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Abstract

This paper revisits the joint and conditional Lagrange Multiplier tests derived by Debarsy and Ertur
(2010) for a fixed effects spatial lag regression model with spatial auto-regressive error, and derives these
tests using artificial Double Length Regressions (DLR). These DLR tests and their corresponding LM
tests are compared using an empirical example and a Monte Carlo simulation.

Key Words: Double Length Regression; Spatial Lag Dependence; Spatial Error Dependence; Artificial
Regressions; Panel Data; Fized Effects.

JEL Classification: C12, C21, R15.

1 Introduction

Davidson and MacKinnon (1984, 1988, 1993) proposed Double Length Regressions (DLR) as a useful tool
for deriving LM tests. These DLR’s are computationally simple and outperform their outer product gradient
(OPG) regression counterparts. They have been applied in econometrics by Baltagi (1999) to test linear
versus log-linear regressions with AR(1) disturbances. Also, Baltagi and Li (2001) to test for spatial
dependence in a cross-section regression model, and by Le and Li (2008) who applied it to test for functional
form and spatial error dependence, to mention a few. Recently, Baltagi and Liu (2014) extended the Baltagi
and Li (2001) paper by deriving the DLR tests corresponding to the joint and conditional LM tests of spatial
lag and spatial error in a cross-section regression model. Testing for spatial dependence in a cross-section
regression has been extensively studied by Anselin (1988a, 1988b, 2001), Anselin and Bera (1998), Anselin,

Bera, Florax and Yoon (1996), and Krémer (2005), to mention a few. The presence of spatial correlation can

*We dedicate this paper in honor of Aman Ullah’s many contributions to econometrics. We would like to thank two
anonymous referees for their helpful comments and suggestions.

fCorresponding author: Badi H. Baltagi, Department of Economics and Center for Policy Research, 426 Eggers Hall, Syracuse
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render inference using ordinary least squares misleading, see Kramer (2003). Also, Mynbaev and Ullah (2008)
who derive the asymptotic distribution of the OLS estimator in a spatial autoregressive model.! Anselin
et al. (1996) consider a spatial autoregressive cross-section regression model with spatial autoregressive
disturbances and derive a series of Lagrange Multiplier (LM) tests. These are called the joint, conditional
and marginal LM tests for spatial lag and spatial error dependence. In fact, Baltagi and Li (2001) derived
the DLR counterpart for the marginal LM tests for spatial lag and spatial error considered by Anselin et al.
(1996) and illustrated these tests using Anselin’s (1988b) empirical example relating crime to housing values
and income for 49 neighborhoods in Columbus, Ohio in 1980. Monte Carlo experiments showed that these
DLR tests have similar performance to their LM counterparts.

This paper focuses on similar tests but in the context of a spatial panel data model, see Lee and Yu
(2010a) and Baltagi (2011) for recent surveys.? In fact, Baltagi, Song and Koh (2003) derived the joint LM
test for spatial error correlation as well as random country effects. Additionally, they derived conditional LM
tests, which test for random country effects given the presence of spatial error correlation. Also, spatial error
correlation given the presence of random country effects. These conditional LM tests are an alternative to the
one directional LM tests that test for random country effects ignoring the presence of spatial error correlation
or the one directional LM tests for spatial error correlation ignoring the presence of random country effects.
Baltagi and Liu (2008) derived a joint LM test which simultaneously tests for the absence of spatial lag
dependence and random individual effects. The joint LM statistic is the sum of two standard LM statistics.
The first one tests for the absence of spatial lag dependence ignoring the random individual effects, and the
second one tests for the absence of random individual effects ignoring the spatial lag dependence. Baltagi and
Liu (2008) also derived two conditional LM tests. The first one tests for the absence of random individual
effects allowing for the possible presence of spatial lag dependence. The second one tests for the absence of
spatial lag dependence allowing for the possible presence of random individual effects. Debarsey and Ertur
(2010) derived LM and LR tests designed to discriminate between spatially autocorrelated disturbances
versus a spatially lagged dependent variable in the context of a fixed effects spatial panel data model.
Following Lee and Yu (2010b), they combine a spatial lag model with a spatially autocorrelated disturbances
in a fixed effects spatial panel data setting. They derive joint, marginal as well as conditional LM and LR
tests, under the assumption of normality of the disturbances. They investigate the performance of these tests
using Monte Carlo experiments. This paper derives the DLR tests corresponding to the joint and conditional

