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Abstract 

This paper formulates and analyzes Bayesian model variants for the analysis of systems 

of spatial panel data with binary dependent variables. The paper focuses on cases where latent 

variables of cross-sectional units in an equation of the system contemporaneously depend on the 

values of the same and, eventually, other latent variables of other cross-sectional units. 

Moreover, the paper discusses cases where time-invariant effects are exogenous versus 

endogenous. Such models may have numerous applications in industrial economics, public 

economics, or international economics. The paper illustrates that the performance of Bayesian 

estimation methods for such models is supportive of their use with even relatively small panel 

data sets. 
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1 Introduction 

Many fields in applied economics involve multinomial choice problems. Examples are 

the choice of sending children to public schools and to vote in favor of a school budget 

(see Greene, 1984) in public choice; The choice among various types of labor markets in 

labor economics (see Haque and Haque, 2009); The choice of different health care plans 

or treatments in health economics (see Jones, 2007); The choice of different types of 

preferential agreements (for trade and investment) in international economics (see Egger 

and Wamser, 2013). In treatment studies with a binary outcome such as graduating 

or not and a binary endogenous treatment such as private versus public schooling in 

education economics (see Altonji, Elder, and Taber, 2005). Historically, applications 

of such models use cross-section data, but recent applications include panel data, (see 

Johnson and Hensher, 1982; Börsch-Supan, Hajivassiliou, Kotlikoff, and Morris, 1992; 

Keane, 1997; Egger and Wamser, 2013; Mulkay, 2014, to mention a few). While a case for 

cross-sectional interdependence could be made – due to the presence of peer-group effects, 

social interaction, strategic interaction, spillovers, and general equilibrium effects – most 

applications ignore cross-sectional dependence. This paper proposes bivariate panel 

probit models which could be used in applied work in order to allow for equicorrelation 

due to the repeated observation of cross-sectional units over time as well as for cross-

sectional dependence among the units within time. 

The paper proposes a Bayesian bivariate probit model and analyzes its performance in 

small samples.2 Monte Carlo simulation results are encouraging as parameter estimates 

can be obtained without much bias in small samples, and the root-mean-squared errors 

decline as the sample size increases, in particular, with the cross-sectional dimension. 

The paper illustrates how such models could readily be extended to the multivariate case 

with more than two equations. Also, the paper discusses the case where the explanatory 

2In earlier research, – mostly cross-section – alternatives to Bayesian nonlinear probability model 

estimation had been proposed: see McMillen (1992) for expectation-maximization methods; see Beron 

and Vijverberg (2004) for simulated maximum likelihood methods; and Klier and McMillen (2008) for 

generalized methods of moments procedures. 
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variables are correlated with the time-invariant error components. 

The remainder of the paper is organized as follows. The next section outlines a 

parsimonious model version. Section 3 describes the estimation of the model parameters 

of interest. Section 4 proposes extensions of the model allowing for a richer setting of 

cross-sectional dependence across equations. In particular, it outlines a multivariate 

model with more than two equations, and it discusses the case of a correlated random 

effects model. Section 5 summarizes the Monte Carlo simulation results for leading types 

of models addressed in the paper, and the last section concludes. 

2 Econometric model 

Let us denote the binary observable variables regarding the mth decision or equation for 

unit i at time t by ym,it, where m ∈ {1, 2} reflects the bivariate case. The total number 

of individual units and time periods be N and T , respectively. We observe this binary 

variable as 

∗ ym,it = 1(ym,it > 0), i = 1, 2, .., N and t = 1, 2, .., T (1) 
NX 

∗ ∗ ∗ ∗ ym,it = λmym,it + xm,itβm + αm,i + νm,it with ym,it = wijtym,jt, (2) 
j=1 

∗where ym,it is a latent (i.e., unobserved) variable and denotes the net gains for i from 

∗ 3choosing m at time t. λmym,it reflects a (global) spillover effect of other units on i. wijt 

is a normalized weight describing the strength of the relationship between units i and j at 

time t. In the spatial panel econometrics literature, wijt is often assumed time-invariant. 

However, assuming that is not necessary. wijt is nonnegative if two distinct units i and 

j are neighbors and zero otherwise at time t; it is always zero for i = j. 4 Notice that the 

notion of neighborliness behind wijt is generic and can be related to space in a narrow 

sense or to other concepts (such as input-output relations, worker flows, information 

flows, etc.). λm denotes the spatial autocorrelation, contagion, interdependence, or 

3The spillover effects are referred to as global, because the reduced form of the model involves an 

infinite number of cross-sectional effects and associated repercussions in the cross-sectional system. 
4In principle, the weights wijt could be specific to equation m. 
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spillover parameter for latent outcome of type m, and it is important to gauge the 

relative magnitude of spillovers. The 1 × K vector of covariates xm,it = (xk,m,it) is 

indexed by m for reasons of parameter identification in multivariate probit models (see 

Keane, 1992; Munkin and Trivedi, 2008). 

The time-varying idiosyncratic error is denoted by νm,it and the time-invariant ran-

dom effect is denoted by αm,i. For these error components, we adopt the conven-

tional assumptions that E(νm,itνm,jt) = 6 j, E(αm,iνm,it) = 0 for all m, t,0 for all i = 

E(νm,itνm,is) = 0 for all t 6 More specifically, regarding the bivariate distributions of = s. 

(αl,i, αm,i) and (νl,it, νm,it), we assume bivariate normality ⎛⎝α1,i 

⎞⎠ ∼ N 

⎛⎝⎛⎝ α1 

⎞⎠ , 

⎛⎝σα,11 σα,12 

⎛⎝⎞⎠ , 

⎞⎠ ν1,it 

⎞⎠ ∼ N 

⎛⎝⎛⎝ 0 
⎞⎠ , 

⎛⎝1 τ 
⎞⎠⎞⎠ . 

