measured using ImageJ 1.50i software 

(Schneider et al., 2012). Total length was measured using the curved line tool to follow the shape 

of the flower on the ventral side of the tube and banner petal. The angle of the banner petal was 
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measured using the angle tool, and the rest of the traits were measured using the straight line tool 

in ImageJ 1.50i.  

 

Floral phenology 

For each plant, the date of germination was recorded and they were observed for 

flowering. For the plants that flowered, we tracked their flowering phenology throughout the 

season. We counted the total number of inflorescences in bloom per plant. Inflorescences were 

scored as in bloom if more than half of the flowers on the inflorescence were open. This was 

used as the cut-off because previous observations of local bees foraging on red clover were 

attracted to inflorescences with the majority of flowers in bloom. Because red clover is 

outcrossing, if bees are not visiting the inflorescence when only a few flowers are open, then it is 

effectively not reproductively active.  

 

Self-fertilization 

Each diploid and neopolyploid plant were assigned to one of two self-fertilization 

treatments prior to flowering: hand-pollination and autonomous self-pollination. The hand-

pollination treatment was designed to determine the frequency of self-pollinating individuals 

while simulating the presence of pollinators, and the autonomous self-pollination treatment 

determined the frequency of self-pollinating individuals regardless of pollinator presence. We 

used both self-fertilization treatments because self-incompatibility mechanisms may break down 

in neopolyploids if morphology changes in a way that reduces the ability of pollen to 

autonomously reach the stigma such that self-pollination may only occur in the presence of 

pollinators. For both treatments, a single inflorescence on the plant was covered with a small 
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mesh bag before flowering to ensure that no pollinators would be able to visit. For the hand-

pollination treatment, we temporarily removed the mesh bag and hand pollinated flowers on the 

selected inflorescence with pollen originating from the same inflorescence. For the autonomous 

self-pollination treatment, the mesh bag remained in place throughout flowering to test if floral 

morphology allowed for self-pollination in the absence of pollinators. Four weeks after self-

fertilization treatments, the inflorescences were removed from the plant, bagged, and brought 

back to the lab to assess presence or absence of seeds. 

 

Flower visitors  

Flower visitor behavior was monitored to determine whether there were immediate 

behavioral differences in bee responses to neopolyploid plants. Depending on the number of 

plants in bloom on a given day, 6-12 plants were set up approximately one meter apart from one 

another in a rectangular checkerboard array with alternating cytotypes. Arrays were placed in 

various locations within one kilometer of the experimental garden. Observations of flower visitor 

behavior began when an insect landed on an inflorescence in the array and they were followed 

until leaving the array. The visitation pattern (whether landing on diploid or neopolyploid 

inflorescence), the number of inflorescences visited, and whether the insect actively foraged or 

simply visited a flower was recorded. When possible, insects were collected after visitation and 

were brought back to the lab for identification. If we were unable to catch the insects, a size 

estimate was recorded. Small bees are unlikely to be effective pollinators, as previous studies 

have suggested only larger bees pollinate red clover (Bender, 1999a, b). We were easily able to 

identify Bombus impatiens to species level in the field because of unique abdomen markings. 

Other species in the genus have variable color patterns so field identification was unreliable. 
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Species identified during these observations were used to generate diploid and neopolyploid bee 

community profiles.  

 

Statistical analysis 

To determine whether there were differences in flower morphology between diploids and 

neopolyploids, we performed a two-way multivariate analysis of variance (MANOVA). Our 

model included the eight flower morphology traits as response variables with cytotype as a fixed 

predictor variable and ‘group’ as an interacting fixed predictor variable. The group predictor 

variable allowed us to determine whether the cold treatment or difference in development time 

impacted the differences between cytotypes. Tukey’s HSD post-hoc test was then used to further 

evaluate differences of the morphological traits between cytotypes of the individual 

morphological traits. We also performed a principal components analysis to visualize the 

differences and characterize the variation. Top, middle, and bottom flower measurements were 

averaged per plant, and experimental units were at the plant level. 

