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Abstract

This paper extends Pesaran's (2006) work on common correlated effects (CCE) estimators for
large heterogeneous panels with a general multifactor error structure by allowing for unknown
common structural breaks. Structural breaks due to new policy implementation or major
technological shocks, are more likely to occur over a longer time span. Consequently, ignoring
structural breaks may lead to inconsistent estimation and invalid inference. We propose a
general framework that includes heterogeneous panel data models and structural break models as
special cases. The least squares method proposed by Bai (1997a, 2010) is applied to estimate the
common change points, and the consistency of the estimated change points is established. We find
that the CCE estimator has the same asymptotic distribution as if the true change points were

known. Additionally, Monte Carlo simulations are used to verify the main results of this paper.
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1 Introduction

For panel data models, the presence of cross-sectional dependence due to unobservable com-
mon factors or spatial spillover effect is a major concern in estimation and inference. It could
lead to invalid inference and inconsistent estimators, see Lee (2002) and Andrews (2005).!
Several tests for cross-sectional dependence in panel data models have been proposed in the
literature. These include Pesaran (2004, 2012), Ng (2006), Pesaran, Ullah and Yamagata
(2008), Sarafidis, Yamagata and Robertson (2009), Chen, Gao and Li (2011), Hsiao, Pe-
saran and Pick (2012), Baltagi, Feng and Kao (2011, 2012), Halunga, Orme and Yamagata
(2011), Juhl (2011), and Su and Zhang (2011), to mention a few. To deal with cross-sectional
dependence in panels, two general estimation methods have been proposed including spa-
tial estimation methods (Anselin, 1988; Kelejian and Prucha, 1999; Kapoor, Kelejian and
Prucha, 2007; Lee, 2007 and Lee and Yu, 2010, to name a few), and factor models (see
Pesaran, 2006; and Bai, 2009, to name a few).

In particular, Pesaran (2006) develops common correlated effects (CCE) estimators for
large heterogeneous panels with a general multifactor error structure by least squares using
augmented data. The common correlated effects (factors) can be aysmptotically partialled
out by means of the cross-sectional average of the dependent variable and the individual-
specific regressors when the cross-section dimension is large. Kapetanios, Pesaran and Ya-
magata (2011) show that the CCE estimator can be extended to the case of nonstationary
unobserved common factors. Additionally, the CCE approach is also shown to be applicable
to situations of spatial and other forms of weak cross-sectional dependent errors (Pesaran
and Tosetti, 2011; Chudik, Pesaran and Tosetti, 2011), and heterogenous dynamic panel
data models with weakly exogenous regressors (Chudik and Pesaran, 2013).2

However, this literature assumes that the slope coefficients are constant over time. This
implicit assumption is common in the literature on panel data models with large time di-
mension, see for example, Kao (1999), Phillips and Moon (1999), Hahn and Kuersteiner
(2002), Alvarez and Arellano (2003), Phillips and Sul (2007), Pesaran and Yamagata (2008),

Hayakawa (2009), to name a few. Due to policy implementation or technological shocks,

'Baltagi and Pirotte (2010) show that tests of hypotheses based on standard panel data estimators that
ignore spatial dependence lead to misleading inference.

?In a panel with unobserved common factors, Banerjee and Carrion-i-Silvestre (2011) suggest a test for
panel cointegration based on a pooled CCE estimator of the coefficients.



structural breaks are possible especially for panels with a long time span. Consequently,
ignoring structural breaks may lead to inconsistent estimation and invalid inference.

This paper extends Pesaran’s (2006) heterogeneous panels by allowing for unknown com-
mon structural breaks in the slopes. This is useful for example when global technological or
financial shocks affect all markets or firms at the same time. Since the framework of hetero-
geneous panels is fairly general and includes popular panel data models as special cases, it
allows us to examine the issue of structural breaks in panel data models in a less restrictive
way.

By considering both cross-sectional dependence and structural breaks in a general panel
data model, this paper also contributes to the change point literature in several ways. First,
it extends Bai’s (1997a) time series regression model to heterogeneous panels, showing that
the consistency of estimated change points can be achieved with the information along the
cross-sectional dimension. This result confirms the findings of Bai (2010) and Kim (2011).
Second, it also enriches the analysis of common breaks of Bai (2010) and Kim (2011) in a
panel mean-shift model and a panel deterministic time trend model by extending them to
a regression model using panel data. This makes it possible to allow for structural breaks
and cross-sectional dependence in empirical work using panel regressions. In particular,
our methods can be applied to regression models using large stationary panel data, such as
country-level panels and state/provincial-level panels.?

Regarding estimating common breaks in panels, Feng, Kao and Lazarova (2009) and
Baltagi, Kao and Liu (2012) also show the consistency of the estimated change point in a
simple panel regression model. Hsu and Lin (2012) examine the consistency properties of
the change point estimators for nonstationary panels. More recently, Qian and Su (2014)
and Li, Qian and Su (2014) study the estimation and inference of common breaks in panel
data models with and without interactive fixed effects using Lasso-type methods. In terms of
detecting structural breaks in panels, some recent literature includes Horvath and Huskova
(2012) in a panel mean shift model with and without cross-sectional dependence, De Wachter
and Tzavalis (2012) in dynamic panels, and Pauwels, Chan and Mancini-Griffoli (2012) in
heterogeneous panels, to name a few.

The paper is organized as follows. Section 2 introduces heterogeneous panels with a

3Some empirical examples include Fleisher, Li and Zhao (2010) using Chinese provincial-level panel data,
and Huang (2009) using country-level panels, to mention a few.



common structural break. Section 3 starts with a simple heterogeneous panel model that
ignores the unobservable common correlated effects. This model can be regarded as a direct
extension of Bai’s (1997a) time series regression model to a panel setup. The least squares
estimation proposed by Bai (1997a) is applied. With the main results established in Section
3, the discussion of the general model with common correlated effects is presented in Section
4. Section 5 briefly discusses the case of multiple common breaks. In Section 6, Monte Carlo
simulations are used to verify the consistency of the estimated common change point for
both models considered. Section 7 provides concluding remarks. The mathematical proofs

are relegated to the Appendix.

2 Heterogeneous Panels with a Common Structural
Break

In a heterogeneous panel data model:
yir = 0,0, + e, i=1,... . N;t=1.T, (1)

T is a p x 1 vector of explanatory variables, and the errors are cross-sectionally correlated,

modelled by a multifactor structure
eit = Vift + €a, (2)

where f; is an m x 1 vector of unobserved factors and 7, is the corresponding loading
vector. &; is the idiosyncratic error independent of x;. However, x; could be affected by

the unobservable common effects f;. Projecting x;; on f;, we obtain
wit:F;’ft—i_vit; Z:1,,N, tzl,...,T, (3)

where I'; is an m x p factor loading matrix. v; is a p X 1 vector of disturbances. Due to
the correlation between x;; and e;;, OLS for each individual regression could be inconsistent.
Thus, Pesaran (2006) develops the CCE estimator of 3, by least squares using augmented

data.?

4For simplicity, observed common effects like seasonal dummies are not included in (1), but they can be
easily handled as in Pesaran (2006).



In this paper, we allow for structural breaks to occur in some or all components of the
slopes 3;.> Following Bai (2010) and Kim (2011), a structural break at a common unknown
date kg is assumed. This could be due to a macro policy implementation or a technological

shock that affects all markets or firms at the same time. More formally,
vie = 15,8, (ko) + ey, i=1,...,N;t=1,...,T, (4)

where some or all components of 3,(kq) are different before and after the date ko.® Following
Bai (1997a), this structural break model can be written as
_ x;‘tﬁi_‘_eit? = 17"'>k07

Yit = { x;tﬁi—l—zl’-t&ﬂreit, t:k0+1,...,T, (5)
i=1,...,N, where z;; = R'x;; denotes a ¢ x 1 subvector of x;; with R = (Ogx(p—q); ). Iq is
the ¢ x ¢ identity matrix with ¢ < p. The case where ¢ < p denotes a partial change model,
while the case where ¢ = p is for a pure change model. Pauwels, Chan and Mancini-Griffoli
(2012) propose a testing procedure for kq in this setting.

Substituting z; = R'zy in (5), we obtain

_ . _ 511':51'7 tzla“'ak[h
Bilko) = B+ Rbi - 14t > o} = { Boi = B+ Ro;, t=ko+1,..,T,

so that (8, — 1, = Rd;, and 6; denotes the slope jump for i. When 6, = 0 there is no
structural break in the slope.

The case of multiple break points will be discussed in Section 5. In the next two sections,
we consider the simple case of one common break as in model (5). Compared with the
heterogeneous panel data model considered in Pesaran (2006), (5) has the extra component
Ré; - 1{t > ko} in the slope, involving the unknown structural change point ko. Thus,

ignoring the structural break in the slopes may invalidate the CCE estimator proposed by

"Pesaran (2004) discusses testing for cross-sectional dependence in a heterogeneous panel model with
structural breaks. Kapetanios, Pesaran and Yamagata (2011) examine the performance of the CCE estimator
in case of a structural break in the mean of the unobserved factors using Monte Carlo experiments.

6 As shown in Section 4, to apply the CCE approach, the common break assumption is required. In Kim
(2014), the common break assumption is generalized to handle heterogeneous responses to a common shock
that follow a common distribution. Liao and Wang (2012) also assume a common distribution, instead of a
common break date, and estimate individual-specific structural breaks and their cross-sectional distribution
using Bayesian methods. In addition, Li, Chen and Gao (2011) consider a time-varying coefficient panel
data model where the slope coeflicient is allowed to be different for each time period, e.g., 5(t), but common
for all individuals.



Pesaran (2006).” Compared with the simple mean shift panel data model in Bai (2010), our
model is enriched by adding a regression structure with x;; # 1 in general, as well as cross-
sectional dependence characterized by a multifactor structure in the errors. When there are
no unobservable common factors f;, our model (4) can also be regarded as an extension of
Bai (1997a) to a panel data setting. In addition, the model (4) above is similar to Kim
(2011), who considered the case of a deterministic time trend with a common break.

Before proceeding to the general model (5), we start with a simple case of heterogeneous
panels in the absence of common correlated effects f; in Section 3, and then extend the main
results to the general case in Section 4.

To estimate the common change point ky, we need the following additional assumptions:
Assumption 1 ky = [10T], where 7o € (0,1) and [-] is the greatest integer function.

Note that unlike the time series model considered by Bai (1997a), the restriction of
7o € (0,1) is unnecessary in a panel mean shift setup considered by Bai (2010) as long
as T/N — 0 . However, this assumption is required in our heterogeneous panels with
general regressors. Enough observations are needed to consistently estimate the slopes in
each regime.

Define ¢ = Zf\il §.0;. For series i, 0;0; measures the magnitude of the structural break,

thus ¢, is an indicator of the break magnitude for all /V series sharing a common break.

Assumption 2 ¢, — oo and (i) %" is bounded as N — oo; (i) ngN% — 00 and qu\/% N

o0 as (N, T) — oc.

d; could be random with a finite variance across ¢, with Assumption 2(i) describing this

case. When §; is considered as random, Assumption 2 means that (%N is stochastically

bounded in part (i), and that -2~ and VN_ converge in probability to 0 in part (ii). Alter-
oNT onVT

natively, d; could denote fixed parameters. Since Assumption 2(i) allows for the case where

‘Z’WN — 0 as N — oo, Assumption 2(ii) implies that it cannot converge to 0 too fast. Conse-

quently, Assumption 2(i) imposes an upper bound on (%N, while Assumption 2(ii) imposes a
lower bound on %

"As documented in the time series literature, e.g., Pesaran and Timmermann (2002), structural breaks
could lead to forecast failure. Stock and Watson (2002, 2009) show that forecasts constructed using dynamic
factor models are robust to small structural breaks of factor loadings. However, when the size of the break
is big, ignoring structural breaks may yield biased and inconsistent forecasts, as illustrated by Banerjee,
Marcellino and Masten (2008), Breitung and Eickmeier (2011), and Chen, Dolado and Gonzalo (2014).



