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1 Introduction 

Testing For Spatial Lag and Spatial Error Dependence in a Fixed 
Effects Panel Data Model Using Double Length Artificial 

 Regressions∗

Badi H. Baltagi†, Long Liu‡ 

August 26, 2015 

Abstract 

This paper revisits the joint and conditional Lagrange Multiplier tests derived by Debarsy and Ertur 
(2010) for a fixed effects spatial lag regression model with spatial auto-regressive error, and derives these 
tests using artificial Double Length Regressions (DLR). These DLR tests and their corresponding LM 
tests are compared using an empirical example and a Monte Carlo simulation. 

Key Words: Double Length Regression; Spatial Lag Dependence; Spatial Error Dependence; Artificial 
Regressions; Panel Data; Fixed Effects. 

JEL Classification: C12, C21, R15. 

Davidson and MacKinnon (1984, 1988, 1993) proposed Double Length Regressions (DLR) as a useful tool 

for deriving LM tests. These DLR’s are computationally simple and outperform their outer product gradient 

(OPG) regression counterparts. They have been applied in econometrics by Baltagi (1999) to test linear 

versus log-linear regressions with AR(1) disturbances. Also, Baltagi and Li (2001) to test for spatial 

dependence in a cross-section regression model, and by Le and Li (2008) who applied it to test for functional 

form and spatial error dependence, to mention a few. Recently, Baltagi and Liu (2014) extended the Baltagi 

and Li (2001) paper by deriving the DLR tests corresponding to the joint and conditional LM tests of spatial 

lag and spatial error in a cross-section regression model. Testing for spatial dependence in a cross-section 

regression has been extensively studied by Anselin (1988a, 1988b, 2001), Anselin and Bera (1998), Anselin, 

Bera, Florax and Yoon (1996), and Krämer (2005), to mention a few. The presence of spatial correlation can 

∗We dedicate this paper in honor of Aman Ullah’s many contributions to econometrics. We would like to thank two 
anonymous referees for their helpful comments and suggestions. 

†Corresponding author: Badi H. Baltagi, Department of Economics and Center for Policy Research, 426 Eggers Hall, Syracuse 
University, Syracuse, NY 13244-1020; e-mail: bbaltagi@maxwell.syr.edu. 

‡Long Liu: Department of Economics, College of Business, University of Texas at San Antonio, One UTSA Circle, TX 
78249-0633; e-mail: long.liu@utsa.edu. 
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render inference using ordinary least squares misleading, see Krämer (2003). Also, Mynbaev and Ullah (2008) 

who derive the asymptotic distribution of the OLS estimator in a spatial autoregressive model.1 Anselin 

et al. (1996) consider a spatial autoregressive cross-section regression model with spatial autoregressive 

disturbances and derive a series of Lagrange Multiplier (LM) tests. These are called the joint, conditional 

and marginal LM tests for spatial lag and spatial error dependence. In fact, Baltagi and Li (2001) derived 

the DLR counterpart for the marginal LM tests for spatial lag and spatial error considered by Anselin et al. 

(1996) and illustrated these tests using Anselin’s (1988b) empirical example relating crime to housing values 

and income for 49 neighborhoods in Columbus, Ohio in 1980. Monte Carlo experiments showed that these 

DLR tests have similar performance to their LM counterparts. 

This paper focuses on similar tests but in the context of a spatial panel data model, see Lee and Yu 

(2010a) and Baltagi (2011) for recent surveys.2 In fact, Baltagi, Song and Koh (2003) derived the joint LM 

test for spatial error correlation as well as random country effects. Additionally, they derived conditional LM 

tests, which test for random country effects given the presence of spatial error correlation. Also, spatial error 

correlation given the presence of random country effects. These conditional LM tests are an alternative to the 

one directional LM tests that test for random country effects ignoring the presence of spatial error correlation 

or the one directional LM tests for spatial error correlation ignoring the presence of random country effects. 

Baltagi and Liu (2008) derived a joint LM test which simultaneously tests for the absence of spatial lag 

dependence and random individual effects. The joint LM statistic is the sum of two standard LM statistics. 

The first one tests for the absence of spatial lag dependence ignoring the random individual effects, and the 

second one tests for the absence of random individual effects ignoring the spatial lag dependence. Baltagi and 

Liu (2008) also derived two conditional LM tests. The first one tests for the absence of random individual 

effects allowing for the possible presence of spatial lag dependence. The second one tests for the absence of 

spatial lag dependence allowing for the possible presence of random individual effects. Debarsey and Ertur 

(2010) derived LM and LR tests designed to discriminate between spatially autocorrelated disturbances 

versus a spatially lagged dependent variable in the context of a fixed effects spatial panel data model. 