LM tests for spatial lag and spatial error considered by Debarsy and Ertur (2010). It illustrates these tests

IFew finite sample studies exist in this literature, most notably Bao and Ullah (2007) who study the finite sample properties

of the maximum likelihood estimator in spatial models.
2Baltagi and Pirotte (2010) show that inference can be misleading if spatial dependence is ignored in spatial panel models.



using an empirical example and investigates the performance of these tests using Monte Carlo experiments.

The paper is organized as follows: Section 2 derives the DLR for the presence of spatial lag and error
dependence in the context of a fixed effects panel data model. Our suggested DLR tests and their corre-
sponding LM tests are compared using an illustrative example in section 3 and a Monte Carlo simulation in

section 4. Section 5 concludes the paper.

2 The Spatial Dependence Model

Consider the spatial lag panel data regression model
y=pWye+ XoB+p+uv, t=1,...T, (1)
with spatial autoregressive remainder errors
vp=AMvi+¢, t=1,...T, (2)

where v, = (ys1,...,ytn) is a vector of observations on the dependent variable for N regions or households
observed at time t = 1,...,T. X; is an N X k matrix of observations on k explanatory variables. We assume
X; to be of full column rank and its elements are assumed to be asymptotically bounded in absolute value.
B is a k x 1 vector of parameters. p and A are scalar spatial autoregressive coefficients with |p| < 1 and
[A\| < 1. W and M are known N x N row normalized spatial weight matrices whose diagonal elements are

zero and summation of each row is 1. W and M also satisfy the condition that (I — AM) and (I — pW)

are non-singular. p' = (p1,..., pn) where p; denote the ith individual’s fixed effect. These uls are time
invariant random variables that are possibly correlated with the explanatory variables. v, = (v41,...,ven) 18
a vector of remainder disturbances that follow a first order spatial autoregressive model. €, = (e, ..., €nN)

and € is i.i.d. over ¢ and i and is assumed to be N(0,02). Normality is needed for the derivation of the
DLR, see Davidson and MacKinnon (1993).

Define B = I — jT, where I is an identity matrix of dimension T, Jr = Jr/T and Jr is a matrix
of ones of dimension T, see Baltagi (2013). Lee and Yu (2010) define [FT7T_1, %LT] as the orthonormal
matrix of the eigenvectors of the demeaning operator, with Frp_1 the T'x (T — 1) matrix of eigenvectors of
Er corresponding to eigenvalues equal to 1. ¢ is a vector of ones of dimension 7. Define the transformed

N x (T — 1) matrix (yf, e y}_l) = (y1,...,y7) Fror—1. Equivalently, this can be written as:

Y1 Y1
Y= = (FT/’,Tfl ®IN) )



where y* is of dimension N (T — 1) x 1, Iy is an identity matrix of dimension N, and ® denotes the Kronecker
product. One can see that the transformed sample is shrunk by one time period. Similarly define X}, v}

and ¢ for t =1,...,7 — 1. The benchmark model in Equation (1) becomes:

yy = pWy; + X[ B +vy, fort=1,..,T -1, (3)

and

v, =AMv +¢,for t=1,..,T—-1. (4)

Rewrite equation (3) in matrix form as
y'=pUr1 ©@W)y* + X764 07, ()

and

vVi=A(Ir-1 @ M) v* + €, (6)

where X*is N(T'— 1) xk, Biskx1land e*is N (T — 1) x 1. Ip_1 is an identity matrix of dimension 7" — 1.
This follows from the fact that (Fpp_y @ In) (Ip @ W) = (Fpp_y @ W) = (Ip—1 @ W) (Fpp_ @ In). A
similar result obtains when we replace W by M. The observations are ordered with ¢ being the slow running
index and ¢ the fast running index, i.e., y* = (yn, S YIN S Y(T 1)1 - - ,Z/(T—1),N)- X*, v* and €* are
similarly defined.