α2,i α2 σα,12 σα,22 ν2,it 0 τ 1 

The variances of ν1,it and ν2,it are normalized to unity (see for instance Greene, 2003, 

for a treatment of the bivariate probit model without accounting for any form of spatial 

correlation) and τ denotes the tetrachoric correlation. 

We shall impose the assumption that all elements of xm,it are doubly exogenous in 

the sense that E[xm,itαm,i] = 0 and E[xm,itνm,it] = 0. 5 

As is common in spatial panel econometrics (see, e.g., Kapoor, Keleijian, and Prucha, 

2007), the observations are stacked such that i is the fast index and t the slow index, 

which yields the following stacked model for equation m of the framework given in (1)–(2) 

∗ ym = 1(y > 0), (3)m 

∗ ∗ ∗ ∗ y = λmy + xmβm + αm + νm with y = WTN y , (4)m m m m

∗for m ∈ {1, 2} where ym, y , and νm are of dimension TN × 1. The matrix xm is of m

dimension TN × km and its parameter vector βm is km × 1. The spatial weights matrix 

WTN = diag(WtN ) is of dimension TN × TN and contains zero diagonal elements. Its 

off-diagonal elements of WtN are nonzero, reflecting the neighborliness between two cross-

sectional units. Moreover, we assume the elements of WTN to be normalized so that the 

5Note that xm,it may contain time averages of some or all of the time-variant covariates. In the latter 

case, it is sufficient for the time-variant variables in xm,it to be singly-exogenous with only E[xm,itνm,it] = 

0. 
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admissible parameter space of {λ1, λ2} is known and less than unity in absolute value. 

For instance, a convenient normalization is dividing each element by the corresponding 

sum across elements in a row (see Anselin, 1988; and Kelejian and Prucha, 2010, for 

alternative normalizations).6 The vector αm is of dimension N × 1. 

Stacking both equations for m ∈ {1, 2} below one another yields the following model 

for the latent dependent variables: 

∗ y = (Λ ⊗ Jn) � Wy ∗ + Xβ + Aα + ν, 

where ⊗ denotes the Kronecker product and � the Hadamard product, ιT is a vector 

of ones of dimension T, IN is an identity matrix of dimension N , and Jn is a matrix of 

ones of dimension N. 

Λ = 

⎛⎝ λ1 0 
⎞⎠, W = 

⎛⎝ WTN 0 
⎞⎠, X = 

⎛⎝ x1 0 
⎞⎠, A = 

⎛⎝ ιT ⊗ IN 0 
, 

0 λ2 0 WTN 0 x2 0 ιT ⊗ IN 

∗ ∗0 ∗0y = (y1 , y2 )
0 , β = (β1

0 , β2
0 )0 , α = (α1

0 , α0 2)
0, and ν = (ν1

0 , ν2
0 )0 . 

The reduced form is given by 

∗ y = S−1(Xβ + Aα + ν), ⎛⎝ S1 0 
⎞⎠with S = (I2TN − (Λ ⊗ JTN ) � W ) = where Sm = ITN − λmWTN . Together 

0 S2 

with the normalization of WTN , the admissible parameter space of Λ ensures invertibility 

of S. 

3 Model estimation 

3.1 Bayesian estimation procedure 

Non-spatial bivariate panel data models can be estimated by maximum likelihood. The 

∗ ∗presence of the spatial lag y as a determinant of the latent variable y leads to m,it m,it 

6With a time-invariant, normalized, N × N spatial weights matrix, WTN = IT ⊗ WN , where IT is an 

identity matrix of dimension T and WN = (wij ). 

4 

⎞⎠



a reduced form of the model which is nonlinear in variables and parameters and to an 

N -dimensional integral in the likelihood function. However, ignoring relevant spatial 

lags in the system leads to inconsistent estimates of the parameters. 

For implementation and estimation, we follow the generic Markov chain Monte Carlo 

(MCMC) simulation approach suggested by LeSage (2000) and LeSage and Pace (2009) 

who focused mainly on single-equation and cross-sectional models. 

Bayesian MCMC simulation entails estimating the posterior distribution of all pa-

rameters by combining prior information on them with the likelihood for the respective 

model, and sampling each parameter sequentially from its conditional distribution. This 

approach involves both Gibbs and Metropolis Hastings sampling. Details on those are 

provided in the next subsections. 

Building on the idea of Albert and Chib (1993) for non-spatial, cross-sectional, uni-

variate probit models and on LeSage (2000) and LeSage and Pace (2009) for spatial, 

cross-sectional, univariate and multivariate probits, we introduce the latent variables as 

additional parameters. This provides for a considerable facilitation of the estimation 

procedure, as conditioning on latent variables yields simpler distributions which we can 

sample from. 

For modelling the time-invariant, unobserved heterogeneity across cross-sectional 

units through α = (α0 1, α2
0 )0 , we assume a hierarchical structure, whereby all αi = 

(α1i, α2i)
0 are based on a distribution, which has some parameters in common, which we 

refer to as hyperparameters. These hyperparameters – namely mean µα and variance Vα 

– are drawn in a separate step and used when drawing αi. 

All parameters to be estimated we subsume in the parameter vector θ = {β, λ1, λ2, τ, y
∗, α, µα, Vα}. 

Using y = (y1
0 , y2

0 )0, the joint posterior distribution is given by 

p(θ|y, X, W ) 

∝ p(y|y ∗ , X, W )p(y ∗ |β, λ1, λ2, τ, α, µα, Vα, X, W ) 

p(β)p(λ1)p(λ2)p(τ)p(α|µα, Vα)p(µα)p(Vα). 

where the first term in the second line relates the observed dependent variables to their 

latent counterparts, the second term in the second line denotes the likelihood, and the 
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� 

third line contains the priors. Details on these components will be given in the following 

paragraphs. Since the expressions above turn out to be intractable, we calculate the con-

ditional distributions for all model parameters given the data and the other parameters, 

θ`|θ−θ` , which are given in detail in Subsection 3.2. 

