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Abstract

In this paper, we study the performance limits of recovering the support of a sparse signal based on quantized

noisy random projections. Although the problem of support recovery of sparse signals with real valued noisy

projections with different types of projection matrices has been addressed by several authors in the recent literature,

very few attempts have been made for the same problem with quantized compressive measurements. In this paper,

we derive performance limits of support recovery of sparse signals when the quantized noisy corrupted compressive

measurements are sent to the decoder over additive white Gaussian noise channels. The sufficient conditions which

ensure the perfect recovery of sparsity pattern of a sparse signal from coarsely quantized noisy random projections

are derived when the maximum likelihood decoder is used. More specifically, we find the relationships among the

parameters, namely the signal dimension N , the sparsity index K, the number of noisy projections M , the number

of quantization levels L, and measurement signal-to-noise ratio which ensure the asymptotic reliable recovery of

the support of sparse signals when the entries of the measurement matrix are drawn from a Gaussian ensemble.

I. INTRODUCTION

Support recovery of a sparse signal is concerned with finding the locations of the non-zero elements of

the sparse signal. The problem of sparsity pattern recovery arises in a wide variety of areas including source

localization [1], [2], sparse approximation [3], subset selection in linear regression [4], [5], estimation of

frequency band locations in cognitive radio networks [6], and signal denoising [7]. In these applications,

finding the support of the signal is more important than approximating the signal itself. This problem has

been addressed by many authors in the last few decades in different contexts. With the recently introduced

sparse signal acquisition scheme via random projections, called Compressed Sensing, the problem of

support recovery of sparse signals has received much attention in the context of random dictionaries.

1This work was supported in part by the Air Force Office of Scientific Research (AFOSR) by Grant FA-9550-09-1-0064.
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Compressed Sensing (CS) is a new paradigm which enables the reconstruction of compressible or sparse

signals with far fewer samples using a universal sampling procedure compared to that with traditional

sampling methods [8]–[10]. In this framework, a small collection of linear random projections of a sparse

signal contains sufficient information for signal recovery. The basic CS theory has been described in [8],

[11], [12]. The authors have shown that if a signal has a sparse representation in a particular basis Ψ,

then it can be recovered by a small number of projections to another basis Φ that is incoherent with the

first. When using random projections, CS is universal in the sense that the same mechanism in acquiring

measurements can be used irrespective of the sparsity level or the basis in which the signal is sparse.

Development of computationally efficient and tractable algorithms to recover the sparse signals based on

CS measurement scheme has been considered by many researchers [13]–[21]. The performance of the

sparse signal reconstruction with noisy compressed measurements was also addressed by several authors

in [22], [23].

A. Related work

As mentioned earlier, the problem of support recovery of sparse signals is important in many ap-

plications. Performance limits on reliable recovery of the support of sparse signals with real valued

noisy corrupted compressive measurements have been addressed by several authors in recent research

exploiting information theoretic tools [24]–[31]. Most of these works mainly focus on deriving sufficient

and necessary conditions for the reliable support recovery, and discussing and quantifying the gap between

the performance limits of existing computationally tractable practical algorithms (such as Least-Absolute

Shrinkage and Selection Operator (LASSO) and Orthogonal matching pursuit (OMP)) and that can be

achieved based on the optimal ML decoding algorithm if the computational constraints are removed.

Although most of the CS literature has focused on sparse signal reconstruction and/or support recovery

from real valued compressive measurements, it is important to consider quantization of compressive

measurements since in practice, measurements are quantized before transmission or storage. There are

some recent works that have addressed the problem of recovering sparse signals based on quantized

compressive measurements in different contexts [31]–[39]. In particular, the works [32], [36], [37], [39]

consider the support recovery based on 1-bit quantized compressive measurements where the authors

have proposed several computationally tractable algorithms to recover the sparsity pattern. In [33], [34],

the effect of quantization of CS measurements is further addressed in terms of average distortion and

quantization error, respectively. In [38], the design of quantizers for random measurements of sparse

signals that are optimal with respect to mean-squared error of the LASSO reconstruction was discussed.

However, the performance limits obtainable with quantized compressive measurements if the computational

constraints are removed have not been adequately addressed in the CS literature.



3

B. Our contribution and the summary of main results

In this paper, we analyze the performance limits of support recovery of sparse signals based on quan-

tized compressive measurements when the computational constraints are removed. The noisy corrupted

compressive measurements are assumed to be quantized before transmitting or further processing. Our

goal is to establish relationships among the parameters, namely the signal dimension N , sparsity index K,

the number of compressive measurements M , the number of quantization levels L, and the measurement

signal-to-noise ratio of the signal that ensure the asymptotic reliable recovery of the support of the

sparse signal with quantized (noisy corrupted) compressive measurements. Our analyses are based on the

assumptions that the model parameters K, N and M are large and may tend to infinity. The entries of the

measurement matrix are assumed to be drawn from a Gaussian ensemble. More specifically, we derive

the lower bounds on the number of quantized compressive measurements required to reliably recover the

sparsity pattern of sparse signals with maximum likelihood (ML) estimator.

Although this work can be considered as an extension of the problem of support recovery of sparse

signals with real valued compressive measurements in [24] for the case with quantized compressive

measurements, there are some other differences in the problem formulation. In [24], the author has assumed

that the sparse signal is unknown and deterministic, while in this paper the sparse signal is assumed to be

random with known statistics. In [30], the performance of sparse support recovery was addressed when

the non zero elements of the sparse signal are modeled as random, but those analyses are with real valued

compressive measurements and for a given (deterministic) measurement matrix.

The main results in the paper can be summarized as given below.

1) In Theorem 1, a lower bound on the number of measurements required for reliable recovery of

sparsity pattern with L-level quantized compressive measurements is derived when the noise power

at the decoder is negligible for given values of measurement signal-to-noise ratio and threshold for

the quantizer. In this case,

a) in the regime of linear sparsity, it is sufficient to have Ω(N) quantized compressive measure-

ments for reliable recovery of sparsity pattern with L-level quantized compressive measure-

ments. According to the results presented in [24] it can be seen that this is the same order as

with the real valued measurements. The differentiating factor which depends on the number

of quantization levels, threshold values of the quantizer, the measurement signal-to-noise ratio

is analyzed explicitly.

2) Theorem 2 presents a lower bound on the minimum number of measurements needed for support

recovery with 1-bit quantized CS when the noise power at the decoder is negligible. In this case,

a) the scaling with respect to K and N is similar to that obtained for L-level quantized measure-
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ments as stated above.

b) when the measurement noise power is also negligible, the minimum number of measurements

required for reliable recovery of the support scales as Ω
(
K log N

K

)
irrespective of the behavior

of the sparsity pattern.

3) Theorem 3 presents necessary conditions for reliable support recovery based on 1-bit quantized

CS with any classification rule. The necessary conditions, which state the minimum number of

measurements required to reliably recover the sparsity pattern with any sparsity pattern recovery

algorithm, derived in the paper for 1-bit quantized CS, show similar behavior as in the case of

real valued CS [24]. However, the way of dependence of the measurement SNR on the minimum

number of measurements is problem specific.

From the results derived in the paper, it is seen that the minimum number of measurements required

for reliable recovery of sparsity pattern of sparse signals with quantized measurements scales in a similar

manner (with respect to K and N ) as that with real valued observations under certain asymptotic and

sparsity regimes. The exact value of the lower bound differs in two cases by terms that depend on

the parameters including measurement SNR, number of quantization levels, the values of quantization

thresholds, etc.. We explicitly derive these terms and show how it affects the lower bound on the number

of measurements required for reliable support recovery. In particular, it can be seen that the measurement

SNR plays an important role in recovering the sparsity pattern with the ML decoder with coarsely

quantized compressive measurements. As observed with real valued compressive measurements in [24], as

the measurement SNR increases, we could numerically show that the minimum number of compressive

measurements required to recover the sparsity pattern reliably with 1-bit quantized CS based on ML

decoder is ultimately limited only by the sparsity index K, the signal dimension N and the statistical

properties of the projection matrix.