Model (5) can be rewritten as
(Ir—1 @ BA)y* — (Ip—1 ® B) X*3 = €*, (7)

where A = Iy — pW and B = Iy — AM. This yields the following representation for the itth observation

fit(yiw@):;eitv Zle"vN; t:17"'aT_1a (8)

€

where

/!

N N N N N
* 1 * * * * * *
fit Wip, ) = > |Yit Pzwisyst - )‘Zmijyjt + /))\Z (mij ijsyst> = | Tt — )‘Zmijxjt Bl
€ s=1 j=1 j=1 s=1 j=1
(9)
with " = [8,02,p,A].
Under the normality assumption, we have Uie;?‘t ~ NID (0,1) and hence the log-likelihood function of

equation (7) is given by



N(T - 1)

L) = NEDy,, NE-D

Ino? + (T —1)In|A|+ (T —1)In|B|

—% [(Ir—1 ® BA)y* — (It—1 ® B) X*B]' [(Ir—1 ® BA)y* — (Ir—1 ® B) X*f].  (10)

Ord (1975) shows that In|A| = In|Iy — pW| = Ef\il In (1 — pw;), where w;’s are the eigenvalues of .
Similarly, In|B| = In|Iy — AM| = Zf\il In (1 — An;), where n;’s are the eigenvalues of M. As shown in
Lemma 1 of Li, Yu and Bai (2013), all the eigenvalues of a row normalized spatial weight matrix are real
numbers. The Jacobian term can be rewritten as

NT=D o2 4 (T —1)n|A| + (T — 1) In|B|

€

ol ol N(T-1).
:(TfDZ;mﬂfme%TfUZ;nﬂmef 5 Ino? (11)
N
= (T—l)Zkit(y;,g@),
i=1
where
kit(y;‘t,go)zln(l—pwi)—i—ln(l—/\ni)—%lnaf, i=1,....,N, t=1,...T—1. (12)

For the purpose of deriving the DLR, the contribution of the ith observation to the log-likelihood function

can be written as

lit (Yiys 0) = —5n (2m) — 3 5 Wi ) + kit (3 0) - (13)

Defining Fii; (y7;, ) = 0fit Uiz, ) /05 and Kiji (yjy, ) = Okir (y3y, ) /05, then F (y*, ¢) and K (y*, )
are matrices with typical elements Fj;; (v, ¢) and Ky (y);, ). Similarly, let f (y*,¢) be the vector with
typical elements fi; (v, ).

For F (y*, ), the typical elements are

/

N
O fit (Y5 ) L[,
Gt Jir ¥) = | ) el I
GYL o Tit ;mwzﬁ
/
N N N N N
Ofit (ys 1
% = = U =D wisyl =AY migyn A A (m > wial | = | 2k =AY maa,
Te ge s=1 j=1 j=1 s=1 j=1
[~ N N
Ofi (Y 1
fit (8ym<ﬁ) S Y (mij szy:t> ,
P e _s:l j=1 s=1
[~ N N N
8f yik y P 1
% = 5 Zmijy;t - PZ Mij ijsy:t - Zmijx;gﬁ
€ lj=1 j=1 s=1 j=1




For K (y*, ), the typical elements are

8kit (y:t ’ 90)

=0 15

86/ ? ( )
Oku (yi ) 1

0o, o.’
kit (i p)  _ __ wi

p 1—pw;’
Ok (Wi 0) i

12D 1-— )\771‘.