In case T grows at a comparable rate or faster than N, i.e., T = O(NY) with ¢ > 1,
Assumption 2(ii) implies that ¢, can diverge at any rate. When ¢, increases at a rate less

than N, Assumption 2(ii) allows for the possibility of no structural break in some series.®

3 Model 1: No Common Correlated Effects

In this section, we assume that there are no unobserved common effects f; in the errors and
regressors. Or the loading vectors v, and I'; are equal to zero. Fori =1,..., N,
xl, B, + €, t=1,... ko,

Yir = { o B + 20 +eu, t=ko+1,...,T. (6)
This is the special case of cross-sectionally independent errors, where a common break kg
occurs in the heterogeneous slopes. This model generalizes Bai (1997a), Bai (2010) and
Pesaran and Smith (1995). When N = 1, (6) is the time series model considered in Bai
(1997a). When x;; = 1, this model reduces to the one in Bai (2010). In case the lagged

dependent variable is included in z; and §; = 0, (6) turns out to be the setup in Pesaran
and Smith (1995).°

Assumption 3 (i) The disturbances €;,1 = 1,..., N, are cross-sectionally independent; (ii)
For each series i , € is independent of xy for all i and t; (iii) € is a stationary process with

absolute summable autocovariances,

€it = Zzoio @i1Ci—y

where {C;;,t = 1,...,T} are independent and identically distributed (IID) random variables
with finite fourth-order cumulants. Assume 0 < Var(ey) = Y opas = o7 < co. Also, for

the T' x 1 vector €; = (i1, €i2, -+ ,&ir), Var(e;) = Xes.

When ¢;; is serially uncorrelated, lagged dependent variables are predetermined and can

be included as regressors in (6).

Assumption 4 For i = 1,..,N, the matrices (1/j) Y 1_, wutly, (1/7) ZtT:T_jH TitTly,

(1/5) Zfiko_ i1 Ty and (1/7) fo,gg +1 Tty are stochastically bounded and have minimum

8 Assumption ¢, — oo rules out the case where there is no structural break in the slopes in all series.
9Heterogeneous dynamic panel data models with weakly exogenous regressors and unobserved common
factors are studied by Chudik and Pesaran (2013).



eigenvalues bounded away from zero in probability for all large j. In addition, for each i,
(1/7T) 23:1 xixh, converges in probability to a monrandom and positive definite matriz as

T — oo.

This assumption is borrowed from Assumptions A3 and A4 in Bai (1997a).!° Tts coun-

terpart across the cross-sectional dimension is also needed.

. . . . . 1 N ko /
Assumption 5 For any positive finite integer s, the matrices « Y i_y D 2 2p _op1 TitTy and

% Zf\il Zfi;gj 1 TaTy, @ = 1,..., N, are stochastically bounded, with minimum eigenvalues
bounded away from zero in probability for large N. In addition, for eacht, (1/N) Zf\il Tyl

18 stochastically bounded as N — oc.
Assumption 6 {0;,i =1,..., N} are drawn independently of {xy,i =1,...,N}.

Let b; = (8,,0),i = 1,..., N, denote the slope parameters. In the random coefficient

(2

model considered by Pesaran and Smith (1995) and Pesaran (2006), we assume:

Assumption 7 Fori=1,...,N,

bz‘ = b + U[m,?][m ~ ]]D(O, Eb)7 (7)
where b= (3',0"), vp,; = UBi ) and T = X 0 fori=1,2,.., N, where ||b|| < oo,
’ Vs 0 25

|1Zs]| < 00, and the random deviations vy,; are independent of x;; and €;; for all i,j and t.

For any matrix or vector A, the norm of A is defined as ||A|| = y/tr(AA’). This as-
sumption is a simplified version of Assumption 4 of Pesaran (2006). Under Assumption
6, {0;,¢ = 1,..., N} are not necessarily random. When {é;,7 = 1,..., N} are considered as
random, as part of Assumption 7, Assumption 6 becomes redundant. Under Assumption 7,
Y5 # 0 implies a structural break in the slope.

By (4),

Vie = T B; + 1 ROt > ko} + €4,

if the structural break is ignored, the term x},RJ;1{t > ko} is absorbed in the error term
g = 2, R0;1{t > ko} + ;. This leads to inconsistency of OLS for each series due to

endogeneity. Thus, estimating kg first is essential.

10As pointed out by Bai (1997a), Bai and Perron (1998, 2003) trending regressors are allowed in the form
of (t/T)!, for (I > 0), or any function of the time trend: g(t/T).



Let Y; = (ya, - vir), Xi = (za, - ,zr) and & = (gi1,€2,- - , &) denote the
stacked data and errors for individual 7 = 1, ..., N over the time periods observed. Similarly,

define Zo; = (0, ,0, 2iko41,"*+ , zir) - (6) can be written in matrix form as

The parameters of interest are [3;, §; and the change point ky. We first estimate kg using least
squares as proposed by Bai (1997a, 2010). For any possible change point k = 1,...,7 — 1, de-
fine the matrices Xo; (k) = (0, ,0, Zips1, - > Tir), and Zog(k) = (0, -+, 0, 2 hs1, -+ » 2i1) -
When k happens to be the true change point ko, Zs;(ko) = Zy;. Define Xo; = Xo;(ko),
thus Zy;, = Xo;R. To make the notation more compact, we let X;(k) = (X;, Zo(k)) and
Xoi = (Xi, Zo;). Thus, (8) becomes

Y = Xif; + Zoidi +e; = Xoibs +65, i=1,...,N. 9)
Given any k = 1,...,T — 1, one can estimate b; by least squares,
bi(k) = (?"(":)) = [X; (k)X (k)] ' X(k)'Y;, i =1, ..., N. (10)
The corresponding sum of squared residuals is given by

SSR; (k) = [Yi— Xl(/f)@(k)}’[ﬁi — Xl(kﬂsl(k)]
= [Yi = XiBi(k) — Zai(k)3s(k)[Y; — XiB;(k) — Zai(k)di(K)),

i =1,..,N. Note that both b;(k) and SSR; (k) depend on k. For each series 4, ko can be
estimated by arg minj<g<r—1 SSR;(k) as in Bai (1997a). Given that the structural break
occurs at a common date for all cross-sectional units in the panel setup, the least squares

estimator of kg is defined as

N
k = arg 1<Ikn<1%}1_1;7riSSRi(k). (11)

Weights {m; € (0,1),i=1,..., N, 21]11 m; = 1} allow for the possibility of different magni-
tudes, e.g., different variances, across series.
When N = 1, k defined in (11) boils down to the change-point estimator considered by Bai

(1997a) in a time series setting, with k—ko = O, (1) for large T In time series models, only the



break fraction 7o = ko /T, instead of kg itself, can be consistently estimated. In a multivariate
time series set up, Bai, Lumsdaine and Stock (1998) show that the width of the confidence
interval of the estimated change point decreases with the number of time series.!! This result
implies that cross-sectional observations with common breaks improve the accuracy of the
estimated change point. In fact, Bai (2010) shows that the least squares estimator of the
change point is consistent in a panel mean-shift model, i.e., ko — ko = 0p(1). A similar result is
also obtained by Kim (2011) in a panel deterministic time trend model. In our heterogeneous
panel regression model, (11) combines the information from each series by summing up
SSR;(k). With a large N, k uses more information provided by the multiple time series
sharing a common break. Consequently, the panel data estimator k is more accurate than

the time-series estimator and achieves consistency, i.e., k — ko = 0 as (N, T) — oc.
Theorem 1 Under Assumptions 1-6 (or 7), imyr)—eo P(l% =ko) = 1.

The proof of Theorem 1 can be found in the Appendix.

Given the estimated change point l;', the corresponding estimator of the slopes is b =
Z;l(l%), i1=1,....,N. When b;, i = 1, ..., N, are considered as random variables under Assump-
tion 7, the cross-sectional mean b can be consistently estimated by the mean group estimator

proposed by Pesaran and Smith (1995) and Pesaran (2006):'2

N
A 1 A 1 AV 7.\1—1 Y
bMG - N g bi - N . [Xl(k’)le(k)h XZ(k) Y; (12)

4 Model 2: Common Correlated Effects

In this section, we extend Model 1 to the general model with common correlated effects (5):
fori=1,...,N,

'rgtﬁi_{_eitv t= 1,...,]{30,

T o=
Yit xltﬁz(ko) + €it { m;tﬁl + thdz + €it, t = kO + 1, ceey T

where e; = 7. f; + ;. The regressors x;, i = 1, ..., N, are allowed to be correlated with the

unobservable factors f; modelled in (3), z; = I', f; + v;;. When §; = 0, the model reduces to

" Change-point estimators in the multivariate time series literature are discussed in Bai (2000) and Qu
and Perron (2006).

12Note that the pooled estimator of b considered by Pesaran (2006) can be studied similarly. Since the
asymptotic distributions of b; and bys¢ are similar to those derived in Bai (1997a) and Pesaran (2006), they
are summarized in the Supplementary Appendix.



the one considered by Pesaran (2006). Kim (2011) considers the special case of z;; = (1,¢)".1?
In this heterogeneous panel data model with a common break kg, the parameters of interest
are b; = (f,,0;), 1 = 1,...,N, and the change point k. The following assumptions are

needed.

Assumption 8 Common factors f;, t = 1,....,T, are covariance sationary with absolute

summable autocovariances, independent of errors €, and v;s for all i, s,t.

Assumption 9 Errors ¢;s and vj; are independent for all i,j,s,t. vy, © = 1,..., N, are lin-
ear stationary processes with absolute summable autocovariances, vy = Z;’io Sivi -1, where
(Cip vy ) are (p+ 1) x 1 wectors of IID random variables with variance-covariance matrix

I,11 and finite fourth-order cumulants, and
VCLT(UZ't> = Z?ZO Sz'l z{l = Ei,v; and 0 < ||21,U” < 0.

Assumption 10 Factor loadings v; and I'; are IID across i, and independent of €, v and
fi for all i,j,t. Assume v; = v+ mn;, n; ~ 11D(0,,) and I'; =T +&;, & ~ 11D(0,Q),

i =1,...N, where the means vy, I' are non-zero and fized and the variances ), ¢ are finite.

Together with Assumptions 3 and 7, Assumptions 8, 9 and 10 given above are the same
as Assumptions 1-3 of Pesaran (2006), with the additional restrictions 7y # 0 and I" # 0.

The correlation between x;; and e; due to unobserved common factors f; renders OLS
inconsistent. If f; were observable, it could be treated as a regressor, and this correlation can
be removed using a partitioned regression. Let F' = (f1, fa, -+, fr)’, then the corresponding
orthogonal projection matrix is given by My = Iy — F(F'F)~'F’. In this case, (5) can be

written in matrix form as
Y = XiB; + Zoid; + Fy; + &, i1=1,...N (13)
Premultiplying (13) by My, we get
Y, = XiB; + Zoibi + 2,0 =1,.., N, (14)

which is of the same form as equation (8) considered in Section 3, with transformed data

Y, = MYy, Xi = My X; = M;V;, Zoi(ko) = My Zo; and &; = Mye;. For each i = 1,..., N, the

13In a similar panel set up without exogenous regressors, Bai and Carrion-i-Silvestre (2009) develop unit
root tests applicable to situations of multiple structural breaks and unobserved common dynamic factors.



T x p vector V; denotes (v;1,...,v;7)’. Conditional on F, (X’Z, Zm) and &; are uncorrelated
under Assumption 9.

However, f;, t = 1,...,T, are unobservable. To proceed, we follow Pesaran’s (2006) idea
of using the cross-sectional averages of y;; and z;; as proxies for f;. Combining (5) and (3)
yields
we = (4) =Gk S +atho) (19

(p+1)x1 (p+1)xmmx1  (p+1)x1

) and u; (ko) = (5“ vl i(kO))

(%7

where

att) =0 (o

mX(p+1) p

Note that like 53,(ko), the slope C;(ko) in (15) also shifts at ko.

Ci= (v + By, Ti), t=1,.. ko,

Cilko) = { Coi = (7; + TiByy, 1), t=ko+1,..,T. (16)

Common break k splits the data generating process for all individuals into two regimes,
and each regime has the same structure as that considered in Pesaran (2006). Consequently,
unobserved common factors f; can be partialled out by using cross-sectional averages in the
same spirit.