Likelihood 

∗The likelihood is stated in terms of the latent variables y . The joint distribution of m

∗ ∗(y1 , y 2) is given by ⎛⎝ ∗ y1 

⎞⎠ ∼ N 

⎛⎝S−1(Xβ + Aα), 

⎛⎝ ⎞⎠⎞⎠(S1
0 S1)

−1 τ (S2
0 S1)

−1 

. 
∗ y2 

This yields the likelihood 

τ(S1
0 S2)

−1 (S2
0 S2)

−1 

�� �|S1||S2| 1∗ ∗ 
1, y 2|θ, X) = exp − 

(2π)TN |Σ|T N/2 
RΣ−1p(y tr ,

2 ⎞⎠
τ 1 r21 r22 

∗ ∗ ruv = (Suyu − (xuβu + (ιT ⊗ αu)))
0(Svyv − (xvβv + (ιT ⊗ αv))). 

Priors 

The prior distributions are assumed to be 

12β ∼ N(β, V ) where β = 02k×1 and V = I2k · 1e (5) 

λm ∼ U(−1, 1) τ ∼ U(−1, 1). (6) 

Notice that λm and τ are parameters, which are bounded theoretically in absolute value. 

For instance, with a row-normalized matrix WTN (and, hence W ) and the model pro-

posed in this section, both λm and τ need to be smaller than unity in absolute value. 

Modelling the unobserved heterogeneity with a hierarchical prior, we draw hyperpa-

rameters from distributions using the following priors: 

∼ N(µ , V µα) where µ = 02×1 and (7)µα µα µα 
V µα = I2 

V −1 W(V −1 V −1∼ where = I2 and (8)α V α, vV α) V α vV α = 2 

⎛⎝ ⎞⎠ ⎛⎝1 τ r11 r12
where Σ and R is a 2 × 2 matrix containing the elements = = 

6 



where W denotes the Wishart distribution. The choice of the prior parameters 

leads to relatively uninformative priors reflecting a large degree of uncertainty about 

them. Intuitively, in calculating the posterior distribution less weight is placed on the 

priors and more on the data as a consequence. 

3.2 Conditional distributions 

We calculate the conditional distribution of each of the parameters given all the other 

parameters of the model. 

∗ ∗Conditional distribution of y1 and y2 

The posterior distributions for the latent variables are calculated using the joint distri-

∗ ∗ ∗bution of (y1, y 2 ). The conditional distribution of y1 given the other parameters is given 

by � � 
∗ S−1 ∗ y1|θ−y ∗ ∼ N {x1β1 + ιT ⊗ α1 + τ(S2y2 − x2β2 − ιT ⊗ α2)}, (1 − τ2)(S1

0 S1)
−1 .11 

∗The conditional distribution of y2 given the other parameters is given by � � 
∗ S−1 ∗ y2|θ−y ∗ ∼ N 2 {x2β2 + ιT ⊗ α2 + τ(S1y1 − x1β1 − ιT ⊗ α1)}, (1 − τ2)(S2

0 S2)
−1 . 

2 

∗ y is truncated multivariate normal. Thus, we apply the method by Geweke (1991). m 

∗When drawing y , we account for the observed binary ym, taking draws from a right-m

truncated normal if ym is 0 and from a left-truncated normal if ym is 1. 

Conditional distribution of β 

The conditional distribution of β = (β1
0 , β2

0 )0 given the other parameters is 

β|θ−β ∼ N(β, V β), (9) 

where � � � � 
β = V β X 0 Σ−1 ⊗ ITN (Sy ∗ − Aα) + V −1β � � � �−1 

V β = X 0 Σ−1 ⊗ ITN X + V −1

We apply Gibbs sampling to draw values for β. 

7 



Conditional distribution of λ1 and λ2 

The conditional distribution of λm for m ∈ {1, 2} is given by � � 
1 � � 

λm|θ−λm ∝ |Sm|exp − trace RΣ−1 , (10)
2 

This conditional distribution is of an unknown form. Thus we apply Metropolis-Hastings 

rather than Gibbs sampling for drawing it. We follow LeSage and Pace (2009) and draw 

a proposal candidate λc using λc = λm + cλm · N(0, 1), where λm denotes the previous m m 

value and cλm a tuning parameter. When taking draws we only use candidates lying in 

the admissible parameter space between −1 and 1. Using λm, λc , and (10), we calculate m

an acceptance probability to decide whether using the new candidate value or keeping 

the previous one. To ensure an acceptance probability between 40% and 60% we adapt 

the tuning parameter cλm . 
7 

Conditional distribution of τ 

The conditional distribution of τ is given by � � 
1 1 � � 

τ |θ−τ ∝ 
(1 − τ2)NT/2 

exp − 
2 
trace RΣ−1 , (11) 

Akin to λm, the conditional posterior distribution of τ takes an unknown form and we 

apply Metropolis-Hastings for drawing it. We apply the same approach as for drawing 

λm and draw new values using τ c = τ + cτ · N(0, 1). Since τ lies in the interval between 

−1 and +1, we only accept those candidate values τ c which lie in this interval. Both τ 

and τ c are evaluated using (11) to calculate an acceptance probability and the tuning 

parameter cτ is adapted to ensure an acceptance probability between 40% and 60%. 