The DLR can be written as an artificial regression with 2N (7' — 1) observations:

*a —F *7

ACRLY) = W) b + residuals, (16)
LN(T—1) K (y*, )

where ¢ (7_1) denotes a vector of ones of dimension N (T — 1). The basic result in Davidson and MacKinnon

(1984) is that the information matrix can be expressed as

I e) = ﬁl_i)m % (F (" 0) Fy* o)+ K (", 0) K, 9) |- (17)

Another important observation is that the gradient of the log-likelihood function can be written as

OlnL (y*, »)
e

9(y* ) =—Fo) fe)+ Ky, e) ine-1)- (18)

The LM test statistic in score form is given by
*  ~ ~ (% ~\1—1 * o~
9(y*, @) NI @) gy @), (19)

where g (y*, @) is the gradient evaluated at the restricted estimates. The DLR variant of the LM test then

uses a consistent estimate of the information matrix under the null of the form

1 * o~ * o~ * o~ * o~
~ (F W0 Fyo) + K (v, 0) K (y".9)) (20)
In this case, the LM test coincides with the explained sum of squares from the DLR regression in Equation

(16). Equation (16) evaluated at the restricted estimates can be written as
Y = Xb + residuals, (21)

>l<7 4 _F *’ =
where ) = T 9) and X = y jp)
LN(T—-1) K (y*#P)

sum of squares from the DLR regression is Y'X (X’X)fl X'Y. Note that the residual sum of squares of

. Since the OLS estimator of b is (X'X) ™" X', the explained



the above artificial regression is )’ [I - X (/'\,”X)_1 X’] Yand Y'Y = f (v, @) f (v, @)+ LN(T—1) N(T—1) =
2N(T —1). Therefore, the DLR test statistics can be alternatively computed as 2N (T — 1) minus the residual
sum of squares of the above artificial regressions. This DLR test is computationally simple and requires only

the eigenvalues of W. These eigenvalues are also needed for ML estimation and the LM test.

2.1 Joint DLR test for Hf: A=p =10

Under H§ : p = A = 0, the restricted MLE are the OLS estimates of the following transformed panel data

regression:
v =X"B4e, t=1,..T—1 (22)
In this case, 8 = (X""X*)_1 X*y*, 62 = ﬁé*’é* with €* denoting the OLS residuals of this transformed

panel data regression. Using these restricted ML estimates ¢’ = [/3” 02, D, ;\} with p = A = 0, we run the

following 2N (T — 1) observations artificial regression:

1 ~x% 1 * 1 ~% 1 * 1 ~%
= =X =€ = (Ir_1@W = (Ir_1®@M)e
e = |% 2 5. U= )y 5 U ) b + residuals, (23)
LN(T-1) 0 *&%LN(T—n —lr-1 QW —lr-1 @M
where w = (w1, ...,wy) are the eigenvalues of W, and n = (1y,...,1y)" are the eigenvalues of M. LN(T—1)

and tp_; are vector of ones of dimension N (T — 1) and T — 1, respectively. The explained sum of squares
from the DLR in (23) will provide an asymptotically valid test statistic for H§. This should be asymptotically
distributed as x3 under the null.?> It can alternatively be computed as 2N (T — 1) minus the residual sum

of squares of the above artificial regression.*

3In spatial models, the functional form changes with the sample size, i.e., the functions F' and K should have a sample size
subscript. As a result, Slutsky’s Lemma no longer applies and replacing the true parameter values ¢ with consistent estimates in
(1) above does not necessarily lead to a consistent estimate of the information matrix. When F and K have the same functional
form in different sample sizes, their continuity would guarantee this. Here, we need some stronger assumptions on the functions
or require that the estimates are converging in a stronger sense (e.g. almost surely). Also, the standard LM tests are derived
under the normality and homoskedasticity assumptions of the regression disturbances. Hence, they may not be robust against
non-normality or heteroskedasticity of the disturbances. Baltagi and Yang (2013) applied the technique in Born and Breitung
(2011) and introduced general methods to modify the standard LM tests so that they become robust against heteroskedasticity
and non-normality. This is beyond the scope of this paper, though. We acknowledge this limitation in the paper and thank the

referee for pointing it out.
41t is important to point out that the asymptotic distribution of our test statistics are not explicitly derived in the paper.