Let w, = le\il f;w;; be the cross-sectional averages of w;; using weights 6;, i = 1,..., N.
In particular,

w; = Cko) fi + g (ko) (17)

~ Cr =N, 0:Ch, t=1,...k
h Clky) = N QZOZ ko) = _1 =1 "V1~1y 5 eeey RO,y
where C'(ko) Zz:l (ko) { C, = Zfil 0;Cs, t=ko+1,..T.

The common break assumption is needed, otherwise C(ko) is not well defined. (ko) is

defined as

N ( €+ Zf\il 0:viiB1i ) t=1,.., ko
7 - , s oees Ko,
+(ko) Z:Zl +(ko) < 5t+2£\i1 00, B; ) , t=ko+1,...,T.

Uy

(18)

As in Pesaran (2006), the weights 60;, i = 1, ..., N, satisfy conditions: 0; = O(%), Zf\il 0, =1
and Y 16;] < oo.

Assumption 11 Rank(Cy) = Rank(Cy) =m < p+ 1.



We assume that rank condition is satisfied. Pesaran (2006) shows that in the case of
deficient rank, it is impossible to obtain consistent estimators of the individual slope coeffi-
cients, but their cross-sectional mean can be consistently estimated. When C/(ky) is of full

rank, f; can be written as
fi = [O(ko)C (k)] ™ O ko) (1 — (ko).

From (16), the matrix C'(ko)C (ko) has two regimes, shifting at kq,

Y CiCy, t=1,..k
I ~“1%1; 5y eeey VO,
C(k0)0<k’0) - { CéCZ, t = ko + 1, ...,T.
Assumption 11 implies that C(ko)C(ko)' is invertible. As shown in Lemma 1 of Pesaran
(2006), the cross-sectional average of the errors vanish in both regimes as N — oo, where

= N — N c 11
Et = iy bicu, Uy =, Oivyy, yielding

1

fi = [Clko)C(ko)] " Clko)w, = 0. (19)

This suggests that it is asymptotically valid to use w; as observable proxies for f;. Let

W = (0y, Wy, - -+ ,wr)" denote the T x (p+ 1) matrix of cross-sectional averages. Denote the

T x T matrix M, by M, = Iz — W(W'W)~'W’. Thus, similar to the result M;F = 0, by

(19) it is expected that the terms involving M, F' are ignorable asymptotically as N — oo.
Premultiplying (13) by M,, instead of My, we obtain

wafi = Mszﬁz -+ MwZOi(FZ- + MwF’}/Z + Mwé‘z',i = 1, ceey N. (20)

Let the T X p matrix X,- = M,X; = (1, ,iiT)' denote the transformed regressors.

Similarly, define Y; = M,,Y;, Zo; = M., Zo; and &; = M,e;. Thus, (20) becomes
Vi = XiB; + Zuibi + MyFy; + & = XiB8; + Zpid; + g.i=1,.,N, (21)

where &) = M, Fry, + &,.

Lemma 6 in the Appendix shows that each element of M, F-y, is of order Op(\/iﬁ) and
vanishes as (N, T) — oo, implying that ¥ can be treated as &; asymptotically. Based on this
intuition, we can follow the procedure proposed in Section 3 to estimate ko and b; = (3}, 0;)’,

using transformed data {Y;, X;,i = 1,..., N}.



For any possible change point k = 1,..,7 — 1, define matrices Zy;(k) = M, Za:i(k),
X;(k) = (X, Zy(k)) and Xo; = (X;, Zo;). With new notation, (21) becomes

Y, = Xoib +8%, i =1,...,N. (22)
Given k, slope b; can be estimated by least squares,
0 = (299) = BRI W =100 (23
The resulting sum of squared residuals is

SSRi(k) = [Vi — Xi(k)bi(k)]'[V; — Xi(k)bi(K)]
= Vi = XiBi(k) = Zaa(R)S:(R)[V; — XiBu(k) — Zas(R)3s(R)), i = 1,..., N,

and the estimator of ky is defined similarly as

k =arg min szg‘ﬁz(k), (24)

1<k<T-1

where 7; are weights, as in (11).

Assumption 12 Fori =1,...,N, the matrices %X{MMX,- and %X{Min are nonsingular,

and their inverses have finite second-order moments.

This assumption of identifying b; and b is adopted from Pesaran (2006).
Let %, be the t'" element of matrix X;,i=1,..,N. To identify ko, we need a modified

version of Assumptions 4, 5, 6:

Assumption 13 For i = 1,...N, the matrices (1/5) Y 1_, #uiy, (1/7) ZtT:T_jH Tully,
(1/9) fiko_ i1 Tadyy and (1/7) fi:g 1 Zady, are stochastically bounded and have minimum
eigenvalues bounded away from zero in probability for all large j. In addition, for each i,
(1/T) ., &, converges in probability to a nonrandom and positive definite matriz as

T — oo.

ko

Assumption 14 For any positive finite integer s, the matrices % Zf;l Zt:ko_s 1

Tyl and
% Zfil nggj 1 Tily, © = 1,..., N, are stochastically bounded, with minimum eigenvalues
bounded away from zero in probability for large N. In addition, for eacht, (1/N) Zf\il Tyl

18 stochastically bounded as N — oo.



Assumption 15 {§;,i =1, ..., N} are drawn independently of the process of {Zy,i = 1,...,N}.

Alternatively, under a random coefficient model, we have a slightly different version of

Assumption 7.
Assumption 16 Fori=1,....N,
bi =b + Ub,is Vb ™~ I[D(O, Eb),

where b= (3',0"), vp; = Ui ) and ¥, = 2g 0 fori=1,2,...,N, where ||b]| < oo,
’ Vs, 0 X
|3s]| < 00, and the random deviations v,; are independent of vy;, I';, €51, and vy, for all i, j

and t.

Under Assumption 16, b; is independent of I';, implying that as N — oo, C} = Zf\;l 0,C; 2
E(Cy) = (y+T18,T) and Cy & E(Cy) = (v + (8 + RJ), T'). In this case, rank condition
Assumption 11 requires non-zero means for v and I' in Assumption 10 when N is large. Sim-
ilarly in Model 1, When {0;,7 = 1,..., N} are considered as random, as part of Assumption
16, Assumption 15 becomes redundant.

After the transformation (20), it can be shown that the change point estimator & is still

consistent in a linear model with a multifactor error structure (5), i.e., k — ko = 0,(1).
Theorem 2 Under Assumptions 1-3, 8-15 (or 16), im(y1)—co P(k = ko) = 1.

Theorem 2 can be proved similarly to Theorem 1, see the Appendix.
Given the change point estimator k, the CCE estimator of the slope coefficients can be

written as

Similar to Proposition 3, with the consistency of k, the asymptotics of b; can be established.
Proposition 1 Under Assumptions 1-3, 8-15, and T /N — 0 as (N,T) — oo, for each 1,
5 d _ _
V(B = b) 5 N (0,5715.,53)

where

1, & 1~ ~
in = plzmT_,wTngXOZ and ZXE,@' = plimT—onXBiZa,iXOi; 1= ]_, ceey N.



An additional condition vT/N — 0 as (N,T) — oo is required here, due to the fact
that M, F; is included in &) = M,F~v, + &, the error term of transformed model (21)
using cross-sectional averages. This yields an extra term in /7T (BZ — b;) whose order is
0,(VT/N)+0,(1/v/N) which is asymptotically ignorable when v/T /N — 0 as (N, T) — co.
See the Supplementary Appendix.

As discussed above, Assumption 2 allows that T can grow faster than N, i.e., T' = O(NV)
with ¢ > 1. Here, the relative speed of N and T, vVT/N — 0 as (N,T) — oo imposes an
upper bound on 1, i.e., 1 < 2. Therefore, in the case of T = O(N¥) with 1 < v < 2, both
Assumption 2 and VT /N — 0 as (N,T) — oo required by Proposition 1 are satisfied.

As discussed by Pesaran (2006), a consistent Newey-West type estimator of Ygz,; can be

obtained using the transformed data,

. " w : N 1 @ L
Ygz; = Mo Z(l - —)(AU +AL), Nij == > Gl Xan(k)Xa(k),
j=1 w+1 T t=j+1
where w is the window size. &; is the ¢ element of & = Y; — X,(%)BZ and X”(%) is the t"

row of X;(k). Since ¥, can be consistently estimated by X, (k)X;(k). Thus, a consistent

1
T

1
estimator of Xz EXE ZEX is given by

{ L kYR, (12;)} s {%Xi(fg)'&(%)} o (25)

Since Bl(fc) has the same limiting distribution as l;i(ko), parameters b;, i = 1, ..., N, in model
(5) can be inferred as if ky were known.

The mean group estimator with a common break can be defined similarly:
1 — 1 —
b =—> b=— 171X, (k)'Y;. 26
Proposition 2 Under the assumptions 1-3, 8-14, 16,
VN(bue — b) % N (0,%).

As in Pesaran (2006), ¥, can be consistently estimated by

N ~
Z (b; — bare) (bs — burr)'-



For detailed proofs of Propositions 1 and 2, see the Supplementary Appendix. Unlike
Pesaran (2006), an additional step is needed, that of estimating kq. As shown in the proposi-
tions above, with the consistency of k, the convergence rate of k is not required for deriving

the asymptotic distributions of b, fori =1,.... N, and byc.

5 Multiple Common Break Points

When multiple common break points, k:(()l), e k(()B’“), occur in the slopes, there are By + 1

regimes for each individual:

o8, + e, t=1,.., k",

v B + 201 + ey,  t= /{7[()1) +1,.., 1{7(()2),

Yir = (27)

Tl + 20y + €, t= /f(()Bk) +1,....T,

fori=1,...,N.

Estimation of multiple break points has been discussed by Bai (1997b) and Chong (1995)
in a mean-shift model, Bai and Perron (1998) in linear regression models and Bai (2010) in a
panel mean-shift model. To deal with this issue in model (27), we can follow the sequential
or one at-a-time approach discussed by Bai (1997b, 2010). The number of common breaks,
By, is assumed known.'* The idea of the sequential approach is to estimate break points one
by one. For example, if B, = 3, the estimation of kél), k(()z) and k‘(()3) can be completed in 3
steps. In the first step, one break point is assumed as in Model 1 (or Model 2) above, and can
be estimated by (11) (or (24)), denoted by k@ (or kM), In the second step, in each of the
two sub-panels split by 0 (or &), the same procedure (11) (or (24)) is applied. Thus, two
single break estimators are obtained in these two sub-panels. k® (or k®) is defined as the
one associated with a larger reduction in the sum of squared residuals. Similarly, kM and k@
(or kD and 12(2)) yield 3 sub-panels. In the third step, in each of these 3 sub-panels, one break
point can be estimated as in Section 3 (or 4). Among these 3 break estimators, we choose
the one associated with the largest reduction of sum of squared residuals, denoted as k® (or

k®). As suggested by Bai (2010), it can be shown that after rearranging (A, k® k®)) (or

YTn a time series regression model, a sup Fr(I+1]1) test is proposed by Bai and Perron (1998) to determine
the number of structure breaks. Bai and Perron (2003) report the simulation results of this test and compare
it with other tests based on information criteria. A panel version of the sup Fr(l + 1|I) test can be applied
to determine the number of common breaks in our setup.



(kW k@ E®)) in temporal order, (k®, k@ k®) (or (W, k@ k®) in Model 2) is consistent
for (k(()l), k((f), kég)) as long as the assumptions listed in Section 3 (or 4) hold in each of the
sub-panels.

Once the consistent estimators of (/{:(()1), ey k‘(()B’“ )) are obtained, the parameters 3;, 01;, ..., 05, 4,

i=1,...,N, can be estimated by least squares as in (10) (or (23)). Thus, their mean-group

estimators can be obtained similarly.

6 Monte Carlo Simulations

This section employs Monte Carlo simulations to examine the consistency of the estimated
break points k and k summarized in Theorems 1 and 2. Since the CCE estimators in Model
2 have the same asymptotic distributions as if the true common breaks were known, their
asymptotic properties are not examined here. Two different designs are used for Models 1
and 2, respectively. In Model 1, there are no common correlated effects in the errors and
regressors, so least squares can be run for each individual series. While in Model 2, the
regressors and errors are correlated due to common correlated effects f;. A transformation,
using cross-sectional averages of the dependent variable and regressors proposed by Pesaran
(2006), is needed to remove such effects asymptotically.