Following Lee and Yu (2010b), they combine a spatial lag model with a spatially autocorrelated disturbances 

in a fixed effects spatial panel data setting. They derive joint, marginal as well as conditional LM and LR 

tests, under the assumption of normality of the disturbances. They investigate the performance of these tests 

using Monte Carlo experiments. This paper derives the DLR tests corresponding to the joint and conditional 

LM tests for spatial lag and spatial error considered by Debarsy and Ertur (2010). It illustrates these tests 

1Few finite sample studies exist in this literature, most notably Bao and Ullah (2007) who study the finite sample properties 

of the maximum likelihood estimator in spatial models. 
2Baltagi and Pirotte (2010) show that inference can be misleading if spatial dependence is ignored in spatial panel models. 
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2 The Spatial Dependence Model 

using an empirical example and investigates the performance of these tests using Monte Carlo experiments. 

The paper is organized as follows: Section 2 derives the DLR for the presence of spatial lag and error 

]

dependence in the context of a fixed effects panel data model. Our suggested DLR tests and their corre-

sponding LM tests are compared using an illustrative example in section 3 and a Monte Carlo simulation in 

section 4. Section 5 concludes the paper. 

[

Consider the spatial lag panel data regression model 

yt = ρW yt + Xtβ + µ + νt, t = 1, ..., T, (1) 

with spatial autoregressive remainder errors 

vt = λMνt + ϵt, t = 1, ..., T, (2) 

′ where y = (yt1, . . . , ytN ) is a vector of observations on the dependent variable for N regions or households t 

observed at time t = 1, ..., T . Xt is an N × k matrix of observations on k explanatory variables. We assume 

Xt to be of full column rank and its elements are assumed to be asymptotically bounded in absolute value. 

β is a k × 1 vector of parameters. ρ and λ are scalar spatial autoregressive coefficients with |ρ| < 1 and 

|λ| < 1. W and M are known N × N row normalized spatial weight matrices whose diagonal elements are 

zero and summation of each row is 1. W and M also satisfy the condition that (I − λM) and (I − ρW ) 

′ ′ are non-singular. µ = (µ1, . . . , µN ) where µi denote the ith individual’s fixed effect. These µis are time 

′ invariant random variables that are possibly correlated with the explanatory variables. v = (vt1, . . . , vtN ) is t 

a vector of remainder disturbances that follow a first order spatial autoregressive model. ϵ ′ = (ϵt1, . . . , ϵtN )t 

and ϵti is i.i.d. over t and i and is assumed to be N(0, σϵ 
2). Normality is needed for the derivation of the 

DLR, see Davidson and MacKinnon (1993). 

¯ ¯Define ET = IT − JT , where IT is an identity matrix of dimension T , JT = JT /T and JT is a matrix 

matrix of the eigenvectors of the demeaning operator, with FT,T −1 the T × (T − 1) matrix of eigenvectors of 

1√FT,T −1, ιTof ones of dimension T , see Baltagi (2013). Lee and Yu (2010) define as the orthonormal 
T 

ET corresponding to eigenvalues equal to 1. ιT is a vector of ones of dimension T . Define the transformed 

N × (T − 1) matrix
( ∗ ∗ y1 , . . . , y T −1

)
= (y1, . . . , yT ) FT,T −1. Equivalently, this can be written as:  

∗ y y1 

. . . 

1 

 
=
( ) 

 , ∗ y = 
. . . 

′ FT,T −1 ⊗ IN

∗ y yTT −1 

3 



∗where y is of dimension N (T − 1)×1, IN is an identity matrix of dimension N , and ⊗ denotes the Kronecker 

∗product. One can see that the transformed sample is shrunk by one time period. Similarly define Xt 
∗ , vt 

and ϵ∗ for t = 1, ..., T − 1. The benchmark model in Equation (1) becomes: t 

∗ ∗ y = ρW y ∗ + X ∗ β + v , for t = 1, ..., T − 1, (3)t t t t 

and 

ν ∗ = λMν ∗ + ϵ ∗ , for t = 1, ..., T − 1. (4)t t t 

Rewrite equation (3) in matrix form as 

∗ ∗ ∗ y = ρ (IT −1 ⊗ W ) y + X ∗ β + v , (5) 

and 

ν ∗ = λ (IT −1 ⊗ M) ν ∗ + ϵ ∗ , (6) 

where X∗ is N (T − 1) × k, β is k × 1 and ε∗ is N (T − 1) × 1. IT −1 is an identity matrix of dimension T − 1. ( ) ( ) ( )′ ′ ′ This follows from the fact that F ⊗ IN (IT ⊗ W ) = F ⊗ W = (IT −1 ⊗ W ) F ⊗ IN . AT,T −1 T,T −1 T,T −1 

similar result obtains when we replace W by M. The observations are ordered with t being the slow running ( )∗′index and i the fast running index, i.e., y = y11, . . . , y1N , . . . , y(T −1),1, . . . , y(T −1),N . X∗ , ν∗ and ϵ∗ are 

similarly defined. 

