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Anisotropic Inflation and the Origin of Four Large Dimensions

C. Armendáriz-Picón∗

Enrico Fermi Institute and Department of Astronomy and Astrophysics,

University of Chicago.

Vikram Duvvuri†

Enrico Fermi Institute and Department of Physics, University of Chicago.

Abstract

In the context of (4 + d)-dimensional general relativity, we propose an inflationary scenario

wherein 3 spatial dimensions grow large, while d extra dimensions remain small. Our model re-

quires that a self- interacting d-form acquire a vacuum expectation value along the extra dimensions.

This causes 3 spatial dimensions to inflate, whilst keeping the size of the extra dimensions nearly

constant. We do not require an additional stabilization mechanism for the radion, as stable solu-

tions exist for flat, and for negatively curved compact extra dimensions. From a four-dimensional

perspective, the radion does not couple to the inflaton; and, the small amplitude of the CMB

temperature anisotropies arises from an exponential suppression of fluctuations, due to the higher-

dimensional origin of the inflaton. The mechanism triggering the end of inflation is responsible,

both, for heating the universe, and for avoiding violations of the equivalence principle due to

coupling between the radion and matter.
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I. INTRODUCTION

Most theories which attempt a unification of gravity with matter require the existence

of additional spatial dimensions. This gives rise to a pressing question: Why do the extra

dimensions remain unobserved? Traditionally, this question has been addressed by argu-

ing that the extra dimensions are “small” compared to experimentally accessible scales, and

hence, hitherto undetected. Insofar as the dynamics of these dimensions is gravitational, it is

believed that the relevant scale is the Planck length. Thus, it is natural for the extra dimen-

sions to be Planck-sized. However, the spirit of this “naturalness” argument requires that we

apply it to dimensions containing the observable universe, too. This leads to the conclusion

that we populate a Planck-sized universe, in obvious disagreement with observations.

The latter of the two problems stated above was one, amongst others, which inflation

was originally intended to address [1]. In the conventional picture, an initially Planck-sized

universe is “blown up”, by a sufficiently long stage of inflation, into a size much larger

than that of our present horizon, whilst also producing many other features of the universe

we observe today [2]. Hence, from the inflationary point of view, the problem is not the

“smallness” of the extra dimensions, but rather the “largeness”of the observable ones. In

other words, we must explain how three spatial dimensions inflated while the remaining ones

kept their natural, Planckian size.

Conventionally, inflation is driven by a scalar field. Instead of considering theories where

a particular subset of dimensions has been singled out, as in brane-world models [3], in this

paper we shall deal with theories where all spatial dimensions are equivalent. Then, since

a scalar does not single out any direction in space either, it generally yields accelerated

expansion in all dimensions. In order to preferentially inflate only four dimensions, a mech-

anism to keep the extra dimensions at constant size is required. From a four-dimensional

perspective, the size of the extra dimensions is characterized by a single scalar field, the

radion. Even if we manage to stabilize the radion, say, by the addition of a magnetic flux

threading the extra dimensions [4], it is unclear whether the extra dimensions would remain

stable during an inflationary phase. In fact, generally the inflaton is expected to couple to

the radion, and it is likely that this coupling does violence to the stabilization mechanism

during inflation [5, 6]. The stabilization of compactified spaces has been extensively studied

in [7].
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In this paper we propose an alternative minimal model which achieves inflation in four

dimensions whilst keeping the extra dimensions “small”. In order to facilitate this, we require

that inflation be driven by a form, rather than a scalar field. The benefit of introducing

a form lies in the fact that, unlike a scalar, a form may point in several directions. By

wrapping the extra directions with a form, we are able to introduce an anisotropy that

is necessary to distinguish four dimension from the additional ones. The details of four-

dimensional inflation are then determined by the self-interaction of the form. Furthermore,

it is not necessary to provide an additional stabilization mechanism for the radion, and the

interactions of the inflaton allow it to decouple naturally from the radion.

Massless forms are ubiquitous in superstring theory and in supergravity. In string theory,

forms are a particularly crucial part of the spectrum since a (p + 1)-form couples to a

Dp-brane, much like a vector boson (1-form) couples to a charged particle (0-brane) in

gauge theories. We, however, will require a massive form. While massive forms are not as

familiar as their massless counterparts, they are certainly not unheard of. For instance, in

supergravity, a 2-form may acquire mass by eating a vector [8].

Forms also have a history in cosmology. Form fluxes in compact spaces have long been

considered as a way to stabilize internal dimensions [4]. Okada studied how the presence

of these fluxes might bring about radion induced inflation [9]. The role of 2-forms in Pre-

Big Bang scenarios [10] has been discussed by several authors (see for instance [10, 11]).

Recently, forms have appeared in attempts to model late-time acceleration in supergravity.

[12]. Massive vectors (1-forms) were considered by Ford, who proposed a model wherein a

four-dimensional universe undergoes inflation driven by a self-interacting vector [13].