C. Organization of the rest of the paper and notations

The rest of the paper is organized as follows. Section II presents the observation model and the problem

formulation. In Section III, performance of the ML decoder with L-level quantized measurements is

analyzed. The sufficient conditions that should be satisfied by the number of measurements for reliable

sparsity pattern recovery with 1-bit compressive measurements with ML decoder are derived in Section

III-D. The necessary conditions on the number of measurements that should be satisfied by any recovering

algorithms are discussed in Section IV. Numerical results are presented in Section V. Concluding remarks

are given in Section VI while proofs of some theorems and lemmas are given in Appendices.

Through out the rest of the paper, the expression f(n) = Ω(g(n)) denotes f(n) ≥ g(n).k for some
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positive k as n → ∞. f(n) = o(g(n)) denotes f is dominated by g asymptotically where |f(n)| ≤ |g(n)|.ϵ

for all ϵ (0 < ϵ < 1) as n → ∞.

II. OBSERVATION MODEL AND PROBLEM FORMULATION

A. Observation model

Consider the following M × 1 real valued observation vector collected via random projections:

y = Φs+ v (1)

where Φ is the M × N (M < N ) measurement matrix in which the entries are assumed to be drawn

from a Gaussian ensemble, s ∈ RN is the sparse signal vector of interest with only K (K ≪ N ) non-zero

elements, N is the signal dimension, v is the M × 1 measurement noise vector which is assumed to be

iid Gaussian with v ∼ N (0, σ2
vIM) and IM is the M ×M identity matrix. For many applications, it may

be required to quantize the compressive measurements before further processing or transmission. Further,

if the measurements are quantized very coarsely, for example to 1-bit, the sparse signal processing is

performed with access to only the sign information of the compressive measurements which reduces the

sampling complexity. In the following, we assume that the measurement vector (1) is quantized element-

wise into one of L levels which requires B = ⌈log2 L⌉ bits per measurement:

zi =



0, if τ0 ≤ yi < τ1

1, if τ1 ≤ yi < τ2

.

.

L− 1, if τL−1 ≤ yi < τL

(2)

for i = 1, 2, · · · ,M , where τ0, τ1, · · · , τL represent quantizer thresholds with τ0 = −∞ and τL = ∞. In

many communication systems, once the observation vector is obtained, it is sent to a destination node via

a communication channel for further processing. We assume that the quantized measurements are sent to

the decoder over noisy communication channels. The received observation at the decoder is given by,

ri = zi + wi, for i = 1, 2, · · · ,M (3)

where wi is the decoder noise which is assumed to be iid Gaussian with mean zero and variance σ2
w.

Assume that it is required to recover the support of the sparse signal s based on the M × 1 observation

vector r = [r1, r2, · · · , rM ]T .
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B. Error metric and the ML decoder

Define the support set of the signal s as U := {i ∈ {1, 2, · · · , N} | s(i) ̸= 0} where s(i) is the

i-th element of s for i = 1, 2, · · · , N . Then we have K = |U| where |.| denotes the cardinality of the

corresponding set. In this paper, we consider the probability of error as the performance metric while

recovering the support of the sparse signal s. Assuming that the support of the sparse signal is randomly

and uniformly selected over
(
N
K

)
possible subsets of size K, the probability of error for any decoder ϕ

that maps the M -length quantized observation vector r to an estimated support Û is given by,

Perr =
1

N0

N0−1∑
k=0

Pr(ϕ(r) ̸= Uk|Uk)

where N0 =
(
N
K

)
and Pr(ϕ(r) ̸= Uk|Uk) is the probability of not selecting the support Uk by the decoder

when the true support is Uk.

Let s̃ denote the K × 1 vector of the non-zero elements of s. In this paper, we assume that s̃ ∼

N (µ, σ2
sIK) with µ ̸= [0, 0, · · · , 0]T . The maximum likelihood decoder selects the true support of the

signal s as,

Û = argmax
Uk,k=0,1,··· ,N0−1

p(r|Uk) (4)

where p(r|Uk) is the pdf of the observation vector r given the support Uk where Uk ⊂ {1, 2, · · · , N} with

|Uk| = K.

III. SUFFICIENT CONDITIONS FOR SUPPORT RECOVERY OF SPARSE SIGNALS WITH QUANTIZED CS

VIA ML DECODER

The exact analysis of the probability of error of the ML decoder (4) with the observation model (3)

is difficult in general. Thus we consider an upper bound for the probability of error based on union and

Chernoff bounds. Assuming the support sets are uniformly distributed, the probability of error of the ML

decoder is upper bounded by,

Perr =
1

N0

N0−1∑
k=0

Pr(Û ̸= Uk|Uk)

≤ 1

N0

N0−1∑
k=0

N0−1∑
j=0,j ̸=k

Pr(Û = Uk|Uj)

≤ 1

2N0

N0−1∑
k=0

N0−1∑
j=0,j ̸=k

exp(−Ĉ(α0; pk, pj))
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where Ĉ(α0; pk, pj) = max
0≤α≤1

C(α; pk, pj) with C(α; pk, pj) is the Chernoff distance between the two distri-

butions p(r|Uk) and p(r|Uj) which is defined as,

C(α; pk, pj) = − log
{
C̃(α; pk, pj)

}
. (5)

where C̃(α; pk, pj) =
∫
p(r|Uk)

1−αp(r|Uj)
αdr. For a given measurement matrix Φ, the joint pdf of the

observation vector r given the support Uk can be approximated by the following in the high dimensional

setting (derivation is given in Appendix A);

p(r|Uk) →
M∏
i=1

L−1∑
l=0

N (ri; l, σ
2
w)[λ

l
ik − λl+1

ik ] (6)

where λl
ik = Q

 τl−
∑K

j=1(Φ̃Uk)ijµj√
σ2
v+σ2

s

∑K
j=1(Φ̃Uk)

2

ij

, Φ̃Uk
is a M ×K submatrix of Φ such that Φ̃Uk

s̃ = Φs when the

support of the signal s is Uk, and Q(x) = 1√
2π

∫∞
x

e
−t2

2 dt is the Gaussian Q-function.

Lemma 1: With the observation model (3) at the decoder, the Chernoff distance between two pdfs

p(r|Uk) and p(r|Uj) in (5) (when the parameters N,K,M are sufficiently large) can be approximated by,

C(α; pk, pj) → − log
M∏
i=1

gαi (Uj,Uk) (7)

where

gαi (Uj,Uk) =
L−1∑
l=0

∫
N (ri; l, σ

2
w)[λ

l
ik − λl+1

ik ]

∑L−1
m=0 e

mri−m2/2

σ2
w [λm

ij − λm+1
ij ]∑L−1

n=0 e
nri−n2/2

σ2
w [λn

ik − λn+1
ik ]


α

dri. (8)

Proof: See Appendix B.

Since it is hard to obtain an analytically tractable solution for α which maximizes the Chernoff distance,

we restrict the discussion for α = 1
2

which yields the Bhattacharya bound on the corresponding probability

of error. Then when the parameters N,K,M are sufficiently large, the probability of error of the ML

decoder is upper bounded by,

Perr ≤
1

2N0

N0−1∑
k=0

N0−1∑
j=0,j ̸=k

M∏
i=1

g
1
2
i (Uj,Uk). (9)

A. Further analysis of the bound (9) in the high-dimension with random measurement matrices

In the following, we further analyze the bound (9) in high dimension such that N , K and M are

sufficiently large. We further assume that the entries of the measurement matrix Φ are iid.
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Proposition 1: Assume that the thresholds of the quantization scheme (2) are given by, τ0 < τ1 < · · · <

τL, Then for given support sets Uj and Uk, for j ̸= k, g
1
2
i (Uj,Uk) ≥ 0 for i = 1, 2, · · · ,M .