Model (5) can be rewritten as 

(IT −1 ⊗ BA) y ∗ − (IT −1 ⊗ B) X ∗ β = ϵ ∗ , (7) 

where A = IN − ρW and B = IN − λM . This yields the following representation for the itth observation 

∗ fit (yit, φ) = 
1 
ϵit
∗ , i = 1, . . . , N ; t = 1, ..., T − 1, (8)

σϵ 

where    ( ) ′ 
N N N N N∑ ∑ ∑ ∑ ∑ 

∗ ∗ ∗ ∗ ∗ ∗ ∗ fit (yit, φ) = 
1 yit − ρ wisyst − λ mij yjt + ρλ mij wjsyst − xit − λ mij xjt 

 β ,
σϵ s=1 j=1 j=1 s=1 j=1 

(9) [ ]
with φ ′ = β ′ , σϵ 

2, ρ, λ . 

1 ϵ∗Under the normality assumption, we have σϵ 
∼ NID (0, 1) and hence the log-likelihood function of it 

equation (7) is given by 
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N (T − 1) N (T − 1)
L (y ∗ , φ) = − ln 2π − ln σϵ 

2 + (T − 1) ln |A| + (T − 1) ln |B|
2 2 

1 ∗ − (IT −1 ⊗ B) X ∗ β] ′ ∗ − (IT −1 ⊗ B) X ∗ β] .− [(IT −1 ⊗ BA) y [(IT −1 ⊗ BA) y (10)
2σϵ 

2 

Ord (1975) shows that ln |A| = ln |IN − ρW | = 
∑N 

ln (1 − ρωi), where ωi’s are the eigenvalues of W .i=1 

Similarly, ln |B| = ln |IN − λM | = 
∑N 

ln (1 − ληi), where ηi’s are the eigenvalues of M . As shown in i=1 

Lemma 1 of Li, Yu and Bai (2013), all the eigenvalues of a row normalized spatial weight matrix are real 

numbers. The Jacobian term can be rewritten as 

N (T − 1)− ln σϵ 
2 + (T − 1) ln |A| + (T − 1) ln |B|

2 
N N∑ ∑ N (T − 1) 

= (T − 1) ln (1 − ρωi) + (T − 1) ln (1 − ληi) − ln σ2 (11)ϵ2 
i=1 i=1 

N∑ 
∗ = (T − 1) kit (yit, φ) , 

i=1 

where 
∗ kit (yit, φ) = ln (1 − ρωi) + ln (1 − ληi) − 

1 
ln σϵ 

2 , i = 1, . . . , N, t = 1, ..., T − 1. (12)
2 

For the purpose of deriving the DLR, the contribution of the ith observation to the log-likelihood function 

can be written as 
1 1∗ ∗ ∗ lit (yit, φ) = − ln (2π) − f2 

it, φ) + kit (yit, φ) . (13)it (y2 2 
∗ ∗ ∗ ∗Defining Fitj (yit, φ) = ∂fit (yit, φ) /∂φj and Kijt (yit, φ) = ∂kit (yit, φ) /∂φj , then F (y ∗, φ) and K (y ∗, φ) 

∗ ∗are matrices with typical elements Fitj (y , φ) and Kitj (y , φ). Similarly, let f (y ∗, φ) be the vector with it it

∗typical elements fit (yit, φ). 

For F (y ∗, φ), the typical elements are  ′ 
∗∂fit (yit, φ) 

∂β ′ 
= 

N∑1 ∗ ∗ − x  
it − λ mij xjt σϵ j=1 

, (14) 

∗∂fit (yit, φ) 
∂σϵ 

∗∂fit (yit, φ) 
∂ρ 

∗∂fit (yit, φ) 
∂λ 

= 

= 

= 

   ( ) ′ 
N N N N N∑ ∑ ∑ ∑ ∑1 ∗ ∗ ∗ ∗ ∗ ∗ − y − λ − x  β ,it − ρ wisyst mij yjt + ρλ mij wjsyst it − λ mij xjt σ2 

ϵ s=1 j=1 j=1 s=1 j=1  ( ) 
N N N∑ ∑ ∑1 ∗ ∗ −  wisy − λ ,st mij wjsystσϵ s=1 j=1 s=1  ( )
N N N N∑ ∑ ∑ ∑1 ∗ ∗ ∗′ −  mij y − .jt − ρ mij wjsyst mij xjtβ 

