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Abstract 

This paper studies the asymptotic power for the sphericity test in a fixed effect panel data 

model proposed by Baltagi, Feng and Kao (2011), (JBFK). This is done under the alternative 

hypotheses of weak and strong factors. By weak factors, we mean that the Euclidean norm of the 

vector of the factor loadings is O(1). By strong factors, we mean that the Euclidean norm of the 

vector of factor loadings is O(pn), where n is the number of individuals in the panel. To derive 

the limiting distribution of JBFK under the alternative, we first derive the limiting distribution of 

its raw data counterpart. Our results show that, when the factor is strong, the test statistic 

diverges in probability to infinity as fast as Op(nT). However, when the factor is weak, its 

limiting distribution is a rightward mean shift of the limit distribution under the null. Second, we 

derive the asymptotic behavior of the difference between JBFK and its raw data counterpart. Our 

results show that when the factor is strong this difference is as large as Op(n). In contrast, when 

the factor is weak, this difference converges in probability to a constant. Taken together, these 

results imply that when the factor is strong, JBFK is consistent, but when the factor is weak, 

JBFK is inconsistent even though its asymptotic power is nontrivial. 

JEL No. C12; C33 

Keywords: Asymptotic power; Sphericity; John Test; Weak Factor; Strong Factor; High 
Dimensional Inference; Panel Data 

Badi H. Baltagi, Chihwa Kao, and Fa Wang, Syracuse University, The Center for Policy 
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1. INTRODUCTION 

This paper studies the asymptotic power of the John (1972) test for sphericity of the covariance 

matrix of the error term which was extended by Baltagi, Feng and Kao (2011) to a fixed effects 

panel data model. We consider the large n large T setup. Typically, the number of cross-sectional 

units n in a panel is large, while the number of time series observations T could be either large 

(in macro applications) or small in (micro applications). Labor panels are typical of micro-panels 

with hundreds of individuals observed over a few time periods. While panels in finance may involve 

hundreds of stocks observed over hundreds of days. When n tends to infinity jointly with T , generic 

results in random matrix theory show that the spectral norm of the sample covariance matrix does 

not converge to that of the population covariance matrix and follows a Tracy—Widom distribution 

nasymptotically, see Geman (1980) and Johnstone (2001). In addition, if → c ∈ (0, ∞), theT 

eigenvalues of the sample covariance matrix vary between (1 −
√ 
c)2 and (1 + 

√ 
c)2 , while the 

eigenvalues of the population covariance matrix are all one, see Bai (1999). These results indicate 

that when the dimension tends to infinity jointly with sample size, the sample covariance matrix 

is no longer consistent for the population covariance matrix, and consequently cast doubt on the 

consistency of BFK’s John test (JBF K ) since the latter is based on the sample covariance matrix. 

Furthermore, BFK’s John test is based on the within residuals rather than the real error term, and 

its consistency is not guaranteed. 

Studying the asymptotic power is also empirically motivated. Intuitively, the empirical power 

should depend on how strong the cross-sectional dependence is. In case the cross-sectional de-

pendence is due to common factors, the cross-sectional dependence would be weak if factors are 

weak. In case the cross-sectional dependence is due to spatial effects, the cross-sectional dependence 

would still likely to be weak since spatial effects are typically local and thus can be regarded as 

weak factors. Asymptotic power derived under the sequence of weak factor alternatives therefore 

provides better approximation of the empirical power when cross-sectional dependence is weak. 

The asymptotic scheme under the sequence of weak factor alternatives is also similar to the pitman 

drift, which is used in Staiger and Stock (1997) to obtain the asymptotic approximation of the 

finite sample distribution of 2SLS and LIML estimators when the instruments are weak. 

In the statistics literature, several papers analyzed the asymptotic power of the test for sphericity 

in a high dimensional setup. Srivastava (2005) proposed tests for the identity, sphericity and 

diagonality of the covariance matrix based on estimators of the first and second moments of the 
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spectral distribution of the population covariance matrix. Srivastava derived limit distributions 

under both the null and alternative. Wang, Cao and Miao (2013) proposed similar tests and 

derived their limit distributions under both the null and alternative, but these tests were based on 

estimators of the second and fourth moments rather than the first and second moments. Chen, 

Zhang and Zhong (2010) proposed U-statistics based tests for the identity and sphericity of the 

covariance matrix and derived their limit distribution under both the null and alternative. Cai and 

Ma (2013), on the other hand, studied this problem from a minimax perspective. They characterized 

the boundary that separates the testable region from the non-testable region by the Frobenius 

norm when the ratio of the dimension and the sample size is bounded. Using Le Cam’s Lemma 

1, Onatski, Moreira and Hallin (2013, 2014), hereafter (OMH), established mutual contiguity of 

the joint distributions of the sample covariance eigenvalues under the null and alternative when 

the alternative is a low rank perturbation of the null and the norm of perturbation is fixed and 

less than a threshold. Next, they derived the asymptotic power of all sample covariance eigenvalue 

based tests using Le Cam’s Lemma 3. OMH’s result is thought-provoking in the sense that it 

builds up the connection between high dimensionality and Pitman drift, or roughly speaking, weak 

identification, although only for a special class of alternatives. A key shortcoming of OMH’s result 

is that it does not allow us to calculate the asymptotic power when the norm of perturbation is 

greater than the threshold or when it goes to infinity. 

This paper studies the asymptotic power of the BFK John test under the alternative hypotheses 

of weak and strong factors. By weak factors, we mean that the Euclidean norm of the vector of the 

factor loadings is O(1). By strong factors, we mean that the Euclidean norm of the vector of factor 

loadings is O(n), where n is the number of individuals in the panel. These correspond to strong 

and weak cross-sectional dependence, respectively, see Chudik and Pesaran (2013). To derive the 

limiting distribution of JBF K under the alternative, we first derive the limiting distribution of its 

raw data counterpart. Our results show that, when the factor is strong, it diverges to infinity in 

probability as fast as Op(nT ). When the factor is weak, its limiting distribution is a rightward 

mean shift of the limit distribution under the null. The magnitude of the mean shift is proportional 

to the norm of variance adjusted factor loadings and the sample size, and inversely proportional to 

the dimension. This result is in sharp contrast to the fixed dimension case in which the asymptotic 

power tends to one as the sample size tend to infinity if the norm of perturbation is fixed. This result 

also indicates that the effect of increasing the dimension on asymptotic power is similar to Pitman 

drifting the parameter. We then derive the asymptotic behavior of the difference between JBF K 
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and its raw data counterpart. This difference is due to the additional noise in JBF K resulting from 

the estimation of the regression coeffi cients β and the fixed effects µi. Our results show that when 

the factor is strong, this difference is as large as Op(n). When the factor is weak, this difference 

converges in probability to a constant, c/2. These results also contrast with the fixed dimension 

case in which the additional noise resulting from β̂− β and µi will be smoothed away as the sample 

size tends to infinity. In summary, due to the effect of increasing dimension, JBF K is inconsistent 

under the weak factor alternative, although it still has nontrivial asymptotic power. Under the 

strong factor alternative, JBF K is consistent, since the cross-sectional dependence is strong enough 

to outweigh the effect of increasing dimension, i.e., Op(nT ) dominates Op(n). Our results also shed 

light on the asymptotic power of the tests for cross-sectional independence in panel data recently 

proposed in Pesaran (2004, 2012), Pesaran, Ullah and Yamagata (2008) and Baltagi, Feng and Kao 

(2012). We leave these extensions for a future study.1 

The organization of this paper is as follows. Section 2 introduces the model, notation and 

assumptions. Section 3 introduces BFK’s John test of sphericity. Section 4 studies the asymptotic 

power of BFK’s John test, and Section 5 concludes. The appendix contains all the proofs and 

technical details. 

2. NOTATION AND PRELIMINARIES 

Consider the fixed effects panel data model, 

0 yit = xitβ + µi + νit, for i = 1, ..., n and t = 1, ..., T, (1) 

where i is the index of the cross-sectional units, t is the index of the time series observations, µi is 

the time invariant individual effects which could be fixed or random. νit is the idiosyncratic error 

term. 

Assumption 1 For any i, j = 1, ..., n; and t, l = 1, ..., T, the regressors xit and the idiosyncratic 

error terms νjl are independent, and xit have finite 4th moments. 

Assumption 2 Let νt = (ν1t, ..., νnt)0 , the n × 1 vectors ν1, ..., νT are iid N(0, Σn), where Σn is 

an n × n general population covariance matrix. 
1Cross-sectional dependence, due to either spatial or common factor effects, is prevalent in economic data. Chudik 

and Pesaran (2013) argued that even after controlling for heterogeneity in panel data, cross-sectional dependence 
still arises. Ignoring cross-sectional dependence may lead to misleading inference and even inconsistent estimation. 
Therefore, testing the presence and extent of cross-sectional dependence is very important. See also the special issue 
of Econometric Reviews edited by Baltagi and Maasoumi (2013) which deals with several aspects of dependence in 
time-series, cross-section and panels. 

3 



nAssumption 3 → c ∈ (0, ∞), as n and T go to infinity jointly. This is diagonal path asymp-T 

totics not joint asymptotics as in Phillips and Moon (1999). 

Assumption 1 is a standard but albeit restrictive requirement for the consistency of the fixed 

effects estimator. Assumption 2 allows for any form of heteroskedasticity and cross-sectional de-

pendence. The covariance matrix is only required to be stable over time. The restrictive part of 

Assumption 2 is the normality and no serial correlation over time of the error term. These are 

assumed to simplify the derivation of the limiting distribution of BFK’s John test. Assumption 

3 imposes a condition on the relative speed at which n and T go to infinity. More specifically, it 
nTshould be: → c ∈ (0, ∞), but we suppress the subscript T hereafter for simplicity. This large T 

n and large T setup is more appropriate than the fixed n and large T setup for macroeconomic 

applications in which typically n and T are both large and of comparable magnitudes. In model 

(1), the within estimator of β is 

Xn XT Xn XT0β̃ = β + ( x̃itx̃it)
−1( x̃itν̃it), (2)

i=1 t=1 i=1 t=1 PT PTwhere x̃it = xit − x̄i· and ν̃it = νit − ν̄i·, with x̄i· = t=1 xit/T , and ν̄i· = t=1 νit/T . Under 

Assumptions 1, 2 and 3, β̃ is a consistent estimator of β. 