Proof: It is noted that g
1
2
i (Uj,Uk) is given by,

g
1
2
i (Uj,Uk) =

L−1∑
l=0

∫
N (ri; l, σ

2
w)[λ

l
ik − λl+1

ik ]

∑L−1
m=0 e

mri−m2/2

σ2
w [λm

ij − λm+1
ij ]∑L−1

n=0 e
nri−n2/2

σ2
w [λn

ik − λn+1
ik ]


1
2

dri (10)

For a given support Uj we have,

λl
ij − λl+1

ij = Q

 τl −
∑K

r=1

(
Φ̃Uj

)
ir
µr

σ2
v + σ2

s

∑K
r=1

(
Φ̃Uj

)2
ir

−Q

τl+1 −
∑K

r=1

(
Φ̃Uj

)
ir
µr

σ2
v + σ2

s

∑K
r=1

(
Φ̃Uj

)2
ir


Since τl < τl+1 for l = 0, 1, · · · , L − 1, Q(x) is a monotonically non-increasing function with x and

0 ≤ Q(x) ≤ 1 for x ∈ (−∞,∞), we have

0 ≤ (λl
1j − λl+1

1j ) ≤ 1

Then it can be seen that the integrand in (10) is a positive function resulting in g
1
2
i (Uj,Uk) being non

negative for given support sets Uj and Uk for j ̸= k and for i = 1, 2, · · · ,M .

Using the fact that the geometric mean of non negative real numbers is always less than or equal to

the arithmetic mean, we have(
M∏
i=1

g
1
2
i (Uj,Uk)

) 1
M

≤ 1

M

M∑
i=1

g
1
2
i (Uj,Uk). (11)

Note that when the entries of the measurement matrix are iid random variables, it can be seen that

the elements in the sequence {g
1
2
i (Uj,Uk)}Mi=1 are iid random variables for given support sets Uj and Uk.

Thus, when M is sufficiently large, from the law of large numbers, the right hand side of (11) can be

approximated by the mathematical expectation of the random variable g
1
2
1 (Uj,Uk) which we denote by

ḡj,k = E{g
1
2
1 (Uj,Uk)}. (12)

Then we have the following Lemma.

Lemma 2: When the parameters N,K,M are sufficiently large, the probability of error for the support

recovery of sparse signal s with the observation model (3) is upper bounded by,

Perr ≤ 1

2

K−1∑
t=0

(
K

t

)(
N −K

K − t

)
(ḡt)

M
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where ḡt = E{g
1
2
1 (Uj,Uk)| (|Uj ∩ Uk| = t)}.

Proof: With ḡj,k as given in (12), the probability of error in (9) can be upper bounded by,

Perr ≤
1

2N0

N0−1∑
k=0

N0−1∑
j=0,j ̸=k

(ḡj,k)
M . (13)

When the entries of the measurement matrix are iid random variables, the value of ḡj,k is the same for

any j, k as far as the number of overlapping elements of the sets Uj and Uk is the same for given support

sets Uj and Uk for j ̸= k. Note that for a given support set Uk with |Uk| = K, there are
(
K
t

)(
N−K
K−t

)
support sets which have t overlapping elements with any other support set Uj with |Uj| = K for k ̸= j

and t = 0, 1, 2, · · · , K − 1. Thus, the upper bound for the probability of error in (13) reduces to,

Perr ≤ 1

2N0

N0−1∑
k=0

K−1∑
t=0

(
K

t

)(
N −K

K − t

)
(ḡt)

M

=
1

2

K−1∑
t=0

(
K

t

)(
N −K

K − t

)
(ḡt)

M

It is noted that the value ḡt depends on many parameters including the sparsity index K, signal dimension

N , statistical properties of the measurement matrix Φ, the measurement SNR, the number of quantization

levels L, and the values of quantization thresholds. Computation of the quantity ḡt for a given measurement

matrix is quite complex in general. In the following, we consider several important special cases where

a tractable analysis can be obtained.

B. Performance of the ML decoder with L-level quantized CS when the average SNR at the decoder is

good (σ2
w → 0)

We consider the case where the noise power at the decoder σ2
w is negligible such that σ2

w → 0.

Lemma 3: With the observation model (3) at the decoder, the Bhattacharya distance C(1
2
; pk, pj) in (7)

reduces to

C
(
1

2
; pk, pj

)
→ − log

{
M∏
i=1

L−1∑
l=0

(λl
ij − λl+1

ij )1/2(λl
ik − λl+1

ik )1/2

}
.

as σ2
w → 0 when the parameters N,K,M are sufficiently large. Then the probability of error of the ML

decoder is upper bounded by,

Perr ≤ 1

2

K−1∑
t=0

(
K

t

)(
N −K

K − t

)
(āt,L)

M

where āt,L =
∑L−1

l=0 E{ãlt} and E{ãlt} = E{(λl
1j − λl+1

1j )
1
2 (λl

1k − λl+1
1k )

1
2 | (|Uj ∩ Uk| = t)}.
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Proof: See Appendix C.

The sufficient conditions for reliable recovery of the sparsity pattern with L-level quantized observations

(2) when σ2
w → 0 are stated in the following theorem:

Theorem 1: In the high dimensional setting (such that the parameters N,K,M are sufficiently large),

for L-level quantized compressive measurements with given values of thresholds τ0, τ1, · · · , τL, the suffi-

cient condition to have a vanishing probability of error asymptotically when using the ML decoder for

support recovery of the sparse signal s is:

M ≥ max {f0(N,K, γ, L), f1(N,K, γ, L), · · · , fK−1(N,K, γ, L)} (14)

where

ft(N,K, γ, L) =
1

log 1
āt,L

[
(K − t)

(
2 + log

K

K − t
+ log

(N −K)

K − t

)
+ log

1

2

]
for t = 0, 1, · · · , K − 1.

Proof: See Appendix D.

(14) explicitly shows how the minimum number of measurements required for sparsity pattern recovery

scales with the parameters N and K with L-level quantized quantized compressive measurements when

the decoder noise power is negligible. It is also noted that this minimum number of measurements depends

on a term related to several parameters including number of quantization levels L, values of quantization

thresholds, measurement SNR and statistical properties of the measurement matrix Φ.

In the following, we further analyze the lower bound (14) in linear sparsity regime for given values of

the parameters, the measurement SNR γ, sparsity index K, number of quantization levels L, and values

of quantization thresholds, and compare the results with some related existing work. Following a direct

information theoretic approach the author in [24] showed that the sufficient condition for sparsity pattern

recovery with real valued observations (given that the non-zero elements of sparse signal are unknown

and deterministic) is M > Cmax
{
K log N

K
, 1
P2
min

log(N −K)
}

where Pmin is the minimum value of the

unknown signal and C is a constant. With a similar problem formulation, the authors in [40] have shown

that M = max
{
Ω(K logK),Ω

(
K

logK
logN

)}
measurements are required for sparsity pattern recovery

in which the analyses are based on the analogy of channel capacity in additive white Gaussian noise-

multiple access channel (AWGN-MAC) channels. Considering the quantization error as to perturbations to

the measurements, the authors in [31] have shown that the number of measurements required for reliable

sparsity pattern recovery is given by M > K
SNR

[(1− ϵ) log(N −K)− 1] for some ϵ > 0.
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Linear sparsity regime: Consider the linear sparsity regime where K varies linearly with N . Let

max
0≤t≤K−1

{ft(N,K, γ, L)} occur at t = t0. If t0
K

= β for β ∈ (0, 1), we have,

ft0(N,K, γ, L) =
1

log 1
āt0,L(γ,K)

[
C1K

(
log

N −K

K
+ C2

)
+ C3

]
(15)

where C1 = 1 − β, C2 = 2
(
1 + log 1

1−β

)
, and C3 = log 1

2
. Note that the right hand side of (15) is

dominated by the term K log N−K
K

. Thus in the linear sparsity regime, the number of measurements

required for reliably sparsity pattern recovery scales as Ω
(
K log N

K

)
for given values of SNR, L and

quantization thresholds. This is the same scaling as observed in the real valued case in [24], [28] in the

linear sparsity regime. Also, the authors in [40] have shown that their results on the sufficient conditions

in the linear sparsity regime (i.e. Ω(K logN) measurements) are inferior to that in [24] as well as to

our results. From (14), it can be seen that the effect of the quantization as considered in (2) is related to

the number of measurements required for reliable sparsity pattern via the term āt,L. In fact āt,L depends

on many factors including the measurement SNR γ, number of quantization levels L, and values of

quantization thresholds. We provide a precise bound for M in (14) clearly demonstrating the impact

of these factors and the scaling with respect to K and N on the number of measurements required for

sparsity pattern recovery, in contrast to the results obtained in [24] and [40] for the real valued compressive

measurements. Further, the scaling Ω(K log(N−K)) grows much more rapidly compared to Ω
(
K log N

K

)
in the linear sparsity regime. Thus the scaling obtained in this paper with respect to K and N shows

a lower order growth compared to that obtained in [31] for the sparsity pattern recovery in the linear

sparsity regime.