There is no proof in the literature that the LM tests are asymptotically x2 under the null. Given the simulations below, they
most likely are but we cannot say under what assumptions this holds. These are likely to hold under a similar set of primitive

assumptions developed by Kelejian and Prucha (2001) for the Moran-I test.



2.2 Conditional DLR Test for H} : p = 0 (allowing an unrestricted estimate of
)

Under HS : p =0 (allowing an unrestricted estimate of \), the restricted model is a panel data transformed

regression with first order spatial autoregressive disturbances:

y* X*B8+ v, (24)

v* A(Ir—1 @ M)v* + €.

Let B, A and 52 denote the MLEs of 3, A and o2 under this restricted model. Using these restricted ML

estimates @' = |3, 52, p, /A\} with p = 0, we run the following 2N (T — 1) observations artificial regression:

zo | _|F(aeB)x e F(haeWB)y fraswe|
. — | % c e b + residuals,

LN(T—1) i 0 —&%LN(T_l) —ir-1 Qw —tr_1®n*

(25)
where é* = (IT_1®E) o* with B = Iy — AM and %% = y* — X*3, w = (wi,...,wy) and np* =

/

(1 ”51\7] e T "5’\‘:7 ) . The explained sum of squares from the DLR in (25) will provide an asymptoti-
- 1 - N

cally valid test statistic for HY. This should be asymptotically distributed as x? under the null. It can

alternatively be computed as 2N (T — 1) minus the residual sum of squares of the above artificial regression.

2.3 Conditional DLR Test for H§ : A = 0 (allowing an unrestricted estimate of
p)

Under H§ : A = 0 (allowing an unrestricted estimate of p), the restricted model is a panel spatial autore-

gressive regression model of order one:

Y = p(Ira ®@W)y + X'+ ¢, (26)

Let 3, p and &2

€

denote the MLEs of 3, p and o2 under this restricted model. Using these restricted ML

estimates @' = [B’ 02D, 5\] with A = 0, we run the following 2N (T — 1) observations artificial regression:

1 =% 1 * 1 =% 1 * 1 —x
—e =X =€ = (Ir_1 @W = (Ir_1®@M)e
e = | % ? 5 U= )y 5 U ) b + residuals, (27)
LN(T—1) 0 *;,%LN(T—Q —tr_1 ®w* —lr-1 @M
— N _ /
where & = (I ® A)y* — X*B with A = Iy — pW, w* = (1_wf;w1,..., 1_wﬁf§m) and 7 = (m1,...,7n5)

The explained sum of squares from the DLR in (27) will provide an asymptotically valid test statistic for



H§. This should be asymptotically distributed as x? under the null. It can alternatively be computed as

2N (T — 1) minus the residual sum of squares of the above artificial regression.

3 Empirical Illustration

Following Munnell (1990), Baltagi and Pinnoi (1995) considered the Cobb-Douglas production function
relationship investigating the contribution of different types of public infrastructure on private production.

Their regression model is as follows:
log(Y) = o+ f1log (K1) + B2 log(K3) + B3 log(L) + Balog(Unemp) + u,

where Y is gross state product, K is public capital which includes highways and streets, water and sewer
facilities and other public buildings and structures. K5 is the private capital stock based on the Bureau of
Economic Analysis national stock estimates, L is labor input measured as employment in nonagricultural
payrolls. Unemp is the state unemployment rate included to capture business cycle effects. This panel
consists of annual observations for 48 contiguous states over the period 1970-1986. The weighting matrix W =
M has elements different from zero if two states are neighbors. According to the queen contiguity matrix,
Arizona and Colorado are considered neighbors. This weighting matrix has been row-normalized. Table
1 compares the results from applying the DLR statistics derived in this paper with their LM counterparts
derived by Debarsy and Ertur (2010). The DLR statistics are computed as 2N (T' — 1) minus the residual
sum of squares from (23), (25) and (27). As we can see from the table, for all hypotheses considered, the
DLR and its LM counterpart are close and provide the same decision. The joint test and conditional tests

reject the absence of spatial dependence.