To determine whether there were differences in phenology, we first calculated the days to 

first flower (first day of recorded flowering – first day of recorded germination) and days to peak 

flower (day of recorded max flowering – first day of recorded germination). We then used a two-

way MANOVA to investigate whether there were differences in these floral phenology traits 

between diploids and neopolyploids. This model included the two phenology variables as 

response variables with cytotype as a fixed predictor variable and ‘group’ as an interacting fixed 

predictor variable to determine whether the cold treatment impacted differences between 

cytotypes. 
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 To determine whether neopolyploids differed from diploids in the proportion of 

individuals able to self-pollinate, we used a chi-square test for equality of proportions. To 

determine if bees played a role in prezygotic isolation of neopolyploids by flying non-randomly 

between cytotypes, we used a chi-square goodness of fit test to see if flights between cytotypes 

differed from what would be expected by random. And lastly, to determine if bees were 

differentially visiting diploids and neopolyploids, we used a chi-square test of independence. All 

analyses were carried out using R Statistical Software (R Development Core Team, 2016). 
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Results 

Flower morphology 

In total, 318 flowers were photographed and measured, providing 2501 individual 

measurements from 48 diploid and 57 neopolyploid plants. A two-way MANOVA indicated that 

there were significant effects of cytotype and group on floral morphology (F8,94 = 8.271, p < 

0.0001; F8,94 = 2.613, p = 0.013), but the interaction term was not significant (F8,94 = 0.332, p = 

0.952). Tukey’s post hoc tests indicated significant differences between cytotypes in all size 

traits and also the angle of the banner (Fig. 2). Although ‘group’ significantly affected 

morphology, univariate tests show that differences between groups were only present for one 

shape trait, the distance between wings (Fig. 3). For all size traits where diploids and 

neopolyploids were significantly different from one another, neopolyploids were larger and the 

angle of the banner petal was sharper. We also used principal components analysis to explore 

differences in floral morphology (Fig. 4). In this analysis, we found that size-related traits were 

more important in driving the differences between diploids and neopolyploids because all of the 

size traits along with wing distance had larger loadings on the first principal component which 

accounted for 53% of the total variation. Stigma-anther separation and angle of the banner petal 

had larger loadings on the second principal component which accounted for 14% of the total 

variation.  

 

Floral phenology 

We tracked floral phenology on 43 diploids and 55 neopolyploids. A two-way 

MANOVA examining the effect of cytotype and ‘group’ on floral phenology traits showed that 

there were significant effects of both cytotype (F2,93 = 7.533, p < 0.001), and ‘group’ (F2,93 = 
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15.015, p < 0.0001) on floral phenology traits. There was, however, no interaction between 

‘group’ and cytotype that impacted these phenology traits (F2,93 = 1.464, p = 0.237). Group 1 

plants that did not receive cold treatment flowered earlier and reached peak flower earlier than 

group 2 plants. In group 1, the number of days to first flower (mean ± SE) of diploids and 

neopolyploids was 87.9 ± 3.0 and 90.9 ± 1.8, respectively, and the number of days to peak 

flower was 100.0 ± 2.4 and 100.35 ± 1.7, respectively. In group 2, the number of days to first 

flower of diploids and neopolyploids was 88.8 ± 3.6 and 100.5 ± 3.1, respectively, and the 

number of days to peak flower was 107.8 ± 2.6 and 109.7 ± 2.7, respectively. The total number 

of days flowering of neopolyploids completely overlapped with diploids (Fig. 5). The data used 

to generate Figure 5 comes from group 1 only, because group 2 flowers were harvested before 

the completion of their flowering cycle. 

 

Self-fertilization 

Self-fertilization was tested in 38 diploids and 54 neopolyploids. Both the hand and 

autonomous self-pollination treatments revealed a similar number of self-compatible individuals 

(hand-pollination = 6, autonomous self-pollination = 4), suggesting that pollen can reach the 

stigma of red clover in the absence of pollinators regardless of cytotype. Therefore, we pooled 

the results of the self-fertilization treatments. When we tested for differences in self-fertilization 

rates between diploids and neopolyploids, we found an approximately three-fold increase in 

individuals that were able to self-fertilize after genome duplication. For neopolyploids, 14.8% of 

individuals were able to set seed after self-fertilization, as opposed 5.2% of individuals for 

diploids. However, we did not find a significant difference between cytotypes in the proportion 

of individuals able to self-fertilize (X2 = 1.230, df = 1, p = 0.267).   
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Flower visitors 