The author in [24] has shown that the practical computationally tractable algorithms in the literature

(such as LASSO) for reliable sparsity recovery in the linear sparsity regime require many more mea-

surements compared to Ω(N) that is obtained with real valued observations. Thus, it is an interesting

open problem to develop efficient algorithms to reach the performance bounds achievable by the optimal

decoder when the sparsity pattern recovery is to be done based on the quantized version of the real valued

compressive measurements.

As mentioned before, the effect of quantization is related to the minimum number of measurements

via the term āt,L. Thus, it is difficult to characterize the behavior of the bound on M in (14) with the

number of quantization levels L directly since the term āt,L for given t is dependent on the thresholds used

in the quantization scheme (2) and the values of these thresholds vary as L increases. In the numerical

results section, we show the impact of number of quantization levels and the values of the thresholds on

the minimum number of measurements required for reliable sparsity pattern recovery. It is of interest to
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consider the design of the thresholds used in the quantization scheme (2) such that the lower bound on

M decreases as L increases. This issue will be addressed in a future work.

C. Performance of the ML decoder with uniform quantizer when σ2
w → 0

Now we consider the simple but important special case; the uniform quantizer in which the quantizer

levels are equally spaced. With the bin width ∆, the finite level uniform quantizer is given by,

zi =



−L0∆, if yi <
−(2L0−1)∆

2

.

−∆, if − 3∆
2

≤ yi <
−∆
2

0, if − ∆
2
≤ yi <

∆
2

∆, if − ∆
2
≤ yi <

3∆
2

.

L0∆, if yi >
(2L0−1)∆

2

(16)

for i = 1, 2, · · · ,M where it has L = 2L0 + 1 quantizer levels.

Following a similar approach as in Section III-B, it can be shown that C̃
(
1
2
; pk, pj

)
is given by (in the

high dimensional setting),

C̃
(
1

2
; pk, pj

)
→

M∏
i=1

(1− ξ−L0
ij )

1
2 (1− ξ−L0

ik )
1
2 +

L0−2∑
l=−(L0)

(ξlij − ξl+1
ij )1/2(ξlik − ξl+1

ik )1/2 + (ξL0−1
ij )

1
2 (ξL0−1

ik )
1
2

 .

as σ2
w → 0 where ξlij = Q

 (2l+1)∆
2

−
∑K

j=1(Φ̃Uk)ijµj√
σ2
v+σ2

s

∑K
j=1(Φ̃Uk)

2

ij

 for l = −L0, · · · , L0 − 1, and the probability of error

of the ML decoder is upper bounded by,

Perr ≤ 1

2

K−1∑
t=0

(
K

t

)(
N −K

K − t

)(
b̄t,∆
)M (17)

where b̄t,∆ = E{b̃−L0
t }+E{b̃L0

t }+
∑L0−1

l=−(L0−1) E{b̃lt}, E{b̃lt} = E{(ξl1j−ξl+1
1j )

1
2 (ξl1k−ξl+1

1k )
1
2 | (|Uj∩Uk| = t)},

E{b̃−L0
t } = E{(ξ−L0

1j )
1
2 (ξ−L0

1k )
1
2 | (|Uj ∩ Uk| = t)}, and E{b̃L0

t } = E{(ξL0
1j )

1
2 (ξL0

1k )
1
2 | (|Uj ∩ Uk| = t)}.

Following a similar procedure as in subsection III-B, the minimum number of measurements for asymptotic

reliable recovery of sparse signals can be obtained and details are avoided here for brevity.

It is noted that when L0 → ∞, the uniform quantizer has infinite number of levels with the bin width

∆ and the number of bits required is infinite. From (17), it can be seen that the quantizer parameter ∆

affects the probability of error via the term b̄t,∆. It can be verified that each term b̄t,∆ is not a monotonic

(increasing or decreasing) function of ∆. However, it is computationally difficult to find the optimal value
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of the bin width ∆ analytically which results the minimum probability of error in (17). We provide some

numerical results in Section V to observe the dependence of the bin width ∆ on the minimum number

of measurements required for asymptotic reliable recovery of the support of sparse signals.

D. Performance of the ML decoder of the support Recovery of Sparse Signals with 1-Bit Quantized CS

when σ2
w → 0

Next we consider another important special case where the measurements are quantized into only two

levels such that L = 2, i.e., 1-bit quantization. One example under this special case is to use only the sign

information of the compressive measurements to recover the support of the sparse signal [32], [36]. Sparse

signal processing with 1-bit quantized CS is attractive since 1-bit CS techniques are robust under different

kinds of non-linearties applied to measurements and have less sampling complexities at the hardware level

because the quantizer takes the form of a comparator [36], [41]. More specifically let,

zi =

 1, if yi ≥ 0

−1, otherwise
(18)

for i = 1, 2, · · · ,M . The following theorem (a sketch of the proof can be found in Appendix E) states

the sufficient conditions on the number of measurements to achieve a reliable recovery of the support of

the sparse signal with 1-bit quantized compressive measurements.

Theorem 2: In the high dimensional setting, for 1- bit quantized compressive measurements, the prob-

ability of error of the support recovery of the sparse signal s is upper bounded by,

Perr ≤ 1

2

K−1∑
t=0

(
K

t

)(
N −K

K − t

)
(āt,2(γ,K))M ,

and the sufficient condition to have a vanishing probability of error asymptotically when using the ML

decoder for sparse support recovery is:

M ≥ max
{
f̃0(N,K, γ), f̃1(N,K, γ), · · · , f̃K−1(N,K, γ)

}
(19)

where

f̃t(N,K, γ) =
1

log 1
āt,2(γ,K)

[
(K − t)

(
2 + log

K

K − t
+ log

(N −K)

K − t

)
+ log

1

2

]
(20)

for t = 0, 1, · · · , K − 1 where āt,2(γ,K) = E{ã0t}+ E{ã1t} where

E{ã0t} = E{(1− λj)
1
2 (1− λk)

1
2 | (|Uj ∩ Uk| = t)}
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and

E{ã1t} = E{(λj)
1
2 (λk)

1
2 | (|Uj ∩ Uk| = t)}

with

λk = Q

 −
∑K

i=1

(
Φ̃Uk

)
1i
µi

σ2
v + σ2

s

∑K
i=1

(
Φ̃Uk

)2
1i

 .

Remark 1: With the definition of λk and assuming finite σ2
s and σ2

v , it can be easily shown that

0 < āt,2(γ,K) < 1 resulting in the fact that log 1
āt,2(γ,K)

is always positive. Further if we assume that

K ≤ N
2

, the lower bound on the number of measurements M in (19) is always positive.

The lower bound in (19) explicitly shows the minimum number of measurements required to recover

the sparsity pattern of the sparse signal with only sign information of the compressive measurement vector

(1) with the ML decoder. It is further noted that, as mentioned earlier, the value of āt,2(γ,K) also depends

on the sparsity index K and the measurement SNR γ. Illustration of the dependence of M in (19) on

both γ and K is shown in the numerical results section.

Computation of E{ã0t} and E{ã1t}: Let uk =
∑K

i=1

(
Φ̃Uk

)
1i
µi. When the entries of the projection

matrix Φ are iid Gaussian with mean zero and variance 1
N

, it can be shown that uk is a Gaussian random

variable with mean zero and the variance 1
N
||µ||22. Then we have,

E{ã0t} = E{(1− λj)
1
2 (1− λk)

1
2 | |Uj ∩ Uk| = t}

=

∫ ∫
(1− λj(uj))

1
2 (1− λk(uk))

1
2fUkUj

(uk, uj)dukduj

which can be found by a 2-fold integration, where we write λj(uj) = Q
(

−uj

σ2
v+

K
N
σ2
s

)
.