In the following experiments, the focus is on the histograms of k and k in setups with

different combinations of (IV,T).

6.1 Model 1: No common correlated effects

The data generating process of Model 1 is modified from that in Pesaran (2004, p.24):

vie = o+ Bi(ko)yis—1 +e,i=1,..,N;t=1,..,T;

eit = Vift + €

Here we set 7, = 0, so there is no cross-sectional dependence in the errors. Instead, in this
dynamic heterogeneous panel model, there is a common break ky = 0.57 in the slopes 3,,

fori=1,...., N, ie.,

B Bli? t = ]_,...,]'Co,
Bi(ko) = { Bo; = By + i, t=ko+1,..,T,



where §; is the jump in the slope for each series. We assume (,; ~ iidU(0,0.8) and §; ~
11dU(0,0.2). We set o; = p;(1—5y;), p; = €0i+m; where eg; ~ iidN(0,1) and n; ~ itdN(1,2).
In addition, we assume y; o ~ 7dN(0,1) and &;; ~ itdN (0, 02), with o2 ~ x3/2.

In (11), for any possible change point £ = 1,...,7 — 1, the estimated change point k is
the one that minimizes the sum of N individual sum of squared residuals. 1000 replications
are performed to obtain the histogram of k for each setup.

Figure 1 reports the histograms of k for 7' = 20 and N = 1,10, 50, 200. It shows that the
distribution of & shrinks with N. The frequency of choosing the true value kg increases from
8% to 58% when N increases from 1 to 200. In case T' = 50, as Figure 2 shows, the frequency
of choosing the true value ky improves to almost 90% for N = 200. This finding supports
Theorem 1, confirming that multiple individual series provide additional information on kg,
and that k converges to kg as the number of series goes to infinity.

To consider the case where there is no structural break in slopes in some series, we set
§; = 0 in [N/4] series, implying that ¢, increases with N at a rate of O(N%/4). Figure 3
reports the histograms of k; for this case with 7' = 50. Similar to F igure 2, the pattern that
k converges to ko as IV increases remains. However, the frequency of choosing the true value
ko is significantly smaller than that in Figure 2. For example, for N = 50, the frequency of
choosing the true value kq drops from 44% in Figure 2 to 34% in Figure 3. This suggests
that for the accuracy of the estimated change point, allowing for no break in some series is

equivalent to reducing the number of series or the magnitude of break ¢ .

6.2 Model 2: Common correlated effects

The data generating process for Model 2 is as follows:
Yir = Q4 + 6i<k0)xi,t + eit,i = ]., ceey N,t = ]., ,T
et = Yift T Eit

where «; ~ iidN(1,1) and ~,; ~ iidN(1,0.2). The idiosyncratic errors are generated as

git ~ 1dN(0,0?) and 0? ~ 7idU(0.5,1.5). There is a common break in the individual slopes:

o /61,“ t: 1,...7k07 o
Bl(kO) - { /8% — 617; _'_6“ t = k() + 17...,T7 k[] = O5T,

where 3y, = 1 +n;,n; ~ iidN(0,0.04) and §; ~ iidN(0,0.04).



Unlike Model 1, the error e;; and the regressor x;; contain the common correlated effect

ft3
Tip = a; + Vou fr + Vit

where a; ~ #dN(0.5,0.5), vy; ~ itdN(0.5,0.5) and v ~ #idN(0,1 — p%), with p,; = 0.5.
The factor f; is generated by the stationary process:

ft = pfft—1+vft7t:_497"'707]-7"'7T;
pr = 05,05 ~idN(0,1 - p3), f50 = 0.

The correlation between x;; and e;; renders OLS inconsistent in the individual regressions.
Thus, transformation (20) using cross-sectional averages of y; and x; is needed to remove
f+ before conducting least squares estimation of k.

The setup above is a simplified version of the design in Pesaran (2006). First, as in model
(4), the observed factors are omitted for simplicity. Second, the number of regressors and
unobservable factors are reduced to 1, respectively. Third, the correlation structures in v;
and ¢; are removed. The only new feature of this model is that there is a common break at
ko, specified as 0.57".

The first row of Figure 4 presents the histograms of the estimated change point k for
T = 20. It replicates the pattern in Figure 1, showing that after the transformation, the
frequency of choosing the true value kj increases significantly with N. Figure 4 also reports,
in the second row, the histograms of the estimated change point k without conducting
transformation (20). It indicates that in the presence of common correlated effects, cross-
sectional information using multiple series fails to improve the accuracy of the estimated
change point.

Figures 5 and 6 report the histograms of k and k for T = 50 and 200, respectively.
The same pattern emerges, suggesting that the distribution of k shrinks to ko as N — oo.
Different from Figure 4, the frequency of l%, the estimator without conducting transformation
(20), choosing the true break date increases with N in Figure 6 when T is large, although
not at a rate as high as that of k using the transformed data. Whether |l% — ko| shrinks to
0 or not as (IV,T) — oo depends upon the correlation between z;; and e;. In Figure 7, we
increase this correlation by changing the distribution of ~,; from N(1,0.2) to N(2,0.2). In

this case, the cross-sectional information using multiple series fails to improve the accuracy



Figure 1: Histograms of k in Model 1: T=20
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Note: The DGP is similar to Pesaran (2004, p.24):

yit = (XL' + Bi(kO)Yi,t'—l + eit,i = 1, ...,N; t = 1, ...,T,

_ Bll" t = 1,...,k0,
where ﬂl(k[]) B {ﬁzi = :Bli + (Si,t = kO + 1, ,T

ko = 05T =10, ey =vife + &, vi =0 and a; = p;(1 — 1), 1 = €oi + 1
Values used: B;;~iidU(0,0.8), &§;~iidU(0,0.2), &;~iidN(0,0?), a7~x2/2,
£0i~iidN(0,1) and n;~iidN(1,2), y;o~iidN(0,1), fi~iidN(0,1).

These variables are mutually independent.

The replication number is 1000.
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Figure 2: Histograms of k in Model 1: T =50
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Figure 3: Histograms of k in Model 1 with No Break in Some Series: T =50
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Figure 4: Histograms of k and k in Model 2: T =20
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yit = (XL' + ﬁi(ko)xi,t + eit,i = 1, ...,N; t = 1, ,T al"’lldN(l, 1), BL(kO) = {

eir = Yirfe + € Xie = @+ Viofe + Vies fr = Ppfeoa + Vet = —49,..,0,1, .. T, vp~iidN(0,1 = pf), py = 0.5, f_s50 = 0. &,~iidN(0,07), of~iidU(0.5,1.5),
Yir~iidN(1,0.2), y;,~iidN(0.5,0.5), a;~iidN(0.5,0.5), v;~iidN (0,1 — pZ), py,; = 0.5. These variables are mutually independent. The replication number is 1000.
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Figure 5: Histograms of k and k in Model 2: T =50
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Note: The DGP is the same as in Figure 4. k, = 0.5T = 25.
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Figure 6: Histograms of k and k in Model 2: T =200
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Note: The DGP is the same as in Figure 4. k, = 0.5T = 100.
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Figure 7: Histograms of k and k in Model 2 (with increased the correlation between x;, and e;;): T =200
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Note: The DGP is the same as in Figure 4, except that the correlation between x;, and e;, increases by changing the distribution of y;; from iidN(1,0.2) to iidN(2,0.2).

ko = 0.5T = 100.
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of the estimated change point k. This is consistent with the findings of Kim (2011).1

7 Conclusion

The recent literature on panel data models with large time dimension assumes that the
slopes are constant over time. However, due to global policy or technological shocks, slope
parameters are likely to fall into different regimes over a longer time span. This paper
tackles both structural breaks and cross-sectional dependence by extending Pesaran’s (2006)
framework of heterogeneous panels to the situation of unknown common breaks in the slopes.
The least squares method proposed by Bai (1997a, 2010) is applied to estimate the common
change points. This method is married to the CCE estimators proposed by Pesaran (2006)
in this setup. Different from the time series change point models, in which the estimated
change point is inconsistent, our paper establishes its consistency in a general panel data
setup. The properties of the CCE estimators of the slopes at estimated points are also
examined. We find that the CCE estimators have the same asymptotic distributions as if
the true change points were known.!¢

In this paper, we assume that the rank condition is satisfied. In case of deficient rank,
Westerlund and Urbain (2013) show that the CCE estimators could be inconsistent when
factor loadings in the error term and in the explanatory variables are correlated. In this case,
the iterative principal component approach, proposed by Bai (2009) in homogeneous panels
and extended by Song (2012) to dynamic heterogeneous panels, can be an alternative, which
allows for correlated and zero-mean factor loadings. However, the issue of structural breaks

in this setup is beyond the scope of this paper.

15 Experiments with different values of parameters and distributions are conducted and similar histograms
are obtained. Results are not included here to save space.

16Since the convergence rate of the change point estimator is not required to derive the asymptotic distrib-
utions of the CCE estimators of slopes and their cross-sectional mean, we leave the derivations of convergence
rate and asymptotic distribution of the change point estimator in heterogeneous panels for future research.
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Appendix: Mathematical Proofs

Since the panel data model (6) considered here includes the time series model in Bai
(1997a) as a special case of N = 1, it can be shown similarly that k — ko = O,(1). In
the proofs that follow, we assume k — ko is stochastically bounded. With more information
along the cross-sectional dimension under the common break assumption, we further show
that k — ko 2 0 as (N, T) — co.

Fori=1,..., N, let SSR; be the sum of squared residuals of regressing Y; on X; in case

there is no break, i.e., Zy;(k) = Ory,. Using the identity

SSR; — SSRi(k) = [Y; — XiBi(k) — Zai(k)&:i(K)]'[Ys — Xif3;(k) — Zos(k)di (k)]

A N N N
k =arg min m:SSR;(k) = arg max m:SVi(k) = arg  max mi[SVi(k)—SVi(ko)],

1<k<T-1 1<k<T-1 1<k<T-1
i=1 i=1 i=1

where SV;(k) = 6;(k)'[ Zai(k) M; Zo; (k)]0; (k). Note that SV;(ko) = 6; (ko) [Z4;M; Zos) 6; (ko) is
not a function of k. For simplicity, we assume 7; = 1/N,i=1,..., N.!7
To prove Theorem 1, ZiNzl[SVi(k:) — SV;i(ko)] can be decomposed into a deterministic

part and a stochastic one. Partitioned regression gives

~

0i(k) = [Zoi(k) M; Zoi (k)" Zoa(k) M;Y;, i =1, ..., N.
Substituting Y; = X3, + Zo;0; + €; into the equation above, we obtain
0:1(k) = [Zai (k) M; Zoi (k)] Zay(k) M; Zoi6; + [Zai(k) M; Zoi (k)] Zai (k) Mie;

and 8z<k0) = 51 + (Z(/)ZMZZOz)_l ZOi/Migi'

17Since the weights 7;, 4 = 1,..., N, are used to balance different variances across series, we can always
employ m; = 1/N, i = 1,..., N, by using different notations for X; and o?.



To simplify notation, k is suppressed in 6;(k) and Z;(k) when no confusion arises. Since
SVi(k) = 6,(Z3,Mi Z5i)b; = 04 Z4, M Zi) (Z3, M Z;) ™ (Z3; Mi Zoy )
it follows that

SVi(k) — SVi(ko) = —08i[(Z6;M;iZoi) — (Z;M; Zai)(Z M Zai) ™' (Z M Zyi)) 6 (28)
+200( Zh; M Ziai ) (Z; My Zias )+ Z, Mgy — 28575 Mise; (29)

el M; Zoy( Za; M; Zoi) ™ Ziyy Mg — €5 M, Zoi(Z4:M; Zoi) ™ Z; Mg (30)

The deterministic part is denoted by
(k) = 8 [(Z0;Mi Zoi) — (Z0;Mi Z2i)( 2 M Z2i) ™ (Z3: M Z0i) |0, (31)

and the stochastic part is denoted by

+€;MZZQZ(ZQIMZZQZ)ilzéZMZé‘Z — 8;MlZOz<Z(I)1MZZO’L)7lz[I)'LMzgl

Thus S‘/;(/{Z) - S%(k’o) = —JM(k') + ng(/{?) and

N N N
k=arg max 3 [SVi(k) = SVi(ko)] = arg | max |~ Zl Jri(k) + Zl Jai(k)
Define
XAi - X2i - XOi = (Oa te 7O>xi,k+17 e 7$i,k0707 e 70),7 for k < kO?