Throughout the paper, trA is the trace of matrix A, kAk = (trAA0) 12 denotes the Frobenius 
p dnorm, kxk denotes the Euclidean norm of vector x, → denotes convergence in probability, → denotes 

convergence in distribution, (N, T ) →∞ denotes N and T going to infinity jointly. 

3. BFK’S JOHN TEST 

This section gives a quick review of BFK’s John test for sphericity. In order not to impose 

any structure on the population covariance matrix, tests for sphericity are based on the sample 

covariance matrix. It is important to note that when n > T the sample covariance matrix becomes 

singular, and consequently the likelihood ratio test for sphericity is no longer feasible. As such, 

John (1971) proposed a sphericity test defined as follows: 

1 1 1 1 
U = tr[( trS)−1S − In]

2 = ( trS)−2( trS2) − 1, (3) 
n n n n 

where S is sample covariance matrix and In is an n×n identity matrix. Under the null of sphericity 

1and when n is fixed and T →∞, trS is a consistent estimator of the variance of the error term, σ2 . n 

Hence, ( 1 trS)−1S is a normalized sample covariance matrix and tr[( 1 trS)−1S − In]2 measures the n n 
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distance between this normalized sample covariance matrix and the identity matrix. John (1972) 

showed that under the null with n fixed and T →∞, 

nT d
J = U → χ2 

n(n+1) . 
2 2 −1 

However, as n increases the John test is significantly oversized. In fact, it can be shown that as 

n → ∞, John’s test diverges to infinity in probability. To correct the size distortion, Ledoit and 

Wolf (2002), hereafter (LW), recentered and rescaled John’s test as follows: 

2TU − n − 1 1 n n 
JLW = = (J − − ). (4)

2 n 2 2 

nUnder the null hypothesis, with (n, T ) → ∞ and → c ∈ (0, ∞), Ledoit and Wolf (2002) showed T 

that 
d

JLW → N(0, 1). (5) 

Both the John test and the LW’s John test are based on the true error term, while in the fixed 

effects panel data model the test statistics are based on within residuals. In the fixed n and large 

T setup, the extra noise contained in the within residuals vanishes gradually as T →∞. Hence, it 

is reasonable to believe that the test statistics based on the true error term and within residuals 

should be asymptotically equivalent. 

However, this is no longer true when n and T are both large and of comparable magnitudes, 

since each ν̃it contains an extra noise and their number is n. To bridge this gap, Baltagi, Feng and 

Kao (2011) studied the asymptotic behavior of JbLW − JLW , where JbLW is LW’s John test based on 

nwithin residuals. They proved that under the null hypothesis with (n, T ) →∞ and → c ∈ (0, ∞),T 
pb nJLW − JLW − → 0. It follows that under the null, 2(T −1) 

n d
JBF K = JbLW − → N(0, 1). (6)

2(T − 1) 

4. ASYMPTOTIC POWER OF BFK’S JOHN TEST 

This section studies the asymptotic power of BFK’s John test under the weak and strong factor 

alternatives. The null hypothesis is: 

H0 : Σn = σ2In. (7) P rUnder the alternative, νit = γij ftj + �it, where γij is the factor loading of individual i forj=1 

factor j, ftj is the factor j in period t, r is the known number of factors. Hence, Σn = E(νtν 0 ) = tP P r rE( γj ftj + �t)( γj ftj + �t)0 . To simplify the analysis, we make the following assumptions: j=1 j=1 
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------

Assumption 4 1. Each factor ftj is iid N(0, σ2 
j ) across time, and the variance σ2 

j is bounded. 

2. The idiosyncratic error �it is iid N(0, σ2), and independent of all factors. 

3. The correlation coeffi cient between factors ftj and ftk is zero, for all j, k and t. 

4. The vectors of factor loading γj are orthogonal to each other. 

Although these assumptions are restrictive, Assumption (4) will not lead to loss of generality. 

Time dependence of the factors is likely present in real data, but as long as such dependence is 

not strong, the asymptotic power property will not change qualitatively. The idiosyncratic error 

�it may still have cross-sectional dependence, if cross-sectional dependence in νit cannot be totally 

filtered by the factor structure. Nonetheless, adding additional cross-sectional dependence in �it 

will not change the results as long as such dependence is weak. Parts 3 and 4 in assumption (4) 

are innocuous since factors and factor loadings are identifiable only up to a rotation, and from this 

normalization we can always redefine factors and factor loadings so that parts 3 and 4 are satisfied. 

Under Assumption (4), 

Xr Xr Xr σ2 
j

γj ftj + �t)( γj ftj + �t)
0 = σ2(In +

0 
j ), 

where γj = (γ1j , ..., γnj )
0 is the vector of factor loading. Normalizing γj , we get 

(8)E( γj γσ2j=1 j=1 j=1 

0Xr σ2 
j 

j=1 σ2 

Xrγj 2 γj γj  γγj j 0hj ej ej ),= σ2(In + ) = σ2(In + (9)Σn 
j=1 

 σ2 
j 2 γj=where hj = and kej k = 1. Therefore, the sequence of alternative hypothesis is: γj , ejσ2 kγj k Xr 

= σ2(In +
0hj ej ej ). 

In this expression, the covariance matrix is a rank-r perturbation of sphericity. Each 

(10)Ha : Σn 
j=1 

0ej e

characterizes one direction of perturbation and hj is the magnitude of the perturbation along 

this direction. Obviously, the asymptotic power under this sequence of alternatives depends upon 

how hj evolves as (n, T ) → ∞. We will study two different cases, hj /n → dj ∈ (0, ∞) and 

hj → dj ∈ (0, ∞), which correspond to the strong and weak factor cases considered recently by 

Bai (2003), Onatski (2012) and Johnstone and Lu (2009). To calculate the asymptotic power of 

the BFK’s John test, we need to derive the limiting distribution of JBF K under the alternative 

hypothesis. This can be done in two steps. First, we derive the limiting distribution of JLW under 

j 
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the alternative. Second, we derive the asymptotic behavior of JbLW − JLW under the alternative. 

nNote that JBF K = JbLW − , once the limiting distribution of JbLW is known, that of JBF K 2(T −1) 

follows. 

4.1. Asymptotic Power under the Weak Factor Alternative 

Theorem 1 Under Assumptions 2-4, and under the weak factor alternative with hj → dj ∈ (0, ∞) 

for j = 1, ..., r, P rT d2 
j=1 j d

JLW − → N (0, 1) . (11)
2n 

or equivalently P ! 
r d2 

d j=1 j
JLW → N , 1 . (12)

2c 

Theorem 1 implies that under the weak factor alternative, the limiting distribution of JLW 

is a mean shift of its limiting distribution under the null. The magnitude of the mean shift is P rproportional to the magnitude of variance adjusted factor loadings d2 and the sample size T ,j=1 j P rand inversely proportional to the dimension n. Here, d2 plays the role of the local parameter j=1 j 

in traditional asymptotic optimality analysis. On the one hand, the test statistic gets increasingly 

sensitive to the underlying parameter as the sample size T goes to infinity. On the other hand, the 

weak factor alternative gets increasingly diffi cult to be discriminated as the dimension n goes to 

infinity. This is because the effect of a perturbation of the covariance matrix with fixed norm on 

JLW ’s distribution gets dissipated as the dimension increases. In other words, the effective distance 

between the null and weak factor alternative decreases as the dimension increases. Therefore, the P 

limiting distribution under the alternative also depends on the relative speed of n and T and j 
r
j d2 
=1 

2c 

can be interpreted as a discounted local parameter. The detailed proof of this theorem is in the 

Appendix. This result is also partially proved by Onatski, Moreira and Hallin (2013, 2014) in which 

they derived the asymptotic power of all sample covariance eigenvalue based tests, including JLW , 
√ 

but only when all hj are below the threshold c. 

Next, we study the asymptotic behavior of JbLW − JLW under the weak factor alternative. Let 

Ŝ be the sample covariance matrix calculated using the within residuals, it follows that 

T ( 1 trŜ)−2 1 trŜ2 − T − n 1 T ( 1 trS)−2 1 trS2 − T − n 1b n n n nJLW − JLW = ( − ) − ( − )
2 2 2 2

T [( 1 trS)2 1 trŜ2 − ( 1 trŜ)2 1 trS2]n n n n= . (13) 
2( 1 trŜ)2( 1 trS)2 
n n 
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1 1Define W1 = trŜ − 1 trS and W2 = trŜ2 − 1 trS2, then n n n n 

1 1TW2( 1 trS)2 − 2TW1 trS 1 trS2 − TW 2 trS2 
n n n 1 nJbLW − JLW = . (14)

2( 1 trS + W1)2( 1 trS)2 
n n 

From this expression, we can clearly see that the asymptotic behavior of JbLW − JLW depends upon 

1 1 1 1the asymptotic behavior of trS, trS2 , trŜ − 1 trS and trŜ2 − 1 trS2 . These, in turn, are n n n n n n 

studied in the following proposition. 

Proposition 1 Under Assumptions 1-4, and under the weak factor alternative with hj → dj ∈ 

(0, ∞) for j = 1, ..., r, 
1 = σ2 √1(a) trS + Op( ),n nT 
1 1(b) trS2 = ( n + 1)σ4 + Op(√ ),n T T 
1 = −σ2 1(c) trŜ − 1 trS + Op( √ ),n n T T n 

1 S2 − 1 n 1(d) tr ̂ trS2 = − 2 σ4 − 
T 2 σ

4 + Op( √ ). n n T T T 

Part (a) describes the asymptotic behavior of the average of the sample variance. It implies that, 

1in estimating the population variance, the noise contained in the estimator trS is of magnitude n 

√1 1 1 PT 1 PT n( ). Note that trS = tr[ 1 νtν
0 ] = 

P 
ν2 , so under the null, the above Op n n T t=1 t nT t=1 i=1 itnT 

result follows directly from the Central Limit Theorem. Under the alternative, with cross-sectional 

1dependence, trS is no longer the sum of independent random variables. However, weak factor n 

1implies weak cross-sectional dependence. Hence trS has the same asymptotic behavior as that n 

obtained under the null. 