σϵ j=1 j=1 s=1 j=1 
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For K (y ∗, φ), the typical elements are 

∗∂kit (y , φ)it = 0, (15)
∂β ′ 

∗∂kit (y , φ) 1it = − ,
∂σϵ σϵ 

∗∂kit (y , φ)it ωi 
= − ,

∂ρ 1 − ρωi 
∗∂kit (y , φ)it ηi 

= − . 
∂λ 1 − ληi 

The DLR can be written as an artificial regression with 2N (T − 1) observations: 

    
f (y ∗, φ) −F (y ∗, φ)  =   b + residuals, (16) 
ιN(T −1) K (y ∗, φ) 

where ιN (T −1) denotes a vector of ones of dimension N (T − 1). The basic result in Davidson and MacKinnon 

(1984) is that the information matrix can be expressed as 

[ ]
1 ( ′ ′ )

I (y ∗ , φ) = plim F (y ∗ , φ) F (y ∗ , φ) + K (y ∗ , φ) K (y ∗ , φ) . (17) 
N→∞ N 

Another important observation is that the gradient of the log-likelihood function can be written as 

∂ ln L (y ∗, φ) ′ ′ 
g (y ∗ , φ) ≡ = −F (y ∗ , φ) f (y ∗ , φ) + K (y ∗ , φ) ιN(T −1). (18)

∂φ 

The LM test statistic in score form is given by 

∗ ′ ∗ −1 ∗ g (y , φ̃) [NI (y , φ̃)] g (y , φ̃) , (19) 

∗where g (y , φ̃) is the gradient evaluated at the restricted estimates. The DLR variant of the LM test then 

uses a consistent estimate of the information matrix under the null of the form 

1 ( )∗ ′ ∗ ∗ ′ ∗ F (y , φ̃) F (y , φ̃) + K (y , φ̃) K (y , φ̃) . (20)
N 

In this case, the LM test coincides with the explained sum of squares from the DLR regression in Equation 

(16). Equation (16) evaluated at the restricted estimates can be written as 

Y = X b + residuals, (21)     
∗ ∗f (y , φ̃) −F (y , φ̃) −1

where Y =   and X =  . Since the OLS estimator of b is (X ′ X ) X ′ Y, the explained 
∗ιN(T −1) K (y , φ̃) 

−1
sum of squares from the DLR regression is Y ′ X (X ′ X ) X ′ Y. Note that the residual sum of squares of 

6 



[ ]
−1 ′ ′ ′ ∗ ∗the above artificial regression is Y I −X (X ′ X ) X Y and Y ′ Y = f (y , φ̃) f (y , φ̃) + ιN(T −1) ′ ιN(T −1) = 

2N(T −1). Therefore, the DLR test statistics can be alternatively computed as 2N(T −1) minus the residual 

sum of squares of the above artificial regressions. This DLR test is computationally simple and requires only 

the eigenvalues of W . These eigenvalues are also needed for ML estimation and the LM test. 

2.1 Joint DLR test for H0 
a : λ = ρ = 0 

Under Ha : ρ = λ = 0, the restricted MLE are the OLS estimates of the following transformed panel data 0 

regression: 
∗ y = X ∗ β + ϵ ∗ , t = 1, ..., T − 1 (22) 

−1 
X∗′ ∗ 1 ∗′ ̃ ∗ ∗In this case, β̃ = (X∗′X∗) y , σ̃2 = ẽ e with ẽ denoting the OLS residuals of this transformed ϵ N(T −1) [ ]

panel data regression. Using these restricted ML estimates φ̃ ′ = β̃′ , σ̃ϵ 
2 , ρ,̃ λ̃ with ρ̃ = λ̃ = 0, we run the 

following 2N (T − 1) observations artificial regression: 

    
1 ∗ 1 X∗ 1 ∗ 1 ∗ 1 ∗ ẽ ẽ (IT −1 ⊗ W ) y (IT −1 ⊗ M) ẽσ̃ϵ σ̃ϵ σ̃2 σ̃ϵ σ̃ϵϵ  =   b + residuals, (23) 

− 1ιN (T −1) 0 σ̃ϵ 
ιN(T −1) −ιT −1 ⊗ ω −ιT −1 ⊗ η 

′ ′ 
where ω = (ω1, . . . , ωN ) are the eigenvalues of W, and η = (η1, . . . , ηN ) are the eigenvalues of M . ιN(T −1) 

and ιT −1 are vector of ones of dimension N (T − 1) and T − 1, respectively. The explained sum of squares 

from the DLR in (23) will provide an asymptotically valid test statistic for H0 
a . This should be asymptotically 

distributed as χ2 under the null.3 It can alternatively be computed as 2N (T − 1) minus the residual sum 2 

of squares of the above artificial regression.4 

3In spatial models, the functional form changes with the sample size, i.e., the functions F and K should have a sample size 

subscript. As a result, Slutsky’s Lemma no longer applies and replacing the true parameter values φ with consistent estimates in 