Conditional distribution of α 

The conditional distribution of the 2N × 1 vector α = (α0 1, α
0 
2)
0 is 

α|θ−α ∼ N(α, V α), 

7For more details we refer the reader to LeSage and Pace (2009), p. 136/137. 
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where 

� � � � 
α = V α A0 Σ−1 ⊗ ITN (Sy ∗ − Xβ) + (V −1 ⊗ IN )(µα ⊗ ιNα � �−1 

V α = (T Σ−1 + Vα 
−1) ⊗ IN 

which are based on the hyperparameters µα and Vα, which are drawn as 

µα|θ−α ∼ N(µµα, V µα), 

using � � 
= V µα (V −1 ⊗ ι0 N )α + V −1 µµα α µαµµα � �−1 

V µα = NV α 
−1 + V −1 

µα 

and 

V −1|θ−α ∼ W(V V α, vV α),α 

with 

v + N 

V V α = (H + V V α)
−1 

vV α = 

⎛ ⎞ 
h11 h12 0and the 2×2 matrix H = ⎝ ⎠ containing the elements huv = (αu −µαuιN )

0(αv − 
h21 h22 

µαv
0 ιN ), where ιN is an N × 1 vector of ones. All of these parameters have known 

distributions. Specifically, we apply Gibbs sampling, drawing the hyperparameters µα 

and Vα first and then using those in drawing the elements of α. 

Interpretation of results   

Clearly, the point estimates of the parameters are a key ingredient for a quantitative 

assessment of the results. As with standard probit models, marginal effects of changes 

in explanatory variables cannot be read off the parameters but need to be evaluated at 

a certain point, typically the sample mean of the data. The computation of marginal 

effects in standard (nonspatial) probit models is outlined, e.g., in Greene (2003). With an 

index of the probit model whose reduced form is itself nonlinear in parameters, this issue 

9 



4 Extensions 

is exacerbated. As with standard spatial models, direct, indirect, and total effects can be 

distinguished. What is of interest in probit models are the direct and total effects (with 

the indirect effects being defined as the difference between the latter and the former) on 

the probability that the outcome of interest is unity. This issue is exhaustively discussed 

for univariate probit models in LeSage, Pace, Lam, Campanella, and Liu (2011) and in 

Lacombe and LeSage (2015). The computation of marginal effects in bivariate probit 

models involves a straightforward combination of the approach outlined in Greene (1996) 

for non-spatial bivariate probits and in LeSage, Pace, Lam, Campanella, and Liu (2011) 

and in Lacombe and LeSage (2015) for spatial univariate probits. 

In this section, we consider three extensions. First, we introduce a richer framework 

of interdependence than the one introduced in Sections 2-3. This may be a useful 

extension, if the researcher believes that spillovers across individuals are not only related 

to a specific but to all latent outcomes. Second, we briefly discuss the case of more 

than two equations, which may be generally referred to as multinomial spatial probit 

estimation. Such a case may emerge, for instance, if researchers analyze problems with 

many discrete decisions (e.g., market entry with multi-product firms; market-entry with 

multi-national firms; etc.). Third, we discuss the case of estimation with correlated 

random effects, where some of the explanatory variables may be correlated with the 

unobserved individual-specific characteristics. The latter is often considered to be more 

plausible than the case of so-called double-exogeneity as assumed before, where the 

explanatory variables are uncorrelated with both the time-invariant and the time-variant 

characteristics of the cross-sectional units. 

4.1 A richer structural latent-variable framework 

Model 

In what follows, we use the same notation as before as far as this is possible. In appli-

cations, the consideration of within-equation spatial dependence dominates. This might 

10 



 
 

 

even be the case with systems of equations with binary dependent variables. However, 

in the latter case, economic theory or intuition of the researcher might support a more 

general set-up, where cross-sectional spillovers are associated not only with the latent 

variable pertaining to the same equation as the binary outcome but also ones pertaining 

to other binary outcomes in the system. 

The model is given by 

∗ ym,it = 1(y (12)m,it > 0), 
2 NX X 

∗ ∗ ∗ ∗ ym,it = λmlyml,it + xm,itβm + αm,i + νm,it with yml,it = wml,ijtyl,jt, (13) 
l=1 j=1 

The observations are stacked such that i is the fast index and t the slow index, which 

yields the following stacked model for equation m of the model given in (12) –(13) 

∗ ym = 1(ym > 0), (14) 
2X 

∗ ∗ ∗ ∗ ym = λmlyml + xmβm + ιT ⊗ αm + νm with yml = Wml,T N yl . (15) 
l=1 ! 

λ11 λ12 
The only thing that is now needed is a redefinition of Λ, W , and S: Λ = 

λ21 λ22⎛ ⎞ ! 
W11,T N W12,T N S11 S12 

W = ⎝ ⎠, and S = (I2TN − (Λ ⊗ JTN ) � W ) = . The 
W21,T N W22,T N S21 S22 

2TN × 2TN matrix W consists of 4 TN × TN spatial weights matrices Wij,T N for 

i, j ∈ {1, 2}. Of course, one can also assume the same Wij,T N for all i and j.! 
Se11 Se12 

Define Se = S−1 = . Then stacking both equations for m ∈ {1, 2} yields 
Se21 Se22 

∗ y = (Λ ⊗ Jn) � Wy ∗ + Xβ + Aα + ν (16) 

and its reduced form is given by 

∗ ey = S(Xβ + Aα + ν). (17) 
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� 

∗ ∗Joint distribution of (y1, y 2 ) and the likelihood 
∗ ∗Based on (17), the joint distribution of (y1, y 2 ) is given by 

ee
⎛⎝ ⎞⎠ ⎛⎝ ⎛⎝ ⎞⎠ ⎛⎝Ω11 Ω12 

⎞⎠⎞⎠ ∗ S11(x1β1 + ιT ⊗ α1) + Se12(x2β2 + ιT ⊗ α2)y1 ∼ N (18), 
∗ S21(x1β1 + ιT ⊗ α1) + Se22(x2β2 + ιT ⊗ α2) Ω21 Ω22y2 ⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠S0 S0 11 21 

eS11

S21 

This yields the likelihood 

ee S12 

S22 

1 1∗ |θ, X) = 
2πTN |Σ|T N/2 

|S22||S11 − S12S
−1S21|exp −22 

ee

⎛⎝

eeΩ11 Ω12 
with (Σ ⊗ IN )= . 

