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Abstract 

This paper develops the adaptive elastic net GMM estimator in large dimensional models with 

many possibly invalid moment conditions, where both the number of structural parameters and 

the number of moment conditions may increase with the sample size. The basic idea is to 

conduct the standard GMM estimation combined with two penalty terms: the quadratic 

regularization and the adaptively weighted lasso shrinkage. The new estimation procedure 

consistently selects both the nonzero structural parameters and the valid moment conditions. At 

the same time, it uses information only from the valid moment conditions to estimate the selected 

structural parameters and thus achieves the standard GMM efficiency bound as if we know the 

valid moment conditions ex ante. It is shown that the quadratic regularization is important to 

obtain the efficient estimator. We also study the tuning parameter choice, with which we show 

that selection consistency still holds without assuming Gaussianity. We apply the new estimation 

procedure to dynamic panel data models, where both the time and cross section dimensions are 

large. The new estimator is robust to possible serial correlations in the regression error terms. 
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1 Introduction

Structural parameter estimation with endogenous regressors is a very common issue in applied

econometrics. For proper inferences, however, researchers need to choose the valid instruments or

moment conditions as well as the correct structural model before estimation. When the number

of moment conditions is small and fixed, the moments/models are normally justified using some

based on some economic theory or intuition; pre-testing procedures based on over-identifying re-

strictions tests are also commonly used, though any ad hoc moment/model selection could affect

the post-selection inferences (e.g., Leeb and Pötscher, 2005). Such issues gain more importance in

high dimensional models since we have a higher chance of misspecification with many endogenous

regressors and many instruments/moment conditions. Unfortunately, the standard statistical tool

may not be used immediately with a large number of instruments. For example, the standard

over-identifying restrictions test or some moment/model selection procedure (e.g., Andrews, 1999;

Andrews and Lu, 2001) are computationally challenging and hard to be generalized to the case of

large dimensional models; they may not even follow the standard asymptotics (e.g., Newey and

Windmeijer, 2009; Lee and Okui, 2012). Therefore, with many endogenous regressors and many

moment conditions, the validity of moments and selection of the model come to the fore. In this

case, shrinkage methods can be useful.

Since the valid moment conditions depend on the validity of the instruments as well as the

correct model specification, in fact, they should be considered together. However, the existing

literature on the shrinkage GMM/two-step method mostly does not question on the validity of the

instruments; it is normally assumed that all the available instruments are valid (i.e., orthogonal to

the structural error). For example, a seminal paper by Belloni, Chernozhukov, Chen, and Hansen

(2012) introduces a heteroskedasticity consistent lasso estimator and provides finite sample perfor-

mance bounds, but it focuses on the optimal instrument selection given that all the instruments

are valid. Caner and Zhang (2014) consider the adaptive elastic net GMM estimation with many

structural parameters and instruments, but they assume all the instruments are valid.

This paper develops the adaptive elastic net GMM estimator in large dimensional models with

many possibly invalid moment conditions, where both the number of structural parameters and

the number of moment conditions may increase with the sample size. The basic idea is to conduct

the standard GMM estimation combined with two penalty terms: the quadratic regularization

2-penalty and the adaptively weighted lasso shrinkage 1-penalty. So the key contribution of
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this paper is to handle both the valid moment condition (or instruments) selection problem and

the correct model selection problem simultaneously. The new estimation procedure is shown to

consistently select both the nonzero structural parameters and the valid moment conditions.

Furthermore, the new estimator uses information only from the valid moment conditions to

estimate the selected structural parameters and thus achieves the standard GMM efficiency bound

as if we know the valid moment conditions ex ante. To achieve the efficiency bound, it is shown that

including the 2-penalty of the quadratic regularization is important in this particular problem. It

is because this ridge penalty controls for the possible (near) multicollinearity problem among the

instruments in the first stage regression, so that it allows for the estimation procedure to select all

the valid instruments even when they are highly correlated with each other. Apparently, including

more valid instruments will improve the efficiency of the GMM estimator.