Proposition 2: In the high dimensional setting, given that |Uj ∩ Uk| = t, the joint pdf of (uk, uj),

fUkUj
(uk, uj) tends to a bi-variate Gaussian with mean 0 and the covariance matrix Σt where

Σt =
µTµ

N

 1 ρt

ρt 1


where ρ0 = 0, ρt =

∑t
i=1 µ̃i

µTµ
for t = 1, · · · , K − 1, µ̃t = {µmµn; if

(
Φ̃Uk

)
1m

=
(
Φ̃Uj

)
1n

for m, n =

1, 2, · · · , K} for |Uj ∩ Uk| = t and µ̃t = [µ̃1, · · · , µ̃t]
T .

• In the case where the vector corresponding to non zero elements of the sparse signal, s̃ (with any

sparsity model) is characterized as a first order Gaussian such that σ2
s = 0 we have the following

results. When the measurement quality is good such that σ2
v → 0, it can be shown that (see Appendix
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F),

E{ã0t} = E{ã1t} =
1

4
+

arcsin(ρt)

2π
(21)

for t = 0, 1, · · · , K − 1 and thus āt,2 =
1
2
+ arcsin(ρt)

π
. Further, if we assume µ = µ0[1 1 · · · 1]T , we

have ρt =
t
K

and max
0≤t≤K−1

āt,2 =
1
2
+

arcsin(K−1
K

)

π
= aK where 0 < aK < 1. Then the upper bound on

the probability of error (30) with 1-bit quantization can be written as,

Perr ≤ 1

2

K−1∑
t=0

(
K

t

)(
N −K

K − t

)(
max
1≤t≤K

āt,2

)M

=
1

2
(aK)

M
K−1∑
t=0

(
K

t

)(
N −K

K − t

)
(22)

Using Chu-Vandermonde identity (which says that
∑k

j=0

(
m
j

)(
n−m
k−j

)
=
(
n
k

)
for any complex values m

and n and non-negative integer k), the bound in (22) reduces to,

Perr ≤ 1

2
(aK)

M

[
K∑
t=0

(
K

t

)(
N −K

K − t

)
− 1

]

=
1

2
(aK)

M

[(
N

K

)
− 1

]
<

1

2
(aK)

M

(
N

K

)

Thus, to have a vanishing probability of error it is required that,

M ≥ CKK log
N

K
,

where CK = 1
log 1

aK

only depends on K. This says that, when the measurement noise power is

negligible such that σ2
v → 0, it is sufficient to have Ω(K log N

K
) measurements to recover the sparsity

pattern with only the noisy corrupted sign information of the real valued compressive measurement

vector (3) with the ML decoder. In [24], the author has shown that when the minimum value of

the sparse signal, Pmin → ∞ (the sparse signal is modeled as deterministic and unknown), the

sufficient condition to achieve a reliable sparse support recovery by the ML decoder with real valued

compressive measurements is given by M ≥ CK log N
K

for some constant C. Our results show

that, even with coarsely quantized compressive measurements, it is sufficient to have Ω(K log N
K
)

measurements (with a different constant which depends on K) when the measurement quality is

good irrespective of the nature of the sparsity pattern.
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IV. NECESSARY CONDITIONS FOR SPARSITY PATTERN RECOVERY WITH 1-BIT QUANTIZED CS

In this section, we derive the necessary conditions that should be satisfied by any recovery algorithm

for support recovery of sparse signals with 1-bit quantized CS. With the observation model in (3), Fano’s

Lemma states that the probability of error of the support recovery of the sparse signal s is lower bounded

by [24], [42],

Pe ≥ 1− 1

log(N0 − 1)

(
1

N2
0

∑
j,k

D(p(r|Uj)||p(r|Uk)) + log 2

)

where D(p(r|Uj)||p(r|Uk)) is the Kullback-Leibler distance between two pdfs p(r|Uj) and p(r|Uk).

Proposition 3: In the high dimensional setting, the Kullback-Leibler distance between two pdfs p(r|Uj)

and p(r|Uk) with 1-bit quantized CS is upper bounded by,

D(p(r|Uj)||p(r|Uk)) ≤
4

σ2
w

M∑
i=1

[λij(1− λik) + λik(1− λij)].

Proof: The proof follows from the assumption that ri’s for i = 1, 2, · · · ,M are uncorrelated when

the parameters N,K,M are sufficiently large given the measurement matrix Φ and using the convexity

bound for the KL distance between two Gaussian mixture pdfs [43].

Let Ξ = 1
N2

0

∑
j,k D(p(r|Uj)||p(r|Uk)). Then we have,

Ξ ≤ 4

σ2
wN

2
0

N0−1∑
j=0

N0−1∑
k=0,k ̸=j

M∑
i=1

[λij(1− λik) + λik(1− λij)] (23)

Following a similar argument as in Subsection III-A, when the entries of the measurement matrix are iid

random variables, we can approximate the quantities 1
M

∑M
i=1 λij and 1

M

∑M
i=1 λijλik by the mathematical

expectation of the random variables λ1j and λ1jλ1k respectively, for given support sets Uj and Uk when

the number of measurements M is sufficiently large. Letting λ̄j = E{λ1j} and λ̂jk = E{λ1jλ1k}, (23)

reduces to,

Ξ ≤ 4M

σ2
wN

2
0

N0−1∑
j=0

N0−1∑
k=0,k ̸=j

(λ̄j + λ̄k − 2λ̂jk)

Again, since the entries of the measurement matrix are iid, we have that λ̄j is the same for all Uj with

|Uj| = K for j = 0, 1, · · · , N0 − 1. Similar to the discussion in the proof of Lemma 2, λ̂jk is the same

as far as the number of overlapping elements of two support sets Uj and Uk is the same for j ̸= k. Thus

we get the following bound for Ξ.

Ξ ≤ 4M

σ2
w

(
2λ̄− 2

N0

K−1∑
t=0

(
K

t

)(
N −K

K − t

)
λ̂t

)
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where we have let λ̄ = λ̄j for j = 0, 1, · · · , N0 − 1 and λ̂t = E{λ1jλ1k|(|Uj ∩ Uk| = t)}. Letting

λ̂min = min
0≤t≤K

{λ̂t}, we have,

Ξ ≤ 8M

σ2
w

(
λ̄− 1

N0

K−1∑
t=0

(
K

t

)(
N −K

K − t

)
λ̂min

)

=
8M

σ2
w

(
λ̄− λ̂min

(
1− 1

N0

))
≈ 8M

σ2
w

(
λ̄− λ̂min

)
Thus we conclude that the probability of error is lower bounded by,

Pe ≥ 1− 8M

σ2
w log(

(
N
K

)
− 1)

(λ̄− λ̂min)− ϵ0

where ϵ0 =
log 2

log((NK)−1)
. Thus when M ≤ (1−ϵ0)σ2

w

8(λ̄−λ̂min)
log
(
N
K

)
, the probability of error of the support recovery

of sparse signal with 1-bit CS with any recovery rule is bounded away from zero. Subsequently, we have

the following Theorem.

Theorem 3: When the parameters N , K and M are sufficiently large, the support recovery of sparse

signal s with 1-bit CS with any recovery algorithm is impossible if,

M <
(1− ϵ0)σ

2
w

8(λ̄(γ,K)− λ̂min(γ,K))
K log

N

K
(24)

where we write λ̄(γ,K) (λ̂min(γ,K)) to denote λ̄ (λ̂min) since the term λ̄ (λ̂min) depends on the parameters

γ and K.

It should be noted that, with the real valued compressive measurements, the author in [24] has shown that

the asymptotic reliable recovery of the support of a sparse signal is impossible if M < C̃K log N
K

where the

value of C̃ depends on the sparsity index K and the minimum value of the unknown deterministic signal

vector of interest and this dependence is explicitly derived. From (24), a similar behavior is observed on

the necessary conditions for sparsity pattern recovery with coarsely quantized compressive measurements

in our problem set up in which we model the non-zero elements of the sparse signal as random. However,

again the way of dependence of the measurement SNR and the sparsity index K on the terms λ̄(γ,K) and

λ̂min(γ,K) in (24) determines the exact value of M and to directly evaluate this dependence analytically

with 1-bit quantized CS is difficult.