The paper is organized as follows. In Section II we present our model. It is described,

both, from the higher-dimensional point of view, and from a dimensionally-reduced perspec-

tive. Section III contains details of the inflationary solutions, and in Section IV we compute

the spectrum of primordial density fluctuations generated during inflation. In Section V

we discuss the end of inflation, and propose a way of stabilizing the radion whilst avoiding

the severe constraints on violations of the equivalence principle. Two examples illustrating

phenomenologically realistic choices of parameters are presented in Section VI. We conclude

in Section VII.
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II. THE MODEL

Consider a (4 + d)-dimensional spacetime, i.e., one which contains d additional spatial

dimensions. We will propose a mechanism which allows three spatial dimensions to inflate,

while keeping the d remaining ones small. Towards this end, we introduce an anisotropy

via fields living on the spacetime, rather than through a violation of (4 + d)-dimensional

diffeomorphism invariance [3]. This can be achieved by spontaneously giving an expectation

value to a field that transforms non-trivially under rotations in 4+d dimensions (see [14] for

an alternative possibility). Such fields can be fermionic or bosonic. Conventional wisdom

suggests that only bosonic fields may acquire large expectation values. While this need not

always be true [15], we will adopt such a viewpoint here. This leaves us with one choice,

vector fields and their generalizations, differential forms.

A. Higher-dimensional equations

Consider a (totally antisymmetric) d-form AM1···Md
= A[M1···Md] minimally coupled to

gravity,

S =

∫
d4+dx

√−g

[
R

6
− 1

2(d + 1)!
FM1···Md+1

F M1···Md+1 − W (A2)

]
. (1)

The (d+1)-form F is the field strength of A, FM1···Md+1
= (d+1)∂[M1

AM2···Md+1], and the self-

interaction term W is an as of yet unspecified arbitrary function of A2 ≡ AM1···Md
AM1···Md.

We work in units where the four and higher-dimensional Newton’s constant is 8πG = 3, and

our metric signature is (−, +, · · · , +).

Although we have not written the additional matter terms in Eq. (1), we assume that

the form does not couple to them. Hence, the form AM1···Md
only interacts with gravity. In a

theory of massless forms, invariance under the gauge transformations δA = dB, where B is

any d − 1-form, guarantees that appropriate components of the form decouple from matter

[16]. In our theory, the form A is not massless, and it does not couple to additional matter

sources either, so we shall not require gauge invariance. In fact, the self-interaction terms

W explicitly violates this symmetry.

Varying the action (1) with respect to the metric one obtains Einstein’s equations
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GMN = 3 TMN , where the energy momentum tensor is given by

TMN =
1

d!
FMM2···Md+1

FN
M2···Md+1 + 2 d W ′ AMM2···Md

AN
M2···Md − gMN

(
F 2

2(d + 1)!
+ W

)
.

(2)

and a prime means a derivative with respect to A2. Varying the action with respect to

AM1···Md
one obtains the field equation

∇MF MM1···Md = 2 d! W ′ AM1···Md, (3)

which implies the constraint ∇M1
( W ′ AM1M2···Md) = 0.

In this paper we are interested in cosmological solutions of the equations of motion. Hence,

we consider a (4+d)-dimensional factorizable spacetime gMN consisting of a four-dimensional

Friedmann-Robertson-Walker metric gµν times a d-dimensional compact internal space with

metric Gmn of constant curvature R(d),

ds2
4+d ≡ gMNdxMdxN = gµνdxµdxν + b2Gmndxmdxn. (4)

The coordinates xµ label our four dimensional world, and the coordinates xm label what

we shall call the “internal” or “compact” space (the dimensions that remain small during

inflation). Once the four dimensions start to inflate, the spatial curvature of the four-

dimensional metric soon becomes negligible. So, without loss of generality, we consider a

spatially flat universe,

ds2
4 ≡ gµνdxµdxν = −dt2 + a2(t)δijdxidxj , (5)

where t is cosmic time and a(t) is the scale factor. We normalize the internal space metric

by the condition ∫
ddx

√
G = 1. (6)

Hence, the volume of the internal space is bd. Then, the four-dimensional scalar b can be

interpreted as the radius of the internal space, so we shall call it the radion.

Substituting the metric ansatz (4) into the (4 + d)-dimensional Einstein equations and

assuming that the radion only depends on time one obtains

H2 + dHI +
d2 − d

6
I2 +

R(d)

6 b2
= ρ (7a)

3H2 + 2Ḣ +
d2 + d

2
I2 + dİ + 2dHI +

R(d)

2 b2
= −3p (7b)

6H2 + 3Ḣ +
d2 − d

2
I2 + (d − 1)İ + 3(d − 1)HI +

(d − 2)R(d)

2d b2
= −3P. (7c)

5



In the previous equations we have introduced the Hubble parameter H ≡ d log a/dt and the

expansion rate in the compact space I ≡ d log b/dt. A dot means a derivative with respect

to cosmic time t. The energy density ρ, the three-dimensional pressure p, and the pressure

along the compact space P are the corresponding components of the energy momentum

tensor

TM
N = diag(−ρ, p, p, p, P, · · · , P ). (8)