Xni = —(Xoi — Xoi) = (0, -+ ,0, % k15, Tig, 0, - - ,O)/, for k > k.
Za; can be defined similarly.

For a finite large number C}, and arbitrarily small positive number a < 7, define the set
K(Cy) ={k:1< |k—ko| < Cr,aT <k < (1 —a)T}. Since k—k, is stochastically bounded,
we only consider the values of k that belong to set K(Cy).

Let Ay (k) be the minimum eigenvalue of < SOV R(Xh;Xa:)R. Define \; = minge g () A1 (k).

Under Assumption 5, A\;(k) > 0 and A\; > 0.



Lemma 1 Under Assumptions 1-7, for all large N and T, with probability tending to 1,

lIlf Zjh > )‘1¢N‘

This lemma is similar to Lemma A.2 in Bai (1997a). The proof can be found in the

Supplementary Appendix.

Lemma 2 Under Assumptions 1-7, uniformly on K(Cy),

() oI, 012 = Oy(v/00);
(i) = SN, 8 zp X (1 X — 0, /%);

(i) <= S, 042 M; Zy) (B2 1 etz — 0, (1 /),
(

(

(v

iv) &N M Zai (B2 2 Mgy = O,(3);

v) &SI M Zon () 7 Mg = Op(3) + O/ B
) ZN el z\%m [<Z2iM¢Z2i),1 _ (Zgh.MiZm), ] ZyMiei _ Op(%).

Proof of Lemma 2. (i) Under Assumption 3, for large N,

N N
Var (Z 6;Z’Msi> = 0 ZpSeiZnib;.
i=1 i=1
It can be shown equal to O(¢,) under Assumptions 4 to 7, similar to the proof of Lemma 1

fv1 5;ZA1‘€¢ = Op(\/ ¢n) on K(Cy).

The proofs of Lemma 2(ii)-(vi) are included in the Supplementary Appendix.

T T

in the Supplementary Appendix, implying

With these lemmas, we are ready to prove Theorem 1.

Proof of Theorem 1. To prove lim(y, 7)—oo P(/% = ko) = 1, it is equivalent to showing
that for any given e > 0, for both large T and N, P(|k — ko| > 1) < e. It is sufficient to
show that P <supK(ck) Zfil [SV;(k) — SV;(ko)] > 0) < €, Or

sup
K(Ck)

By Lemma 1, it suffices to show P(supyc,) # ‘Zf\il Jgi(k?)‘ > A1) < eFor any k € K(Cy),

ZJZZ

i=1

N
>inf Ju(k) | <e.
> ot 30



N
Z (26020 M; Zog ) (Z; M Zoi) ™ Z; Mise; — 26,74, Mg

N
i=1
Consider the first term, Zy; = Zy; + Za; for k < kg,
N
i=1

M) =

i=1
N
X Xi, 1 Xlei
2 (5,2, £ Z i .
Z-Zl 1AL A ) \/T
N
2 25 M; Zs; 2L M.e;
+_ 5;|:leMZZZ 27 1 1\—1“2i ZZ:| .
By (i), (ii) and (iii) of Lemma 2, the first term
N
> (20420 M; Zi) (Z5,M; Z:) ™ Zh Mie; — 20,20 Mies] | = Op(y/ o) (32)
i=1
Now consider the second term
N
Z [é‘iMZZgZ(ZéZMZZQZ)ilzé,LMlgl — 8;MZZ()?J(Z(I)lMZZOZ)ilZ[I),LMzéfl}
i=1
N
1 / ZoM; Zai\ EMZOZ ZQZMZQZ 1

Z £ MZOZ |: ZéZMZZQZ _1

) B (Z(/)ZMZZOZ)_l Zé,LMZ(‘:Z
T T )

VT

Similarly, by (1v), (v) and (vi) of Lemma 2, the second term

N
i=1
(33)
Combining (32) and (33), we obtain
N N N N
Joi(k)| = —[0p(\/on)+O +0 +0 )
¢N Z; i o p(VON)+0p()+0p( 75)] = \/— ¢N Op(7)+0p(y/ )]

Under Assumption 2, (k )‘ vanishes for any k € K(Cy), so does its maximum.

= 1



Compared with (8) of Model 1, (21) of Model 2 has the same form using transformed
data {Y;, X;,i =1, ..., N}, except for the additional term M, F~y;. The focus of the proof of
Theorem 2 is on showing that M, Fy, can be ignored asymptotically as (N,T") — oo.

Fori=1,..., N, let 55\7%@ be the sum of squared residuals of regressing Y; on X; alone. Us-

ing the identity SSR; — SSR;(k) = 0:(k)'[Zos (k) M; Zo; (k)]8: (k) with M; = T—X,(X!X,) 1 X!,

we obtain
N

k= 1<Ikn<1%1 X ZmSSR =arg max Z?TZSV =arg max 3 i [SVi(k)—SV (ko)

where SVi(k) = 0;(k)[Zai(k) M; Zo;(k)]0;(K). Assume m; = 1/N, i = 1, ..., N for simplicity.

The rest proof proceeds in the same way as that of Theorem 1 using the new notations with

”~".

Partitioned regression gives
5i(k) = | 2k 31,2 ()| k) VLY
Substituting }71 = Xzﬁl + ZOZ-(L + é? into the equation above, we obtain

5,(K) = [ Zas(hy N Zas(R)|  Zou(hY 128+ | 2o D Z(R)) Zas(h) N2

and 6;(ko) = 0; + (Z(l)iMiZOz) - Zoi' Mi2°. Note that there is an additional term M, F~; in
&) = MyFv, + &.

As in the proof of Theorem 1, we suppress k in 5z(k) and Zy;(k) for simplicity. Since

SVik) = b(Z4;M;Z)d;
= 6;(261]\;[1221)(ZQZMIZ%)il(ZQz/Mzzoz)(Sz
+260( Z4, M; Z3 ) (2 M; Zg) ™2 2 MES + 8% Ny Zoi ( Z; M Zi) ™ Z2) MEY,
and SV (ko) = 04(Zoi Mi Zo:)8; + 2847 M;E® + 8% NI Zoi(Z. M; Zog)~* 24, M2, it follows that
SVi(k) — SVilko) = &1[(Zg;M;Za:)(Zy M; Zog) ™ (Zai MiZoi) — (Zoi' MiZoy))0
200 (28 M Zoi ) (25, M; Zoi )L 28, ME® — 28 7, M;2°

FBY M, Zoi( Zhy M Zoi) ™ Z, MEY — & M, Zoi (Z4, M; Zioi) ™' Z, MY



Define
ju(k) = 5;[(201/]\;11'201') — (Z(l)r]\;[zZZL)(ZézMZZ%)il(ZQz/MzZOz)]éz

In addition, define

Jai(k) = 207(Z;Mi Zoi) (Zy M Zi) ™ Zy Mi] — 267 2 M}

Thus, SV;(k) — SVi(ke) = —Ji;(k) + Joi (k) and

N N N
k = arg 1§I]£1§a%<71 > [SVi(k) — SV i(ko)] = arg 1§1}£1§a%<71 = ; Jyi(k) + ; Joi (k)

For each i, i = 1,--- , N, define Zn; = Zoi(k) — Zni(ko) for k < ko and Zo;(ko) — Zai(k)
for k > ko. Since Zy; = Xo;R and Zy; = XoiR, Zni = My Za; = My XaiR = XaiR.

As in the proof of Theorem 1, we assume that & — kg is stochastically bounded, and only
consider the values of k belonging to the set K (Cy) = {k : 1 < |k — ko| < Cp,aT < k < (1 —a)T'}.

Let A (k) be the minimum eigenvalue of % SV R(X);Xai)R. Define \; = minge g (c,) A1 (k).

Under Assumption 14, A, (k) > 0 and A > 0.

Lemma 3 Under Assumptions 1, 2, 8-15 (or 16), for all large N and T, with probability

tending to 1,
N

inf Z jh(k) Z S‘I(bN'

K(Ck) P

Lemma 3 can be shown in the same way as Lemma 1 using the transformed data or the
""" notation. See the Supplementary Appendix.
Different from Model 1, there is an extra term M, F~; in the error &%, thus in J;(k).
To examine the effect of this extra term on the estimated k and b;, we introduce some new
matrix notation. Since x; = I} f; + v; in (3), we write

Xi= F I+ Vi,

Txp TXmmxp Txp



where V; = (v;1, -+, vir)". Denote Fy = (0,- -+ ,0, frot1,- -+, fr) and Vo; = (0, ,0, v kg1, - - -

Thus,

Xoi = (0,-++,0,2 5941, ,xi,T)/ = (0, , 0,1 frot1 + Vigot1s - - - T fr+ vir)

= Fol's + Vi
— N o A
For the error term (18)’ denote ﬁt = < Et + Zivl szztﬁz > and
t
8 ’ t=1,... ko,
Atiy(ko) = N g
( Do %ivitR(Si ) , t=ko+1,..,T.

ThU.S, ﬂt(l{?o) = Zf\il 92ult(k0) = U + Aat(l{fo) Denote U = (111, ceey TTLT)/ and

7 _ 0 0 Zfil 0;v; ko1 1205 2511 0;v; 7 RO; ,
AU(kU)_<(0>77(0>7< 0 y T 0 .

Thus, stacking cross-sectional averages w, = C(ko)'f; + u:(ko), we obtain

T _ _ — /
%4 = (W, .o, Wy, Wigt1, "+, WT)
Tx(p+1)

- (C_({fl + ala ceey C_(ifko + ’akoa Céfko-‘rl + ﬂko-i—la T >C_éfT + Q_LT)/

= FC), + Fy(Cy — Cy) + U + AU (ky).

Denote F = (F,F), C =(C1,(Co—C1))Yand U =U+ AU(kg). Therefore,

Tx2m 2mx (p+1) T'x(p+1)

W =FC+U. (34)

With this notation, we obtain a lemma, which can be proved similarly to Lemmas 1, 2 and

3 in Pesaran (2006).

Lemma 4 Under Assumptions 1, 2, 8-15, uniformly on K(C),

(i) e = Op( k). Adig(ho) = Op( o );

(i) L0 = O,(%); LD = Oy(A=), 2V/F = 0,(L);

(iii) V/U = Op(%) + Op(az), #610 = Op(%) + Op( A=), #V5 U = Op(F) + Op( 725);
(iv) +X/0 = Op(%) + Op(7A7); X060 = Op(%) + Op( 727)

3 ULT)/-



Lemma 5 Under Assumptions 1, 2, 8-15, uniformly on K(C),

(1) 7F'F = O,(1); 7F'F = O,(1);

(i) LXIF = O,(1); 1X,(k)F = 0,(1).

Proof of Lemma 5. (i) is obvious by Assumption 8.

(i) Since X; = FI';+V; = (F, Fy)(T},0)'+V;, £ X/F can be written as (I}, 0)(F'F)+7 V/'F.
By (i) and Lemma 4 (iv), £ X/F = O,(1). Similarly, £X;(k)'F = O,(1).

With Lemmas 4 and 5, we are ready to establish the property of the 7" x m matrix

M, Fy;, which will be frequently used in the derivations below. Denote

| | — 1- -
E — —CFU+ =UFC+ -UT;
(p+1)x(p+1) T + T + T ’
x 11— , — 11—, —
f(E) = S (-1)FY(~CFFC) EJf(~CFFC) .
(p+1)x(p+1) k=1 T T

By Lemma 5 (v), E = Oy(%) + Op(\/%—T), thus f(E) = Op(%) + Op(\/#—T). In addition,

denote
_ FF . _FF_ UF
D = ~CHE)C — +CI(C—C)  + f(E)l— (35)
and )
Dy = —(E ) BN + ) (30)
Since C = O(1), ££ and £E are O,(1), f(E) = O,(+) + Op(\/%), and IU/TF = Op(\/%),
1 1 1 1 1
Dl = Op(l)[Op(N) + Op(ﬁ)]op(l) + Op(l)[op(l) + Op(ﬁ) + Op(m)]0p<m)
= O+ 0 =)
Similarly,
Dy = [0,(1) + Op(=) + Op ——=)][05(1) + Op(—=)] = Oy (1)
2 P PAN D \/W P D \/W P :

Lemma 6 Under Assumptions 1, 2, 8-15, uniformly on K(CY),

My, Fry, = FDyvy,; + UDyy,.