V. NUMERICAL RESULTS

In this section, we provide some numerical results to illustrate the performance of the support recovery

of sparse signals with quantized compressive measurements.
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From the theoretical analysis performed in Section III, it was noted that the ability to estimate the

sparsity pattern of the sparse signal based on the ML decoder with quantized compressive measurements

has a considerable dependence on a term related to the measurement SNR (and it depends on the sparsity

index K as well), number of quantization levels and quantization thresholds, in addition to the parameters

M , N and K. Since it is difficult to see a direct dependence of the measurement SNR on the minimum

number of measurements required to reliably recover the support of the sparse signal analytically, in this

section, we numerically demonstrate how the measurement SNR and the sparsity index affect the reliable

recovery of the support of the sparse signal with 1-bit quantized compressive measurements with the ML

decoder.

In Fig. 1, we show the dependence of the minimum number of measurements required to reliably

recover the support of the sparse signal on the measurement SNR with 1-bit CS with the ML decoder

as stated in Theorem 2 for given values of K. In Fig. 2, we let N = 768. In the following figures, the

measurement SNR is defined as γ = µTµ+Kσ2
s

Nσ2
v

. To vary the value of SNR for given K and N the value of

µ is varied keeping σ2
v and σ2

s at fixed values. From Fig. 1, it can be seen that, for given values of K and

N , the minimum number of measurements required to recover the sparsity pattern with 1-bit CS reduces

and converges to a certain value as the average measurement SNR increases and this value is different for

different values of K. This observation demonstrates that when the measurement SNR increases beyond

a certain value for a given sparsity level of the sparse signal, by reducing the number of compressive

measurements further will not allow the reliable recovery of the sparsity pattern of the sparse signal with

1-bit quantized CS for given values of K and N . Alternatively, this observation implies that the minimum

number of measurements required for reliable recovery of the support of the sparse signal with 1-bit CS,

M , scales only with K and N as the measurement SNR increases. Although computationally difficult,

finding this scaling analytically will be an interesting problem to be considered. We further consider

this issue in the next figure. Fig. 1 further illustrates that a small fraction of compressive measurements

(compared to the original signal dimension) is sufficient for reliable recovery of the support of the sparse

signal with 1-bit quantized CS at moderate values of average measurement SNR when the signal becomes

more sparse.

In Theorem 2, the minimum number of measurements required for reliable sparsity pattern recovery

with the ML decoder depends on the measurement SNR via the term āt,2(γ,K) for given t. With 1-bit

quantized CS, we numerically show the behavior of the term āt,2(γ,K) as the measurement SNR increases

for given t for t = 0, 1, · · · , K − 1. In Fig. 2, we plot āt,2(γ,K) Vs the measurement SNR for a given

value of K. In Fig. 2, we have let N = 768 and K = 20. As can be seen from Fig. 2, the term related

to the measurement SNR in the lower bound in (19), converges to a constant value as the SNR increases



19

40 45 50 55 60 65 70 75
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N=768, σ

s
2=100, σ

v
2=0.001

SNR (in dB)

M
/N

 

 

K=40
K=20

Fig. 1. Lower bound on the minimum number of measurements Vs. measurement signal-to-noise ratio with 1-bit quantized CS; solid
line-K = 20, dotted line-K = 40, N = 768
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Fig. 2. Behavior of āt,2 in Theorem 2 as the measurement SNR increases; K = 20, N = 768

which is determined only by the number of overlapping elements (t) in any two support sets for a given

value of K. In other words, it is understood that this converged value for a given t is determined only by

the statistical properties of the random measurement matrix as the measurement SNR increases for a given

value of sparsity index. This impact of āt,2(γ,K) on the minimum number of measurements required to

reliably recover the sparsity pattern as the measurement SNR increases was illustrated in Fig. 1.

We further discuss the behavior of the minimum number of measurements required for reliable recovery

of the support of sparse signals with 1-bit quantized CS as the measurement SNR increases, based on the

results observed from Fig. 2. From the Theorem 2, we have

M ≥ max
0≤t≤K−1

{
f̃t(N,K, γ)

}
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Fig. 3. Lower bound on the minimum number of measurements Vs. the sparsity index K with 1-bit quantized CS

where f̃t(N,K, γ) is as given by (20). When the measurement SNR γ → ∞, we observe from Fig. 2 that

āt,2(K, γ) → ât(K) where the term ât(K) only depends on K for a given t. Then the term f̃t(N,K, γ)

in (20) can be written as,

f̃t(N,K, γ) =
1

log 1
ât(K)

[
(K − t)

(
2 + log

K

K − t
+ log

(N −K)

K − t

)
+ log

1

2

]
When γ → ∞, let maximum of f̃t(N,K) occur at t = ηKK, where 0 ≤ ηK ≤ 1 (in fact it can be shown

that 1
2
≤ ηK ≤ 1 as K increases). Then we have,

M ≥ 1

log 1
âηK (K)

[
(1− ηK)K

(
log

(N −K)

K
+ 2 log

1

1− ηK
+ 2

)
+ log

1

2

]
≥ ĈKK log

N

K

where the term ĈK depends only on K. Thus, it is interesting to see that the minimum number of

measurements required for reliable recovery of the support of the sparse signals with 1-bit quantized CS

based on the ML decoder scales with the parameters N and K in a similar manner compared to that with

real valued observations (in [24], [27]) when the measurement quality is good (γ → ∞). This observation

was analytically verified at the end of Section III-D for the special case where σ2
s = 0.

It is noted that the term āt,2(γ,K) in Theorem 2 depends on the sparsity index K in addition to

the measurement SNR. The dependence of the minimum number of measurements required for sparsity

pattern recovery on the sparsity index K with 1-bit quantized CS is shown in Fig. 3 for different values

of average measurement SNR. As can be seen from Fig. 3, it is possible to recover the sparsity pattern

with 1-bit quantized CS reliably at moderate SNR values as signal becomes more sparse with the ML
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Fig. 4. Lower bound on the minimum number of measurements Vs. measurement signal-to-noise ratio with different levels of quantization:
K = 20, N = 768

decoder. However, as the signal becomes less sparse, the minimum number of compressive measurements

required to recover the sparsity pattern with 1-bit CS increases rapidly for moderate SNR values. Figures

1 and 3 clearly illustrate the dependence of the term āt,2(γ,K) (which is a function of both K and γ) on

the minimum number of compressive measurements required with the ML decoder for reliable sparsity

pattern recovery.

In Fig. 4, we illustrate the impact of the number of quantization levels and the values of quantization

thresholds of the quantization scheme in (2) on the minimum number of measurements required for reliable

sparsity pattern recovery. We consider 2-bit quantizer with different values of quantization thresholds and

compare the results with 1-bit quantizer. In Fig. 4 we let τ1 = ∞, τ2 = W , τ3 = 0, τ4 = −W and

τ5 = ∞ and the value of W is varied. With 2-bit quantization, it can be seen that the minimum number

of measurements required for reliable sparsity pattern recovery highly depends on the selection of the

quantization thresholds. For a given value of SNR, a particular set of threshold values provides the best

performance in terms of the minimum number of measurements required for sparsity pattern recovery and

this set of threshold values varies for different SNR values. By proper selection of quantization thresholds

with 2-bit quantizer, the performance of the sparsity pattern recovery can be improved in a large margin

compared to that with the 1-bit quantization. It is also noted that, when the SNR increases the performance

gap with 1-bit and 2-bit quantization is not significant irrespective of the selection of the quantization

thresholds.

Next, we investigate the performance of the support recovery of sparse signals based on uniformly

quantized compressive measurements. As mentioned in subsection III-C, the minimum number of mea-

surements required for asymptotic reliable recovery of sparse signals with uniformly quantized compressive
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Fig. 5. Lower bound on the minimum number of measurements Vs. the bin width ∆ of the uniform quantizer

is given by (14) where āt,L in (14) is replaced by b̄t,∆. In Fig. 5, we show how the minimum number

of measurements depends on the bin width ∆ of the uniform quantizer for given values of measurement

SNR. In Fig. 5, we let L0 = 10 such that L = 21 quantization levels. From Fig. 5, it can be seen that the

lower bound on the number of measurements required for reliable support recovery tends to its minimum

at a particular value of ∆. Further, it can be seen that when the bin width ∆ deviates slightly from its

optimal value, the lower bound on the number of measurements required for reliable support recovery

increases to a large value especially when the measurement SNR is low.