Thus, the energy momentum tensor (2) has to be diagonal in order for solutions of Einsteins

equations to exist. An ansatz that satisfies this condition is

AM1···Md
=

√
G ε0123M1···Md

φ, (9)

where εM1···Md+4
is totally antisymmetric and ε0···d+4 = 1. Consequently, A has non-vanishing

components only along the compact dimensions. In fact, A is proportional to the volume

form in the compact space, and the proportionality factor is the four-dimensional scalar φ,

which will turn out to be the inflaton. In a FRW-universe, the field φ can only depend on

time. From the ansatz (9) and Eq. (4) the square of A given by

A2 = d! b−2d φ2, (10)

i.e. A2 is a combination of the inflaton φ and the radion b.

Substituting Eq. (9) into Eq. (2) one finds that the energy momentum tensor is indeed

of the form (8), where energy density and pressures are given by

ρ =
b−2d

2
φ̇2 + W (11a)

p =
b−2d

2
φ̇2 − W (11b)

P = −b−2d

2
φ̇2 + 2 W ′ A2 − W. (11c)

One can derive the equation of motion for φ from Eqs. (7) and (11) or directly by considering

Eq. (3) for the internal components,

φ̈ + (3H − dI) φ̇ + 2 d! W ′ φ = 0. (12)

Because of the symmetry of the ansatz, the remaining components of the equation of motion

are identically satisfied.
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By definition, inflation is a stage of accelerated expansion ä > 0. From a four-dimensional

perspective, any inflationary stage can explain the flatness and homogeneity of the universe.

However, in an expanding universe [17], only a stage of inflation close to de Sitter yields in

general the nearly scale invariant spectrum of primordial density fluctuations that observa-

tions seem to favor [18]. Therefore, in order to get a feeling of the constraints our d-form

has to satisfy we shall consider a de Sitter stage H = const. In addition, we want to explain

why our four-dimensions are large compared to the internal ones, and the simplest way

to accomplish that is to assume that the size of the internal dimensions remains constant.

Therefore, we shall look for solutions with static internal dimensions, I = İ = 0. With these

assumptions Eqs. (7) take the form

H2 +
R(d)

6 b2
= ρ (13a)

3H2 +
R(d)

2 b2
= −3p (13b)

6H2 +
(d − 2)R(d)

2d b2
= −3P. (13c)

Solutions of the previous equations exist if and only if

ρ + p = 0 (14a)

2ρ + P =
d + 2

6 d

R(d)

b2
. (14b)

Eq. (14a) is the familiar inflationary relation satisfied by a cosmological constant or a frozen

scalar field. The second condition, Eq. (14b), implies that for flat or negatively curved

internal dimensions the null energy condition has to be violated [19, 20].

We restrict now our attention to the energy momentum tensor of the d-form, Eqs. (11).

Then, Eq. (14a) implies that the inflaton is frozen, φ̇ = 0. Although an exactly frozen field

is in general not solution of Eq. (12), we shall later see that a nearly frozen, slowly-rolling

field actually is. On the other hand, Eq. (14b) constraints the form of the interaction W ,

W + 2W ′A2 =
d + 2

6 d

R(d)

b2
0

, (15)

where b0 is the constant value of b. The solution to the previous equation is

W (A2) = W0 + W1 · (A2)−1/2, (16)
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where W1 is an arbitrary integration constant.1 If R(d) = 0, then Eq. (15) implies W0 = 0.

If R(d) 6= 0 the (4 + d)-dimensional cosmological term W0 is related to the constant value of

b by

b0 =

√
d + 2

6d

R(d)

W0

. (17)

In summary, if a (nearly) frozen field φ is a solution of the equations of motion, there

exist solutions where four dimensions inflate and the where radius of the internal dimensions

is constant. If the compact internal dimensions are flat, R(d) = 0, any constant value of b

is possible. If the internal dimensions are positively curved, R(d) > 0, a positive (4 + d)-

dimensional cosmological constant W0 is required, whereas if the internal dimensions are

negatively curved, R(d) < 0, a negative cosmological constant W0 is needed to stabilize the

radion during inflation.

Compact spaces of constant negative curvature can be constructed by acting on the d-

dimensional hyperbolic plane Hd with a free discrete isometry group of the space [21]. For

d ≥ 3, these compact hyperbolic manifolds are “rigid”, in the sense that the radius is the

only massless moduli they admit. In that case, our metric ansatz for the metric in the

internal space is the most general one. The application of compact hyperbolic manifolds

to cosmology has been pioneered by Starkman and collaborators (see [22] and references

therein). Recently, compact hyperbolic spaces have also received attention in the context of

cosmological solutions in supergravity [12].

Below we shall see that a nearly frozen field is indeed a solution of the equations of motion,

completely analogous to a conventional slow-roll inflationary regime. We shall also show that

if the compact space is positively curved, solutions with constant radion are unstable. In

order to understand these properties though, it is going to be convenient to work with the

dimensionally reduced action.