1Part (b) shows that under the weak factor alternative and with n → c ∈ (0, ∞), trS2 converges T n 

1in probability to (c + 1)σ4 . This implies that, in the large n and large T setup, trS2 is not a n 

consistent estimator of σ4 . Note that if n is fixed and T tends to infinity, as in deriving the 

limiting distribution of the Breusch and Pagan (1980) test for cross-sectional dependence, 1 trS2 is n 

consistent.2 What explains this difference? Note that the number of noisy terms in the expansion 

2 1of trS2 is related to n . After dividing by n, the number of noisy terms in trS2 is related to n. n 

2One of the early tests for cross-sectional dependence is the traditional Breusch and Pagan (1980) test which 
relies on fixed n and large T asymptotics. Empirical evidence shows that when n is large, the Breusch-Pagan test is 
significantly oversized. In the statistics literature, this oversizing phenomenon also appears in the classic likelihood 
ratio test of the covariance matrix, see Bai, et al. (2009). Several attempts have been made to improve the finite 
sample properties of the Breusch-Pagan test. In fact, Frees (1995) proposed a nonparametric test based on the 
spearman’s rank correlation coeffi cient, while Dufour and Khalaf (2002) suggested some Monte Carlo exact tests. 
The Dufour and Khalaf tests are computationally intensive since they are based on the bootstrap method. Another 
approach is to correct for the size distortion of the Breusch-Pagan test, see Pesaran (2004), Pesaran, Ullah and 
Yamagata (2008) and Baltagi, Feng and Kao (2012). 
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1On the other hand, the magnitude of noise in each term is Op(√ ). As n and T tend to infinity 
T 

njointly, these noise can not be smoothed away and accumulate into a bias, σ4 .T 

1Parts (c) and (d) show that, in trŜ − 1 trS, the additional noise contained in the within n n 

1 1residuals will accumulate into a term of magnitude −σ2 
+ Op( √ ), and in trŜ2 − 1 trS2, this T T n n n 

additional noise will accumulate into a term of magnitude Op( 1 )+Op(T
n 
2 ). These two results share T 

0the same intuition with part (b). Note that ν̂it = νit −ν̄i· −x̃it(β̃−β), where νit is the error term, ν̂it 
is the within residual, β̃ is the within estimator and x̃it = xit − x̄i· denote the demeaned regressors. 

√ 
From this expression, it is easy to see that the additional noise comes from β̃− β and ν̄i·. β̃ is nT 

consistent, hence β̃ − β converges to zero in probability no matter whether n is fixed or tends to 
√ 

infinity jointly with T . ν̄i· is of magnitude 1/ T , hence if n is fixed, ν̄i· would be smoothed away 

as T → ∞. However, if n goes to infinity jointly with T , although each ν̄i· converges to zero in 

probability, the number of ν̄i· tends to infinity jointly. In the end, how this noise ν̄i· accumulates 

depends upon the specific form of the test statistic and the alternative. The detailed proof of this 

proposition is in the Appendix. 

Based on Proposition 1, we have the following theorem. 

Theorem 2 Under Assumptions 1-4, and under the weak factor alternative with hj → dj ∈ (0, ∞) 

for j = 1, ..., r, 
n p

JbLW − JLW − → 0. (15)
2(T − 1) 

This theorem implies that for JLW the additional noise contained in the within residuals will 

caccumulate into a constant, . Note that this pattern of accumulation relies heavily on the as-2 

n nsumption → c ∈ (0, ∞) and hj → dj ∈ (0, ∞) for j = 1, ..., r. If →∞ or hj →∞ for some j,T T 

the accumulated noise may explode. The detailed proof is in the Appendix. 
p

Note that JBF K = JbLW − n , thus Theorem 2 implies JBF K − JLW → 0. Combining this 2(T −1) 

with Theorem 1, we have: 

Corollary 1 Under Assumptions 1-4, and under the weak factor alternative with hj → dj ∈ (0, ∞) 

Recall that Baltagi, Feng and Kao (2011) proved that under the null, JBF K → N(0, 1), thus 

for j = 1, ..., r, 

JBF K 
d→ N 

P ! 
r d2 
j=1 j 

, 1 . 
2c 

(16) 

d

the asymptotic power of JBF K under the weak factor alternative is given in the following theorem: 
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Theorem 3 Under Assumptions 1-4, and under the weak factor alternative with hj → dj ∈ (0, ∞) 

for j = 1, ..., r, the asymptotic power of JBF K is P r d2 
j=1 j

P owerJBF K (d) = 1 − Φ(Φ−1(1 − α) − ), (17)
2c 

where Φ (·) denotes the cdf of a N (0, 1) and d = (d1, ..., dr)0 . 

Theorem 3 has several important implications. First, BFK’s John test is inconsistent in de-

tecting the factor structure when the factors are weak in the sense that hj → dj ∈ (0, ∞) for 

j = 1, ..., r. Second, BFK’s John test still has nontrivial asymptotic power, which is proportional P r nto j=1 d
2 
j and inversely proportional to the limit of T . This result is in sharp contrast with the 

fixed dimension case in which with fixed magnitude deviation from the null, the asymptotic power 

tends to one as the sample size tends to infinity. Third, this inconsistency result can also be used to 

check the extent of cross-sectional dependence due to common factors. If it is reasonable to assume 

that common factors are the main source of cross-sectional dependence but the power of JBF K is 

far below one even with large n and large T , then these common factors should be weak. 

4.2. Asymptotic Power under the Strong Factor Alternative 

Following the same analysis as in Section 4.1, the asymptotic behavior of JBF K under the strong 

factor alternative is derived in the next theorem. 

Theorem 4 Under Assumptions 2-4, and under the strong factor alternative with hj → dj ∈ (0, ∞)n 

for j = 1, ..., r, 

JLW = Op (nT ) . (18) 

Remark 1 The Op (nT ) in this theorem is real, i.e. JLW 6 (nT ).= op 

TU − n+1 1Recall that JLW = , where U = tr[( 1 trS)−1S − In]2 measures the distance between 2 2 n n 

the sample covariance matrix and sphericity. With hj → dj ∈ (0, ∞) for j = 1, ..., r, as shown in n 
p P rthe Appendix, 1 trS → σ2(1 + dj ) and 1 trS2 = Op (n). Hence U = Op (n) and it follows that n j=1 n 

JLW = Op (nT ). 

Next, we study the asymptotic behavior of JbLW − JLW under the strong factor alternative, 

1 1which as in the weak factor case, depends on the asymptotic behavior of 1 trS, trS2 , trŜ− 1 trS n n n n 

and 1 trŜ2 − 1 trS2 . n n 
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Proposition 2 Under Assumptions 1-4, and under the strong factor alternative with hj → dj ∈ n 

(0, ∞) for j = 1, ..., r, P1 r 1(a) trS = σ2(1 + j=1 dj ) + Op(√ ),n TP P P √1 n(T −1) r n r 2(b) trS2 = σ4[ d2 − ( dj e )2] + Op( n),n T j=1 j i=1 j=1 i,j 

1(c) trŜ − 1 trS = Op( 1 ),n n T 

1(d) trŜ2 − 1 trS2 = Op( n ). n n T 

Compared to Proposition 1, the stochastic order of part (a) and part (c) remain the same while 

the stochastic order of part (b) and part (d) are significantly larger. This is because under the 

strong factor alternative, cross-sectional dependence becomes stronger. 

Based on Proposition 2, we have the following theorem. 

Theorem 5 Under Assumptions 1-4, and under the strong factor alternative with hj → dj ∈ (0, ∞)n 

for j = 1, ..., r, 

JbLW − JLW = Op(n). (19) 

Theorem 5 implies that under the strong factor alternative, the additional noise contained in 

JbLW − JLW is Op(n). This magnitude is smaller than Op(nT ), the magnitude of JLW , as shown 

in Theorem 4. Thus JbLW − JLW is asymptotically dominated by JLW and this leads us to the 

consistency of JBF K . 

Theorem 6 Under Assumptions 1-4, and under the strong factor alternative with hj → dj ∈ (0, ∞)n 

for j = 1, ..., r, JBF K is consistent. 

5. CONCLUSION 

This paper studies the asymptotic power of BFK’s John test for sphericity of the covariance 

matrix in a fixed effects panel data model under the strong and weak factor alternatives. In the 

former case, JBF K is consistent, while in the latter case JBF K is inconsistent but has nontrivial 

asymptotic power. This inconsistency reflects the effect of dimension on the power of statistical 

tests. From an empirical perspective, the inconsistency also can be used as a model selection scheme 

to check the extent of cross-sectional dependence resulting from common factors. Several questions 

are left for future research. First, the normality and no temporal dependence in Assumption 2 

are restrictive. Second, for microeconomic applications, one should study the asymptotic power as 

11 



n → ∞. Third, it would be interesting to study the asymptotic power when the factor is neither T 

strong nor weak in the sense that hj → dj ∈ (0, ∞) for 0 < δ < 1, and when the factors are weak δn

and the number of factors r goes to infinity jointly with n and T . 
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APPENDIX 

Lemma 1 Suppose Xn is a sequence of random variables and EX2 = O(nv),where v is a constant, n 

v/2).then Xn = Op(n

Lemma 1 will be used repeatedly in calculating the stochastic order of the cross product of error 

terms in this appendix. 

Lemma 2 Suppose ν ∼ N(0, Σn), and let ash be the typical element of the covariance matrix in 

the s-th row and h-th column. Then for r, s, h, q, 

(1) Eνs = 0, 

(2) Eνsνh = ash, 

(3) Eνrνsνh = 0, 

(4) Eν2 
r νsνh = 2asrahr + arrash, 

2(5) Eν2ν2 = assahh + 2as h sh, 

(6) Eνrνsνhνq = asrahq + asqahr + asharq, 

(7) Eνrνsνhνpνq = 0, 

ν3 3(8) Eν3 = 9assahhash + 6as h sh. 

Lemma 2 will be used repeatedly in dealing with cross-sectional dependence under the alterna-

tive hypothesis. 