VI. CONCLUSIONS

In this paper, we have determined the performance bounds for the support recovery of sparse signals with

quantized compressive measurements. The entries of the compressive measurement matrix are assumed

to be drawn from a Gaussian ensemble and the noisy corrupted compressive measurements are assumed

to be quantized into L quantization levels. The sufficient conditions to achieve reliable recovery of the

sparsity pattern with the ML decoder with quantized compressive measurements were derived. It was

explicitly shown how the measurement quality, the sparsity index, the original signal dimension and the

statistical properties of the measurement matrix depend on the minimum number of measurements needed

to reliably recover the sparsity pattern of the sparse signal with coarsely quantized CS. Further, when

the measurement noise power is negligible, it was shown that it is sufficient to have CKK log N
K

number

of measurements, where CK is a constant which only depends on K, to reliably recover the sparse

support with 1-bit compressive measurements. We also analyzed the necessary conditions that should be

satisfied by the number of compressive measurements for reliable recovery of the sparsity pattern with

1-bit quantized compressive measurements with any support recovery algorithm.
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There are several directions that the work can be extended. In this paper, we derived the sufficient

conditions to achieve sparse support recovery with L level quantized compressive measurements for a

given set of quantization threshold values. The design of quantization thresholds so as to minimize the

probability of error or other performance criteria is worth considering as a future work. As observed with

real valued compressive measurements in [24], [27], there is an obvious gap in the performance achieved by

optimal ML decoder and the existing practical algorithms in the literature for sparse support recovery with

quantized compressive measurements. Thus, it is an open problem to develop computationally tractable

algorithms for sparse support recovery with coarsely quantized compressive measurements which have

performance guarantees closer to that is achieved by the optimal decoder.

APPENDIX A

Derivation of (6): For a given support set Uk, we have

E{yi|Uk} = E

{(
K∑
j=1

(Φ̃Uk
)ij s̃j + vi

)}

=
K∑
j=1

(Φ̃Uk
)ijµj

and

E{yiyt|Uk} = E

{(
K∑
j=1

(Φ̃Uk
)ij s̃j + vi

)(
K∑
l=1

(Φ̃Uk
)tls̃l + vt

)}

=
K∑
j=1

(Φ̃Uk
)ij(Φ̃Uk

)tjE{s̃2j}+
∑
j ̸=l

(Φ̃Uk
)ij(Φ̃Uk

)tlE{s̃j s̃l}+ E{vivt}

E{yiyt|Uk} =


∑K

j=1(Φ̃Uk
)2ijE{s̃2j}+

∑
j ̸=l(Φ̃Uk

)ij(Φ̃Uk
)ilE{s̃j s̃l}+ σ2

v if i = t∑K
j=1(Φ̃Uk

)ij(Φ̃Uk
)tjE{s̃2j}+

∑
j ̸=l(Φ̃Uk

)ij(Φ̃Uk
)tlE{s̃j s̃l} if i ̸= t

for i, t = 1, 2, · · · ,M . Thus

V ar(yi|Uk) =
K∑
j=1

(Φ̃Uk
)2ijE{s̃2j}+

∑
j ̸=l

(Φ̃Uk
)ij(Φ̃Uk

)ilE{s̃j s̃l}+ σ2
v −

(
K∑
j=1

(Φ̃Uk
)ijµj

)2

= σ2
s

K∑
j=1

(Φ̃Uk
)2ij + σ2

v
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and

cov(yi, yt|Uk) = E{yiyt|Uk} − E{yi|Uk}E{yt|Uk}

=
K∑
j=1

(Φ̃Uk
)ij(Φ̃Uk

)tjE{s̃2j}+
∑
j ̸=l

(Φ̃Uk
)ij(Φ̃Uk

)tlE{s̃j s̃l}

−
K∑
j=1

(Φ̃Uk
)ijµj

K∑
l=1

(Φ̃Uk
)tlµl

= σ2
s

K∑
j=1

(Φ̃Uk
)ij(Φ̃Uk

)tj

for i, t = 1, 2, · · · ,M . This gives y|Uk ∼ N (Φ̃Uk
µ, σ2

sΦ̃Uk
Φ̃T

Uk
+ σ2

vIM). When the sparsity index K is

large enough and the entries of the measurement matrix Φ are drawn from a Gaussian ensemble with

mean zero and variance 1
N

, invoking law of large numbers, we may approximate,

Φ̃Uk
Φ̃T

Uk
→ K

N
IM

resulting cov(yi, yt) → 0 for i ̸= t. Then we have,

p(ri|Uk) =
∑
l

Pr(ri|zi = l)Pr(zi = l)

→
L−1∑
l=0

N (l, σ2
w)Pr(τl ≤ yi < τl+1)

=
L−1∑
l=0

N (l, σ2
w)

Q
 τl −

∑K
j=1

(
Φ̃Uk

)
ij
µj√

σ2
v + σ2

s

∑K
j=1

(
Φ̃Uk

)2
ij

−

 τl+1 −
∑K

j=1

(
Φ̃Uk

)
ij
µj√

σ2
v + σ2

s

∑K
j=1

(
Φ̃Uk

)2
ij




(6) is obtained since p(r|Uk) →
∏M

i=1 p(ri|Uk) in the high dimensional setting and defining λl
ik =

Q

 τl−
∑K

j=1(Φ̃Uk)ijµj√
σ2
v+σ2

s

∑K
j=1(Φ̃Uk)

2

ij

.

APPENDIX B

Proof of Lemma 1: The Chernoff distance between pdfs pk and pj , C(α; pk, pj), can be written as,

C(α; pk, pj) = − log
{
C̃(α; pk, pj)

}
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where

C̃(α; pk, pj) =

∫
p(r|Uk)

1−αp(r|Uj)
αdr

→
∫ [ M∏

i=1

L−1∑
l=0

N (ri; l, σ
2
w)[λ

l
ik − λl+1

ik ]

]1−α [ M∏
i=1

L−1∑
l=0

N (ri; l, σ
2
w)[λ

l
ij − λl+1

ij ]

]α
dr

as the parameters (N,K,M) are large enough with λl
ik = Q

 τl−
∑K

j=1(Φ̃Uk)ijµj√
σ2
v+σ2

s

∑K
j=1(Φ̃Uk)

2

ij

. It can be shown that,

p(r|Uj)

p(r|Uk)
→

∏M
i=1

∑L−1
l=0 N (ri; l, σ

2
w)[λ

l
ij − λl+1

ij ]∏M
i=1

∑L−1
l=0 N (ri; l, σ2

w)[λ
l
ik − λl+1

ik ]

=

∏M
i=1

∑L−1
l=0 e

(lri−
l2

2 )

σ2
w [λl

ij − λl+1
ij ]∏M

i=1

∑L−1
l=0 e

(lri−
l2
2 )

σ2
w [λl

ik − λl+1
ik ]

Then we have,

C̃(α; pk, pj) →
∫ 

∏M
i=1

∑L−1
l=0 e

(lri−
l2

2 )

σ2
w [λl

ij − λl+1
ij ]∏M

i=1

∑L−1
l=0 e

(lri−
l2
2 )

σ2
w [λl

ik − λl+1
ik ]


α

M∏
i=1

L−1∑
l=0

N (ri; l, σ
2
w)[λ

l
ik − λl+1

ik ]dr

=
M∏
i=1

∫ 
∑L−1

l=0 e
(lri−

l2

2 )

σ2
w [λl

ij − λl+1
ij ]∑L−1

l=0 e
(lri−

l2
2 )

σ2
w [λl

ik − λl+1
ik ]


α

L−1∑
l=0

N (ri; l, σ
2
w)[λ

l
ik − λl+1

ik ]dri

=
M∏
i=1

L−1∑
m=0

∫ 
∑L−1

l=0 e
(lri−

l2

2 )

σ2
w [λl

ij − λl+1
ij ]∑L−1

n=0 e
(nri−

n2
2 )

σ2
w [λn

ik − λn+1
ik ]


α

N (ri;m,σ2
w)[λ

m
ik − λm+1

ik ]dri (25)

Letting gαi (Uj,Uk) as in (8), we get (7).

