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ABSTRACT
The calibration of building energy models based on in-situ sensor information is generally 
performed after the measurement period, using all data in a single batch. Alternatively, on-line 
parameter estimation proposes updating a model every time a new data point is available: this 
allows observing a direct relation between external events and the identifiability of 
parameters. The present study uses the Sequential Monte Carlo method to train a RC model, 
and thus estimate a Heat Loss Coefficient, and other parameters, sequentially. Results show 
the direct impact of solicitations (solar irradiance and indoor heat input) on this estimation, in 
real time. The method is validated by comparing its results with the Metropolis-Hastings 
algorithm for off-line estimation.
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INTRODUCTION
The calibration of simplified building energy models using in-situ measurements is now a 
widespread research topic (Rouchier, 2018). It is commonly performed for two general types 
of applications: the characterisation of intrinsic building performance (Heo et al. 2012; 
Bauwens and Roels, 2014), and the identification of a model for predictive purposes, for 
instance in the aim of model predictive control. State-space models, which include the 
simplified resistor-capacitor (RC) model structures, are a popular choice for both applications. 
When written as a set of Stochastic Differential Equations, they allow accounting for 
modelling approximations (Madsen and Holst, 1995) and offer a more reliable parameter 
estimation than deterministic models (Rouchier et al. 2018).

Parameter  estimation  is  typically  performed  off-line:  measurements  of  indoor and outdoor 
conditions are first carried in a test building, and data is processed after the experiment in a 
single  batch.  An interesting  challenge  is  to carry parameter  estimation  on-line,  during the 
observation period: starting from an initial  guess for parameter values, these estimates are 
updated  sequentially,  every time a new observation  becomes available.  The motivation  is 
twofold: first, it would allow using the measurement period for computations, thus reducing 
the total time of the procedure (Raillon and Ghiaus, 2017). Second and foremost, it would 
allow  directly  observing  which  phenomena  “bring  information”  to  the  parameters,  by 
correlating the reduction in their estimation uncertainty with observed events.

Bayesian inference offers the possibility of on-line estimation with Sequential Monte-Carlo 
(SMC) methods (Doucet et al. 2000). Originally developed for the sequential estimation of 
states (Handschin 1970), SMC was later adapted to state and parameter estimation (Kantas et 
al.  2015).  Building  physics  applications  are  scarce  and  very  recent  (Raillon  and  Ghiaus, 
2017), but may become more common due to the motivations listed above. The present paper
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applies SMC for the on-line estimation of the heat loss coefficient (HLC) of a test building.
Starting from a highly uncertain prior knowledge of HLC, the target is to dynamically observe
what leads its estimation to narrow down to a more precise value. The identifiability of HLC
regarding available data is then discussed.

CASE STUDY

Test case
This study uses measurements that were carried in the Round Robin Test Box (RRTB), within
the framework of the IEA EBC Annex 58 (Jimenez et al. 2016). This experimental test cell
has a cubic form with dimensions of one cubic meter, identical wall components on all sides
and  one  window  with  dimensions  60x60cm2.  It  was  installed  outdoors,  in  the  LECE
laboratory at  Plataforma Solar  de Almeria,  in  the South East  of Spain.  Experiments  were
carried  during  a  43  days  period  in  the  winter  of  2013-2014.  More  information  on  the
conditions of the test is available in the Annex 58 report (Jimenez et al. 2016).

Figure 1. Measured indoor and outdoor temperature, heating power and solar irradiance

A period of six days was chosen for the present investigation, shown on Fig. 1. The indoor
temperature is left free floating during the first three days, although it is impacted by daily
peaks of solar irradiance.  Then, a ROLBS heating signal was imposed inside the test box
during  the  remaining  three  days.  The  motivation  behind  the  choice  for  this  sequence  of
measurements is that these boundary conditions are not very informative at first, then become
more informative: we expect to witness their effects on the evolution of the estimation of the
heat loss coefficient.