We observed a total of 95 bee foraging behaviors over 18 observation periods lasting 

between one and four hours each, with the bees transitioning between 209 plants and 491 

individual inflorescences. Overall, bees visited diploid and neopolyploid plants at similar 

frequencies; 54% of plants visited were diploids and 46% were neopolyploids. To test whether 

foraging behavior could lead to prezygotic isolation of neopolyploids, we looked for evidence of 

assortative mating of plants facilitated by bee behavior. Following Kennedy et al. (2006), we 

used a conservative measure of bee constancy (the tendency to preferentially visit either diploids 

or neopolyploids) to determine whether flower visitors could facilitate isolation. We used only 

the first transition between plants as our unit of measure to avoid complications of non-

independence for the subsequent plant transitions in bee foraging bouts. We found that bee 

flights within (diploid to diploid, and neopolyploid to neopolyploid) and between (diploid to 

neopolyploid, and neopolyploid to diploid) cytotypes did not differ from flights that would be 

expected by random visitation (X2 = 6.767, df = 3, p = 0.080). We also found that the bee 

communities visiting diploids and neopolyploids were very similar (Fig. 6). The most common 

bees in both diploid and neopolyploid communities were Bombus species. For diploids, the bee 

community consisted of 40.2% Bombus spp., 16.7% Andrena spp., 6.9% Apis mellifera, 5.6% 

Colletes, 4.2% B. impatiens, 1.4% Megachile, 25% unidentified, small bees (approximately 1cm 

or smaller). For neopolyploids, the bee community consisted of 49.1% Bombus spp., 13.5% 

Andrena, 6.8% Colletes, 5.1% Apis mellifera, 8.5% B. impatiens, 1.7% Megachile, and 15.3% 

unidentified, small bees (approximately 1cm or smaller). These bee groups did not visit one 

cytotype more frequently (X2 = 3.545, df = 6, p = 0.738).  
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Discussion 

Polyploidy is a common mode of speciation in plants, but despite its importance in plant 

evolution, surprisingly little is known about how neopolyploids become established. Theory 

predicts that neopolyploids will be unlikely to find a suitable mate and should quickly become 

extinct (Levin, 1975), yet polyploid species are extremely common (Barker et al., 2016). For 

neopolyploids to establish and persist in a predominantly diploid population, genome duplication 

must induce mechanisms that promote pre-zygotic reproductive barriers to facilitate assortative 

mating and avoid ineffective pollinations that would result in wasted gametes and scant offspring 

(Levin, 1975; Husband and Sabara, 2003; Husband et al., 2016). To best understand how 

neopolyploids become established, more studies examining the reproductive ecology in the 

generations immediately following speciation are needed. Here, we generated neopolyploid 

plants and compared them to diploids to determine if polyploidization directly altered aspects of 

the plant’s reproductive biology that would lead to prezygotic isolation from diploids. We found 

that genome duplication did immediately impact floral morphology of our plants, but found no 

inherent changes associated with genome duplication that might facilitate prezygotic isolation.  

In our study, we determined that flower size increased after whole genome duplication, in 

accord with the gigas effect observed in many other plant species, and there were also 

differences in flower shape (Chapter 1; Muntzing, 1936; Stebbins, 1971). These changes in floral 

morphology could cascade to a number of different effects important to plant reproductive 

ecology. For example, we know that tetraploid varietal lines of red clover can have larger 

flowers than diploids (Bender, 1999a, b; Vleugels et al., 2015) and that bee behavior can change 

depending on the cytotype (Bender, 1999a, b). Morphological changes associated with genome 

duplication could offer easier access to nectar or pollen rewards, and cause behavioral changes in 
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pollinators or attract different suites of pollinators altogether. However, in contrast to these 

expectations, our data suggest that despite the changes in flower morphology, bees were either 

unable to differentiate between neopolyploids and diploids, or the perceived differences were 

unimportant in flower selection. The results showed that there was no evidence of pollinator-

mediated isolation due to flower visitor behavior or through changes in the composition of 

visiting bee communities. We are aware of only two other studies that have compared the 

community and behavior of pollinators of neopolyploids and diploids. Nghiem et al. (2011) 

observed that both diploids and neopolyploids were primarily visited by honeybees, and they 

showed that qualitatively, bees did not discriminate between diploid and neopolyploid plants. 