PT PTν 0 1 ν 0 A0 1 0Lemma 3 Define A0 = ν̄· ̄ , A1 = x̃t(β̃ − β)˜t, A2 = 1 = ν̃t(β̃ − β)0x̃t, A3 = · T t=1 T t=1 PT1 0x̃t(β̃ − β)(β̃ − β)0x̃ , and hence Ŝ − S = −A0 − A1 − A2 + A3.T t=1 t

Under the weak factor alternative, we have 

1 1(a) tr(SA1) = Op(T 
1 
2 ) + Op( 1 ) + Op( √ ),n nT T nT 

1(b) tr(SA3) = Op( 1 ),n nT 

1 1(c) tr(A21) = Op(n nT 2 ), 

1(d) tr(A1A2) = Op(T 
1 
2 ),n 

1 1(e) tr(A1A3) = Op(n nT 2 ), 

1 1(f) tr(A23) = Op(n nT 2 ), 

1 1 n 1(g) tr(SA0) = σ4 + 
T 2 σ

4 + Op( √ ),n T TT√ 
1 n n(h) tr(A0

2) = 
T 2 σ

4 + Op( T 2 ),n 

1(i) tr(A0A1) = Op(T 
1 
2 ),n 
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1 1(j) tr(A0A3) = Op(n nT 2 ). 

Under the strong factor alternative, we have 
√ 

1 n(a) tr(SA1) = Op( ),n T 

1(b) tr(SA3) = Op( 1 ),n T 

1(c) tr(A21) = Op(T 
1 
2 ),n 

1(d) tr(A1A2) = Op(T 
1 
2 ),n 

1 √ 1(e) tr(A1A3) = Op( ),n nT 2 

1 1(f) tr(A23) = Op(n nT 2 ), 

1(g) tr(SA0) = Op( n ),n T 

1(h) tr(A20) = Op(T
n 
2 ),n √ 

1 n(i) tr(A0A1) = Op( T 2 ),n 

1(j) tr(A0A3) = Op(T 
1 
2 ). n 

This lemma can be proved following the same line of proof as Lemma 3 in the supplementary 

appendix of Baltagi, Feng and Kao (2011). 

A Proof of Theorem 1 

Proof. The proof of this theorem is based on Theorem 3.1 of Srivastava (2005). After some 

notation translation, Srivastava’s Theorem 3.1 is equivalent to 

T d
(γ̂1 − γ1) → N(0, τ 1

2)
2 

nprovided T = O(nδ), 0 < δ ≤ 1, and trΣ
i 
→ ai < ∞ for i = 1, ..., 8, where n 

trΣ2 /nnγ1 = ,
(trΣn/n)2 

2 3 22T (a4a1 − 2a1a2a3 + a a2) 2τ 2 = + ,1 6 4na a1 1 

and h iT 2 n 
γ̂1 = trS2/n − (trS/n)2 /(trS/n)2 . 

(T − 1)(T + 2) T 
nUnder the current setup with → c ∈ (0, ∞) and hj → dj ∈ (0, ∞) for j = 1, ..., r, the two T 

conditions of Srivastava’s Theorem 3.1 are satisfied. Hence � � 
T T 2 1 (T − 1)(T + 2) trΣ2 /nn(γ̂1 − γ1) = (JLW + − − 1 ,
2 (T − 1)(T + 2) T 2T (trΣn/n)2 
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� 

P P� � r r 
1 (T − 1)(T + 2) trΣ2 

n/n T j=1 d
2 
j j=1 d

2 
j− − 1 ≈ − → − ,

T 2T (trΣn/n)2 2n 2c 

and 

τ2 
1 → 1. 

Therefore, P ! 
r d2 

d j=1 j
JLW → N , 1 . 

2c 

B Proof of Proposition 1 

Proof of part (a). For notation simplicity, we will give the proof for the case where r = 1. Using P P r r 2( ≤ r repeatedly, the case where r > 1 can be proved similarly, as long as r isi=1 xi)
2 

i=1 xi 

fixed. Note that 

1 1 1 XT 
trS = tr[ νtν

0 ] 
n n T t=1 t

1 XT Xn 
ν2 = itnT t=1 i=1 

h 1 XT Xn 
= σ2(1 + ) + (νit 

2 − Eν2 
it) n nT t=1 i=1

h 1 
= σ2(1 + ) + Op(√ ) 

n nT 
1 

= σ2 + Op(√ ), 
nT 

since 

XT Xn 
E[

1 
(ν2 

it)]
2 

it − Eν2 

nT t=1 i=1

1 XT Xn Xn 
= 

2T 2 E(ν2 
it)(ν

2 
jt)it − Eν2 

jt − Eν2 

n t=1 i=1 j=1 

1 XT Xn XT Xn Xn 
= [ it − Eν2 + E(ν2 

it)(ν
2 

jt)]E(ν2 
it − Eν2 

jt − Eν2 

n2T 2 t=1 i=1 it)
2 

t=1 i=1 j 6=i 
1 XT Xn XT Xn Xn 

= [ 2(σ2 + σ2he2 + (Eν2 
jt − Eν2 

jt)]i )
2 

itν
2 

itEν
2 

n2T 2 t=1 i=1 t=1 i=1 j 6=i
1 XT Xn XT Xn Xn 

= [ 2(σ2 + σ2he2 
i )
2 + 2σ4(heiej )

2] 
n2T 2 t=1 i=1 t=1 i=1 j 6=i 
1 Xn Xn2 4 4 = [2T (σ4 + 2hσ4 ei + σ4h2 ei ) + 2σ

4Th(1 − ei )] n2T 2 i=1 i=1 

1 
= 

2T 2 (2T nσ4 + 4T hσ4 + 2σ4Th2) 
n

1 
= O( ). 

nT 
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� n 2 ν2 2This uses 
P 
i=1 ei = 1 and Eν2 

h = assahh + 2ash.s

Proof of part (b). Note that 

1 
trS2 

n 
1 1 XT 1 XT 1 XT XT 

= trS2[( νtν
0 )( νsν

0 )] = ν 0 νsν
0 νtt s t sn T t=1 T s=1 nT 2 t=1 s=1 

1 XT XT Xn 1 XT XT Xn Xn 
= νit

2 νjt 
2 + νitνisνjsνjt 

nT 2 t=1 s=1 i=1 t=1 s6 i=1 j=1nT 2 =t 

1 XT Xn 1 XT Xn Xn 
ν4 ν2 = it + itν

2 
jt nT 2 t=1 i=1 nT 2 t=1 j=6 i i=1 

1 XT XT Xn 1 XT XT Xn Xn 
+ ν2 

is + νitνisνjsνjt itν
2 

nT 2 t=1 s6 i=1 t=1 s6 i=1 j 6=t nT 2 =t =i 

1 n 1 1 1 
= Op( ) + [ σ

4 + Op(√ )] + [σ4 + Op(√ )] + Op( )
T T T T T 

n 1 
= ( + 1)σ4 + Op(√ ). 

T T 

This uses the following four results: PT P PT P PT P1 n 1 n 1 n(1) ν4 = Eν4 (ν4 − Eν4 ) = Op( 1 ), since
nT 2 t=1 i=1 it nT 2 t=1 i=1 it + 

nT 2 t=1 i=1 it it T 

1 XT Xn 
E[ (νit 

4 − Eν4 
it)]

2 

nT 2 t=1 i=1XT Xn XT Xn 
=

1 
E(ν4 

it)(ν
4 

it − Eν4 
js − Eν4 

n2T 4 t=1 i=1 s=1 j=1 js) 

1 1 
= 

2T 4 Op(n 2T 2) = Op( ). 
n T 2 

(2) 

1 XT Xn Xn 
jt nT 2 t=1 j=6 i i=1 

νit
2 ν2 

1 XT Xn Xn 1 XT Xn Xn 
itEν

2 (ν2 
itEν

2 = Eν2 
jt + itνjt 

2 − Eν2 
jt)nT 2 t=1 j 6 i=1 t=1 j 6 i=1=i nT 2 =i XT Xn Xn 

=
1 

(σ2 + σ2he2 
i )(σ

2 + σ2he2 
j )nT 2 t=1 j 6 i=1=i 

1 XT Xn Xn 
+ (ν2 

jt − Eνit
2 Eν2 

itν
2 

jt)nT 2 t=1 j 6 i=1=i P n 4 Xnn − 1 n − 1 h2(1 − i=1 ei ) 1 XT Xn 
= σ4 + 2hσ4 + σ4 + (ν2 

jt − Eν2 
jt)itν

2 
itEν

2 

T nT nT nT 2 t=1 j 6=i i=1P n 4n − 1 n − 1 h2(1 − i=1 ei )σ4 1
)= σ4 + 2hσ4 + + Op(√ 

T nT nT T 
n 1 

= σ4 + Op(√ ),
T T 
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since 

1 XT Xn Xn 
itEν

2E[ (ν2 
jt − Eν2 

jt)]
2 

itν
2 

nT 2 t=1 j 6=i i=1

1 XT Xn Xn XT Xn Xn 
= E(ν2 ν2 

i1t1 j1t1n2T 4 t1=1 6 i1=1 t2=1 j2=6 i2j1=i1 i2=1 

−Eν2 Eν2 )(ν2 ν2 − Eν2 Eν2 )i1t1 j1t1 i2t2 j2t2 i2t2 j2t2 

= 
1
[E(1, ·) + E (2, ·)] = 

1
[O(n 4T ) + O(n 3T 2)]

2T 4 2T 4 

2 
n n
n n 1 

= O( ) + O( ) = O( ). 
T 3 T 2 T 

nHere we used → c ∈ (0, ∞) and E (2, ·) = E (2, 4) + E(2, j < 4) = O(n3T 2). Hereafter E(i, j)T 

denotes there are i different t-indices and j different n-indices in the summation. By using Eν2ν2 = s h 

assahh + 2a
2 
sh, 

E (2, 4) XT Xn Xn XT Xn Xn 
= E(ν2 ν2 

i1t1 j1t1t1=1 6 i1=1 t2=1 6 i2=1j1=i1 j2=i2 

−Eν2 Eν2 )E(ν2 ν2 − Eν2 Eν2 )i1t1 j1t1 i2t2 j2t2 i2t2 j2t2 XT Xn Xn XT Xn Xn 2 2 2 2 = σ8(2h2 e e )(2h2 e e )i1 j1 i2 j2t1=1 j1 6=i1 i1=1 t2=1 j2 6 i2=1=i2 XT Xn Xn XT Xn Xn 2 2 2 2 = 4σ8h4 e e e ei1 j1 i2 j2t1=1 j1 6=i1 i1=1 t2=1 j2 6 i2=1=i2 

≤ 4σ8h4T 2 = O(T 2). 