We also discuss about the tuning parameter choice by developing a BIC-type criterion, based on

which we can still achieve the model/moment selection consistency. Unlike the results in the statis-

tics literature (e.g., Wang, Li, and Leng, 2009), our selection consistency result is obtained without

assuming Gaussianity. In addition, this paper shows that the Least Angle Regression (LARS) algo-

rithm by Efron, Hastie, Johnstone and Tibshirani (2004) can be extended to our large-dimensional

GMM framework. This algorithm gives a great computational advantage over downward or upward

testing procedures, especially in this large-dimensional setup. As an illustration, we apply the new

estimation procedure to dynamic panel regression models with fixed effect, where both the time and

cross section dimensions are large. The new estimator can be useful since it is robust to possible

serial correlations in the error terms of dynamic panel regressions.

There are some studies, that are closely related with the current paper, on the shrinkage method

with increasing number of moment conditions. Gautier and Tsybakov (2011) provide finite sample

performance bounds for Danzig selector when there are large number of invalid instruments. Fan

and Liao (2012) analyze the ultra high dimensional case when the number of moments are larger

than the sample size. Cheng and Liao (2013) provide asymptotic results in adaptive lasso when

there are many invalid moments. However, the current paper is different from the aforementioned

ones in the following sense. First, we develop the adaptive elastic net GMM estimation procedure,

which selects both the correct model and the valid moment conditions at the same time, when both

dimensions are large. Second, unlike the lasso method, by including the 2 penalty as well as the

1 penalty, we are able to control for the multicollinearity problem among the instruments so that

we can achieve the efficient GMM estimator. Also note that, though the current paper appears

2



similar to Caner and Zhang (2014), their technical aspects are fundamentally different because we

allow for invalid moment conditions.

The remainder of the paper is organized as follows. Section 2 introduces the basic setup and the

adaptive elastic net GMM estimator. Section 3 provides some technical assumptions and develops

the oracle property of the new estimator. As an illustration, the new estimation procedure is

applied to dynamic panel data regressions. Section 4 discusses some computational issues including

tuning parameter choice based on BIC-type criterion and computational algorithm using the LARS.

Section 5 provides simulation results and Section 6 concludes. Proofs are given in the Appendix.

2 Adaptive Elastic Net GMM

2.1 The setup

We consider a structural equation given by

 = 
00 +  (1)

for  = 1 2 · · ·  , where  is the  × 1 vector of endogenous regressors and 0 is the  × 1
true structural parameter vector. We assume the  × 1 vector of instrumental variables . For

simplicity, we assume all variables are demeaned. We allow that both the number of endogenous

regressors  and the number of instruments  increase with the sample size . However, we assume

that some components of 0 are zero so that the true model has a sparse representation. We denote

0 as the number of nonzero components of 0. Similarly, we assume that the set of -number of

instrumental variables  is a mixture of valid (i.e., they are uncorrelated with ) and invalid (i.e.,

they are correlated with ) instruments. We denote 0 as the number of invalid instruments in ,

that is 0 corresponds to the number of nonzero components of the × 1 moment condition vector
[].

Though we have limited information about the validity of the moment conditions, we presume

a minimal set of valid moment conditions in . We assume that at least (−)-number of moment
conditions are valid, where  ≤ ( − ) ≤ ( − 0) so that 0 in (1) is well identified. In this case,

 is the maximal number of invalid moment conditions such that 0 ≤ , which is restricted as

( + ) ≤   . Note that we assume    and    but  +  can be larger than .1 More

1We do not consider the case of    in this paper, which is completely a different problem. For the case of

convex loss with exogenous covariates, recently Caner and Kock (2014) handle oracle inequalities and estimation

errors. Note that the techniques are entirely different from this paper because of the singularity of Gram matrix.
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precisely, we rewrite the  moment conditions as

[]− 0 = [( −
00)− 0] = 0 (2)

for each  = 1 2 · · ·  , where  is the  ×  matrix given by⎡ ⎤
0

 ⎣ −
= ⎦



with 0  being the (−)  matrix of zeros and  is the identity matrix with rank . The  1− ×  ×
vector 0 includes all the 0-number of nonzero components of the moment condition []. For

example, when all the moment conditions are valid and the researcher also believes so, it is simply

the case of  = 0, yielding the standard GMM case with [] = 0.