S0 S0 12 22 
eΩ21 Ω22 

�� � 
RΣ−1p(y trace ,

2 ⎛⎝ ⎞⎠ ⎞⎠1 τ r11 r12 
where Σ and R = is a 2 × 2 matrix containing the elements = 

τ 1 r21 r22 
0 for u, v ∈ {1, 2} with ⎛⎝ ⎞⎠⎛⎝ 
· rv = rruv u ⎞⎠r1 

∗ ∗S11y1 + S12y2 − (x1β1 + ιT ⊗ α1) 
= . 

∗ ∗ r2 S21y1 + S22y2 − (x2β2 + ιT ⊗ α2) 

Priors 

We use the same uninformative priors given by (5), (6), (7) and (8). In line with the 

previous subsection we assume a uniform uninformative prior for all λij for i, j ∈ {1, 2}. 

∗ ∗Conditional distribution of y1 and y2 

∗ ∗ ∗Using the joint distribution of (y1 , y 2 ) in (18) the conditional distribution of y given 1 

the other parameters is given by � 
S11(x1β1 + ιT ⊗ α1) + Se12(x2β2 + ιT ⊗ α2) + Ω12Ω

−1 
22 

∗ ∗ 

e

e

e

−Se22(x2β2 + ιT ⊗ α2)], Ω11 − Ω12Ω
−1Ω21 .22 

∗The conditional distribution of y2 given the other parameters is given by 

1|θ−y ∗ ∼ 
1 2 − Se21(x1β1 + ιT ⊗ α1) 

1 − Se11(x1β1 + ιT ⊗ α1) − 

N [yy � 

� 
S21(x1β1 + ιT ⊗ α1) + Se22(x2β2 + ιT ⊗ α2) + Ω21Ω

−1 
11 

∗ ∗ 
2|θ−y ∗ ∼ 

2 
N [yy � 

S12(x2β2 + ιT ⊗ α2)], Ω22 − Ω21Ω
−1 .11 Ω12 
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Conditional distribution of λgh 

The conditional distribution of λ11, λ12, and λ21 is given by � � 
1 � � 

S−1 RΣ−1λuv|θ−λuv ∝ |Suu − Suv vv Svu|exp − trace , (19)
2 

for uv ∈ {11, 12, 21}. Since this distribution takes an unknown form, we apply a 

Metropolis-Hastings procedure where we draw the new candidate values λ0 12, and 11, λ
0 

λ0 21, and for λ22 we use � � 
1 � � 

∝ |S22||S11 − S12S
−1S21|exp − trace . (20)λ22|θ−λ22 22 RΣ−1

2 

We apply the Metropolis-Hastings procedure as in Subsection 3.2. However due to the 

more complex equation system we need to take stability conditions into account. E.g., 

when drawing the new candidate values, we only accept those where |λh1| ≤ 1 − |λh2| 

and |λh2| ≤ 1 − |λh1|for h ∈ {1, 2}. 

Conditional distribution of β, α, and τ 

For β, α, and τ , the conditional distributions are the same as in section 3.2. The only 

difference is that we now use the S defined in section 4.1. 

4.2 Multinomial spatial probit estimation with more than two equa-

tions 

The proposed procedure can be extended to more than two decisions. Suppose one has 

M decisions, which corresponds to M equations. The dimensionality of the observed 

∗variable y and its latent counterpart y are MTN × 1. The matrix of covariates is then PMof dimension MTN × m=1 km where km denotes the dimensionality of the covariate 

matrix in the respective equation. The spatial weights matrix W and the matrices S and 

A are of dimension MTN × MTN . The unobserved heterogeneity α is MN × 1. The 

matrix of the spatial autocorrelation parameters Λ and the matrices R and Σ are then of 
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dimension M × M . 8 The likelihood and the conditional distributions of β, α, and λ are 

mathematically equivalent to and only of a different dimensionality than in the bivariate 

∗ case. Each latent variable, y for the m-th equation, is to be drawn conditional on the m 

ones in all the other equations. The relatively biggest difference is with respect to the 

estimation of the off-diagonal elements of Σ which have to be drawn based on a Wishart 

distribution subject to normalization constraints (see the discussion in Koop, 2003). 

4.3 Endogenous time-invariant effects 

In Bayesian econometrics it is common to assume that all covariates and also the unob-

served individual-specific effect are purely random variables. 

However, this is not the case in many empirical applications, where it is likely that some 

of the covariates of an individual are correlated with its unobserved individual-specific 

characteristics: in wage equations, education is correlated with individuals’ unmeasur-

able ability, and affects discrete labor-market choices of individuals; total factor produc-

tivity is correlated with unobservable managerial or entrepreneurial talent and organiza-

tion and affects discrete (market-entry or scope) decisions by firms; regional observable 

attributes are correlated with unobservable amenities and their hedonic valuation by mo-

bile residents; etc. Ignoring potential correlation between unobserved heterogeneity and 

covariates might lead to an omitted variables bias in coefficients of interest on observable 

variables. 

One prominent way to account for a potential correlation between unobserved het-

erogeneity and the covariates is proposed by Mundlak (1978). He proposed to include 

the averages of time-varying covariates as additional regressors into the regression equa-

tion to approximate the unobserved heterogeneity. In a second extension we follow his 

suggestion. By and large, this leaves our approach described in section 3.2 unchanged. 

The only difference is that the matrix of covariates now consists of [X, X] where X con-

tains the time averages of the columns of X that pertain to time-variant explanatory 

8In this case, Σ is symmetric with unitary diagonal and contains M(M − 1)/2 unknown off-diagonal 

elements. 
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5 Monte Carlo simulation study 

variables. 