Another study conducted by Husband et al. (2016) also observed primarily honeybees (>90%) 

visiting both cytotypes, and found that pollinator behavior did not contribute to reproductive 

isolation of neopolyploids. Although most of the bees observed in our study were not honeybees, 

they were generalist species. If phenotypic changes do in fact play a role in prezygotic isolation 

of neopolyploids, perhaps that role is restricted to plant species with specialist pollinators. 

Changes in flower size of neopolyploids also has the potential to impact phenological 

traits, if for instance, larger flowers require longer development times and results in later 

flowering (Cavalier-Smith, 1978; Ramsey and Ramsey, 2014). Indeed, we did find that 

neopolyploidy significantly delayed the time to first flower. This result is similar to some studies 

that have recorded flowering times of neopolyploids (Tulay and Unal, 2010; Oswald and 

Nuismer, 2011; Ramsey, 2011; Chae et al., 2013), but other studies have also found either that 

genome duplication does not alter flowering timing (Nghiem et al., 2011; Husband et al., 2016) 

or there are mixed results when neopolyploids are derived via hybridization (Hansen and Earle, 

1994; Chen et al., 2002). Although our neopolyploids did take longer to begin flowering, this did 
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not translate into an overall shift in flowering phenology. Both diploids and neopolyploids 

reached peak flowering at the same time, and neopolyploid flowering did not extend past that of 

diploids (Fig. 4). This suggests that for red clover, neopolyploidy does cause changes in 

flowering initiation, but these changes would be unlikely to lead to reproductive isolation as the 

timing of neopolyploid flowering completely overlaps with diploids. 

In addition to phenological and pollinator-based isolation, another potential isolating 

mechanism is self-fertilization. The propensity for genome duplication to break down self-

incompatibility mechanisms is well documented, particularly for plants with gametophytic self-

incompatibility systems; although the mechanisms behind the breakdown are poorly understood 

(Ramsey and Schemske, 1998; Mable, 2004; Barringer, 2007). The increased ability of 

neopolyploids to self-pollinate could be critical in preventing ineffectual pollinations with nearby 

diploids, and reducing the likelihood of succumbing to minority cytotype exclusion (Levin, 

1975; Rodriguez, 1996; Baack, 2005; Rausch and Morgan, 2005; Fowler and Levin, 2016). In 

our experiment we found that red clover, which has a gametophytic self-incompatibility 

mechanism (Taylor and Smith, 1979), did experience a slight but non-significant increase (10%) 

in the proportion of self-compatible plants after genome duplication. However, our sample sizes 

may have been lower than necessary to detect differences at these frequencies.  

We interpret our results with caution and would like to highlight two key limitations of 

this work. First, the results derived from studies using synthetic neopolyploids may not emulate 

the range of phenotypes observed in naturally derived neopolyploids. This is particularly true for 

neopolyploids generated by somatic doubling where genetic diversity is reduced compared to 

wild neopolyploids that would arise from sexual polyploidization. For example, it is possible that 

wild polyploids may only establish from unique genotypes, and so synthetically produced 
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neopolyploids may not recreate the genotypes and phenotypes that would facilitate establishment 

in nature (Ramsey, 2011; Ramsey and Ramsey, 2014). Despite these caveats, we argue that 

synthetic neopolyploids do provide us with the unique opportunity to observe phenotypes that 

stem directly from genome duplication, without the confounding effects of subsequent selection 

and drift associated with older, evolved polyploids (Ramsey and Ramsey, 2014). Second, we 

also used unrealistic proportions of neopolyploids and diploids in our flower visitor behavior 

arrays. In naturally derived neopolyploid populations, neopolyploids will be the minority 

cytotype rather than in equal proportions as used in our checkerboard array. Had we used more 

realistic proportions and randomized placement of cytotypes within the array, we would not be 

able to ensure that pollinator-mediated assortative mating was due to active pollinator preference 

alone and not influenced by spatial aggregation of cytotypes.    