Note that some of the elements of 0 can be zero since 0 ≤ . Therefore, the subset of moment

conditions [] that correspond to the first-block of  (i.e., 0 ) are the minimal set of valid−

moment conditions, which are required to know for identification, whereas the moment conditions

that correspond to the second-block of  (i.e., ) are potentially invalid moment conditions. The

main purpose of this paper is to develop a simultaneous procedure of model selection (i.e., choosing

the regressors that correspond to nonzero 0) and valid moment condition selection (i.e., choosing

the instrumental variables in  that are uncorrelated with ) among this set of potentially invalid

moment conditions, as well as efficient estimation of the nonzero components of the structural

parameters 0.

2.2 The adaptive elastic net GMM estimator

For estimation, we generalize the adaptive elastic net estimation of Zou and Zhang (2009) to the

GMM setup. The basic idea is to conduct the standard GMM combined with two penalty terms

(i.e., the quadratic regularization and the adaptively weighted lasso shrinkage) so that both nonzero

0 and valid moment conditions in (2) are correctly chosen as well as their consistent estimators

are obtained simultaneously. We let  = (1 · · · )
0 and similarly for  ,  and . We define aP × 1 vect r  P

o  =  0 = =1 , a × (+ ) matrix  = [
0 ] = =1[

0  ], and a

(+ )× 1 vector of parameters 0 = (00  00)0 ∈ R+. In this setup, the adaptive elastic net GMM

estimator for 0 is defined as ⎧ ⎫µ ¶ ⎨ X+ X+ ⎬
ˆ 2

arg 0 ˆ = 1 + min ( − ) ( − ) +  
2

∗
1 ̂ 
=1

|+ 2


| 2

 ⎩  (3)⎭
=1
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from the moment condition (2), where ̂ is some × symmetric and positive definite weight matrix,
and ∗1 and 2 are some positive tuning parameters. {̂}+=1 are some data-dependent weights and

they are usually obtained as ̂ = |̂|− with some   1, where ˆ ˆ ˆ = (1 · · ·  +)0

denotes the (naive) elastic net estimator. ̂ is obtained by minimizing (3) with ̂ = 1 for all 

and without the scaling factor 1 + 2
2:⎧ ⎫⎨ X+ X+ ⎬

̂  − )
0 ˆ= argmin (  ( 2⎩  − ) + 1  + 2  , (

 ⎭
=1

| |
=1

in which 1 can be difference from ∗1 in (3). So in practice, we run elastic net to obtain data

dependent weights ̂ in the first step and run the adaptive elastic net using ̂ in the second step.

See Zou and Zhang (2009) for further details in the context of the least squares adaptive elastic

net estimator.

Note that the scaling factor 1+2
2 in (3) will undo the shrinkage from the ridge penalty and

thus reduce extra bias caused by double shrinkage. Unlike the least squares case, however, we use

a finite sample correction of 1 +  2
2 instead of 1 + 2 that is used by Zou and Zhang (2009)

and Caner and Zhang (2014). The reason for this different scaling factor becomes clear later, but

intuitively it is because the GMM objective function is of the quadratic form of the sample average,

whereas the least squares objective function is simply the sample average.

The objective function in (3) includes two penalty terms. The first 1 penalty term corresponds

to the adaptively weighted lasso shrinkage of Zou (2006) for both 0 and 0, which results in consis-

tent model (for nonzero components of 0) and moment (for nonzero components of 0) selections.

On the other hand, the second 2 penalty term, which corresponds to the quadratic regularization,

is included mainly for the moment selection problem.2 Basically it will resolve possible collinearity

problem particularly among the instrumental variables . Note that introducing the 2 penalty

allows the procedure to select all the valid instruments even when they are highly correlated with

each other. Using more number of instruments will improve the predictability from the first stage

regression, which results in more efficient estimator of 0. Moreover, in this setup, including the 2

penalty will result in a less biased estimator of 0.

For example, suppose that there are two invalid instruments that are highly correlated. Without

this 2 penalty, the 1 penalty will choose only one of them as an invalid one, which will result in

that the other remains in the pool of valid instruments. Apparently, this result will yield a biased

2Note that if the main purpose is to predict , then adding the 2-penalty also improves the predictability of (1)

as emphasized in Zou and Hastie (2005).