There are at most n3T 2 terms in E(2, j < 4), hence E(2, j < 4) = O(n3T 2). Combining these 

results, we have E (2, ·) = O(T 2) + O(n3T 2) = O(n3T 2). 

(3) 

1 XT XT Xn 
ν2 

isnT 2 t=1 s6 itν
2 

=t i=1 

1 XT XT Xn 1 XT XT Xn 
= Eν2 

is + (νit
2 νis 
2 − Eν2 

is)itEν
2 

itEν
2 

nT 2 t=1 s6 i=1 nT 2 t=1 s6 i=1=t =t XT XT Xn XT XT Xn 
=

1 
Eν2 1

(ν2 
is − Eν2 

itEν
2 

itEν
2 

is + itν
2 

is)nT 2 t=1 s6 i=1 t=1 s6 i=1=t nT 2 =t 

1 XT XT Xn 1 XT XT Xn 
= (σ2 + σ2he2 

i )
2 + (νit

2 ν2 
itEν

2 
is − Eν2 

is)nT 2 t=1 s6 i=1 t=1 s6 i=1=t nT 2 =t 

T − 1 T − 1 T − 1 Xn 4 = ( σ4 + 2σ4h + σ4h2 ei )T nT nT i=1 

1 XT XT Xn 
+ (ν2 

is − Eν2 

nT 2 t=1 s6 itν
2 

itEνis
2 ) 

=t i=1

T − 1 1 1 1 
= [ σ4 + O( )] + [Op(√ )] = σ4 + Op(√ )

T n T T 
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since 

1 XT XT Xn 
E[ (ν2 

is − Eν2 
is)]

2 
itν
2 

itEν
2 

nT 2 t=1 s6 i=1=t 

1 XT XT Xn XT XT Xn 
= E(ν2 ν2 

i1t1 i1s1n2T 4 t1=1 6 i1=1 t2=1 s2=6 t2s1=t1 i2=1 

−Eν2 Eν2 )(ν2 ν2 − Eν2 Eν2 )i1t1 i1s1 i2t2 i2s2 i2t2 i2s2 

=
1 
O(n 2T 3) = O(

1
).

2T 4n T 

When s1, s2, t1, t2 are different from each other, we have 

E(ν2 ν2 − Eν2 Eν2 )(ν2 ν2 − Eν2 Eν2 ) = 0.i1t1 i1s1 i1t1 i1s1 i2t2 i2s2 i2t2 i2s2 PT PT P P1 n n(4) = Op( 1 ). This is because 
nT 2 =t 6 Tt=1 s6 i=1 j=i νitνisνjsνjt 

1 XT XT Xn Xn 
E[ νitνisνjsνjt]

2 

nT 2 t=1 s6 i=1 j=i=t 6
1 XT XT Xn Xn XT XT Xn Xn 

= E(νi1t1 n2T 4 t1=1 s1=t1 i1=1 j1 6 t2=1 s2=t2 i2=1 j2 66 =i1 6 =i2 

νi1s1 νj1s1 νj1t1 νi2t2 νi2s2 νj2s2 νj2t2 ) 

1 
= [E(4, 4) + E(4, 3) + E(4, 2) + E(3, 4) + 

2T 4n

E(3, 3) + E(3, 2) + E(2, 4) + E(2, 3) + E(2, 2)] 

= 
1
[O(T 4) + O(T 4) + O(T 4) + O(T 3)

2T 4n

+O(T 3
√ 
n) + O(T 3) + O(T 2) + O(T 2 n) + O(T 2 n 2)] 

1 1 1 1 
= O( ) + O( 3 ) + O( ) = O( ). 

n2 T 2 T 2 
n 2 T 

The above calculation is based on the following results. XT XT Xn Xn XT XT Xn Xn 
E(4, 4) = σ8(hei1 ej1 )

2(hei2 ej2 )
2 

t1=1 s1 6=t1 i1=1 j1 6=i1 t2=1 s2 6=t2 i2=1 j2 6=i2 XT XT Xn Xn XT XT Xn Xn 
σ8h4 2 2 2 2 = e e e ei1 j1 i2 j2t1=1 s1 6=t1 i1=1 j1 6=i1 t2=1 s2 6=t2 i2=1 j2 6=i2 

≤ σ8h4T 4 = O(T 4). XT XT Xn Xn XT XT Xn 
E(4, 3) = σ8(hei1 ej1 )

2(hej1 ej2 )
2 

t1=1 s1 6=t1 i1=1 j1 6=i1 t2=1 s2 6=t2 j2 6=j1 XT XT Xn Xn XT XT Xn 
σ8h4 2 4 2 = e e ei1 j1 j2t1=1 s1 6=t1 i1=1 j1 6=i1 t2=1 s2 6=t2 j2 6=j1 

≤ σ8h4T 4 = O(T 4). XT XT Xn Xn XT XT 
E(4, 2) = σ8(hei1 ej1 )

4 
t1=1 s1 6=t1 i1=1 j1 6=i1 t2=1 s2=6 t2 XT XT Xn Xn XT XT 

σ8h4 4 4 = e ei1 j1t1=1 s1 6=t1 i1=1 j1 6=i1 t2=1 s2=6 t2 

≤ σ8h4T 4 = O(T 4). 
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XT XT Xn Xn XT Xn Xn 
E(3, 4) = E(νi1s16 6 =t2 =i2t1=1 s1=t1 i1=1 j1=i1 t1 6 i2=1 j2 6

νj1s1 )E(νi1t1 νj1t1 νi2t1 νj2t1 )E(νi2t2 νj2t2 ) XT XT Xn Xn XT Xn Xn 
= (σ2hei1 ej1 )[(σ

2hei1 ej1 ) t1=1 6 i1=1 6 6 i2=1 6s1=t1 j1=i1 t1=t2 j2=i2 

(σ2hei2 ej2 ) + (σ
2hei1 ei2 )(σ

2hej1 ej2 ) + (σ
2hei1 ej2 )(σ

2hei2 ej1 )](σ
2hei2 ej2 ) XT XT Xn Xn XT Xn Xn 2 2 2 2 = 3σ8h4 e e e ei1 j1 i2 j26 6 =t2 =i2t1=1 s1=t1 i1=1 j1=i1 t1 6 i2=1 j2 6

≤ 3σ8h4T 3 = O(T 3), 

with Eνrνsνhνq = asrahq + asqahr + asharq. XT XT Xn Xn XT Xn 
E(3, 3) = Eνi1s1 νj1s1 Eνi1t1 ν

2 νj2t1 Eνj1t2 νj2t2j1t1t1=1 6 i1=1 6 6 6s1=t1 j1=i1 t1=t2 j2=j1 XT XT Xn Xn XT Xn 
= (σ2hei1 ej1 )[(σ

2 + σ2he2 
j1 
)(σ2hei1 ej2 ) t1=1 s1 6=t1 i1=1 j1 6=i1 t1=6 t2 j2 6=j1 

+2(σ2hei1 ej1 )(σ
2hej1 ej2 )](σ

2hej1 ej2 ) XT XT Xn Xn XT Xn 2 4 2 3 2 = (3σ8h4 e e e + σ8h3 ei1 e e ),i1 j1 j2 j1 j2t1=1 s1 6=t1 i1=1 j1 6=i1 t1=6 t2 j2 6=j1 

with Eν2 νh = 2asrahr + arrash. Hence,rνs XT XT Xn Xn XT Xn 2 4 2|E(3, 3)| ≤ 3σ8h4 e e ei1 j1 j2t1=1 s1 6=t1 i1=1 j1 6=i1 t1=6 t2 j2 6=j1 XT XT Xn Xn XT Xn � � 
σ8h3 3 2+ ei1 

�e � ej1 j2t1=1 s1 6=t1 i1=1 j1 6=i1 t1=6 t2 j2 6=j1 

3σ8h4T 3 + σ8h3T 3
√ 
n = O(T 3

√ 
≤ n). 

XT XT XT Xn Xn 
E(3, 2) = Eνis1 Eν2 ν2 Eνit2νjs1 it1 jt1 

νjt2 t1=1 s1 6=t1 t1 6 i=1 j 6=t2 =i XT XT XT Xn Xn 
= (σ2heiej )

2[(σ2 + σ2he2 
i )(σ

2 + σ2he2 
j ) t1=1 s1 6=t1 t1 6 i=1 j 6=t2 =i

+2(σ2heiej )
2] XT XT XT Xn Xn 2 2 4 2 2 4 4 4 = (σ8h2 ei ej + σ8h3 ei ej + σ8h3 ei ej + 3σ

8h4 ei ej ) t1=1 6 6 i=1 j 6s1=t1 t1=t2 =i

≤ σ8h2T 3 + 2σ8h3T 3 + 3σ8h4T 3 = O(T 3), 

ν2 2with Eν2 = assahh + 2as h sh. XT XT Xn Xn Xn Xn 
E(2, 4) = 2 Eνi1sνj1sνi2sνj2sEνi1tνj1tνi2tνj2t t=1 s6 i1=1 j1=i1 i2=1 j2=6 i2=t 6XT XT Xn Xn Xn Xn 

= 2 [(σ2hei1 ej1 )(σ
2hei2 ej2 ) t=1 s6 i1=1 6 i2=1 6=t j1=i1 j2=i2 

+(σ2hei1 ei2 )(σ
2hej1 ej2 ) + (σ

2hei1 ej2 )(σ
2hei2 ej1 )]