Together, the results of this study suggest that none of the prezygotic mechanisms that we 

tested are important in facilitating reproductive isolation of neopolyploid red clover. This is 

surprising given our original expectation that at least one of the mechanisms shown to be 

important in enacting reproductive isolation in established polyploids would be also be involved 

in reproductive isolation of neopolyploids. Although we observed shifts in floral morphology, 

these differences did not facilitate isolation of neopolyploids from diploids in self-pollination 

rates, flowering phenology, flower visitor behavior or flower visitor communities. These 

observations support the conclusions of Husband et al. (2016) that although neopolyploids often 

show immediate changes in floral phenotype, these changes on their own do not account for the 

reproductive barriers observed in natural, established populations. 

One trait we did not examine that has been shown to strongly impact reproductive 

isolation in polyploids is geographic isolation. Studies that examine reproductive isolation of 
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established polyploids have found that geographic isolation is a primary contributor to isolation 

between cytotypes (Husband and Sabara, 2003; Pegoraro et al., 2016). In our study, we excluded 

geographic isolation as a potential prezygotic isolating mechanism because neopolyploids are 

expected to form within the distribution of their diploid progenitors. However, there is evidence 

that pollinators do facilitate assortative mating between cytotypes due to the spatial structure of 

cytotypes within populations (Husband and Schemske, 2000), and models suggest that limited 

seed and pollen dispersal can generate ‘islands’ within a larger, mixed cytotype populations 

where neopolyploids are not so greatly affected by minority exclusion (Baack, 2005). Therefore, 

small-scale spatial distribution of cytotypes could play an important role in pollinator-mediated 

isolation of neopolyploids, but was not considered in this study. Studies comparing relative 

success of neopolyploids in various spatial structures, and studies comparing the relative success 

of polyploids with differing dispersal mechanisms would broaden our understanding of the 

importance of geographic isolation as a factor contributing to neopolyploid establishment. 

A major challenge is understanding the ubiquity of polyploids in nature and how they 

establish despite predictions that suggest they should be evolutionarily short-lived. Because 

polyploid establishment will occur in the generations immediately following formation, it is 

critical that we tackle this challenge using study systems that have not been altered through 

evolutionary processes such as selection and drift. Here, we show that three common modes of 

prezygotic isolation in established polyploids did not produce reproductive isolation of 

neopolyploids from diploids. More studies investigating multi-modal mechanisms of prezygotic 

isolation are needed to draw broad conclusions about the mechanisms that facilitate neopolyploid 

establishment.   
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Figures 

 
Figure 1. Flower measurements of Trifolium pratense. A, stigma-anther separation (SA); B, 

distance between wing petals (WD); C, wing petal length (WL); D, angle of the banner petal 

(AB); E, length of the banner petal (LB); F, total length of the flower (TL); G, width of the 

flower tube (WT); and H, width of the banner petal (BW). 
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Figure 2. Comparisons of flower morphology between diploid (black) and neopolyploid (grey) 

Trifolium pratense. A)  Size-related traits; TL (total length of flower), LB (length of the banner 

petal), BW (width of banner petal), WT (width of the flower tube), and WL (length of the wing 

petal). B) Angle of the banner petal relative to the flower tube. C) Distance between the tip of the 

stigma and nearest anther. Tukey’s HSD post-hoc tests of pairwise significant differences 

between diploids and neopolyploids are indicated with asterisks. * p < 0.05, *** p < 0.001, ns 

not significant. Error bars are standard errors of the mean. 
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Figure 3. Comparison of the tip of wing petals of diploid (black) and neopolyploid (grey) 

Trifolium pratense of both groups one and two. Significant differences between diploids in group 

one and two using Tukey’s HSD post-hoc tests are marked with different letters. Error bars are 

standard errors of the mean. 
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Figure 4. Principal components analysis of floral traits of diploid (dark grey) and neopolyploid 

(light grey) Trifolium pratense. A) PC1 and PC2. B) PC2 and PC3. Percentages of the total 

variance are indicated on the axes and circles represent 95% confidence estimates. 
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Figure 5. Floral phenology timeline of diploid and neopolyploid Trifolium pratense. Lines 

connect the mean and SE of the number of inflorescences in bloom of diploids (solid line) and 

neopolyploids (dotted line). Dates are MM/DD/YY. 
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Figure 6. Visitor composition of diploid (A) and neopolyploid (B) Trifolium pratense bee 

communities. The total number of visitors to diploid plants was 72, and tetraploids 59. 
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