(1) above does not necessarily lead to a consistent estimate of the information matrix. When F and K have the same functional 

form in different sample sizes, their continuity would guarantee this. Here, we need some stronger assumptions on the functions 

or require that the estimates are converging in a stronger sense (e.g. almost surely). Also, the standard LM tests are derived 

under the normality and homoskedasticity assumptions of the regression disturbances. Hence, they may not be robust against 

non-normality or heteroskedasticity of the disturbances. Baltagi and Yang (2013) applied the technique in Born and Breitung 

(2011) and introduced general methods to modify the standard LM tests so that they become robust against heteroskedasticity 

and non-normality. This is beyond the scope of this paper, though. We acknowledge this limitation in the paper and thank the 

referee for pointing it out. 
4It is important to point out that the asymptotic distribution of our test statistics are not explicitly derived in the paper. 

There is no proof in the literature that the LM tests are asymptotically χ2 under the null. Given the simulations below, they 

most likely are but we cannot say under what assumptions this holds. These are likely to hold under a similar set of primitive 

assumptions developed by Kelejian and Prucha (2001) for the Moran-I test. 
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2.2 Conditional DLR Test for Hb 
0 : ρ = 0 (allowing an unrestricted estimate of 

λ) 

Under H0 
b : ρ = 0 (allowing an unrestricted estimate of λ), the restricted model is a panel data transformed 

regression with first order spatial autoregressive disturbances: 

∗ ∗ y = X ∗ β + v , (24) 

∗ ∗ v = λ (IT −1 ⊗ M) v + ϵ ∗ . 

Let β̂, λ̂ and σ̂2 denote the MLEs of β, λ and σ2 under this restricted model. Using these restricted ML ϵ ϵ[ ]
estimates φ̂ ′ = β̂′ , σ̂ϵ 

2 , ρ,̂ λ̂ with ρ̂ = 0, we run the following 2N (T − 1) observations artificial regression: 

   ( ) ( )  
1 ∗ 1 1 ∗ 1 ∗ 1 ∗ ê IT −1 ⊗ B̂ X∗ ê IT −1 ⊗ WB̂ y (IT −1 ⊗ M) û
σ̂ϵ σ̂ϵ σ̂ϵ 

2 σ̂ϵ σ̂ϵ  =   b + residuals, 
ιN (T −1) 0 − σ̂

1 
ϵ 
ιN(T −1) −ιT −1 ⊗ ω −ιT −1 ⊗ η∗ 

(25)( ) 
′ ∗ ∗ ˆ ∗ ∗ e IT −1 ⊗ ˆ IN λM − X∗ ˆ =where ˆ = B v̂ with B = − ˆ and v̂ = y β, ω = (ω1, . . . , ωN ) and η∗ ( )′ 

η1 ηN , . . . , . The explained sum of squares from the DLR in (25) will provide an asymptoti-
1−ληˆ 1 1−λ̂ηN 

cally valid test statistic for H0 
b . This should be asymptotically distributed as χ2 under the null. It can 1 

alternatively be computed as 2N (T − 1) minus the residual sum of squares of the above artificial regression. 

2.3 Conditional DLR Test for Hc 
0 : λ = 0 (allowing an unrestricted estimate of 

ρ) 

Under Hc : λ = 0 (allowing an unrestricted estimate of ρ), the restricted model is a panel spatial autore-0 

gressive regression model of order one: 

∗ ∗ y = ρ (IT −1 ⊗ W ) y + X ∗ β + ϵ ∗ . (26) 

¯ σ2Let β, ρ̄ and ¯ denote the MLEs of β, ρ and σ2 under this restricted model. Using these restricted ML ϵ ϵ [ ]
estimates φ̄′ = β̄′ , σ̄ϵ 

2 , ρ,̄ λ̄ with λ̄ = 0, we run the following 2N (T − 1) observations artificial regression: 

    
1 ∗ 1 1 ∗ 1 ∗ 1 ∗ ē X∗ ē (IT −1 ⊗ W ) y (IT −1 ⊗ M) ēσ̄ϵ σ̄ϵ σ̄2 σ̄ϵ σ̄ϵϵ  =   b + residuals, (27) 

− 1ιN (T −1) 0 ιN(T −1) −ιT −1 ⊗ ω∗ −ιT −1 ⊗ ησ̄ϵ ( ) ( )′ ′ ∗ ¯ ∗ ¯ ω1 ωNe IT −1 ⊗ − X∗ ˆ ρW , ω∗ 
ρωN 

where ¯ = A y β with A = IN − ¯ = , . . . , and η = (η1, . . . , ηN ) .1−ρω¯ 1 1−¯

The explained sum of squares from the DLR in (27) will provide an asymptotically valid test statistic for 
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H0 
c . This should be asymptotically distributed as χ2 under the null. It can alternatively be computed as 1 

2N (T − 1) minus the residual sum of squares of the above artificial regression. 