B. Dimensionally reduced action

In the cosmological setting we have been dealing with, the radion b and the inflaton φ

only depend on time. In particular, b and φ do not depend on the internal coordinates xm.

1 One could also allow for functions that are only approximately described by Eq. (16), though for simplicity

we shall not explore this possibility here.
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If the different fields in the action (1) do not depend on the internal space, it is possible

to integrate over the internal space and obtain a four dimensional action that describes the

dynamics of the four-dimensional scalars b and φ. Substituting Eq. (9) into the Lagrangian

of Eq. (1), and integrating over the internal space we obtain

S =

∫
d4x

√
−g bd

[
R(4)

6
+

R(d)

6 b2
+

d2 − d

6

∂µb ∂µb

b2
− 1

2

∂µφ ∂µφ

b2d
− W (A2)

]
, (18)

where we have used Eq. (6) and A2 stands for the r.h.s of Eq. (10). R(4) is the four-

dimensional scalar curvature and wherever the metric tensor is involved the four-dimensional

metric gµν is to be used. Note that the kinetic terms of the different fields are not in canonical

form. For convenience, we would like to work with canonical kinetic terms for the metric

and the radion, so we shall rename those fields,

gµν ≡ b−dg̃µν and b ≡ eσ. (19)

Plugging the last expressions into Eq. (18) we get

S =

∫
d4x

√−g

[
R(4)

6
− d2 + 2d

12
∂µσ ∂µσ − 1

2

∂µφ ∂µφ

e2dσ
+ e−(d+2)σ R(d)

6
− e−dσW (A2)

]
, (20)

where all quantities refer to the tilded metric (we have dropped the tilde). Because for the

solutions we are interested in b is (nearly) constant, the behavior of the scale factor in the

Jordan frame (18) and the Einstein frame (20) is essentially the same. Let us stress though,

that in any case all “conformal” frames are physically equivalent, since physical predictions

should not depend on the way fields are named (see for instance [23]).

The action (20) describes two interacting scalar fields φ and σ. Substituting Eq. (16)

into Eq. (20) and using Eq. (10) one obtains a potential term

U(σ) + V (φ) ≡ −e−(d+2)σ R(d)

6
+ e−dσW0 +

W1√
d!

1

φ
, (21)

where by “potential” we mean the sum of those terms in the Lagrangian that do not contain

derivatives of the fields, with an overall minus sign. Remarkably, this potential does not

involve any coupling between the radion σ and the inflaton φ, which is part of the origin of the

condition (15). Therefore, as far as the potential is concerned, the two fields are decoupled,

and we can write down the potential terms for the radion and the inflaton separately. For

non-vanishing internal curvature the radion potential is

U(σ) = −e−(d+2)σ R(d)

6
+ e−dσW0, (22)
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Exp(   )σ

0W  Exp(−d   )σ

σ
(d)−R    Exp(−(d+2)   ) σ

U(   )

FIG. 1: A plot of the radion potential, Eq. (22), for different signs of the compact space curvature

R(d). In order for the potential to have an extremum, sgn(R(d)) = sgn(W0). The extremum is then

a minimum if W0 < 0. For R(d) = 0, the radion potential identically vanishes.

which has an extremum at σ0 = log b0, and b0 is given by Eq. (17). The second derivative

of U(σ) at σ0 is

m2
σ ≡ 6

d2 + 2d

d2U

dσ2

∣∣∣
σ0

= −2e−(d+2)σ0

d
R(d). (23)

Therefore, for R(d) > 0 (i.e. W0 > 0) a solution with constant b = b0 is unstable, whereas

for R(d) < 0 (i.e. W0 < 0) a solution with constant b = b0 is perfectly stable. In the latter

case, the minimum of V (σ) occurs at a negative value of the four-dimensional cosmological

constant

U(σ0) =
2

d + 2

(
d + 2

6d

R(d)

W0

)−d/2

W0. (24)

If the internal curvature vanishes (i.e. W0 = 0), so does the radion potential. A constant b

is then marginally stable, and any value of b0 ≡ eσ0 = const is a solution of the equations of

motion. A plot of the potential for the different signs of R(d) is shown in Fig. 1.
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III. INFLATIONARY SOLUTIONS

Our next goal is to study the inflationary solutions with nearly constant radion that we

have hinted in the previous sections and to investigate some of their properties. Let us begin

with the inflaton equation of motion,

φ̈ + (3H − 2d σ̇) φ̇ + e2dσ dV

dφ
= 0, (25)

where the inflaton potential is given by

V (φ) =
W1√

d!

1

φ
. (26)

Inverse power-law potentials such as the one in Eq. (26) are known to admit “slow-roll” infla-

tionary solutions, since they satisfy the slow-roll conditions for large values of the field [25].