4 Monte Carlo Simulation

This section investigates the small sample performance of the DLR and LM tests. Following Debarsy and
Ertur (2010), we generate the data using the model in Equation (1) with one regressor x;; generated by
g = 0.1t + 0.52; 4—1 + 2z with z; “y [-5,5]. The true parameters are as follows: 8 = 3, while p and
A varied over the range (—0.2,—0.5,—0.8,0,0.2,0.5,0.8). The sample size chosen is (N = 49;T = 10).
The weighting matrix W = M is a row-normalized Rook-type of order 2. The individual specific effects
are [ oy [—5,5] and the disturbances are €;; N (0,1). We performed 1,000 replications. It is worth
pointing out that the eigenvalues of W need only to be computed once. Table 2 shows the simulation results.

The size of the joint DLR and LM tests for H§ : p = A = 0, using the 5% critical value of a x3, is 5.8%



and 5.5%, respectively. The simulations are performed using a 2.83GHz processor desktop computer with
2GB of RAM and running Windows 7 Enterprise, Service Pack 1. Computation time of the simulation
results is shown in Table 3. For the joint test, DLR computation time in seconds is more much shorter than
LM. For the conditional tests, the computation time for the LM and DLR are similar. Figure 1 plots the
corresponding power of the joint DLR and LM tests for H§ : p = A = 0. The size of the conditional LM test
for HY : p = 0 (allowing an unrestricted estimate of \), using the 5% critical value of a x?, varies between
4.8% and 7.0% depending on the value of A, while that of the corresponding DLR test varies between 4.7%
and 7.2% depending on the value of X\. Figure 2 plots the corresponding power of the conditional LM test
for HY : p = 0 (allowing an unrestricted estimate of \). Similarly, the size of the conditional LM test for
HE : A =0 (allowing an unrestricted estimate of p), using the 5% critical value of a x3, varies between 3.8%
and 6.3% depending on the value of p, while that of the corresponding DLR test varies between 3.9% and
6.4% depending on the value of p. Figure 3 plots the corresponding power of the conditional LM test for
for H§ : A = 0 (allowing an unrestricted estimate of p). As clear from the figures, the joint and conditional

DLR and LM tests yield similar small sample performance in the Monte Carlo experiments.

5 Conclusion

This paper derives three artificial DLR tests corresponding to the LM tests derived by Debarsy and Ertur
(2010) for the fixed effects spatial lag regression model with spatial auto-regressive error. The first DLR
jointly tests for zero spatial lag dependence as well as zero spatial autoregressive error in a fixed effects
panel data model. The second DLR conditionally tests for zero spatial lag dependence allowing for spatial
error dependence. While the third DLR conditionally tests for zero spatial error dependence allowing for
spatial lag dependence. The proposed tests are illustrated using the productivity puzzle empirical example
by Munnell (1990). In addition, Monte Carlo experiments show that the small sample performance of these
DLR tests have similar performance to their corresponding LM counterparts. Furthermore, it would be nice

if the normality assumption of the disturbances can be relaxed, though this is beyond the scope of this paper.
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Table 1: Empirical Test Results

Statistic  p-value

Hy:A=p=0

LMy, | 243.405 0.000

DLRy, | 191.157 0.000

HY : p =0 (allowing an unrestricted estimate of \)
LM, 5.960 0.015

DLR,\ 6.133 0.013

H§ : A =0 (allowing an unrestricted estimate of p)
LMy, | 34326  0.000

DLRy, 34.495 0.000

Figure 1: Test for Hf : A=p =0

(a) LM Test (b) DLR Test

13



Table 2: Simulation Results

p___ A LM, DLR,, LM,, DLR,, LM,, DLR,,

-0.8 -0.8 | 1.000 1.000 1.000 1.000 1.000 1.000
-0.5 | 1.000 1.000 1.000 1.000  0.953 0.961