3 Empirical Illustration 

Following Munnell (1990), Baltagi and Pinnoi (1995) considered the Cobb-Douglas production function 

relationship investigating the contribution of different types of public infrastructure on private production. 

Their regression model is as follows: 

log(Y ) = α + β1 log(K1) + β2 log(K2) + β3 log(L) + β4 log(Unemp) + u, 

where Y is gross state product, K1 is public capital which includes highways and streets, water and sewer 

facilities and other public buildings and structures. K2 is the private capital stock based on the Bureau of 

Economic Analysis national stock estimates, L is labor input measured as employment in nonagricultural 

payrolls. Unemp is the state unemployment rate included to capture business cycle effects. This panel 

consists of annual observations for 48 contiguous states over the period 1970-1986. The weighting matrix W = 

M has elements different from zero if two states are neighbors. According to the queen contiguity matrix, 

Arizona and Colorado are considered neighbors. This weighting matrix has been row-normalized. Table 

1 compares the results from applying the DLR statistics derived in this paper with their LM counterparts 

derived by Debarsy and Ertur (2010). The DLR statistics are computed as 2N (T − 1) minus the residual 

sum of squares from (23), (25) and (27). As we can see from the table, for all hypotheses considered, the 

DLR and its LM counterpart are close and provide the same decision. The joint test and conditional tests 

reject the absence of spatial dependence. 

4 Monte Carlo Simulation 

This section investigates the small sample performance of the DLR and LM tests. Following Debarsy and 

Ertur (2010), we generate the data using the model in Equation (1) with one regressor xit generated by 
iid

xit = 0.1t + 0.5xi,t−1 + zit with zit ∼ U [−5, 5]. The true parameters are as follows: β = 3, while ρ and 

λ varied over the range (−0.2, −0.5, −0.8, 0, 0.2, 0.5, 0.8). The sample size chosen is (N = 49; T = 10). 

The weighting matrix W = M is a row-normalized Rook-type of order 2. The individual specific effects 
iid iid

are µi ∼ U [−5, 5] and the disturbances are ϵit ∼ N (0, 1). We performed 1,000 replications. It is worth 

pointing out that the eigenvalues of W need only to be computed once. Table 2 shows the simulation results. 

The size of the joint DLR and LM tests for Ha : ρ = λ = 0, using the 5% critical value of a χ2
2, is 5.8%0 
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5 Conclusion 

and 5.5%, respectively. The simulations are performed using a 2.83GHz processor desktop computer with 

2GB of RAM and running Windows 7 Enterprise, Service Pack 1. Computation time of the simulation 

results is shown in Table 3. For the joint test, DLR computation time in seconds is more much shorter than 

LM. For the conditional tests, the computation time for the LM and DLR are similar. Figure 1 plots the 

corresponding power of the joint DLR and LM tests for Ha 
0 : ρ = λ = 0. The size of the conditional LM test 

for Hb 
0 : ρ = 0 (allowing an unrestricted estimate of λ), using the 5% critical value of a χ2

1, varies between 

4.8% and 7.0% depending on the value of λ, while that of the corresponding DLR test varies between 4.7% 

and 7.2% depending on the value of λ. Figure 2 plots the corresponding power of the conditional LM test 

for Hb 
0 : ρ = 0 (allowing an unrestricted estimate of λ). Similarly, the size of the conditional LM test for 

Hc 
0 : λ = 0 (allowing an unrestricted estimate of ρ), using the 5% critical value of a χ2

1, varies between 3.8% 

and 6.3% depending on the value of ρ, while that of the corresponding DLR test varies between 3.9% and 

6.4% depending on the value of ρ. Figure 3 plots the corresponding power of the conditional LM test for 

for Hc 
0 : λ = 0 (allowing an unrestricted estimate of ρ). As clear from the figures, the joint and conditional 

DLR and LM tests yield similar small sample performance in the Monte Carlo experiments. 