We will show that during slow-roll, the radion is nearly constant and the field acceleration

is negligible. At this point let us just assume

σ̇

H
≪ 1 and φ̈ ≪ 3Hφ̇, (27)

which implies that the speed of the inflaton field is given by the slow-roll expression

φ̇ = −e2dσ

3H

dV

dφ
. (28)

Once we have found the solutions of the equations of motion in the slow-roll regime, we will

show that the assumptions made in their derivation hold. Note that the first condition in

Eq. (27) means that the radion is nearly constant during slow-roll.2

The radion equation of motion is

σ̈ + 3Hσ̇ +
6

d + 2
e−2dσφ̇2 +

6

d2 + 2d

dU

dσ
= 0, (29)

where U(σ) is given by Eq. (22). If R(d) is negative, U(σ) has a minimum at σ0. Let

us assume that the radion remains in the vicinity of the minimum, σ ≈ σ0, which implies

dU/dσ ≈ 0. If R(d) is zero the potential U(σ) identically vanishes, and so does dU/dσ. Then,

if the slow roll assumption

σ̈ ≪ 3Hσ̇ (30)

2 Quantum fluctuations are also responsible for a growth in the expectation value 〈σ2−〈σ〉2〉 ≈ H3 t during

inflation [24]. We shall assume that this effect is negligible.
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is satisfied, the speed of the radion turns to be

σ̇ = − 2 e−2dσ

(d + 2)H
φ̇2. (31)

Note that σ̇ is negative, i.e. the extra dimensions contract. Because σ̇ ≡ ḃ/b, the first

condition in (27) means that the extra dimensions evolve much slower than the inflating

ones, as desired.

From the higher-dimensional Friedmann equation (13a) or directly from Eq. (20), the

four-dimensional Friedmann equation reads

H2 =
e−2dσ

2
φ̇2 +

d2 + 2d

12
σ̇2 + V (φ) + U(σ), (32)

where V (φ) and U(σ) are respectively the inflaton and radion potentials. If R(d) = 0, U(σ)

identically vanishes. Inflation occurs if the energy density in the universe is dominated by

potential energy of the scalars. Assuming that

d2 + 2d

12
σ̇2 ≪ e−2dσ

2
φ̇2 ≪ V (φ) + U(σ) (33)

the Friedmann equation reads

H2 ≈ V (φ) + U(σ). (34)

Inserting (34) into Eqs. (28) and (31) one can express H , φ̇ and σ̇ entirely in terms of the

values of the radion and inflaton fields. The conditions (27), (30) and (33) then reduce, up

to factors of order one, to the slow-roll conditions

ǫ ≡ e2dσ

(
dV/dφ

V (φ) + U(σ)

)2

≪ 1, η ≡ e2dσ d2V/dφ2

V (φ) + U(σ)
≪ 1, (35)

which up to the exponential of σ are the conventional slow-roll conditions of single-field

slow-roll inflation [2]. For the inflaton potential (26), both conditions are satisfied in the

inflaton lies in the range
exp(dσ)√

18
<∼ φ <∼ − 1√

d!

W1

U(σ)
. (36)

Note that for flat internal dimensions (U(σ) = 0) the upper limit is shifted to infinity. For

simplicity, we shall assume in the following that during inflation, even if R(d) 6= 0, the field

φ is much smaller than the upper limit in Eq. (36). Then, V (φ) ≫ U(σ) and U(σ) can be

neglected.

The slow-roll solutions we have discussed are attractors for the evolutions of the field

[26]. This means that even if they are initially not satisfied, the equations of motion will

12



drive the field to a regime where they are [27]. Therefore, in our scenario cosmic evolution

is quite insensitive to initial conditions. During slow-roll, the relative change of the Hubble

parameter during a Hubble time is small,

Ḣ

H2
= − ǫ

6
, (37)

i.e. during slow-roll the universe inflates almost like in a de Sitter stage. At the same time,

the radion and inflaton fields are nearly frozen,

σ̇

H
= − 2 ǫ

9(d + 2)
, e−dσ φ̇

H
= −

√
ǫ

3
(38)

although the inflaton evolves much faster than the radion. Here, ǫ is the slow-roll parameter

defined in Eq. (35). Thus, to leading order in the slow-roll approximation, we can assume

that the inflaton slowly changes while the radion remains frozen at σ = σ0. Here, σ0 is the

minimum of the radion potential if the compact dimensions are negatively curved, or the

initial value of the radion if the extra dimensions are flat.

In order for inflation to successfully explain the flatness and homogeneity and the visible

universe, it is necessary for inflation to last more than around 60 e-folds (the exact number

depends on the unknown details of reheating [28]). We will discuss ways to terminate

inflation end in Section V. For our present purposes it will suffice to assume that because

the inflaton potential deviates from its functional form (26), inflation ends when the inflaton

reaches the value φ0, i.e. when the form reaches the value A2
0 = d! exp(−2dσ0)φ

2
0. Let us

then assume that at some moment of time during inflation the value the squared form is A2.

The number of e-folds of inflation between that time and the end of inflation is

N ≡ log
a0

a
≈ 3

2 d!
(A2

0 − A2), (39)

where we have assumed slow-roll in the derivation. Given N ≈ 60 and because the infla-

tionary regime is limited by Eq. (36), Eq. (39) constrains the possible values of A2
0.