-0.2 | 1.000 1.000 1.000 1.000  0.338 0.369

0| 1.000 1.000 1.000 1.000  0.038 0.039

0.2 | 1.000 1.000 1.000 1.000  0.406 0.378

0.5 | 1.000 1.000 1.000 1.000  0.994 0.994

0.8 | 1.000 1.000 1.000 1.000 1.000 1.000

-0.5 -0.8 | 1.000 1.000  1.000 1.000  1.000 1.000
-0.5 | 1.000 1.000  1.000 1.000  0.953 0.960

-0.2 | 1.000 1.000  1.000 1.000  0.319 0.354

0| 1.000 1.000  1.000 1.000  0.045 0.046

0.2 | 1.000 1.000  1.000 1.000  0.432 0.405

0.5 | 0.999 0.999  1.000 1.000  0.994 0.994

0.8 | 1.000 1.000  0.999 0.999  1.000 1.000

-0.2  -0.8 | 1.000 1.000  0.881 0.888 1.000 1.000
-0.5 | 1.000 1.000  0.839 0.852  0.964 0.971

-0.2 | 0.994 0.999  0.803 0.808  0.288 0.327

0| 0.797 0.825  0.724 0.726  0.056 0.060

0.2 | 0.586 0.584  0.689 0.692  0.427 0.407

0.5 | 0.988 0.985  0.574 0.575  0.989 0.988

0.8 | 1.000 1.000  0.520 0.522 1.000 1.000

0 -0.8| 1.000 1.000  0.060 0.060  1.000 1.000
-0.5 | 0.993 0.995  0.049 0.049 0971 0.975
-0.2 | 0.362 0.418  0.049 0.049  0.344 0.382

0| 0.058 0.055  0.048 0.049  0.063 0.064
0.2 | 0.569 0.523  0.049 0.049  0.435 0.408
0.5 | 0.999 0.999  0.070 0.072  0.992 0.989
0.8 | 1.000 1.000  0.049 0.047  1.000 1.000

0.2 -0.8| 1.000 1.000  0.922 0.920 1.000 1.000
-0.5 | 0.934 0.946  0.869 0.869  0.969 0.978

-0.2 | 0.754 0.754  0.808 0.813  0.362 0.388

0| 0.909 0.898  0.741 0.747  0.047 0.048

0.2 | 0.996 0.996  0.672 0.678  0.406 0.376

0.5 | 1.000 1.000  0.568 0.567  0.991 0.990

0.8 | 1.000 1.000  0.575 0.570 1.000 1.000

0.5 -0.8 | 1.000 1.000 1.000 1.000 1.000 1.000
-0.5 | 1.000 1.000 1.000 1.000  0.976 0.979

-0.2 | 1.000 1.000 1.000 1.000  0.351 0.377

0| 1.000 1.000 1.000 1.000  0.046 0.041

0.2 | 1.000 1.000 1.000 1.000  0.417 0.396

0.5 | 1.000 1.000  0.997 0.998  0.989 0.988

0.8 | 1.000 1.000 1.000 1.000 1.000 1.000

0.8 -0.8 | 1.000 1.000  0.999 0.997 1.000 1.000
-0.5 | 1.000 1.000 1.000 1.000  0.989 0.990

-0.2 | 1.000 1.000 1.000 1.000  0.379 0.396

0| 1.000 1.000 1.000 1.000  0.040 0.042

0.2 | 1.000 1.000 1.000 1.000  0.454 0.434

0.5 | 1.000 1.000 1.000 1.000  0.993 0.992

0.8 | 1.000 1.000 1.000 1.000 1.000 1.000

Notes: 1,000 replications 14



Table 3: Compuation Time of Simulation Results

p__ A LM, DLR,, LM,, DLR,, LM,, DLR,,
08 08 15460  41.94 542.95  539.57 673.19  675.59
-0.5 | 14848  30.53 54475 54249 674.80  675.94
0.2 | 148.80 3047 544.40 54210 67416  678.12