This paper derives three artificial DLR tests corresponding to the LM tests derived by Debarsy and Ertur 

(2010) for the fixed effects spatial lag regression model with spatial auto-regressive error. The first DLR 

jointly tests for zero spatial lag dependence as well as zero spatial autoregressive error in a fixed effects 

panel data model. The second DLR conditionally tests for zero spatial lag dependence allowing for spatial 

error dependence. While the third DLR conditionally tests for zero spatial error dependence allowing for 

spatial lag dependence. The proposed tests are illustrated using the productivity puzzle empirical example 

by Munnell (1990). In addition, Monte Carlo experiments show that the small sample performance of these 

DLR tests have similar performance to their corresponding LM counterparts. Furthermore, it would be nice 

if the normality assumption of the disturbances can be relaxed, though this is beyond the scope of this paper. 
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Table 1: Empirical Test Results 

Statistic p-value 

Ha 
0 : λ ρ = 0 

LMλρ 243.405 0.000 

DLRλρ 191.157 0.000 

Hb 
0 : ρ = 0 (allowing an unrestricted estimate of λ) 

LMρ|λ 5.960 0.015 

DLRρ|λ 6.133 0.013 

Hc 
0 : λ = 0 (allowing an unrestricted estimate of ρ) 

LMλ|ρ 34.326 0.000 

DLRλ|ρ 34.495 0.000 

Figure 1: Test for Ha 
0 : λ ρ = 0 
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Table 2: Simulation Results 

ρ λ LMλρ DLRλρ LMρ|λ DLRρ|λ LMλ|ρ DLRλ|ρ 
-0.8 -0.8 1.000 1.000 1.000 1.000 1.000 1.000 

-0.5 1.000 1.000 1.000 1.000 0.953 0.961 
-0.2 1.000 1.000 1.000 1.000 0.338 0.369 

0 1.000 1.000 1.000 1.000 0.038 0.039 
0.2 1.000 1.000 1.000 1.000 0.406 0.378 
0.5 1.000 1.000 1.000 1.000 0.994 0.994 
0.8 1.000 1.000 1.000 1.000 1.000 1.000 

-0.5 -0.8 1.000 1.000 1.000 1.000 1.000 1.000 
-0.5 1.000 1.000 1.000 1.000 0.953 0.960 
-0.2 1.000 1.000 1.000 1.000 0.319 0.354 

0 1.000 1.000 1.000 1.000 0.045 0.046 
0.2 1.000 1.000 1.000 1.000 0.432 0.405 
0.5 0.999 0.999 1.000 1.000 0.994 0.994 
0.8 1.000 1.000 0.999 0.999 1.000 1.000 

-0.2 -0.8 1.000 1.000 0.881 0.888 1.000 1.000 
-0.5 1.000 1.000 0.839 0.852 0.964 0.971 
-0.2 0.994 0.999 0.803 0.808 0.288 0.327 

0 0.797 0.825 0.724 0.726 0.056 0.060 
0.2 0.586 0.584 0.689 0.692 0.427 0.407 
0.5 0.988 0.985 0.574 0.575 0.989 0.988 
0.8 1.000 1.000 0.520 0.522 1.000 1.000 

0 -0.8 1.000 1.000 0.060 0.060 1.000 1.000 
-0.5 0.993 0.995 0.049 0.049 0.971 0.975 
-0.2 0.362 0.418 0.049 0.049 0.344 0.382 

0 0.058 0.055 0.048 0.049 0.063 0.064 
0.2 0.569 0.523 0.049 0.049 0.435 0.408 
0.5 0.999 0.999 0.070 0.072 0.992 0.989 
0.8 1.000 1.000 0.049 0.047 1.000 1.000 

0.2 -0.8 1.000 1.000 0.922 0.920 1.000 1.000 
-0.5 0.934 0.946 0.869 0.869 0.969 0.978 
-0.2 0.754 0.754 0.808 0.813 0.362 0.388 

0 0.909 0.898 0.741 0.747 0.047 0.048 
0.2 0.996 0.996 0.672 0.678 0.406 0.376 
0.5 1.000 1.000 0.568 0.567 0.991 0.990 
0.8 1.000 1.000 0.575 0.570 1.000 1.000 

0.5 -0.8 1.000 1.000 1.000 1.000 1.000 1.000 
-0.5 1.000 1.000 1.000 1.000 0.976 0.979 
-0.2 1.000 1.000 1.000 1.000 0.351 0.377 

0 1.000 1.000 1.000 1.000 0.046 0.041 
0.2 1.000 1.000 1.000 1.000 0.417 0.396 
0.5 1.000 1.000 0.997 0.998 0.989 0.988 
0.8 1.000 1.000 1.000 1.000 1.000 1.000 

0.8 -0.8 1.000 1.000 0.999 0.997 1.000 1.000 
-0.5 1.000 1.000 1.000 1.000 0.989 0.990 
-0.2 1.000 1.000 1.000 1.000 0.379 0.396 