Model
The test box is represented by a 2R2C model described by:

(1)

y (t )=[ 0 1 ] [T e (t )

T i (t ) ]+v (t ) (2)

where Ti, Ta and Te are the indoor, ambient (outdoor) and envelope temperatures. The model 
has two states  Te (unobserved)  and  Ti (observed);  q  (W) is  the indoor heating  power;  Isol 

(W/m2) is  the solar  irradiance  on a southern vertical  plane;  R1 and  R2 (m2.K/W) are two 
thermal resistances,  C1 and C2 (J/K) are thermal capacities, and  k1 and k2 (m2) are two solar

[ T́e (t)

T́ i(t )]=[
−1

R1C1

−
1

R2C1

1
R2 C1

1
R2 C2

−1
R2C2

] [Te ( t )

T i ( t ) ]+[
1

R1 C1

0
k1

C1

0
1

C2

k2

C2
][

Ta( t)
q (t)

I sol(t )
]+w (t)

948

7th International Building Physics Conference, IBPC2018



aperture coefficients,  one for each state of the model.  w(t) denotes a Wiener process that
represents modelling errors with an incremental covariance Qc (Madsen and Holst, 1995), and
v(t) is the measurement error of the indoor temperature, normally distributed white noise with
zero mean and variance  Rc. Both are considered unknown and will be estimated along with
the other static parameters of the model, which are all denoted by a single vector θ.

The stochastic model described by Eq. 1 and 2 must be discretized to specify its evolution
between discrete time coordinates.

x t=F x t−1+Gu t+w t (3)
y t=H x t+v t (4)

where xt denotes the vector of states at the time coordinate t, and yt denotes the observations. 
The reader is referred to  (Madsen and Holst,  1995)  and (Rouchier 2018) for more details 
regarding the discretization steps.

Given a state transition probability p ( x t∨θ , xt−1 ,u t ) (Eq. 3) and an observation probability
p ( y t∨xt ) (Eq.  4),  filtering  produces  p ( x t∨ y1 : T , θ ),  the probability  distribution  function of 
each state given measurements and parameter values, and the marginal likelihood function
Ly ( θ )= p ( y1 :T∨θ ). The Kalman filter algorithm is not described here for the sake of concision, 
but has been described by many authors including (Madsen and Holst, 1995; Rouchier 2018).

BAYESIAN PARAMETER ESTIMATION
The target of the on-line parameter estimation exercise is to assess the value of all static 
parameters of the model, at each time coordinate of the measurement period: the expected
output is a sequence of posterior distributions { p (θ∨ y1 :t ) ,t ∈1 …T }, where T is the number of 
data points in the measurement period. This sequential estimation is performed by the SMC 
algorithm. For the sake of validation, the estimation has also been carried in a “traditional” 
off-line fashion with the Metropolis-Hastings algorithm. Both methods are described below.

Off-line estimation: Marginal Metropolis Hastings
The Marginal Metropolis Hastings (MMH) algorithm is part of the family of Markov Chain 
Monte Carlo (MCMC) methods. Given one batch of data y1 :T , a parameter prior p ( θ ) and a 
model specification (Eq. 3 and 4), the MMH algorithm returns a finite sequence of samples
{θn , n ∈1 … N } approximating the posterior distribution p (θ∨ y1: T ). Examples of applications 
to the calibration of building energy models include (Heo et al. 2012; Rouchier et al. 2018).

The algorithm employs a Kalman filter to compute the states  p ( x1: T∨θ , y1 : T ) and likelihood 
Ly ( θ ) associated to each proposal for  θ. If the state-space model (Eq. 3) is non-linear, this 
filter can be replaced by a particle filter: this approach is known as Particle Markov Chain 
Monte Carlo (PMCMC).

On-line estimation: Sequential Monte Carlo
The SMC algorithm for parameter estimation is an adaptation of particle filtering for state 
variables. The foundation of this method is the Importance Sampling paradigm as described 
by (Cappé et al. 2007): simulating samples under an instrumental distribution and then 
approximating the target distributions by weighting these samples using appropriately defined 
importance weights. The reader is referred to (Cappé et al. 2007) and (Kantas et al. 2015) for 
a deeper explanation of SMC and its application to parameter estimation. The method used
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here is inspired from the Iterated Batch Importance Sampling algorithm (Chopin 2002). It is
described on Fig. 2.