By Lemma 4 (i) where each element of U is O (%) each element of M, F~y, is of order

Oy ).

Proof of Lemma 6. Plugging in (34), we obtain
IS P TV B D
= = _CFFC+ —CFU+ —UFC+ ~UU = —-CFFC+ E.
TW w T + T + T * T T *

By Lemma 5 (i), %@/IF’]F@ is Op(1). Since E = O,(%) + O ( =), it could be very small
when both N and 7T are large. By Horn and Johnson (1985, p.335)

1_’/_*1_1_/_ —1_1_’1_*1_1_’/_ -1
(7CFFC) " — (ZW'W)™ = (ZCFFT) "' — (FCFET + E)
. l—/ P —1_ l—/ S — L 1 l—/ Jvy — 1
= (T(CFFC) [I—l—(TCFFC) E] (T(CIFIF(C)

o NP P — 1—/,—71_
= SO (=1)F [(TCMC) E]’“(TCIFIFC) = f(E).

k=1
This yields
- 1— —
W'W)™ = (TC/IF’IF(C) Lt A(E).
It follows that

1
T
= [Ir - (FC)(CFFC) ' (FTY)F — (FT){f(E)(7FT) + [(-CFFT) " +f<E>]%U’}F

M,F — UT_W(%W'W)—l W’]F:[[T—(F@Jr@)[(%@/m?@ +f(E )]1(IFC+U)]F

—IU[(%@IIF’IF@)_I + f(E)](%IF@ + %IU)’F,

As discussed in Pesaran (2006), Mz = Iy — (FC) (CF'FC) ' (FC) = I — F(F'F)~'F under
the rank assumption. This implies that the first term is 0. Therefore, plugging in (35) and
(36), we obtain

M Fry; =FDyvy; + IUD2%‘- (37)

The following lemma collects terms involving M., Fy;.

Lemma 7 Under Assumptions 1, 2, 8-15 (or 16), uniformly on K(C}),



(i) vaﬁiZmM F%’ = Op(\/ On);

(i) 2 30N, 620, X () T RIM Fry, = 0,(1) 20) + 0,1/ 40);

(i) £ 3N, 642N, Zi) (B2 2 KM,y = O3/ %) + Oy 42
( )

iv)a. TZZ 1 zM ZA’A(%> 1Z,AiMiMwF% =0 <% )

DL SN N FM N Z (B0 %2) 1 21 VM, Py, = O,(L);
(V). &N ) BN g ()1 2 WM, Fry; = O,();
b & S MM Zon 221 7 N2, = O, () + O )
¢ & SN P M N g (B2 1 20 KM, Py = Oy ) + Ol )
(i)a. L3, eMZO, [(zmj{izzi),l N (M)ﬂ Zh MM Fy; = Op(—A=) + Oy(3);
b 13 mF’M WG Zy; [ (Bt — (B2 1] Z MM Py, = Op()+0p(3) +
Op(7)-

Proof of Lemma 7.

(i) Consider the term
ZpiMyFry; = Zy,MyFry; = ZpFDiy; + Zp,UDyy,.

Since there are |k — ko| non-zero elements in Zn;, Z)\,F is equal to the sum of |k — ko
elements, and is finite on K(C}). Similarly, Z4,U is also equal to the sum of |k — ko
elements, each is O (\ﬁ) Due to the fact that Dy = O,(%) + Op(\/#—T) and Dy = O,(1),

1 1 1 1
ZpNMyFy; = Op() + Op(ﬁ) + Op(\/_N) = Op(\/—N)-
Therefore,
N
- 1
Z 0;Zpi My Fry; = Op(VNoN)Op(—=) = Op(v/ dn)-
i=1 VN

The rest of this lemma can be proved similarly. See the Supplementary Appendix for a
detailed proof.

Lemma 2 in Model 1 can be extended to Model 2 using transformed data as Lemma 8.

Lemma 8 Under Assumptions 1, 2, 8-15 (or 16), uniformly on K(Cy),



() YN, 01242 = Oply/);

(i) &= N, 620X (5 = 0, /%),
(

(i

i) < SO, o) [ (200 200 () A IR ] — 0, (1 %);
) Zz 1 zM ZAz(%) 1ZIAz‘Miéi = Op(
(v) oo S0, ST (ZilZa) 1 71 N, = O,(8) + 0y
(vi) L, B [(Zéi“?@i)* - (Bhdpy ] BgtE _ o,(%),
When the error &; is replaced with E?? = M,F~,; + &;, terms involving M, Fvy, in Lemma

Sz

7 are used to obtain the following lemma.

Lemma 9 Under Assumptions 1, 2, 8-15 (or 16), uniformly on K(C}),

i) S, 012480 = Op(v/6n);
i) SN, 020, X () T = 0,1/ %) + Op(y/ 2);
i) e SO, 00 Z0 M Zg) (B2 BEE = 0, (4 [5) + 0,1/ %)

(
(
(
(iv) L SN BN Zpy (ZebliZoy -1 1 3120 = O, (X,
(
(v

211

v) e S A B 10— 0,(3) + 0,4/ 3) + O,y
(

VT
) Plugging in & = M, Fry, + &;, we obtain

i) SO, e | (Bl 1 (Bl BE  0,(8) + Oy(4) + Oyl hr).
(i

Proof of Lemma 9.

26/ /Az~'(z) Z(SIZA'LM F71+25,ZAZ~

Lemma 7(i) shows that the first term is O,(/¢y). By Lemma 8 (i), the second term

N
> 0124 = Op(/by)
=1

uniformly on K (Cy). It follows that

D 0Z6E = 0)(v/0x) + 0p(v/6) = On(V/o).

The proofs of Lemma 9(ii)-(vi) are included in the Supplementary Appendix.



With these lemmas, we are ready to prove Theorem 2.

Proof of Theorem 2. To prove lim(y 1) ... P(k = ko) = 1, it is equivalent to show that
for any given ¢ > 0, for both large T and N, P(|k — ko| > 1) < e. It is sufficient to show
that P (supK(Ck) SN |:§‘71(]€) - Wl(ko)] > O) < €, or

P sup
K(Cy)

By Lemma 3, it is sufficient to show

N

> (k)

=1

N
> inf Ji(k :
=, 30 <

=1

1. - -
P(sup — | > Ja(k)| > M) <e
K(Ck) i=1
For any k € K(Cy),

N ~ N o o L L
> k)| <D [25;<Z(l)iMiZ2i)(ZéiMiZZi)ilzéiMiég - 25§ZSiMig??]
=1 =1

N ~ ~ ~ ~ ~ ~ ~ ~ ~

+1> [E?’MZZ%(ZgiMiZQi)‘lZgiM,-é?—é?’MZ»ZOZ»(Z(’)Z-MiZOi)‘lZ(’)iMiég] .
=1

Consider the first term, with Zgi = Zgi +Z INE

N
3 [25’(2&]\4 Zo)(Zh N, Zo3) "L 2 NIZ0 — 28120 NI, }

=1
X L X189
Z/ ~0 + Z 11
Ai€i Az ) ﬁ
2 S o T Mi Zys | Zh MEY
+—= Z N, 2y ) (2201220 1 2200
\/T = ( A 2 )( T ) \/T

By (i), (ii) and (iii) of Lemma 9, the first term

N
Z (20123, Zox)( 24, N1 Zs) ™ Z3, V020 = 28,24, V20| = Op(/60). (38)




Now consider the second term

[ 0 s i 2y N Zs) ™ 23, D — VN Zoi 24y N Z) ™ 23, M|

~ ZézMzZ%

~0/ -1z 21 =0
Ml ai( ) ZpnMiE;

N o~ o~
1 BN Zos T N T )
+2 7 7 7 ( 21 K] ’L)_IZ/ /LMlg?
VT Zl VT T A
i=1 ﬁ T T \/T

By (iv), (iv) and (vi) of Lemma 9, the second term

N
S (B0 N 2o 24,13 2s) 7 Z3, NS — BN Zo (24, Zo) ™ 23, WE2° |

=1

- 0+ 0,/ M+ O

Therefore, we get

1 N N 1
= - [0/o3) + Ol) + 0y <\/;>+op<ﬁ>1

~ Of=)+ 0, + 0,/ + 0,

Compared with the proof of Theorem 1, there is an extra term iOp(\/LN) = 0,(1). But,

# )Zf\il jgl(k’)‘ vanishes for any k£ € K(Cy) as (N,T) — oo, so does its maximum.
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Supplementary Appendix (not for publication):

The asymptotic distributions of CCE estimators Z;i and b mc in model 2 are summarized

in Propositions 1 and 2.
Proposition 1. Under Assumptions 1-3, 815, and T /N — 0 as (N, T) — oo, for each

V(B = b) 5 N (0,5;15.,55)
where
; 1 Y/ X . 1 S > .
Ygi = pllmT_,oofXOiXOi and ZXé,z‘ = plzmTHooTXOiEmXOi, 1=1,...,N.

Proof of Proposition 1.
By (21), for : =1,..., N. Since

7= Kb+ 2 = Kb+ 2 )

where g;k = g? + (Z()l — ZglUg))(sl = MwF’}/,L -+ gz -+ (Z[]z — 221(];)))(5“ we have

b = [Xi(k)yXi(k)] ' Ki(k)'Y: = b + [Ki(k)Xi(R)) K (k)'E
= b+ [Ki(k)X(R)) 1K (k) My Fy,

X (B) X (k)] 1K (B) & + [Ka(k) X (B)) ' Ki(k) (Zoi — Zai(K))0; (40)

and
T lo 7 A -1 1 & /
VT (b= i) = (5B i) =Ky M,
1~~/~ —11~ I~ 1~~/~ —11~ 1( 77 7.
TR R D] =R FYE + [ Y RAB] =Y (B = Za)5
— R TR R M P+ [ (DR e
R BT () = o+ [ R (B 5 B (s — 2,

where the second equality above uses the result X@(l%)’ g = XO/ ;.
Due to the results k — ko = 0p(1) and Xl(fc) 2, Xo;, for each i,

1~ ~ ~ -
TX (k)X (k) & Sk



where X5, =plimy_, %XBiXOi- Consider the term

% X (k) M,Fry, = %Xi(%),MwF’yi
1 N/ 1 AT
= ﬁxl(k}) FDyy, + ﬁXzUi’) UDy;
= VTO,()+ Oyl + VTTON) + Ol )
= Op(g)*'Op(%)'

By Theorem 2, P(k # ko) =

P(|k — ko| > 1) — 0. For any 7 > 0,

1 - - -
Pl ||—=(X;(k) — Xp;) el >
(H 70 T 20)
([P . ([P -
= P(0>n)P( (H\/— — Xoi)'ei >77‘]275k0>P<12‘75k0)
< P(0>n)P(k = ko) + k 7A k:0> 0.
Thus, %(Xl(/%) — Xgi)'e; = 0,(1). Similarly, \FX (k) (Zoi — Zas(E))6; = 0,(1).
Therefore,
VT (b . bi)
VT 1 NI ey
= Op(T) + Op(\/_N) + [fxz(/f) Xi(k)] 1ﬁon~ gi +0p(1) +0p(1)
1 - VT
= EX,ﬁX EZ+O(N)+OP(1)
Since \/LTXO/ i 4N (0, ng) where Yg_; =plimr_, %Xgize,ixm, it follows that when \/TT —

0as (N, T) — o0
ﬁ(éi—bi)ﬁjv(oz I o

Xe,i X,

)



Proposition 2. Under the assumptions 1-3, 8-14, 16,
VN (b — b) 5 N (0,%).