To illustrate the performance of the bivariate panel probit model with triangular data, 

we perform Monte Carlo experiments for a spatial bivariate model structure along the 

aforementioned lines. 

Design for the basic model: 

In particular, we assume two variables x1,it ∼ N(0, 1) and x2,it ∼ N(0, 1) where both 

enter equations 1 and 2. Their true parameter values are for the first equation β1 = 

(β11, β12) = (−2, 1.25) and for the second equation β2 = (β21, β22) = (−1, 0.5). 

We assume a time-invariant, row-normalized, 5-before-5-behind neighborhood structure 

regarding WN so that W = diagT (WN ), and wii = 0 and all non-diagonal elements wij 

are either zero (non-neighbors) or 0.1 (neighbors). 

Moreover,! 
0.5 1 0.4 

N , . 
0.25 0.4 1.25 

We consider four alternative sets of parameters (λ1, λ2, τ ) with 

we specify the bivariate normality about the 2 × 1 vector αi as αi!! ∼ 

(λ1, λ2, τ ) = 

⎧ ⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎩ 

(0.4, 0.6, 0.5) 

(0.2, 0.3, 0.5) 

(0.4, 0.6, 0.8) 

(0.4, 0.6, 0) 

In general we consider two configurations each for N and T with N ∈ {100; 500} and 

T ∈ {5; 7}. 

For each of the four parameter and four panel configurations, we draw 500 2NT × 1 

vectors of residuals ν. For each one of these 8,000 experiments we do an MCMC simu-

lation with a chain of 30,000 elements of which 4,000 are burn-ins and only every 10th 

of the remaining elements is used (i.e., a thinning ratio of one-tenth is applied). 
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Simulation results for the basic model: 

We summarize the corresponding simulation results in Tables 1 and 2. In Table 1, we 

report on θ̂ = (λ̂1, λ̂2, β̂11, β̂12, β̂21, β̂22, τ̂) and moments of the elements of α̂1 and α̂2 for 

the first parameter configuration and alternative sample-size configurations. In Table 2, 

we focus on the configuration of N = 100 and T = 5 for the remaining three considered 

true parameter configurations. 

−− Tables 1 and 2 about here −− 

The results in Table 1 suggest that the parameter biases are relatively small, even 

in the case of {N = 100; T = 5}. Obviously, the biases decline as the sample size grows 

in the T - and, in particular, the N -dimensions. With {N = 500; T = 5} the biases of 

most parameters are down to a range of about five to ten percent of the true values 

only, across the board. These biases are about twice as high with {N = 100; T = 5}. 

However, when comparing these results with non-spatial models, we would support the 

use of spatial panel data probits even with small to moderate data-sets at hand. 

The underlying correlations between the true and the predicted latent variables are: 

∗ ∗ ∗ ∗ ∗ ∗0.8699 for (y1 , ŷ1) and 0.7760 (y2 , ŷ2) for {N, T } = {100, 5}; 0.8812 for (y1, ŷ1 ) and 

∗ ∗ ∗ ∗ ∗ ∗0.8710 (y2, ŷ2 ) for {N, T } = {100, 7}; and 0.7875 for (y1 , ŷ1) and 0.7760 (y2 , ŷ2 ) for 

{N, T } = {500, 5}. These numbers indicate that there is enough noise in the data-

generating process so that the small bias figures point to a relatively good performance 

of the proposed estimation routines. 

Design for a framework for within- and across-equation spatial correlation: 

For an analysis of the richer model, we assume a framework as outlined in Section 4.1, 

∗ ∗ ∗ ∗where y1 as well as y2 affect both latent outcomes y1 and y2. For this, we assume the 

same spatial weights matrix WN for all terms. The corresponding spatial autocorrelation 

parameters are: {λ11, λ12, λ21, λ22} = {0.4, 0.2, 0.1, 0.3}. 

In this design, we assume two variables x11,it ∼ N(0, 1) and x12,it ∼ N(0, 1), which 

enter the first equation, x21,it ∼ N(0, 1) and x22,it ∼ N(0, 1), which enter the second 
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equation. Their true parameter values are, as above, β1 = (β11, β12) = (−2, 1.25) and 

β2 = (β21, β22) = (−1, 0.5) for the first and the second equation, respectively. α, and ν 

are drawn in the same way as in the benchmark design. 

Simulation results for the within- and across-equation spatial-correlation 

model: 

Table 3 summarizes the Monte Carlo simulation results for this richer design. 

−− Table 3 about here −− 

The findings in the table suggest that the richer design does not involve systemati-

cally larger biases or root mean squared errors across the parameters of interest. Hence, 

the findings are assuring that even more complex designs with spillovers across different 

latent variables in the system between cross-sectional units can be analyzed even with 

relatively small samples at hand. 

Design for the correlated random effects model: 

In an extension, we let α be correlated with X at different intensities. In this set-up, 

we consider the vectors α1 and α2 to be correlated with x2, maintaining the assumption 

that x1 is exogenous. Specifically, we decompose x2 into its between (bar) and within 

(tilde) parts (where between and within refer to cross-sectional units i), x2 = x2 +xe2 and 

assume that αm = α∗ + cα · x2 for m = {1, 2}, considering several alternative degrees of m 

endogeneity with cα = {1; 2; 4}. α∗ is drawn in the same way as αm in the basic design. m 

In the generated data sets for N = 100, this yields an average correlation between x2 

and {α1, α2} of about {0.438; 0.387} with cα=1, of about {0.701; 0.654} with cα=2, and 

of about {0.892; 0.869} with cα=4, across all Monte Carlo runs, respectively. 