5

4)



estimator of 0. On the other hand, when both of the highly correlated instruments are valid and

if the 1 penalty only choose one of them, then it will result in less efficient GMM estimator. Note

that when we include the 2 penalty, those two instruments are more likely to be selected (or not)

together. This idea is confirmed in the simulation studies below, in which the RMSE estimate of the

structural parameter estimators is smaller with the inclusion of the 2 penalty when the correlation

between valid instruments is high.

3 Statistical Theory

3.1 Assumptions

We first provide technical conditions for the main theorems. We suppose triangular arrays Υ =

(
0  

0  )0 ∈ R++1 for  = 1 2 · · ·   and  = 1 2 · · · defined on the probability space
(ΩB ), where the probability measure  can change with . For the sake of simplicity, we

assume {Υ} are independent and identically distributed across  for each , though they do not

need to be identically distributed. All parameters that characterize the distribution of Υ are

implicitly indexed by  and hence by . We suppress the subscript  to simplify the notation

though.

We first let

 =  −[] =  − 0 (5)

for each , based on which the moment condition (2) can be simply rewritten as [] = 0. Through-

out the paper, we let → denote the convergence in probability, and |||| = [(0)]12 for any

matrix .

Assumption 1. (i) k̂ −k→ 0 as →∞, where  is a × symmetric, bounded and positive

definite matrix. (ii)   


 =1 are independent and identically distributed over . We also haveP { }
k−1 

=1 
0
 −  k → 0 as  → ∞, where  is a  ×  symmetric, bounded and and positive

definite matrix. (iii) k−1 0 −Σk→ 0 as →∞, where Σ is a  ×  bounded matrix of full

column rank .

As noted in Newey and Windmeijer (2009), Assumption 1 restricts the rate at which  can grow

with the sample size , which is frequently used in the many (weak) moment literature. Assumption

1-(ii) defines the variance matrix of  or equivalently that of , which takes into account the effect

of moment invalidity. Assumption 1-(iii) assumes that all the instruments  are strongly correlated
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with the endogenous regressors  so that Σ has full column rank.
3 It also implies that

k − − k→ 1 Σ 0,

where Σ = [Σ  ] is a  × (+ ) matrix of full column rank (+ ). It follows that, for each

given ,

0  Eigmin(Σ0Σ ) and Eigmax(Σ0Σ ) ∞,

where Eigmax(·) and Eigmin(·) denote the maximal and the minimal eigenvalues of a matrix,
respectively, since is a × symmetric, bounded and positive definite matrix. From Assumption

1-(i), therefore, (6) and (7) implies that there exist positive constants  and , which do not depend

on , such that

Eigmax(−2
0 ̂ ) ≤  ∞ and ˆEigmin(−2

0  ) ≥   0 (8)

with probability approaching one (w.p.a.1, hereafter) from Newey and Windmeijer (2009, Lemma

A0). Similarly, from Assumption 1-(iii), we also have

Eigmax(−2̂
0 ̂ ) ≤  ∞ (9)

w.p.a.1, which will control for the second moment of the estimators when there are many invalid

instruments.

We let A = { : 0 = 0  = 1 2 · · ·  + }, which collects the index of nonzero coefficients in
0. The minimum absolute value of the nonzero coefficients is denoted as

 = min
∈A

|0|,

which may depend on  and possibly local to zero. We impose conditions on the tuning parameters

as follows. Note that the tuning parameters 1 
∗
1, and 2 all diverge to infinity as →∞.

Assumption 2. (i) lim  →∞ ∞ and lim ( + )  1 for some 0→∞ ≤  ≤   1,

where ( + ) ≤  for any . (ii) There exist positive constants  and  satisfying   (− 3) 
(1 − ) − . (iii) 22k0k23 → 0 and 21

3 → 0 as  → ∞. (iv) ∗21 ( + )32 → 0 but

∗21 −(1−) →∞ as →∞.
3Under the case with many weak moment conditions, GMM estimation normally yield inconsistent estimators

(e.g., Newey and Windmeijer, 2009). For Lasso type estimators, same problem is pointed in Caner (2009) by showing

that even with fixed number of instruments only nearly-weak asymptotics can give consistent estimates. We think

that many weak moment case will be interesting but it needs to be handled in the GEL or CUE framework, which is

outside the scope of this paper.