IV. PERTURBATIONS

The most important consequence of a stage of quasi de Sitter inflation is the generation

of a nearly scale invariant spectrum of primordial density perturbations [29]. In the sim-

plest inflationary models, inflation is driven by a single scalar field, and its fluctuations are

13



responsible for the adiabatic primordial spectrum of fluctuation that observations seem to

favor. The presence of a second (light) scalar field during inflation is potentially dangerous,

since it could lead to entropy perturbations (see for instance [30]).

In our scenario, inflation is driven by the single inflaton field φ, but there is an additional

field, the radion σ. If the compact dimensions are flat, to leading order in slow-roll, the

potential for σ vanishes. Because of that, fluctuations of σ do not contribute to fluctuations

in the energy density, so that no entropic component is generated during slow-roll [30]. If the

compact dimensions are negatively curved, the field σ is massive. If its mass is bigger than

the Hubble factor during inflation, quantum fluctuations of σ are suppressed, so no entropy

component is generated either. In both cases, we can therefore regard σ as a constant and

study the perturbations solely due to the inflaton φ.

The power spectrum P(k) is a measure of the mean square fluctuations of the generalized

Newtonian potential in comoving distances 1/k. During radiation domination, it is given by

[25]

P(k) =
e−2dσ0

π2

V 3

V 2
,φ

∣∣∣∣∣
k=aH

, (40)

where V is the potential (26) and k = aH denotes that the r.h.s. of the equation has to

be evaluated at the time the mode crosses the Hubble radius. The factor e−2dσ0 shows up

because we work with a non-canonically normalized inflaton. Because the radion evolves

much slower than the radion, we assume that the radion is constant.

The amplitude of the power spectrum is approximately equal to the squared amplitude of

the temperature fluctuations in the cosmic microwave background, δT/T ≈ 10−5. Evaluating

P(k) for a mode that crosses the Hubble radius N e-folds before the end of inflation, Eq.

(39), we hence obtain the constraint

P =
e−dσ0

π2

W1√
d!

√
A2

0

d!
− 2N

3
≈ 10−10. (41)

Observe the exponential suppression with increasing dσ0. The (nearly constant) slope of the

power spectrum is parametrized by the spectral index ns, where

ns − 1 ≡ d logP
d log k

. (42)

Current observations imply the limits 0.9 < ns < 1.1 [31]. Substituting Eq. (40) into the

previous definition and evaluating it N e-folds before the end of inflation, Eq. (39), we

14



obtain

ns − 1 =
1

3A2
0/d! − 2N

< 10−1. (43)

Note that the quantity in the denominator is always positive. Therefore, the power spectrum

is blue (ns > 1). Cosmologically relevant scales typically left the horizon about N ≈ 60 e-

folds before the end of inflation, though this number varies with the details of reheating [28].

We show below that in order to satisfy constraints on the universality of free fall, A2
0 has to

be large, A2
0 > d! · 107. Hence, in general one expects ns ≈ 1. In Section VI we deal with

a concrete example where the different parameters (W1, σ0, d, etc.) in phenomenologically

viable models are specified.

V. REHEATING AND RADION STABILIZATION

In the conventional four-dimensional models of inflation, the universe is reheated when

inflation ends and the inflaton starts oscillating around the minimum of its potential [32].

In our model, the inflaton potential is given by Eq. (26). If R(d) < 0, inflation ends when

φ reaches the value W1/(d! U(σ0)). At that value of the field, the potential energy vanishes,

and beyond that value the potential becomes negative. The cosmological evolution of a

scalar field with such effective potentials was studied in [33]. It was found that in general,

once the potential becomes negative, the universe enters a phase of contraction that ends in

a singularity. This would prevent the universe from reheating, thus invalidating our model.

If the internal space is flat, R(d) = 0, once the slow-roll condition is satisfied, it is never

violated. In that case inflation never ends. In both cases we have to assume that around

some value of the field φ0 the potential deviates from its form in Eq. (26) and is described

by a different functional form3. This is the case if at some point the self-interaction W (A2)

develops a minimum at A2
0, as shown in Fig. 2. Around the minimum, the function W can

be expanded as

W (A2) ≈ V0 +
λ

8
(A2 − A2

0)
2, (44)

3 For an alternative mechanism to end inflation in a model with V (φ) ∝ 1/φ, see [34].
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where V0 is a cosmological term and λ is a coupling parameter. From the dimensionally

reduced point of view, Eq. (20), this yields a radion and inflaton potential

V (σ, φ) = −e−(d+2)σ R(d)

6
+ e−dσ

[
V0 +

λ

2

(
d! e−2dσφ2 − A2

0

)2
]

. (45)

Again, if R(d) < 0, the potential has a stable minimum at b0 ≡ eσ0 given by Eq. (17),

with W0 replaced by V0. Even if W has a minimum, a negative cosmological term is needed

to stabilize the radion if the internal dimensions are negatively curved [20]. Although the

value of the cosmological term during inflation and after the end of inflation might have

changed, it can do so only if the value of σ0 that minimizes the effective potential changes

significantly. Because one of our main goals was to study inflationary solutions where σ is

constant, we shall not consider this case anymore and proceed with flat internal dimensions.