Figure 2. Principle of the Sequential Monte Carlo algorithm

The algorithm starts with the generation of a population of  Nθ particles drawn from a prior 
distribution p ( θ ). Each parameter is assigned an initial state x0 and weight. At each time step t,
a Kalman filter computes the states x(

t 
j) and likelihood Lt

( j) associated to each particle θt
( j). By 

this operation, the population of particles is updated so that at each time t they are a properly
weighted sample from p (θ∨ y1: t ). After several time steps, there is a risk that only a few of the 
initial particles are significantly more likely than the others and concentrate most of the total 
weight: a resampling step is then performed to generate a new population of particles from the 
most influential ones, and a MCMC rejuvenation step then restores the diversity of particles 
(Murray 2013).

Resampling does not occur every time a new observation becomes available, but only when 
required: this is measured by the effective number of particles that significantly contribute to 
the total weight of all particles (Murray 2013). This operation decreases the number of unique 
particles, hence the subsequent MCMC rejuvenation step that restores diversity. The choice of 
the proposal distribution for the MCMC rejuvenation step was proposed by (Chopin 2002)
and ensures a reasonable acceptance ratio while leaving p (θ∨ y1: t ) invariant. The rejuvenation 
step makes the algorithm quite computationally expensive, since the total likelihood of all 
particles must be recalculated every time resampling occurs. This problem is mitigated by the 
fact that particles can be resampled independently, making this effort parallelizable.

RESULTS
The MMH and SMC algorithms were used to estimate the parameter vector θ, either off-line 
or on-line, using the batch of measurements shown on Fig. 1 from the RRTB test cell 
represented by a 2R2C model (Eq. 1). First, the sufficiency of the 2R2C model to recreate the 
indoor temperature time series in checked. This is ensured by the autocorrelation function of 
the residuals after parameter estimation shown on Fig. 3.
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Figure 3. Autocorrelation of one-step prediction residuals

As pointed out by (Madsen and Holst,  1995),  the low value of this  function ensures that
residuals are uncorrelated and thus are close to white noise, in accordance with the hypothesis
is  the model.  This  observation  allows  us  to  analyze  the  parameter  estimation  results.  All
estimation results from both MMH and SMC are assembled into Fig. 4.

a) Sequential estimation of HLC b) Comparison of MMH and SMC: HLC

c) Comparison of MMH and SMC: C d) Comparison of MMH and SMC: k
Figure 4. Parameter identification results

First, Fig. 4(a) shows the progression of the estimation of the parameter R1 by SMC during the 
six days of measurements. The blue area denotes the mean and the 95% confidence region of 
R1 at each time coordinate. The indoor heating power and solar irradiance are superimposed 
over  it  and  allows  the  interpretation  of  the  estimation.  During  the  first  three  days  of 
measurements, the value of  R1 can be seen to narrow down to a more confident estimation 
during  the  day,  when  the  solar  irradiance  is  positive.  An  important  uncertainty  however 
remains on this parameter. The heating is then turned on inside the test box, which causes the 
estimation  to  narrow  down  more  abruptly.  These  results  are  consistent  with  the  general 
knowledge that  some indoor solicitations  are  necessary to  make a building  energy model 
identifiable.  The  originality  of  the  present  study  is  that  we  can  observe  the  information 
brought to the parameter estimates in real time.
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The  performance  of  SMC  is  then  compared  to  the  MMH  algorithm,  which  estimates
parameters from a single batch of data at once. Fig. 4(a), 4(b) and 4(c) respectively show
estimates of the heat loss coefficient HLC=1 /(R1+R2), the total heat capacity C=C1+C2 and
the total solar aperture  k=k1+k 2. Each plot shows the prior distribution of these properties,
and their estimation after 2 days, 4 days and 6 days of measurements. The MMH algorithm
had to be run separately with each measurement length, while the SMC algorithm only had to
run  once  to  return  all  results.  Starting  from vague  Gaussian  prior  distributions  for  each
parameter, both methods resulted in mostly matching results.

CONCLUSION
The present study uses the Sequential Monte Carlo method to train a RC model, and thus
estimate a Heat Loss Coefficient, and other parameters, sequentially. Results show the direct
impact of solicitations (solar irradiance and indoor heat input) on this estimation, in real time.
The method is validated by comparing its results with the Metropolis-Hastings algorithm for
off-line estimation.
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