7

(6)

(7)
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Assumption 2 establishes the rates for tuning parameters as a function of the total number of mo-

ment conditions and the number of parameters. Note that the total number of moment conditions

 can come arbitrarily close to the full sample size  when  is close to one.4 Recall that  is

chosen for defining the weights in the lasso penalty (i.e., ̂ = |̂|−), and thus  is closely
related with the degree of penalty on the small coefficients. Assumption 2-(ii) requires that  is to

be chosen such that   (+)(1−), where the same conditions can be found in Zou and Zhang
(2009) when  = . Once  is determined, the tuning parameters 1 

∗
1, and 2 are to be chosen

according to Assumptions 2-(iii) and (iv). Note that these conditions allows for larger values of the

tuning parameters than those of Zou and Zhang (2009) or Caner and Zhang (2014), though we can

still choose smaller values similar to theirs. The constant  is introduced for the technical reason

proving selection consistency.

It is important to note that Assumption 2-(iv) allows the nonzero coefficients to be local-to-

zero but it restricts the rate at which the nonzero coefficients should vanish so that they can be

distinguished from the true zero coefficients. In fact, from this condition, we are able to come up

with the lower bound of the local-to-zero rate of : if a nonzero coefficient is local-to-zero but it

vanishes faster than this rate, it cannot be selected as nonzero in our adaptive elastic net GMM

procedure. Apparently this condition also imposes restrictions on the tuning parameter ∗1 for

the 1 penalty in (3) so that we can achieve the selection consistency in Theorem 1 below. In

comparison, Assumption 2-(iii) on 1 for the 1 penalties in (4) and (11) is required to obtain an

asymptotically negligible upper bound of the estimation error of the elastic net estimator.

The lower bound of the local-to-zero rate of  depends on the number of structural parameters

, the number of moment conditions , and the maximal number of (potentially) invalid moment

conditions . If either the number of moments or parameters increases, then the required lower

bound of the threshold defining the local-to-zero parameter gets larger. For example, we suppose

 = −1 for some   0. Then Assumption 2-(ii) and (iv) imply that

∗21 (+ )32 = ∗21 +(2)−3 → 0

for some positive constant   1, and thus

−+(1−)+(2)−3 →∞
4 If max 4

1  max1   () ∞ as Newey and Windmeijer (2009, p.706), where  is the th instrument≤ ≤ ≤ ≤ 

of , we need 
2→ 0 to satisfy Assumption 1-(i). Since  = () and (+ ) = (), however, it restricts that

0 ≤  ≤   12.
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as ∗21 −(1−) →∞, which requires −+ (1− )   + (2)− 3 or
2

  ∗.
(1− )−  − + 3

≡

Note that ∗  0 since   0 and (1−)−−+3  0 from Assumption 2-(ii). Since  = ()

and ( + ) = () in Assumption 2-(i), it thus follows that the lower bound of the local-to-

zero rate of  increases as the number of moment conditions  (i.e., the size of ) or the number

of parameters  +  (i.e., the size of ) gets larger. As an illustration, when the system is just

identified with  =  = 12, we have   2 and 7  2  5 +  from Assumption 2-(ii), which

can be satisfied with  = 4 and  = 4. The true local-to-zero but nonzero coefficients thus cannot

vanish faster than −1
∗
= −116 in order to be selected as nonzero. For example, even when

 = 105,  = min  is about 05 in this case. This illustration shows that in an environment∈A | 0|
with many moments and/or parameters, it will be difficult to do perfect model selection unless the

coefficients are large enough.

We let  = (0   0 )0, which collects the nonzero parameters in  . Then  is an A A A 0 A 0×1 nonzero
subvector of 0 that represents invalid moment conditions. We also let  = [0

0  A −00 0 ]
0. The

last condition is useful to obtain the Lyapunov condition in Theorem 2 below, which is similar to

what Zou and Zhang (2009) assumes in the context of simple least squares.