2 XT XT Xn Xn Xn Xn 2 2 2 2 = 18σ8h4 e e e ei1 j1 i2 j2t=1 s6 i1=1 j1=i1 i2=1 j2=6 i2=t 6

≤ 18σ8h4T 2 = O(T 2), 

20 



� 

with Eνrνsνhνq = asrahq + asqahr + asharq. XT XT Xn Xn Xn 
E(2, 3) = 2 Eνi1tν

2 
j1tνj2tEνi1sν

2 
j1sνj2s t=1 s6 j1 6 j2 6=t i1=1 =i1 =j1 XT XT Xn Xn Xn 

= 2 [(σ2 + σ2he2 )(σ2hei1 )j1 
ej2t=1 s6 i1=1 j1=i1 6=t 6 j2=j1 

+2(σ2hei1 ej1 )(σ
2hej1 ej2 )]

2 XT XT Xn Xn Xn 2 2 2 2 2 2 4 2 = 2 (σ8h2 e e + 6σ8h3 e e e + 9σ8h4 e e e )i1 j2 i1 j1 j2 i1 j1 j2t=1 s6 j1 6 j2 6=t i1=1 =i1 =j1 

≤ 2σ8h2T 2 n + 12σ8h3T 2 + 18σ8h4T 2 = O(T 2 n), 

with Eν2νsνh = 2asrahr + arrash,r XT XT Xn Xn 
E(2, 2) = 2 Eν2 

jtEν
2 

js itν
2 

isν
2 

t=1 s6 i=1 j=i=t 6XT XT Xn Xn 
= 2 [(σ2 + σ2hei 

2)(σ2 + σ2hej 
2) + 2(σ2heiej )

2]2 
t=1 s6 i=1 j=i=t 6XT XT Xn Xn 4 4 4 4 = 2 (σ8 + σ8h2 ei + σ8h2 ej + 9σ

8h4 ei ejt=1 s6 i=1 j=i=t 6
2 2 4 2 2 4+2σ8he2 

i + 2σ
8he2 

j + 8σ
8h2 ei ej + 6σ

8h3 ei ej + 6σ
8h3 ei ej ) 

≤ 2σ8T 2 n 2 + 4σ8h2T 2 n + 18σ8h4T 2 + 8σ8hT 2 n + 16σ8h2T 2 + 24σ8h3T 2 

= O(T 2 n 2), 

ν2 2with Eν2 = assahh + 2as h sh. 

0 0 ˜ 0Proof of part (c). Recall that ỹit = x̃itβ+ν̃it, ν̂it = ỹit−x̃itβ = ν̃it−x̃it(β̃−β), ν̂t = ν̃t−x̃t(β̃−β), 
ˆ 1 PT ν 0 1 PTν̃t = νt − ν̄·, S = ν̂tˆ , and S = νtνt

0 . Hence,T t=1 t T t=1 

1 1 
trŜ − trS 
n n 
1 1 XT 1 XT 

= tr( ν̂tν̂
0 − νtν

0 ) 
n T t=1 t T t=1 t

1 1 XT 1 XT 1 XT 
= tr[ ν̃tν̃

0 − νtν
0 − x̃t(β̃ − β)ν̃ 0 t t t n T t=1 T t=1 T t=1 

1 XT 1 XT0 0− ν̃t(β̃ − β)0 x̃ + x̃t(β̃ − β)(β̃ − β)0 x̃ ]
T t=1 t T t=1 t

1 h 1 1 1 
= − σ2 − + Op( √ ) + Op( √ ) + Op( )

T nT T nT T n nT 

σ2 1 
= − + Op( √ ),

T T n 

since 
1 XT 1 − tr[ x̃t(β̃ − β)ν̃ 0 ] = Op( ),
nT t=1 t nT 
1 XT 10− tr[ ν̃t(β̃ − β)0 x̃ ] = Op( ),
nT t=1 t nT 
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1 XT 10tr[ x̃t(β̃ − β)(β̃ − β)0 x̃ ] = Op( ),
nT t=1 t nT 

1 XT 1 XT 
tr[ ν̃tν̃

0 − νtν
0 ]

nT t=1 t T t=1 t

1 1 1 Xn 1 Xn 1 XT 
= − tr(ν̄·ν̄

0) = − ν̄ 0ν̄· = − ν̄2 = − ( νit)
2 

· · i· n n n i=1 n i=1 T t=1 

1 XT Xn 1 XT XT Xn 
= − ν2 

it − νisνit
nT 2 t=1 i=1 nT 2 t=1 s=6 t i=1 XT Xn XT Xn 

= − 
1

(σ2 + σ2he2 1
(ν2 

it)i ) − it − Eν2 

nT 2 t=1 i=1 nT 2 t=1 i=1

1 XT XT Xn 
− νisνit
nT 2 t=1 s6 i=1=t 

1 σ2h 1 1 
= − σ2 − + Op( √ ) + Op( √ ). 

T nT T nT T n 

In establishing the above results, we have used: 

XT Xn 0 x̃itx̃it = Op(nT ), 
t=1 i=1 XT Xn √ 

x̃itν̃it = Op( nT ), 
t=1 i=1 � �XT Xn XT Xn0β̃ − β = ( x̃itx̃it)

−1 x̃itν̃it = Op √ 
1 

, 
t=1 i=1 t=1 i=1 nT � � 
1 XT Xn 1 

(ν2 
it) = Op √ ,it − Eν2 

nT t=1 i=1 nT 

and 

1 XT XT Xn 
E(− νisνit)

2 

nT 2 t=1 s6 i=1=t 

2 Xn Xn XT XT 
= Eνisνjsνitνjt 

n2T 4 i=1 t=1 6j=1 s=t 

2 Xn Xn 
= T (T − 1)E2νisνjs 

n2T 4 i=1 j=1 Xn Xn Xn2 2 =
2 
T (T − 1)[ σ4h2 ei ej + (σ2 + σ2he2 

i )
2] 

n i=1 j 6 i=12T 4 =i 

2 
= 

2T 4 T (T − 1)(nσ4 + 2σ4h + σ4h2) 
n
2 1 

= 
2T 4 Op(nT 2) = Op( ). 
n nT 2 
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Proof of part (d). Note that 

1 1 
trŜ2 − trS2 

n n 

=
2 
tr[S(Ŝ − S)] − 

1 
tr(Ŝ − S)2 

n n 

=
2 
tr[S(−A0 − A1 − A2 + A3)] + 

1 
tr(−A0 − A1 − A2 + A3)

2 

n n 
4 2 2 2 4 

= − tr(SA1) + tr(SA3) + tr(A1
2) + tr(A1A2) − tr(A1A3) 

n n n n n 
1 2 1 4 2 

+ tr(A3
2) − tr(SA0) + tr(A20) + tr(A0A1) − tr(A0A3), 

n n n n n 

since 

tr(A0A1) = tr(A1A0) = tr(A0A2) = tr(A2A0), 

tr(A1A2) = tr(A2A1), 

tr(A3A1) = tr(A1A3) = tr(A3A2) = tr(A2A3), 

tr(A21) = tr(A22), 

tr(SA2) = tr(SA1). 

Using Lemma 3, we have 

1 1 
trŜ2 − trS2 

n n √ 
1 n 1 n n 

= −2[ σ4 + σ4 + Op( √ )] + [ σ4 + Op( )]
T 2 T 2 T 2T T T 

1 1 1 
+Op( ) + Op( ) + Op( √ )

nT T 2 T nT 
2 n 1 

= − σ4 − σ4 + Op( √ ). 
T T 2 T T 

nHere we used → c ∈ (0, ∞) implicitly. T 

C Proof of Theorem 2 

Proof. Now 
1 1TW2( 1 trS)2 − 2TW1 trS 1 trS2 − TW 2 trS2 b n n n 1 nJLW − JLW = . 

2( 1 trS + W1)2( 1 trS)2 
n n 
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For the numerator, 

1 1 1 1 
TW2( trS)

2 − 2TW1 trS trS2 − TW 2 trS2 
1 n n n n 

2 n 1 1 
= T [− σ4 − σ4 + Op( √ )][σ2 + Op(√ )]2 

T T 2 T T nT 
σ2 1 1 n 1 −2T [− + Op( √ )][σ2 + Op(√ )][( + 1)σ4 + Op(√ )]
T T n nT T T 
σ2 1 n 1 −T [− + Op( √ )]2[( + 1)σ4 + Op(√ )]
T T n T T 
n 1 1 

= [−2σ4 − σ4 + Op(√ )][σ4 + Op(√ )]
T T nT 

1 1 n 1 
+[2σ2 + Op(√ )][σ2 + Op(√ )][( + 1)σ4 + Op(√ )] 

n nT T T 
σ4 1 n 1 

+[− + Op( √ )][( + 1)σ4 + Op(√ )]
T T n T T 

n 1 1 
= −2σ8 − σ8 + Op(√ ) + Op(√ )

T T nT 
n 1 1 

+2( + 1)σ8 + Op(√ ) + Op(√ )
T n T 

n n 1 
= σ8 − σ8 + Op(√ ). 

T T 2 T 

For the denominator, 

2( 
1 
trS + W1)

2(
1 
trS)2 

n n 
1 σ2 1 1 

= 2[σ2 + Op(√ ) − + Op( √ )]2[σ2 + Op(√ )]2 

nT T T n nT 
(T − 1)2 1 1 

= 2[
T 2 σ4 + Op(√ )][σ4 + Op(√ )]

nT nT 
2(T − 1)2 1 

= 
T 2 σ8 + Op(√ ). 

nT 

n σ8− n σ8 √1
n T T 2 +Op( 

T 
) n p nHence b = − → 0 as (n, T ) →∞ and → c ∈ (0, ∞).JLW − JLW − 2(T −1) 2(T −1)2 

√1 2(T −1) Tσ8+Op( )
T 2 nT 

D Proof of Theorem 4 

Proof. Under the strong factor alternative, the n × 1 vectors ν1, ..., νT are iid N(0, Σn), where P r 0Σn = σ2(In + hj ej ej ) and hj → dj ∈ (0, ∞) for j = 1, ..., r.j=1 n 

Σn = ΓnΛnΓn
0 , where Λn = diag(λ1, ..., λn). λ1, ..., λn are eigenvalues of Σn and λj = σ2(1 + hj ) 

for j = 1, ..., r, λj = σ2 for j = r +1, ..., n. Γn = (e1, ...er, g1, ...gn−r) and g1, ...gn−r are constructed 
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such that Γn is orthogonal. 
1 
2Γ0 nνt, then wt is iid N(0, In). Let V = (ν1, ..., νT ) and W = (w1, ..., wT ), then 

−
Let wt = Λn 

−
2Γ0 V . Let W 0 = (ω1, ...ωn), then ωi is iid N(0, IT ), since we assume there is no time nW = Λn 

dependence. 