If R(d) = 0, we shall assume V0 = 0, which amounts to tuning the higher-dimensional

cosmological constant to zero. During inflation, φ evolves while σ stays constant. When

A2 reaches the vicinity of A2
0 inflation ends, and the fields approach the minimum at A2

0.

Because we assume that the end of inflation and the minimum of W are not far apart we

can assume that σ and φ do not change significantly. Then

A2
0 ≈ d! e−2dσ0φ2

0, (46)

where σ0 is the constant value of σ during inflation and φ0 is the value of φ at the end of

inflation.

Although there are reheating models where the inflaton potential does not oscillate around

a minimum [35], we would like one of our fields to oscillate around the minimum of its

potential, i.e. we would like one of them to get a mass. The potential (44) has a minimum

at A2 = A0. Let us denote by σ0 and φ0 the values of σ and φ at that minimum, and let us

consider fluctuations around those values,

φ = φ0 + edσ0 δφ and σ = σ0 +

√
6

d2 + 2d
δσ. (47)

Substituting the previous definitions into the Lagrangian of Eq. (20) and expanding to

second order in the fluctuations one gets a coupled system of two canonically normalized

fields δσ and δφ. Let us introduce the also canonically normalized fields χ0 and χ1, defined

by the relations

δφ = cos θ χ0 + sin θ χ1, δσ = − sin θ χ0 + cos θ χ1, (48)
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where

sin2 θ =

(
1 +

6d

d + 2

A2
0

d!

)−1

. (49)

The fields χ0 and χ1 diagonalize the mass matrix of the fluctuations. Because the potential

Eq. (44) has a flat direction, the scalar χ0 turns to be massless. The field χ1 is massive,

and its mass is given by

m2
χ1

=
λ d! e−dσ0A2

0

sin2 θ
. (50)

We shall show below that in order to satisfy experimental restrictions related to the apparent

universality of free fall, we have to consider the small mixing angle limit θ ≪ 1. In that

case δσ ≈ χ1 is massive and δφ ≈ χ0 is massless. Therefore, at the end of inflation, the

radion starts oscillating around the minimum of its potential, while the inflaton remains

essentially constant. Note that for reheating to work it is not crucial that the field that

drives reheating is the same as the one that drives inflation. The inhomogeneities seeded

during inflation can be transferred to the decay products of the radion because the terms

that couple the oscillating radion to matter in general contain metric fluctuations (see [36]

for related ideas). There is nevertheless a potential challenge our model has to face. The

radion is massless during inflation, but becomes massive at the end of inflation and oscillates

around its minimum at a non-vanishing σ0. Hence, as pointed out in [37] it is possible that

metric fluctuations are parametrically amplified during the reheating process. This will

happen if long-wavelength modes lie in a resonance band of the equation that describes

the evolution of the radion perturbations. Because in our case the mass (and therefore the

oscillation frequency) of the radion can be freely adjusted by changing the parameter λ, one

might avoid such resonances.

Once inflation has ended and the universe has been heated, the universe evolves according

to the standard Big-Bang scenario. The presence of the massless scalar field χ0 that gener-

ically couples to matter could yield however to violations of several tests on the couplings

of matter to gravity and on the validity of the equivalence principle [38, 39]. Presently,

the most stringent restrictions arise from experiments on the universality of free fall. Upon

the dimensional reduction of the higher-dimensional action (1) (including the matter terms

we have not written down), one expects the radion to couple to the four-dimensional fields

with different powers of eσ. For instance, a Maxwell term FMNF MN in Eq. (1) leads to the

term edσFµνF
µν in Eq. (20) [by F we now mean the electromagnetic field strength, not the
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A2

(A )2 −1/2

W(A )2

0
2 2(A − A  )2

FIG. 2: A plot of the form self-interaction W .

field strength of our form A]. If χ0 is a massless canonically normalized scalar, the coupling

strength

α ≡ ∂ log e−dσ

∂χ0

= −
√

6d

d + 2

∂δσ

∂χ0

(51)

is severely restricted by experiments on the universality of free fall, where the undetected

differential acceleration of two bodies of different composition puts the limit α2 ≤ 10−7 [38].

Using Eqs. (48), (49) and the last limit we find

A2
0

d!
≥ 107. (52)

It then follows that the field δσ points in the direction of the massive field χ1, whereas the

field δφ points along the massless direction χ0, Eq. (48). Note that since in our model the

form AM1···Md
only couples to gravity, in the dimensionally reduced action the field φ only

interacts gravitationally. Therefore there are no constraints originating from the massless

field χ0 ≈ δφ.
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VI. TWO EXAMPLES

In the previous Sections we have formulated the conditions that our scenario has to satisfy

in order to provide for a successful inflationary scenario, but we have not verified whether

they can be satisfied at all. In the following, we shall fill this gap and comment on the

nature of those conditions by providing two explicit examples. Essentially, the conditions

our model has to obey have two different origins: Constraints related to inflation and con-

straints related to radion stabilization after the end of inflaton. Our main goal consisted

of formulating an inflationary scenario where a certain number of dimensions remain small

while four dimensions become exponentially large. As a bonus, we have also proposed a

way to stabilize the radion after the end of inflation. Because inflation and radion stabiliza-

tion are in principle two different issues, we shall deal with the two sources of constraints

separately.