0| 14825  30.30 544.70  541.72 673.82  675.95

0.2 | 14826  30.59 54535  543.84 674.69  676.14

0.5 | 147.86  30.64 544.80  542.94 676.17  676.93

0.8 | 148.26  30.64 544.74 54279 674.67  677.79
05 0.8 | 14847  30.68 54633  542.01 675.76  679.71
-0.5 | 148.74 3084 547.64 54432 673.79  676.17
0.2 | 14817 30.51 544.94 54181 673.86  G677.78

0| 14808  30.44 544.64  542.35 674.36  676.28

0.2 | 14840  30.57 54645 541.84 673.88  676.43

0.5 | 196.23  30.67 54519  541.97 684.14  687.69

0.8 | 150.58  31.00 552.47  550.78 679.82  687.33
02 08 | 14887 3125 54863 54434 67787  693.14
0.5 | 149.06  30.53 546.89 54552 67574  678.69
0.2 | 14859 30.77 546.10  543.35 677.67  678.02

0| 14848  30.53 54645  543.23 675.36  678.24

0.2 | 148.53  31.41 546.88  561.44 674.94  677.40

0.5 | 14951  30.52 545.38  542.27 674.32  676.56

0.8 | 14840  30.65 545.27  566.47 74456  677.72

0 -0.8 | 148.16  30.32 545.14  542.01 67410  676.78
-0.5 | 14828  30.53 546.05  541.98 67427  676.84
-0.2 | 148.44  30.34 54513 54247 67545  676.98

0| 14817  30.31 545.08  541.71 673.98  677.48

02| 14816 3029 54486  541.79 674.01  676.61

0.5 | 14819  30.52 54613  542.79 674.62  676.86

08 | 14841 3033 54512  542.29 67492  676.40

02 -08 | 14861  30.69 54520 54212 67449  677.77
0.5 | 157.19  43.37 55558  547.00 682.05  684.23
0.2 | 15021 31.62 55250  560.22 698.88  731.89
027549  30.71 545.99  541.87 682.82  687.41

02| 150.31 3219 56330  553.04 685.14  680.04

0.5 | 14947 3119 55456  571.71 73819  715.10

0.8 | 14828  30.83 542.95  543.64 675.61  677.32

05 -0.8 | 147.90  31.00 543.07  543.73 676.69  679.20
-0.5 | 148.28  30.84 554.07 55543 686.90  678.99
-0.2 | 147.67 3096 54235  541.09 673.85  675.77

0| 147.46  30.66 541.37  541.43 67533  676.45

0.2 | 14801  30.93 54252  542.56 675.55  677.72

0.5 | 14801  30.85 54245 54284 675.54  676.97

0.8 | 147.95  30.98 54245  543.11 675.06  676.42

0.8 -08 | 14782 3089 54215  542.72 67920  693.55
0.5 | 151.58  31.00 542.62 54297 67573  G677.56
0.2 | 14822 3090 547.90  550.36 68530  678.20

0| 14776 31.06 544.35  544.20 677.93  676.78

0.2 | 148.03  30.94 54332  543.01 675.34  677.74

0.5 | 14801  31.01 542.88 54276 67522  677.35

0.8 | 14816  30.87 544.19  544.46 676.66  678.98

Notes: The simulation is performed using a 2.83GHz prboessor desktop computer with 2GB of RAM and running

Windows 7 Enterprise, Service Pack 1. 1,000 replications. Unit in seconds.
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Figure 2: Test for Ht : p = 0 (allowing an unrestricted estimate of \)
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Figure 3: Test for H§ : A = 0 (allowing an unrestricted estimate of p)
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