1 1 1 11 1− −
trV V 0 trV 0V tr(V 0ΓnΛ Γ0 nV ) = trW 0ΛnW2 2trS )Λn(Λ= = = n n

T T T T 
1 Xn 1 Xn 1 Xn 

= tr( λiωiω
0 
i) = tr( λiωi

0 ωi) = λiαii. 
T i=1 T i=1 T i=1 

Here αii = ω0 iωi has a chi-squared distribution of with T degrees of freedom. Note that 

1 1 Xn 1 Xn Xr 
E( trS) = E( λiαii) = λi = σ2(1 + hj /n) 
n nT i=1 n i=1 j=1Xr 

→ σ2(1 + dj )
j=1 

and 

1 1 1 1 Xn 1 Xn 
V ar( trS) = E( trS)2 − E2( trS) = E( λiαii)

2 − ( λi)
2 

n n n n2T 2 i=1 n i=1 

1 Xn 
λiα

2 
X 1 Xn 

λi)
2 = E( ii + 2 λiλj αiiαjj ) − ( , 

n2T 2 i=1 i<j n i=1 

with 

E(α2 
ii) = T 2 + 2T 

E(αiiαjj ) = E(αii)E(αjj ) = T 2 . 

We have 

1 1 Xn Xn 1 Xn 
V ar( trS) = (2T λi 

2 + T 2( λi)
2) − ( λi)

2 

n n2T 2 i=1 i=1 n i=1 

2 Xn 2 Xr Xr 
= λ2 = σ4( hj 

2 + 2 hj + n) 
n2T i=1 i n2T j=1 j=1 

2 Xr hj Xr hj 1 
= σ4( ( )2 + 2 + ) → 0. 

T j=1 n j=1 n2 n 

p P1 rTherefore trS → σ2(1 + dj ). Note that n j=1 

1 1 1 1 
trS2 = tr(V V 0V V 0) = tr(V 0V V 0V ) = tr(W 0ΛnWW 0ΛnW ) 
n nT 2 nT 2 nT 2 

1 Xn Xn 
= tr( λiωiω

0 
i)( λj ωjω

0 
j )nT 2 i=1 J=1 X1 Xn 

= [ λ2 
i (ω

0 
iωi)

2 + 2 λiλj (ω
0 
iωj )

2]
nT 2 i=1 i<j Xn X1 

= ( λi 
2α2 
ii + 2 λiλj α

2 
ij )nT 2 i=1 i<j 
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with αij = ω0 ωj . hj ≥ 0 for j = 1, ..., r, so λj = σ2(1 + hj ) ≥ σ2 for all j. Hencei

1 1 
= σ4 h

2
1 + 2h1 α

2 
11trS2 ≥ (λ21 − σ4)α2 .11 T 2n nT 2 n 

d√Note that α11 follows a Chi-square distribution with T degree of freedom. Hence α11−T → N(0, 1),
2T 

and 
√ √α11 − T 

α11 = T + 2T ( √ ) = T + Op( T ). 
2T 

Consequently, 
√ 

1 1 + 2h1 α
2

1 + 2h1 T 2 + Op(T T )11trS2 ≥ nσ4 h
2 

= nσ4 h
2 

2 T 2 2 T 2n n n

1 + 2h1 1 + 2h1 1 n 
= nσ4 h

2 

+ nσ4 h
2 

Op(√ ) = nσ4d21 + Op(√ ).
2 2n n T T 

p1This implies trS2 →∞ at least as fast as n. On the other hand, n Xn X1 1 
trS2 = λi 

2α2 
ij )( ii + λiλj α
2 

n nT 2 i=1 i6=j 
1 Xr 1 Xn 1 Xr Xr 

= (hi 
2 + 2hi)α

2 
ii + αii 

2 + (1 + hi)(1 + hj )α
2 
ijnT 2 i=1 i=1 i=1 j=1,j 6nT 2 nT 2 =i

1 Xr Xn 1 Xn Xr 
+ (1 + hi)α

2 (1 + hj )α
2 

ij + ijnT 2 i=1 j=r+1 nT 2 i=r+1 j=1

1 Xn Xn 
+ α2 

ijnT 2 i=r+1 6j=r+1,j=i 

1 Xr 1 Xn 1 Xr Xr 
= (h2 

i + 2hi)α
2 α2 hihj α

2 
ijnT 2 i=1 ii + 

nT 2 i=1 ii + 
nT 2 i=1 j=1,j=6 i 

1 Xr Xr 1 Xr Xr 
+ (hi + hj )α

2 αij 
2 

ij + 
nT 2 i=1 j=1,j 6 nT 2 i=1 j=1,j=i=i 6
1 Xr Xn 1 Xr Xn 1 Xn Xr 

hiα
2 α2 hj α

2+ ij + ij + ijnT 2 i=1 j=r+1 nT 2 i=1 j=r+1 nT 2 i=r+1 j=1 

1 Xn Xr 1 Xn Xn 
+ α2 α2 

ij + ijnT 2 i=r+1 j=1 nT 2 i=r+1 j=r+1,j=6 i 
1 Xr 1 Xn 1 Xr Xr 

= (hi 
2 + 2hi)α

2 α2 hihj α
2 

ii + ii + ijnT 2 i=1 i=1 i=1 j=1,j 6nT 2 nT 2 =i 

1 Xr Xn 1 Xn Xr 1 Xn Xn 
+ hiα

2 hj α
2 α2 

ij + ij + ijnT 2 i=1 j=1,j=i nT 2 i=1,i6 j=1 nT 2 i=1 j=1,j=6 i6 =j 

1 Xr 1 Xr Xr 
= (hi 

2 + 2hi)α
2 

ijii + hihj α
2 

nT 2 i=1 nT 2 i=1 j=1,j 6=i 
1 Xr Xn 1 Xn Xn 

hiα
2 α2+2 ij + ijnT 2 i=1 j=1,j 6 nT 2 i=1 j=1=i 

n n n 
= Op(n) + Op( ) + Op( ) + Op( ) = Op(n). 

T T T 
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This is because 

√ 
αij = Op( T ), 

1 Xn Xn 1 n 1 
α2 = trW W 0 = ( + 1)σ4 + Op(√ ),ijnT 2 i=1 j=1 n T T 

1 Xr Xn n 
hiαij 

2 = Op( ). 
nT 2 i=1 j=1,j 6 T=i 

The last equation follows from 

1 Xn 1 Xn 1 Xn Xn 
E( α2 

ij )
2 = Eα4 Eα2 

ij α
2 
ikij + 

nT 2 j=1,j=i 2T 4 j=1,j=i j=1,j=i k=1,k 6 66 n 6 n2T 4 6 =i,k=j 

1 1 
= (n − 1)[3T (T + 2)] + (n − 1)(n − 2)[T (T + 2)] 

2T 4 2T 4 

= 
1
(n 2 − 1)T (T + 2) = O(

1
), 

n n

2T 4 

1 1 

n T 2 

for any i = 1, ..., r. Therefore, trS2 = Op(n) exactly, i.e. trS2 =6 op(n). Hence n n 

1 1 
U = ( trS)−2( trS2) − 1 = Op(n), 

n n 

and 
TU − n − 1 

JLW = = Op(nT ). 
2 

E Proof of Proposition 2 

Proof of part (a). Note that 

1 1 1 XT 1 XT Xn 
trS = tr[ νtνt

0 ] = νit 
2 

n n T t=1 nT t=1 i=1P r 
j=1 hj 1 XT Xn 

= σ2(1 + (ν2 
it)) + it − Eν2 

n nT t=1 i=1Xr 1 
= σ2(1 + dj ) + Op(√ ), 

j=1 T 

since 

1 XT Xn 1 XT Xn Xn 
E[ (νit 

2 − Eν2 = it − Eν2 
jt − Eν2 

it)]
2 E(ν2 

it)(ν
2 

jt)nT t=1 i=1 n2T 2 t=1 i=1 j=1 

=
1 
O(n 2T ) = O(

1
).

2T 2n T 
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Proof of part (b). As shown in part (b) in Proposition 1, 

1 1 XT Xn 1 XT Xn Xn 
trS2 = νit 

4 + νit
2 ν2 

jt n nT 2 t=1 i=1 nT 2 t=1 j 6=i i=1 XT XT Xn XT XT Xn Xn 
ν2+

1 
itν
2 1 

νitνisνjsνjt is + 
nT 2 t=1 s6 i=1 nT 2 t=1 s6 i=1 j 6=t =t =i 

1 n(T − 1) Xr Xn Xr √2 = Op( ) + Op(1) + Op(1) + { σ4[ dj 
2 − ( dj ei,j )

2] + Op( n)}
T T j=1 i=1 j=1 

n(T − 1) Xr Xn Xr √2 = σ4[ d2 
j − ( dj ei,j )

2] + Op( n). 
T j=1 i=1 j=1 

Here we have used the following four results: 

(1) 

1 XT Xn 1 1 XT Xn 1 1 1 
ν4 (ν4 
it = Eνit 

4 + it − Eνit
4 ) = Op( ) + Op( ) = Op( ). 

nT 2 t=1 i=1 T nT 2 t=1 i=1 T T T 

n(2) If → c ∈ (0, ∞),T 

1 XT Xn Xn 
ν2 

jt (1).itν
2 = Op

nT 2 t=1 j 6=i i=1 

(3) 
1 XT XT Xn 

ν2 = Op(1).isnT 2 t=1 s6 itν
2 

=t i=1 

(4) 

1 XT XT Xn Xn 
νitνisνjsνjt 

nT 2 t=1 s6 i=1 j=i=t 6
n(T − 1) Xr Xn Xr √2 = σ4[ d2 

j − ( dj ei,j )
2] + Op( n). 