Let us first discuss the constraints associated to inflation. Inflation has to last longer than

about 60 e-folds, Eq. (39), it has to account for the correct amplitude of the temperature

anisotropies Eq. (41) and must explain the nearly scale invariance of the power spectrum,

Eq. (43). In addition, after the end of inflation it is desirable that the universe is reheated

when one of our scalars, the radion or the inflaton starts oscillating around the minimum of

its potential. Let us assume that the compact dimensions are flat (R(d) = 0). String theories

require the existence of 6 additional spatial dimensions, hence, we shall set

d = 6. (53)

Because the compact dimensions are flat, we have to pick W0 = 0 in order to satisfy Eq. (15).

This choice corresponds to tuning the cosmological constant to zero. The parameter W1 is

constrained by Eq. (41). Notice that the larger the extra dimensions, the larger W1 can

be. Thus, extra dimensions might “explain” the smallness of the temperature anisotropies.

As mentioned in the introduction, one expects all spatial dimensions to be Planck sized

initially. In fact, for a smaller size of the universe, our classic description is likely to break

down. Therefore, we can safely rely on classical general relativity if for instance σ0 ≈ log 10,

i.e.

b0 ≡ eσ0 ≈ 10. (54)

With this choice of σ0, the slow roll condition (36) is satisfied for A2 >∼ 40. Then, Eq. (39)
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guarantees than the maximal number of e-folds is more than enough if we choose

A0 ≈ 220. (55)

which corresponds to Nmax ≈ 100. Substituting the former values into Eq. (41) for a scale

that left the horizon N = 60 e-folds before the end of inflation we obtain

W1 ≈ 10−2, (56)

a surprisingly “natural” number. Let us point again that its origin is the exponential sup-

pression of the temperature anisotropies due to the internal dimensions. With these numbers

the spectral index turns to be

ns − 1 ≈ 10−2, (57)

quite close to scale invariance and well within the limits of Eq. (43).

If one considers in addition the constraint imposed by the universality of free fall, the

numbers are less appealing, though they are in no way more “unnatural” than in other

models. Let us keep the same number and size of the internal flat dimensions, Eqs. (53)

and (54). Then, the limit in Eq. (52) is satisfied if we set A0 ≈ 105. Following the same

steps as before translates into W1 ≈ 10−5 and ns = 1. Therefore, we see that in our model,

the source of small parameters is not the smallness of the CMB temperature fluctuations,

but the severe limits on the universality of free fall.

VII. SUMMARY AND CONCLUSIONS

We have shown that Einstein gravity in (4 + d) dimensions, when coupled to a self-

interacting d-form, possesses solutions which are inflationary attractors. These spacetimes

exhibit an inflationary phase in 4 dimensions, whilst being almost static in the d extra dimen-

sions. Such solutions exist both for flat and for negatively curved compact extra dimensions.

However, in our minimal scenario, solutions with positively curved extra dimensions and a

constant radion are unstable.

An attractive feature of our model is that from the viewpoint of a four-dimensional ob-

server, the inflaton and the radion are very weakly coupled. Therefore, a separate mechanism

is not required in order to stabilize the radion. Instead, a bulk cosmological constant will
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suffice. More generally, this feature of our model guarantees that if the radion is stabilized

by a separate mechanism, inflation will not destabilize it.

Furthermore, we are able to account for the near scale invariant spectrum, and amplitude

of perturbations with surprisingly natural input parameters. The compact extra dimensions

cause an exponential suppression of fluctuations; this effect is responsible for the smallness

of the temperature anisotropies. However, the severe experimental bounds on violations of

the equivalence principle drive some of the parameters in the model towards less natural

numbers.

In our scenario, the end of inflation is triggered by the departure of the self-interaction

W from its functional form during inflation. If W develops a minimum about which the

radion may oscillate, then reheating ensues. However, for negatively curved extra dimensions

the minimum of the potential occurs at a negative value of the energy density, whence it is

problematic, though certainly not impossible to reheat the universe. This mechanism, which

ends inflation and causes reheating, also prevents the radion from violating the equivalence

principle. Even though the potential of the radion-inflaton system has a flat direction,

through an appropriate choice of parameters it is possible to project the radion onto the

massive eigenvector of the mass-matrix. Thus, we suppress violations of the equivalence

principle which arise from varied coupling of the radion to matter. This idea might be of

use, in contexts different from ours, as an alternative method for decoupling the radion from

matter in theories with flat directions.
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