Proof of Proposition 2.
Under Assumption 16 of a random coefficient model, the asymptotic distribution of mean-

group estimator (12) can be derived similarly. Plugging in (39) and (40),

e = & Dob= 5 O (b o+ R KB

= bt > oni+ ;] Z[XZ(k)’Xl(k)]‘IXz(k)’MwF%
b SR TR R+ SR TR R (o — Zas)0)
we obtain
VN (bye — b)
1N N~~/~~—1 / 1N~~/~ -1 /
= ﬁ Zz; byi T \/N ;[Xz(k) XZ(]'C)] XZ(k) MwF% + \/_N ;[XZ(]{) XZ(k)] XOz €
a INY (1N\1—1/% <)/ 1N~~/~~—1 1( 77 ~ (1
‘l'ﬁ ;[Xz(k) X,(k)] (Xz(k) XOi) € + \/_N ;[Xz(k> Xz<k)] X,(/{:) (ZOz - ZQz(k:))(Sz]

By Assumption 16, the limiting distribution of the first term is N(0,3},). Consider the

second term

Tlﬁ S I (RY R ) ) M P,
_ L AR -1z (hyED L~ KRy i(k) -1 1x (iyoD
= —I0,(5)+ O = I0N) + =[O, 5) + O A=I0N)
= Oy(—=) + Op(—=)
- p \/N p ﬁ ‘
The third term can be written as
LN v it L s [ KRy Ka(k) " Role
v X, (k)X (k)] "' Xo/'e; = \/W; - T




Since €;,7 = 1,..., N, have zero mean and are distributed independently of X;, under As-

sumptions 9, 13, and 14,

1 X;(kYXi(k) | Xo/e
Var | —
\/NTZZ1 T VT
a1l . e g1
1 i XXk | KolVare)Xo | K(RYKk) | _ ) 1,
e NT .- T T T - T )
g Az S [SEE0] 5t 0,0

As in the proof of Proposition 1, since P(k # ko) = P(|k — ko| > 1) — 0 by Theorem 2,

it can be similarly shown that



The asymptotic distributions of estimators of slopes b; and by in model 1 are summa-

rized in Propositions 3 and 4.

Proposition 3 Under Assumptions 1-6, as (N, T) — oo, for each i,
VT(b; — b)) % N (0,55 5%, 55

where

1
—XgiEonZ-, 1= 1, ,N

Yxi = plimT—m)oTXE)iXOi and Yx.; = plimr_ T

A similar result is obtained in Bai (1997a, Corollary 1). Due to the consistency of k, Sx ;
can be consistently estimated by %Xz(l%)’Xz(/%) Also, ¥x.; can be consistently estimated
using the Newey and West (1987) approach, as discussed by Bai (1994) and Pesaran (2006),

ie.,

S A - ] A A/
Xe, 0—'_2::( w+1)( J+ zy)

~ 1 ~ ~
Aij - Z 5@1552 A= szt(k)Xit(k),7
T t=7+1

where w is the window size, &;; = yi — 2/, (3;(k)+Ro;(k)-1{t > k}) and X, (k) = (z},, z,-1{t >

k}). Thus, a consistent estimator of S i xe,i Dy g 1

{%xi(/;)'xi(i%)} h S [%XAIQ:)’XA/%)} B (41)

Proof of Proposition 3.
We follow along the lines of Bai (1997a, Corollary 1) except for using a panel data
estimator k. By (9), fori=1,...,N,

Y; = Xoib; + & = Xi(k)b; + €}, (42)
where e = &; + (Zo; — Zai(k))d;, we have
bi(k) = [ (k)X () (k)Y

= b+ [Xi(k)Xi (k)] I X(k e
= b+ (k) X(R)] TG (kY e 4 [ (R) K (R)] (k) (Zos — Zao(R))S: (43)



and

= [fxl(/%)/xi@)]*lﬁxoﬁi + [fxi(k)lxz(/%)]fl—T(Xz(/%) — Xoi)'es
X (BB KR (2 ZaR)o

By symmetry, assume k< ko, so
Xl(l%) — X()i = (OTXpa (O 0, Zz P ASERTEY Zi7k0+1, 0, ceey O)/) £> 0.

Thus, due to the consistency of l%, fore=1,.... N,

where Yx; =plimy_.o 7X(,;Xo;. By Theorem 1, P(k # ko) = P(|k — ko| > 1) — 0. For any
n>0,

P ([ st - are| > )
= p (| penth - xore] > i< ) P (| gond - sore| >k £ 1)
= PO > )Pk = k) + (Hf e, >n‘k#kO>P(/%#ko)
< P(0> )Pl = ko) + k 7& ko) -0
Thus, —=(X;(k) — Xo;)'e; = 0p(1). Similarly, J=Xi(k)'(Zoi — Zai(k))3; = 0,(1).
Therefore,
VT (b - bz>
_ [%xl(/;yxz(/%)]l%sgm’gi +0,(1) + 0,(1)
— 3l %XO/Q +0,(1) 5 N (0,555,552

where \/LTX()@"SZ' i N (0, EXE,Z') and ZXe,i :phmT_m %XIOZES,ZXOz



Proposition 4 Under Assumptions 1-5, 7,
VN (b —b) % N (0,%,).

As in Pesaran (2006), X can be consistently estimated by
;N
7 2 (b = bara) (b — bsc)'

i=1
Proof of Proposition 4.
Under Assumption 7 of a random coefficient model, the asymptotic distribution of the

mean-group estimator by;¢ defined in (12) can be derived similarly. Plugging in (43),

N N
7 _ l 7 i ) A A S A IAVE:
b = 5 D b= > (bl—ir[Xl(k)Xz(k)] Xl(k)al)

By Assumption 7, the limiting distribution of the first term is N(0,3).

Consider the second term

-1
/
Xoi'e;s

VT

Since for ¢ = 1,..., N, ¢; has zero mean and is distributed independently of X;, under As-

X, (k)X (k)
T

sumptions 3, 4, and 5,

N . N1
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\/NTl.Zl T VT
| « ~ 7
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P |
: . N [xi(k)xi(k Jei
implying \/#721':1 [ ( )T ( )} X\O/T _ Op(\/%?).
As in the proof of Proposition 3, since P(k # ko) = P(|k — ko| > 1) — 0 by Theorem
1, it can be similarly shown that the third and fourth terms above are o0,(1). Hence, as

(N, T) — oo,

VN (b — b) = \/LN Z Vpi + op(%) +0,(1) + 0,(1) > N(0,3).



Complete Proofs of Lemmas 1, 2, 3, 7 and 9.
Lemma 1. Under Assumptions 1-7, for all large N and T', with probability tending to

Proof of Lemma 1. By symmetry, we assume k < k. From (31) and Lemma A.1 in

Bai (1997a),
Ju(k) = 6 (ZyM; Zoi) — (Z;M; Zoi)(Z8;M; Zi) ~ (Z8; M; Zi)) 0
> OLR (X Xai) (X5 Xa:) " (X0, X0i) R,

Since X35, X0 = X{;Xoi + X7 Xai and X3, Xa; = Op(7) on K(Cy) for large T under

Assumption 4, we obtain
N
D R (X p Xai) (X5, X0:) (X, Xor) RS
i=1

N
X X0 XX X! Xoi
. E:/ / / ] 0i<2 01 Ai“YATN -1 0i<}01 )

=1

1
= (140, Z O R (X, X ni)RS;.

Thus, the term above is dominated by S°N & R/(Xh;Xa:)RJ;. Denote a;;(R' (X%, Xai)R)

the (j,1)" element of matrix R’(XMXM)R

N
ZégR’(X’AiXM)Réi_Z [ZZ(LJ& 1 aji(R(XaXai)R)
i=1

=1 Lj=1 I=1

p p
= NZZ [ 262]5 - ajl XAZXAZ)R)

j=1 =1

By Assumption 6 or 7 that §; is independent of X;, §; ;0;,; is independent of a;; (R (X, Xai)R).
Thus,
E[(0530i1) - aj (R (X7 Xai)R)] = E[(0:50:)| Elaji (R (Xa;Xad) R)],

implying that for large IV, with probability tending to 1,

N
Zézjézl a]l XAzXAZ - < 26235”) (%ZGJ,KR/(X/AZXAZ)R))
1 . . =1
(NZ zl) ajl ( Z XAZXAl > .



It follows that

N p p 1 N , N
Z 6 R’(XAzXAz R6 = N Z Z [(N Z 5@]‘5@[) aj,l <N Z RI<X/A1XAZ)R>
i j=1 I=1 i=1 —
p p N . N
— ; ZZI: ; [51,151,1 “aj (N ; R (XMXM)R>

'MZ

N
1 / /
(N YR (XAiXAi)R) 5
=1

with probability tending to 1 for large N.
Denote A = + vazl R'(X\;Xai)R. Under Assumptions 4, 5, A is positive definite, with a

=1

nonzero minimum eigenvalue, i.e., A;(k) > 0. In addition, there exists an orthogonal matrix
S such that A = S’AS, where A is a diagonal matrix comprising of the eigenvalues of matrix

A. Hence,

N N N N N N
1 ~ o~ . )~
5 = ST RXAXA)R) 60 = ST 6SASS = STEAS > ST (K58 = (k) S 8,
SACSWEENITEDS S A= ST = )3
where 6; = S§;. Due to the fact 5;51 = 0,5'50; = 0.0;, for large T' and N, with probability

tending to 1, we obtain

N N N
> Julk) =D 0 (% Y R(XAXai)R ) 0; > Mi(k Zé’
=1 i=1 i=1

Thus, infrc,) S, Ju(k) > Moy

Remark: Since 8, R (X, Xa:)(X5;X2:) 1 (X{; Xo:) RY; is positive and bounded, its sum
over i seems of order O,(N). However, since the largest eigenvalue of + Z'f\il R'(X\,Xnai)R
is bounded under Assumptions 4, 5, as in the proof of Lemma 1 above, it can be shown that
SN <% SN R'(X'AiXAZ-)R> d; = Op(¢y). Since Assumption 2 implies that ¢, could

grow at a rate less than N, this allows for the possibility of no breaks in some series or small

magnitude of breaks in slopes, as in Bai (2010).



Lemma 2 Under Assumptions 1-7, uniformly on K(C}),

) ZfVl(%mei = O0p(\/0w);

i) LY, 0120, X () 12— 0, /%):

) g S A2 Zos) (a1 Zides _ o (, [,

iv) £ SN e M Zag (B2 7 Mg, = O,(X);

v) I M Zon (B2 7 7 Miei = Op(3) + O/ B
Op(F

i) Z & A%o (zm%zzi)_l _ (Zg)%izoz)_l] ZO%sZ _ ).

Proof of Lemma 2.(ii) and (iii) can be proved similarly as in part (i).
(iv) Since M; Za;(Z4; M; Z9;) =1 Z'\ ; M is positive semidefinite, & M; Za;(Z5;, M; Zo;) ™ Z\ ;M >
0. For bounded k — ko on K(Cy),

(i
(
(
(
(
(v

Z'.Mzzi
Z [5 M, Z; QZTQ)‘IZ’MM@] = 0,(1).

Thus, & SN &/ M, Za; (2252201 70 Mg, = O, (X).
(v) For finite ¢, the ¢ x ¢ matrix % = O,(1) for large T, thus the order of
%Zf\il g;MiZOi(w)’lZ'AiMiei is same as that of %Z V€M Zo; Z 6 Mie;. Substi-

tuting M; = I — X;(X/X;)"* X/, we obtain

1=

N N N
1 1 1

=1 i i=1

T 25 Zoi Zn Xi(XiX0) T Xei
1 - J—
7 ;géXi(XéXi) LX! Z0: 20, X (X1 X)L X e

Consider the first term 2 T Z e ZniZn€ir If k < ko, for bounded ko — k

112

1 N T ko
/ !/
TE €:20i4pi€0 = E 5th% g 5iTZi7')

i=1 1= :k0+1 T=k+1

al d 1 N
= — Z Z 52t5iTzZ'-tziT = fOp(\/NT) = O,( T>’
r=k+1 i=1 t=ko+

’ﬂ |
=z

’ﬂ



on K(Cy). If k > ko,

N N T k N k T
1, 1 , 1
=Y € ZyZnei = = ( gitZi)( EirZir) = = EitEirZiy2i
T 1 A0 AT T w4t LT AT T WCLT At T
=1 =1 t=ko+1 T=ko+1 i=1 7=ko+1 t=ko+1
1 k N T
/
= ? E E 7,7—217—2’67' E E E EitEir 2y Rir
T=ko+1 =1 ‘I' ko+1 t;ﬁTt ko+1 i=1
N N
= Op(f) + Oy( 7):

on K(Ok)

Similarly, it can be shown that the second term = Z

0,(3) +0,(/5).