Clearly, with this setting of correlated random effects, the parameters on x2, {β12; β22}, 

will be biased unless x2 is included as a control function as suggested by Mundlak (1978), 

Chamberlain (1982), and Wooldridge (1995). The corresponding results for specifica-

tions where the control function (whose parameters we suppress) is included in X are 

summarized in Table 4 for the sample-size configuration {N = 100; T = 5}. The true 
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parameter values are β1 = (β11, β12) = (−2, 1.25), β2 = (β21, β22) = (−1, 0.5), and 

(λ1, λ2, τ) = (0.4, 0.6, 0.5) in this case. 

Simulation results for the correlated random effects model: 

We summarize the Monte Carlo simulation results for the correlated random effects 

model and the three configurations cα = {1; 2; 4} in Table 4. 

−− Table 4 about here −− 

The results in Table 4 suggest that the proposed approach works well in small samples 

even with endogenous cross-sectional effects when conditioning on individual-specific 

variable means. We have seen that the correlations between x2 and α are relatively 

strong even in the case of cα = 1. In that case, the biases of the parameters amount 

to less than ten percent on average. The root mean-squared error (RMSE) is relatively 

highest for the coefficients on the endogenous variable, {β12; β22}, and it amounts to less 

than one-fifth for each of those. Clearly, both the biases and the RMSEs tend to be 

somewhat larger with a higher degree of endogeneity (a larger value of cα). However, as 

said before, the degree of correlation studied here is rather strong, which is supportive 

of the proposed procedure. 

While we illustrated that a consideration of correlated random effects is possible 

in Table 4, it is the purpose of Table 5 to document the consequences of disregarding 

correlated random effects when they are present. 

−− Table 5 about here −− 

As in Table 4, we focus on the case of {N, T } = {100, 5}, and, for the sake of brevity, 

we summarize the results for the case of cα = 4, where the correlated-random-effects 

assumption is relatively important. A comparison of the respective rows in the table 

indicates that both the bias and the RMSE on {β11, β12, β21, β22} are much higher in 

Table 5 than in Table 4. Hence, the merits of considering a correlated-random-effects 

version of the model in practice are obvious. 
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6 Conclusion 

This paper analyzes a Bayesian estimation procedure for bivariate and, eventually, 

higher-variate panel probit models with spatial interdependence in the dependent vari-

able. Such models could be interesting to use for an array of empirical problems where 

contagion or spillovers in a broad sense are important, the choices are not mutually 

exclusive, and there is time variation in those choices. Examples are discrete preferen-

tial policy choices of countries (e.g., with respect to trade agreement and/or investment 

agreement membership), discrete global-market-participation decisions of firms as ex-

porters and/or multinational firms, discrete market-entry decisions of firms in a set of 

markets (such as countries and/or products), discrete consumption decisions of house-

holds with regard to certain products, discrete portfolio-acquisition decisions of investors, 

etc. All of these choices are ones where earlier empirical work had identified indepen-

dently the existence of contagious effects and the interdependence between those choices. 

The approach presented in this paper is capable of treating the features of contagion or 

spillovers and cross-issue correlation simultaneously. 

For estimation, the paper proposes a Bayesian spatial bivariate panel probit model. 

An advantage of this estimation procedure relative to standard maximum-likelihood 

estimation is that it can be used with large, interdependent cross-sections of data that 

are repeatedly observed over relatively short time periods. Our Monte Carlo simulation 

study suggests that the procedure works well even in small to moderately large samples. 
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Tables 

Table 1: Results for various cases of {N, T } 

β11 β12 β21 β22 λ1 λ2 τ α1 α2 

True −2 1.25 −1 0.5 0.4 0.6 0.5 0.5 0.25 

N = 100, T = 5 

Mean −2.168 1.329 −1.082 0.517 0.422 0.559 0.440 0.391 0.262 

Bias −0.168 0.079 −0.082 0.017 0.022 −0.041 −0.060 −0.109 0.012 

RMSE 0.342 0.219 0.162 0.111 0.068 0.094 0.140 0.145 0.079 

I-statistic 5.096 1.963 1.954 1.095 2.393 1.993 3.143 1.176 1.086 

GT p-value 0.462 0.467 0.530 0.485 0.502 0.511 0.451 0.479 0.504 

N = 100, T = 7 

Mean −2.084 1.305 −1.107 0.557 0.409 0.617 0.479 0.380 0.180 

Bias −0.084 0.055 −0.107 0.057 0.009 0.017 −0.021 −0.120 −0.070 

RMSE 0.205 0.147 0.161 0.111 0.057 0.054 0.106 0.141 0.087 

I-statistic 4.014 1.989 1.796 1.114 2.073 1.845 3.261 1.129 1.046 

GT p-value 0.427 0.440 0.502 0.519 0.478 0.506 0.480 0.441 0.497 

N = 500, T = 5 

Mean −2.096 1.292 −1.083 0.527 0.407 0.639 0.496 0.531 0.255 

Bias −0.096 0.042 −0.083 0.027 0.007 0.039 −0.004 0.031 0.005 

RMSE 0.158 0.092 0.105 0.057 0.031 0.048 0.057 0.057 0.028 

I-statistic 4.140 2.430 1.731 1.139 2.285 1.758 3.376 1.416 1.068 

GT p-value 0.456 0.460 0.494 0.501 0.484 0.469 0.465 0.474 0.511 
The I-statistic is calculated following Raftery and Lewis (1992). GT p-value denotes the p-value of the Geweke (1992) test. 