T j=1 i=1 j=1 

This is because: 

1 XT XT Xn Xn 
E[ νitνisνjsνjt]

2 

nT 2 t=1 s6 i=1 j=i=t 6
1 XT XT Xn Xn XT XT Xn Xn 

= E(νi1t1 n2T 4 t1=1 s1 6=t1 i1=1 j1 6=i1 t2=1 s2 6=t2 i2=1 j2 6=i2 

νi1s1 νj1s1 νj1t1 νi2t2 νi2s2 νj2s2 νj2t2 ) 

1 
= [E(4, 4) + E(4, 3) + E(4, 2) + E(3, 4)

2T 4 

+E(3, 3) + E(3, 2) + E(2, 4) + E(2, 3) + E(2, 2)] 

1 (T − 1)2 Xr Xn Xr 

n

2 = 
2T 4 E(4, 4) + O(n) = 

2T 2 σ
8[ h2 

j − ( hj ei1,j )
2]2 + O(n) 

n n j=1 i1=1 j=1 

1 XT XT Xn Xn 
= E2[ νitνisνjsνjt] + O(n). 

nT 2 t=1 s6 i=1 j 6=t =i 
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� 

P P n 2 nWith e = 1 for each j and ej1,j ej1,k = 0, it can be shown that j1 j1,j j1 XT XT Xn Xn XT XT Xn Xn 
E(4, 4) = σ8 

t1=1 s1 6=t1 i1=1 j1 6=i1 t2=1 s2 6=t2 i2=1 j2 6=i2Xr Xr 
( hj ei1,j ej1,j )

2( hj ei2,j ej2,j )
2 

j=1 j=1Xn Xn Xr X 
2 2 = σ8T 2(T − 1)2[ ( hj 

2 ei1,j ej1,j + 2 hj hkei1,j ej1,j ei1,kej1,k)]
2 

i1=1 6 j=1 j<k j1=i1Xn Xr X 
2 2 2 2 = σ8T 2(T − 1)2[ ( h2 

j ei1,j (1 − ei1,j ) − 2 hj hkei1,j ei1,k]
2 

i1=1 j=1 j<k Xn Xr Xr X 
2 4 2 2 = σ8T 2(T − 1)2[ ( hj 

2 ei1,j − hj 
2 ei1,j ) − 2 hj hkei1,j ei1,k]

2 
i1=1 j=1 j=1 j<k Xr Xn Xr 2 = σ8T 2(T − 1)2[ h2 

j − ( hj ei1,j )
2]2 , 

j=1 i1=1 j=1 

1 XT XT Xn Xn (T − 1) Xn Xn Xr 
σ4E[ νitνisνjsνjt] = ( hj ei1,j ej1,j )

2 

nT 2 t=1 s6 i=1 j=i nT i1=1 j1=i1=t 6 6 j=1 

(T − 1) Xr Xn Xr 2 = σ4[ h2 
j − ( hj ei1,j )

2]. 
nT j=1 i1=1 j=1 

Proof of part (c). As shown in part (c) of Proposition 1, 

1 1 Xn 1 XT 1 XT 
tr(Ŝ − S) = tr[ ( νit)

2 − x̃t(β̃ − β)ν̃t 
0 

n n i=1 T t=1 T t=1 

1 XT 1 XT0 0− ν̃t(β̃ − β)0 x̃ + x̃t(β̃ − β)(β̃ − β)0 x̃ ]. 
T t=1 t T t=1 tP √ 1

hj 
PT n 0 2With → dj ∈ (0, ∞), x̃ ν̃it = Op( nT ). The proof is as follows. ν̃t = ΓnΛn w̃t,n t=1 i=1 it

− 1 
2where wt = Λ n Γ0 νt is iid N(0, In). HencenXT Xn XT 1 XT 1 XT0 2 0 2 0 x̃itν̃it = x̃ ΓnΛn w̃t = x̃ Γn(Λn − σIn)w̃t + σ x̃ ΓnInw̃tt t tt=1 i=1 t=1 t=1 t=1 XT XT XT XT0 0 0 0 = σ x̃ ΓnHw̃t + σ x̃ Γnw̃t = σ y Hw̃t + σ y w̃t,t t t t t=1 t=1 t=1 t=1 

√ √ 
where H = diag( 1 + h1 − 1, ..., 1 + hr − 1, 0, ..., 0), yt = Γ0 x̃t. Hencen XT Xn Xr XT p XT 0 x̃itν̃it = σ ( 1 + hj − 1)yjt w̃jt + σ ytw̃t t=1 i=1 j=1 t=1 t=1 r r 

√ Xr XT 1 + hj 1 XT 0 = nσ ( − )yjt w̃jt + σ ytw̃t. j=1 t=1 n n t=1 

With some regularity conditions on X and hj → dj ∈ (0, ∞), it is easy to see that n XT Xn √ √ √ 
x̃itν̃it = Op( nT ) + Op( nT ) = Op( nT ). 

t=1 i=1 

Consequently, 

1 XT Xn 1 XT Xn 1˜ 0β − β = ( x̃itx̃it)
−1( x̃itν̃it) = Op(√ ),

nT t=1 i=1 nT t=1 i=1 nT 

29 



� 

� 

1 XT 1 − tr[ x̃t(β̃ − β)ν̃t
0 ] = Op( ),

nT t=1 nT 
1 XT 10− tr[ ν̃t(β̃ − β)0 x̃ ] = Op( ),
nT t=1 t nT 

and 
1 XT 10tr[ x̃t(β̃ − β)(β̃ − β)0 x̃ ] = Op( ). 
nT t=1 t nT 

In addition, 
1 Xn 1 XT 1 Xn 1 XT 1 

( νit)
2 = (√ νit)

2 = Op( ). 
n i=1 T t=1 nT i=1 T t=1 T 

Therefore, 
1 1 1 1 1 1 
tr(Ŝ − S) = Op( ) + Op( ) + Op( ) + Op( ) = Op( ). 
n T nT nT nT T 

Proof of part (d). As in part (d) of Proposition 1, 

1 1 4 2 2 2 4 
trŜ2 − trS2 = − tr(SA1) + tr(SA3) + tr(A1

2) + tr(A1A2) − tr(A1A3) 
n n n n n n n 
1 2 1 4 2 

+ tr(A3
2) − tr(SA0) + tr(A20) + tr(A0A1) − tr(A0A3). 

n n n n n 

Using Lemma 3, 
√ 

1 1 n 1 1 1 1 
trŜ2 − trS2 = Op( ) + Op( ) + Op( ) + Op( ) + Op(√ ) 
n n T T T 2 T 2 nT 2 

√ 
1 n n n 1 n 

+Op( ) + Op( ) + Op( ) + Op( ) + Op( ) = Op( ). 
nT 2 T T 2 T 2 T 2 T 

nHere we used → c ∈ (0, ∞) implicitly. T 

F Proof of Theorem 5 

1 1TW2( 1 trS)2−2TW1 n trS 1 trS2−TW 1
2 
n trS

2 
n nProof. Recall that JbLW − JLW = . 

2( 1 trS+W1)2( 1 trS)2 
n n 

For the numerator, 

1 1 1 1 
TW2( trS)

2 − 2TW1 trS trS2 − TW 2 trS2 
1 n n n n 

n Xr 1 
= TOp( )[σ

2(1 + dj ) + Op(√ )]2 

T j=1 T 
1 Xr 1 n(T − 1) Xr 

−2TOp( )[σ2(1 + dj ) + Op(√ )][ σ4[ d2 
j − 

T j=1 T j=1T Xn Xr 2 √ 
( dj ei,j )

2] + Op( n)]
i=1 j=1 

1 n(T − 1) Xr Xn Xr √2−T [Op( )]
2[ σ4[ dj 

2 − ( dj ei,j )
2] + Op( n)]

T T j=1 i=1 j=1 
n 

= Op(n) + Op(n) + Op( ) = Op(n). 
T 
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For the denominator, 

2( 
1 
trS + W1)

2(
1 
trS)2 

n n Xr 1 1 Xr 1 
= 2[σ2(1 + dj ) + Op(√ ) + Op( )]

2[σ2(1 + dj ) + Op(√ )]2 
j=1 j=1T T T Xr 1 

= 2σ8(1 + dj )
4 + Op(√ ). 

j=1 T 

Op(n) nTherefore, JbLW − JLW = P r 1 = Op(n). Here we used → c ∈ (0, ∞)
2σ8(1+ j=1 dj )4+Op( √ ) T 

T 

implicitly. 

G Proof of Theorem 6 

p r 1+2h1 11Proof. From the proof of Theorem 4, we know that 1 trS → 1+ 
P 

dj and 1 trS2 ≥ σ4 h
2 α2 

. n j=1 n n T 2 

For any M > 0, 

P (JbLW > M) = P (JbLW − JLW + JLW > M) 

Op(n) + JLW M 
= P (Op(n) + JLW > M) = P ( > )

nT nT 
1 trS2 
nOp(n) + [T − T − n − 1]
( 1 trS)2 M 

= P ( n > )
nT nT 

1 1 M 1 T + 1 1 
= P ( trS2 > ( trS)2( + + + Op( )))2n n nT T nT T 

P (σ4 h
2
1 + 2h1 α11

2 1 M 1 T + 1 1 ≥ > ( trS)2( + + + Op( )))2 T 2n n nT T nT T 
α2 1 1 M 1 T + 1 1 α2 c11 11 = P ( > ( trS)2( + + + Op( ))) ≥ P ( > √ )
T 2 σ4d21 n nT T nT T T 2 T 

1 1 T +1 cfor some c > 0. This holds since ( 1 trS)2( M + + + Op( 1 )) < √ for a large enough T .
σ4d2 n nT T nT T T1 

Hence r r√ √ 
α2 c c T c T11 α11 α11 − T 

P (JbLW > M) ≥ P ( > √ ) = P ( > 1 ) = P ( √ > 1 − ) → 1,
T 2 T T T 4 2T 2 T 4 2 q √ q

d T c T√since α11−T → N(0, 1) and 1 − → −∞.2 22T T 4 
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