0 1.000 1.000 1.000 1.000 0.040 0.042 
0.2 1.000 1.000 1.000 1.000 0.454 0.434 
0.5 1.000 1.000 1.000 1.000 0.993 0.992 
0.8 1.000 1.000 1.000 1.000 1.000 1.000 

Notes: 1,000 replications 14 



Table 3: Compuation Time of Simulation Results 

ρ λ LMλρ DLRλρ LMρ|λ DLRρ|λ LMλ|ρ DLRλ|ρ 
-0.8 -0.8 154.60 41.94 542.95 539.57 673.19 675.59 

-0.5 148.48 30.53 544.75 542.49 674.80 675.94 
-0.2 148.80 30.47 544.40 542.10 674.16 678.12 

0 148.25 30.30 544.70 541.72 673.82 675.95 
0.2 148.26 30.59 545.35 543.84 674.69 676.14 
0.5 147.86 30.64 544.80 542.94 676.17 676.93 
0.8 148.26 30.64 544.74 542.79 674.67 677.79 

-0.5 -0.8 148.47 30.68 546.33 542.01 675.76 679.71 
-0.5 148.74 30.84 547.64 544.32 673.79 676.17 
-0.2 148.17 30.51 544.94 541.81 673.86 677.78 

0 148.08 30.44 544.64 542.35 674.36 676.28 
0.2 148.40 30.57 546.45 541.84 673.88 676.43 
0.5 196.23 30.67 545.19 541.97 684.14 687.69 
0.8 150.58 31.00 552.47 550.78 679.82 687.33 

-0.2 -0.8 148.87 31.25 548.63 544.34 677.87 693.14 
-0.5 149.06 30.53 546.89 545.52 675.74 678.69 
-0.2 148.59 30.77 546.10 543.35 677.67 678.02 

0 148.48 30.53 546.45 543.23 675.36 678.24 
0.2 148.53 31.41 546.88 561.44 674.94 677.40 
0.5 149.51 30.52 545.38 542.27 674.32 676.56 
0.8 148.40 30.65 545.27 566.47 744.56 677.72 

0 -0.8 148.16 30.32 545.14 542.01 674.10 676.78 
-0.5 148.28 30.53 546.05 541.98 674.27 676.84 
-0.2 148.44 30.34 545.13 542.47 675.45 676.98 

0 148.17 30.31 545.08 541.71 673.98 677.48 
0.2 148.16 30.29 544.86 541.79 674.01 676.61 
0.5 148.19 30.52 546.13 542.79 674.62 676.86 
0.8 148.41 30.33 545.12 542.29 674.92 676.40 

0.2 -0.8 148.61 30.69 545.20 542.12 674.49 677.77 
-0.5 157.19 43.37 555.58 547.00 682.05 684.23 
-0.2 150.21 31.62 552.50 560.22 698.88 731.89 

0 275.49 30.71 545.99 541.87 682.82 687.41 
0.2 150.31 32.19 563.30 553.04 685.14 680.04 
0.5 149.47 31.19 554.56 571.71 738.19 715.10 
0.8 148.28 30.83 542.95 543.64 675.61 677.32 

0.5 -0.8 147.90 31.00 543.07 543.73 676.69 679.20 
-0.5 148.28 30.84 554.07 555.43 686.90 678.99 
-0.2 147.67 30.96 542.35 541.09 673.85 675.77 

0 147.46 30.66 541.37 541.43 675.33 676.45 
0.2 148.01 30.93 542.52 542.56 675.55 677.72 
0.5 148.01 30.85 542.45 542.84 675.54 676.97 
0.8 147.95 30.98 542.45 543.11 675.06 676.42 

0.8 -0.8 147.82 30.89 542.15 542.72 679.29 693.55 
-0.5 151.58 31.00 542.62 542.97 675.73 677.56 
-0.2 148.22 30.90 547.90 550.36 685.30 678.20 

0 147.76 31.06 544.35 544.20 677.93 676.78 
0.2 148.03 30.94 543.32 543.01 675.34 677.74 
0.5 148.01 31.01 542.88 542.76 675.22 677.35 
0.8 148.16 30.87 544.19 544.46 676.66 678.98 

15Notes: The simulation is performed using a 2.83GHz processor desktop computer with 2GB of RAM and running 

Windows 7 Enterprise, Service Pack 1. 1,000 replications. Unit in seconds. 



Figure 2: Test for Hb 
0 : ρ = 0 (allowing an unrestricted estimate of λ) 
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Figure 3: Test for Hc 
0 : λ = 0 (allowing an unrestricted estimate of ρ) 
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