Table 2: Results for alternative values of {λ1, λ2, τ} and N = 100 and T = 5 

β11 β12 β21 β22 λ1 λ2 τ α1 α2 

True −2 1.25 −1 0.5 0.2 0.3 0.5 0.5 0.25 

Mean −2.089 1.296 −1.025 0.497 0.215 0.189 0.439 0.400 0.265 

Bias −0.089 0.046 −0.025 −0.003 −0.085 −0.111 −0.061 −0.100 0.015 

RMSE 0.264 0.179 0.117 0.093 0.127 0.172 0.144 0.148 0.097 

I-statistic 4.759 1.879 1.605 1.075 2.734 2.292 3.187 1.185 1.120 

GT p-value 0.439 0.449 0.505 0.519 0.465 0.492 0.466 0.477 0.479 

True −2 1.25 −1 0.5 0.4 0.6 0.8 0.5 0.25 

Mean −2.258 1.398 −1.142 0.558 0.443 0.591 0.671 0.394 0.253 

Bias −0.258 0.148 −0.142 0.058 0.043 −0.009 −0.129 −0.106 0.003 

RMSE 0.424 0.275 0.223 0.141 0.078 0.079 0.151 0.150 0.076 

I-statistic 7.471 2.446 2.658 1.189 3.189 2.669 4.285 1.232 1.104 

GT p-value 0.461 0.465 0.500 0.515 0.475 0.499 0.472 0.490 0.478 

True −2 1.25 −1 0.5 0.4 0.6 0 0.5 0.25 

Mean −2.150 1.336 −1.059 0.510 0.423 0.549 0.008 0.389 0.261 

Bias −0.150 0.086 −0.059 0.010 0.023 −0.051 0.008 −0.111 0.011 

RMSE 0.324 0.219 0.142 0.106 0.069 0.092 0.159 0.150 0.080 

I-statistic 4.752 1.799 1.645 1.075 2.036 1.732 3.149 1.137 1.083 

GT p-value 0.457 0.464 0.486 0.482 0.479 0.514 0.484 0.463 0.522 

The I-statistic is calculated following Raftery and Lewis (1992). GT p-value denotes the p-value of the Geweke (1992) test. 



Table 3: Results for latent variable extension, N = 100 and T = 5 

β11 β12 β21 β22 λ11 λ12 λ21 λ22 τ α1 α2 

True −2 1.25 −1 0.5 0.4 0.2 0.1 0.3 0.5 0.5 0.25 

Mean −2.095 1.364 −1.050 0.538 0.388 0.270 0.114 0.173 0.408 0.561 0.290 

Bias −0.095 0.114 −0.050 0.038 −0.012 0.070 0.014 −0.127 −0.092 0.061 0.040 

RMSE 0.336 0.260 0.137 0.111 0.082 0.170 0.082 0.191 0.174 0.158 0.133 

I-statistic 6.369 2.117 1.893 1.104 4.173 3.093 2.745 4.437 3.850 1.910 1.689 

GT p-value 0.526 0.539 0.535 0.509 0.509 0.507 0.525 0.493 0.457 0.492 0.501 

The I-statistic is calculated following Raftery and Lewis (1992). GT p-value denotes the p-value of the Geweke (1992) test. 

Table 4: Results for CRE-variant in CRE world; different cα; N = 100 and T = 5 

β11 β12 β21 β22 λ1 λ2 τ α1 α2 

True −2 1.25 −1 0.5 0.4 0.6 0.5 0.5 0.25 

cα = 1 

Mean −1.901 1.167 −1.022 0.517 0.404 0.571 0.429 0.369 0.264 

Bias 0.099 −0.083 −0.022 0.017 0.004 −0.029 −0.071 −0.131 0.014 

RMSE 0.277 0.204 0.141 0.120 0.068 0.081 0.143 0.158 0.077 

I-statistic 4.493 1.598 1.892 1.086 2.366 2.084 3.219 1.146 1.090 

GT p-value 0.459 0.458 0.491 0.508 0.501 0.490 0.470 0.469 0.502 

cα = 2 

Mean −1.814 1.107 −1.061 0.543 0.384 0.575 0.429 0.367 0.275 

Bias 0.186 −0.143 −0.061 0.043 −0.016 −0.025 −0.071 −0.133 0.02 

RMSE 0.320 0.221 0.172 0.135 0.078 0.078 0.153 0.161 0.084 

I-statistic 4.743 1.612 2.262 1.126 2.638 2.456 3.470 1.164 1.108 

GT p-value 0.463 0.465 0.505 0.495 0.488 0.495 0.464 0.479 0.489 

cα = 4 

Mean −1.885 1.166 −1.160 0.594 0.373 0.616 0.440 0.399 0.302 

Bias 0.115 −0.084 −0.160 0.094 −0.027 0.016 −0.060 −0.101 0.052 

RMSE 0.359 0.220 0.266 0.188 0.090 0.077 0.160 0.148 0.104 

I-statistic 6.385 1.974 2.915 1.229 3.964 3.469 4.960 1.280 1.183 

GT p-value 0.454 0.464 0.478 0.469 0.514 0.485 0.460 0.473 0.461 

The I-statistic is calculated following Raftery and Lewis (1992). GT p-value denotes the p-value of the Geweke (1992) test. 



Table 5: Results for non-CRE-variant in CRE world for cα = 4; N = 100 and T = 5 

β11 β12 β21 β22 λ1 λ2 τ α1 α2 

True −2 1.25 −1 0.5 0.4 0.6 0.5 0.5 0.25 

cα = 4 

Mean −2.234 1.616 −1.238 0.768 0.383 0.620 0.474 0.451 0.308 

Bias −0.234 0.366 −0.238 0.268 −0.017 0.020 −0.026 −0.049 0.058 

RMSE 0.459 0.457 0.347 0.324 0.088 0.080 0.180 0.135 0.106 

I-statistic 8.865 2.697 3.459 1.371 4.469 3.971 5.673 1.416 1.212 

GT p-value 0.482 0.493 0.490 0.523 0.518 0.515 0.504 0.476 0.479 

The I-statistic is calculated following Raftery and Lewis (1992). GT p-value denotes the p-value of the Geweke (1992) test. 
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