For bounded |k — ko| on K(Cy), Z)\,X; = ZfikH zipxh, is bounded. Thus, As above, it is
easy to show the third term

g; X (X,X) 1X1IZOzZ/AZ€z =

=117

N

E; ZOz XIXZ 1 X{é‘i N
E ZAZ =) == = On()
. T YT T

N
1
T Z &\ Zoi Zn Xi( X/ X)) X]e; =
and the fourth term

N

1

T D e Xi(XIX0) T X Z0i Zp X (X X)) T Xe
i=1

XX 1 Xle; N
% - 2 =0, (—
T ) \/T P(T)7

_ZaX XX 1 X! 2

T ZAin(

on K(Ck)
Therefore,
N
1 N N

(vi) Since |k — ko| is bounded on K (Cy),

(ZélezQZ )—1 _ (Z(/)iMiZOi)_l
T T

ZoMiZoi | ZpNMiZoi  ZoiMiZni | ZnMiZni, 2o Mi Zoi |
:(OT +AT +0T +AT )1_(OT )1
Z,iMiZOz' 1 _ Z,ZMzZ[)l _
= (OTJFOp(f)) 1—(0T) '

_ LaMiZei\ 1. ZuMiZoi\ 1



we obtain

— Z/iMigi N
' ‘ = Op(?)'

ingiZm [(ZéiMz‘Zzi)_l (Z(/)iMiZOi)
=1 ﬁ T T ﬁ

13



Lemma 3 Under Assumptions 1, 2, 8-15 (or 16), for large N and T, with probability

tending to 1,
N

iIlf Z jh(k) Z 5\1¢N'

K(Cr) =
Proof of Lemma 3. By symmetry, we assume k < kg. From Lemma A.1 of Bai (1997a),
Jilk) = 8(Zof M;Zos) — (Z4; M Zoai ) (Z; M Zoi) ™ ( Zoi' M Zoy)] 6
> 0 R (X Xai) (X5, X0:) ™1 (X5, X0i) R
Plugging in X4 Xo; = X}, X0 + X, X gives

N ~ ~ ~ ~ ~ ~
> R (X p Xai) (X5, X0:) ™ (X, Xor) RS
i=1

N ~ ~ ~ ~ ~ ~
X X0 XX X! Xoi
— 5/ IXI Xz 0:<2 07 Aj 2\—1 01 7 R(sl
LU ENIE S B

N
= Y 6R(XpXai)RS; + 0y(1).
i=1
Given that k — ko is stochastically bounded on K(C}), LX)\ Xai = o0,(1) for a large
T on K(Cy). Thus, the term above is dominated by SV, 8/ R'(X),Xai)Rd;. Denote

ajyl(R’()N(’Aif(m)R) the (j,1)" element of matrix R'(X4;Xa;)R.

N N p P i
Z&RI(XIAZXN)R(;Z = Z [ZZ(SZ'J‘(;“ . ajJ(R/(X/AiXAZ’)R)
i=1 i=1 Lj=1 I=1 ]
D ; N L ]

= > > [Z 015011 - @i (R (Xp;Xai)R)

j=11=1 Li=1 J

By Assumption 15 that ¢, is independent of X, §; ;0;; is independent of a;;( R’ (X' ’AZX' Ai)R).
Thus,
E[(6:36:1) - aji(R' (XA Xai)R)] = E[(8:;0:0)) Elaj(R' (XA, Xai)R)],

implying that for a large IV, with probability tending to 1,

N N N

1 YTy 1 1 'Y Y

N > 6ii6is - aj(R(XaXa)R) = (ﬁ > 51‘,]'5@',1) (N > au(R (XAiXAi)R)>
1=1 =1

=1

1 & 1SN o, -
= (N Zéi,jai,l> aj,l (N ZRI(X,AZXAz)R) .
i=1

=1



It follows that

N
Z ;R (X5 Xai) RS,
=1

Nj:; =1 i=1 : N i=1
200 [5”5” @ <N ZR/<X/AZXAZ)R>
z;1 7=1 l;l i=1
WAESWEENDE

i=1 i=1

15



Lemma 7 Under Assumptions 1, 2, 8-15 (or 16), uniformly on K(C}),

(i) YN, 01 Z0 My Fy; = Oy );
(i) & 30N, 6120 XK XM, Py, = 0,(y) %) + Oy
(i) £ 0N, 042N Zoi) (B2 2 WM,y = Opl(3) %) + Oy %)
(iv)a. %30, ZMZm(Z%%ZQ) 20N M Py = Oy(%);

b%zl A MY N Z g (B2 220 2 7 N M, Fry, = O, (L)
(V)a T Zz 1 z]MZOz(%)~ ~~/AiMiMwF7i = Op(\/LT)S

b. T Zz 1%F/M MZOZ( MZQi)_lzlAi Nigi = Op(\/Lﬁ) + OP<L);

. AN A M, N Zgy (B 22y 2 7
(vi)a. o I, S0 | (Bt (BB 1] Z4 WM, Fy = Opl ) + O3

b £ 3 mF’M W [ (221 — (BalfiZe) 1) 2 NEM Py, = Oy(3) +0p(3)+

Op(A=).

Proof of Lemma 7.

(ii) By Lemmas 5 (ii) and 4 (vii),

%X{MwF% = TXMF XT’FDm XTIUDm
— 00N+ O A= + 0 5p) + O =110, (1)
= O + 0 =)
Thus,
_Zyzm {X) LXIMFryy = 0 )+0p(\/%)]
- OP<M>OP<W>[OP<%>+OP<¢%>]

(iii) can be proved in the same way as (i) and (ii).
(iv) Since

. -~ ~ o~ 1
ZIAiMiMwF’Yi = Z/AiMi]FDl%"‘Z/AiMiUDWi = Op(_

)0,



we obtain ((iv)a)

N SN S N
I~~~ 25 MiZo; - B} 1
— IM Zni (2 2 MM Fry, = — Y ELM; Z00,(1) O (—=
T;{fz A( T ) Ad Y ; i A p() p(\/ﬁ)
1 1 1

= FO(ZRIOWVN) = 0y(3)

&' M;Zn; is the sum of finite elements on K (Cy), so SN N EM;Zp; = O,(v/N). In addition,
((iv)e)

20 M Zos 1~ 1 1 1
ARV IS Py

1 - BV IRY Ry, 1 -
?;%F M M; Zni( 2 \/_N)OP(I)OP(\/_W) = OP(T)'

(v) Since Zh,M; M, Fry; = Op(\/%) and %ZQZ]\ZZQZ = 0,(1), we obtain ((v)a)

7! M 7' M 7! A T Z/MZ]F

S (op(%) + Op(w%)) +T (%(%) + Op(\/%))

- o Ly+o,0/5)

Dy, +T ! Doy,

7 2 M M 2oty it = H(0U ) + 0,0 )0,V
1 1
= Op(ﬁ) + Op(_T)
and ((v)o)
3 T M ) LM = Ol ) (0 (§)+ om/%) 0y(N)
= O)(—=) +0y(—)



T

(vi) Since |(ZgZey -t - (2SR5 1) — 0,(1) and Z MMy Fy, = Op(R) + Oy

we obtain ((vi)a)

N o, o~ - " m~
1 E,IL-Ml 0i ZéleZ% 1 Z(/)leZOZ 1 S0
— (RO 2 N M,
1 1 T [T 1 1
- _TOP(T)[OI)(N) + Op( N)]Op(\/ﬁ) - Op(W) + Op(f)
Similarly, (vi)b
N ~ ~ ~ ~
l Il ZéiMiZ% 1 ZéiMiZOz -1 v
T ; ’LF MwM'LZO’L ( T ) ( T ) ZOZMZMWFV’L
1 1 T T T
= ZOUDN0NF) + Oply TNOW(F) + 0pl4 T)IOH(N)
1 1 1
= OP(N)JFOp(f)JFOp(ﬁ)‘

18

\/%

)7



Lemma 9. Under Assumptions 1, 2, 8-15 (or 16), uniformly on K (C}),
() S 67520 = Oy(y/5)

(i) Fr D 126 K(H) 1 = 0,0/%) + 04/ 9

(i) L S0, 6( 2N Zo) (B LS 0 (o 1 0,1/ %);
(iv) § SiL &Y ML Zau g 2 ZNEEY = Oy
(
(v

N &Y N, Zoi 2 M Zo; 51 T <0 '
v) e SN, S Zall ey 71 N2 = O,(F) + Oy K) + Oy )
s/le 2y i Zain 1 Zh W Z0iy—1] 2o, W20
i) SO, S | (BB 1 (Tl 1] BE  0,(X) + Op(4) + Oyl 7).
Proof of Lemma 9.

(ii) Since

(iii)

Zb. M, 221) | 25 ME,
T VT

Lemma 7(iii) shows that the order of first term is O,(4/ %V) + O,(4/ (%N) By Lemma 8(iii),
the second term is O,(y/ d’TN) Thus,

LN
_Z(g;

~



(iv) Plugging in & = M, Fy, + &; yields

N ~ ~
~ ~ I M Zo; ~ -
= Y EYMZa (PR ) T 26 M
i=1
1 al I\r ~51MZ ~21 —1 7
-7 Z(MwF% + &) MiZaq( T )" ZaMi(MyFy; + &)
i=1
1 24 M, Z. 2 70 N7
o ~ I 7 24tV L1420\ 1 5 ~ ~I N 7 204120\ —1 771
— Tzzlgz MzZAZ< T ) ZAZMl Z+T121€ZM/LZA/L( ) ZA?,MlM’LUF/—yz
1 & 70 M. 7
— VEIMY M, 7 (2222201 g0 N M, F
+T Zzl/% wt?te AZ( T ) At Vi

Lemma 8(iv) shows that the first term is O,(%). In addition, Lemma 7(iv) shows that the

second term and the third term are O,(7). Therefore,

Z’ M; Zy; ~ N
e ZgOIM = T 2 ) Z,AiMigg - Op(?) + Op(

(v) can be proved similarly. Plug in &0 = M, Fry; + &,

~0'MZlZMZl ~ o~
\/_Z TO 2ZT 2) 1Z/AZMZ‘§?

N ~
E; MZOZ Z zM Z2Z ~ ~ . 1 P ,iMi Qi1 5 ~
- \/—Z : ) ZpMiEi + ZE;‘MiZOi(Q—) L2 MM, Fry,

T T
+— 21: ~LF' M, M, ZMM) L2 Mg + % é%F’MwMiZ@(%)1Z’AiMiMwF%
By Lemma 8(v) and Lemma 7(v), we obtain
s fj I o Pl 7 s
~ O)F) + Oy )+ 072 + 0,(2) + O =)+ Oyl ) + Oy =)

20



(vi) Similarly,

o ZN: (MwF’YZ‘i‘g‘Z)IMZ ~Oz (ZéleZQI) 1 (ZéleZOl) 1 M(M F’YZ+€Z)
i=1 VT T T VT
B iégm Zoi (ZgiMiZQZ) . <Z6iMiZm) | 2 Mg
— VT T T VT
N ~ ~ ~ ~ ~ ~ ~
0 SNEM Ty | 2T 2N 2 | s -
+ (2 7 7 Z/zMiMwF ;
N ~ ~ ~ ~
1L 28 MiZoi 2 M:Z -
— F' MM Zy; | (F222) 7 Lo Zy M;M, F
+le:; i 0 ( T ) ( T ) 07 Yi

Lemma 8 (vi) and Lemma 7 (vi) show that these three terms are O,(%), O (T) + Op(7)
and O,(x) + Op(3) + O ( =), respectively. Therefore,
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