APPENDIX C

Proof of Lemma 3: We consider the case where σ2
w → 0. Defining sets, S0 = {i; ri ≤ 1

2
}, S1 = {i; 1

2
<

ri ≤ 3
2
}, S2 = {i; 3

2
< ri ≤ 5

2
}, · · · , Sl = {i; (2l−1)

2
< ri ≤ (2l+1)

2
}, · · · SL−1 = {i; ri > (2L−3)

2
} and

following a similar procedure as in [44], it can be shown that,

p(r|Uj)

p(r|Uk)
→
∏
i∈S0

λ0
ij − λ1

ij

λ0
ik − λ1

ik

∏
i∈S1

λ1
ij − λ2

ij

λ1
ik − λ2

ik

· · ·
∏

i∈SL−1

λL−1
ij − λL

ij

λL−1
ik − λL

ik



26

as σ2
w → 0 and N,K,M are sufficiently large. Then C̃(α; pk, pj) in (25) becomes,

C̃(α; pk, pj) →
∫ ∏

i∈S0

(
λ0
ij − λ1

ij

λ0
ik − λ1

ik

)α ∏
i∈S1

(
λ1
ij − λ2

ij

λ1
ik − λ2

ik

)α

· · ·

∏
i∈SL−1

(
λL−1
ij − λL

ij

λL−1
ik − λL

ik

)α M∏
i=1

L−1∑
l=0

N (ri; l, σ
2
w)[λ

l
ik − λl+1

ik ]dr

=
M∏
i=1

L−1∑
l=0

∫ ∏
i∈S0

(
λ0
ij − λ1

ij

λ0
ik − λ1

ik

)α ∏
i∈S1

(
λ1
ij − λ2

ij

λ1
ik − λ2

ik

)α

· · ·
∏

i∈SL−1

(
λL−1
ij − λL

ij

λL−1
ik − λL

ik

)α

N (ri; l, σ
2
w)[λ

l
ik − λl+1

ik ]

 dri

=
M∏
i=1

{(
λ0
ij − λ1

ij

λ0
ik − λ1

ik

)α L−1∑
l=0

[
1−Q

(
1/2− l

σw

)] (
λl
ik − λl+1

ik

)
+

L−2∑
m=1

(
λm
ij − λm+1

ij

λm
ik − λm+1

ik

)α L−1∑
l=0

[
Q

(
(2m− 1)/2− l

σw

)
−Q

(
(2m+ 1)/2− l

σw

)] (
λl
ik − λl+1

ik

)
+

(
λL−1
ij − λL

ij

λL−1
ik − λL

ik

)α L−1∑
l=0

[
Q

(
(2L− 3)/2− l

σw

)] (
λl
ik − λl+1

ik

)}

which reduces to,

C̃(α; pk, pj) →
M∏
i=1

L−1∑
l=0

(λl
ij − λl+1

ij )α(λl
ik − λl+1

ik )1−α

as σ2
w → 0 where we use the fact that Q(x) → 0 as x → +∞ and Q(x) → 1 as x → −∞.

Then the probability of error of the ML decoder is upper bounded by,

Perr ≤
1

2N0

N0−1∑
k=0

N0−1∑
j=0,j ̸=k

M∏
i=1

L−1∑
l=0

(λl
ij − λl+1

ij )
1
2 (λl

ik − λl+1
ik )

1
2 (26)

Using the fact that the geometric mean of a sequence of non negative real numbers is always less than

or equal to corresponding arithmetic mean we have(
M∏
i=1

L−1∑
l=0

(λl
ij − λl+1

ij )
1
2 (λl

ik − λl+1
ik )

1
2

) 1
M

≤ 1

M

M∑
i=1

L−1∑
l=0

(λl
ij − λl+1

ij )
1
2 (λl

ik − λl+1
ik )

1
2

=
L−1∑
l=0

1

M

M∑
i=1

(λl
ij − λl+1

ij )
1
2 (λl

ik − λl+1
ik )

1
2

Following the similar argument in the proof of Lemma 2, it can be shown that the probability of error is
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upper bounded by,

Perr ≤ 1

2

K−1∑
t=0

(
K

t

)(
N −K

K − t

)(L−1∑
l=0

E{ãlt}

)M

(27)

where E{ãlt} = E{(λl
1j −λl+1

1j )
1
2 (λl

1k −λl+1
1k )

1
2 | (|Uj ∩Uk| = t)}. Letting āt,L =

∑L−1
l=0 E{ãlt}, (27) reduces

to,

Perr ≤ 1

2

K−1∑
t=0

(
K

t

)(
N −K

K − t

)
(āt,L)

M .

APPENDIX D

Proof of Theorem 1: As given by Lemma 3, the probability of error for sparse support recovery with

L-level quantized compressive measurements is upper bounded by,

Perr ≤ 1

2

K−1∑
t=0

(
K

t

)(
N −K

K − t

)
(āt,L)

M . (28)

The goal is to find the conditions under which the bound on the probability of error in (28) tends to zero.

Let lt be the logarithm of the t-th term in (28) which is given by,

lt = log

(
K

t

)
+ log

(
N −K

K − t

)
+ log

1

2
−M log

1

āt,L

= log

(
K

K − t

)
+ log

(
N −K

K − t

)
+ log

1

2
−M log

1

āt,L
(29)

Based on the fact that the Binomial coefficient
(
N
K

)
is upper bounded by

(
N.e
K

)K , we have,

lt ≤ (K − t)

(
2 + log

K

K − t
+ log

(N −K)

K − t

)
+ log

1

2
−M log

1

āt,L

For this term to be asymptotically negative, it is required that,

M ≥ 1

log 1
āt,L

[
(K − t)

(
2 + log

K

K − t
+ log

(N −K)

K − t

)
+ log

1

2

]
.

APPENDIX E

Proof of Theorem 2: With 1-bit quantized compressive measurements (18), it can be shown that the

probability of the ML decoder is upper bounded by,

Perr ≤ 1

2

K−1∑
t=0

(
K

t

)(
N −K

K − t

)[(
E{ã0t}

)
+
(
E{ã1t}

)]M
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where E{ã0t} and E{ã1t} are as defined below.

E{ã0t} = E{(1− λj)
1
2 (1− λk)

1
2 | |Uj ∩ Uk| = t}

and

E{ã1t} = E{(λj)
1
2 (λk)

1
2 | |Uj ∩ Uk| = t}

with λk = Q

(
−

∑K
i=1(Φ̃Uk)1iµi

σ2
v+σ2

s

∑K
i=1(Φ̃Uk)

2

1i

)
. Letting āt = E{ã0t} + E{ã1t}, the upper bound for the probability of

error of the 1-bit quantizer (18) reduces to,

Perr ≤ 1

2

K−1∑
t=0

(
K

t

)(
N −K

K − t

)
āMt . (30)

Following a similar procedure as in Theorem 1, it can be shown that the required condition for the t-th

term in (30) tend to zero is given by, For this term to be asymptotically negative, it is required that,

M ≥ 1

log 1
āt

[
(K − t)

(
2 + log

K

K − t
+ log

(N −K)

K − t

)
+ log

1

2

]
.

APPENDIX F

Derivation of (21): When s̃ is a first order Gaussian, λk = Q
(

−uk

σ2
v

)
with uk ∼ N (0, 1

N
||µ||22). When

the measurement noise power is negligible such that σ2
v → 0, we have,

λk =

 1 if uk > 0

0 if uk < 0

Then,

E{ã0t} = E{(1− λj)
1
2 (1− λk)

1
2 | |Uj ∩ Uk| = t}

= 1.P r(uk < 0&uj < 0| |Uj ∩ Uk| = t)

=

∫ 0

−∞

∫ 0

∞
fUkUj

(uk, uj)dukduj (31)

where fUkUj
(uk, uj) is bi-variate Gaussian with mean zero and the covariance matrix Σt. The quadrant

probability of the bivariate Gaussian density in (31) is given by [45],

E{ã0t} =
1

4
+

arcsin(ρt)

2π
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Following a similar procedure, it can be shown that,

E{ã1t} = E{(λj)
1
2 (λk)

1
2 | |Uj ∩ Uk| = t}

= 1.P r(uk > 0&uj > 0| |Uj ∩ Uk| = t)

=
1

4
+

arcsin(ρt)

2π
.
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