Assumption 3. max1≤≤ k− 12( 2
 −   )A A k → 0 as →∞.

(10)

3.2 The oracle property

For analytical convenience, we define⎧ ⎫⎨ X+ X+ ⎬
ˆ ˆ = argmin ( − )

0 ( − ) +  ̂ |⎩ 1  |+ 2 2 (11)
 ⎭

=1 =1

for nonnegative tuning parameters 1 and 2, where 1 is introduced in (4) and ̂ = |̂|−

in (3). Apparently, this estimator becomes the elastic net GMM estimator in (4) when ̂ = 1

for all ; or the adaptive elastic net GMM estimator in (3) with the scaling factor 1 + 2
2 and

the tuning parameter ∗1 instead of 1. We first obtain the risk bound of this interim estimator,

which is useful to obtain the selection consistency in Theorem 1 and the asymptotic normality in

Theorem 2 below.5

5This result seems quite similar to that of Zou and Zhang (2009). But this result is obtained w.p.a.1 since

we consider stochastid regressors in the GMM setup; whereas Zou and Zhang’s result is exact since they consider

deterministic regressors in the least squares setup.
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Lemma 1. Under the model (1), (2) and Assumption 1, we have

2 2
Pk +

2 0k2 +3 + 1( =1 ̂
2

ˆk − 0k2 ≤  )
4 and

(2 + 2)2

2  2 +3
kˆ 0 + 2(+ )

 0k2 − ≤ 4 2k k 1

(2 + 2)2

w.p.a.1, where  and  are some positive constants given in (8) and (9).

Since the risk bounds in Lemma 1 go to zero as →∞ under Assumptions 1 and 2, both ̂ and

̂ are consistent estimators of 0. Therefore, we can use ̂ to construct the adaptive weight

̂ in (3). Notice that, as in Zou and Zhang (2009) and Caner and Zhang (2014), the upper bounds

are formulated using k0k2 instead of the sparsity of the vector 0 (i.e.,  + ). In comparison,

the sparsity index is commonly used in the high dimensional models literature (e.g., Belloni, Chen,

Chernozhukov, and Hansen, 2012), which is because of singularity of the design matrix.

Note that the mean squared error expressions depend inversely on , which is a lower bound of

the minimum eigenvalue of −2
0 ̂ defined in (8). When the regressors are highly correlated

with each other,  can be close to zero. In this case, without the tuning parameter 2 in the

denominator (e.g., lasso or adaptive lasso), the error bounds in Lemma 1 can be quite large. This

implies that the error bound of the adaptive elastic net estimator will be smaller than that of the

adaptive lasso estimator when  is close to zero because of highly correlated regressors.

We now obtain one of the main results: the selection consistency. This result shows that the

adaptive elastic net GMM procedure automatically selects the valid moment conditions as well as

the relevant regressors in the structural equation. This extends Zou and Zhang (2009) in two ways:

it finds the relevant regressors in the linear GMM setup instead of the linear least squares case; it

also tells if each moment condition is valid or not.

Theorem 1. Under Assumptions 1 and 2, the adaptive elastic net estimator ̂ in (3) satisfies the

selection consistency:  ({ ˆ :  = 0} = A)→ 1 as →∞.

The selection consistency in Theorem 1, which mainly comes from the 1 penalty in (3),
6 means

that the true nonzero coefficients are to be selected as nonzero. For some local-to-zero coefficients,

they are to be concluded as nonzero coefficients provided that they vanish slower than the lower

bound of the local-to-zero rate in Assumption 2. As we discussed after Assumption 2, however, it

6 In principle, we expect that the same goals can be achieved using different types of penalties that possess the

oracle property such as Bridge (e.g., Huang, Horowitz and Ma, 2008) and SCAD (e.g., Fan and Li, 2001).
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will be difficult to do perfect model selection unless the nonzero coefficients are large enough in an

environment with many moments and/or parameters. For example, if we suppose  = (−1) for

some   0, the lower bound of the local-to-zero rate is given by (−1
∗
), where ∗ given in (10) is

normally much larger than 2. In this sense, Theorem 1 extends Leeb and Pötscher (2005)’s criticism

to the context of many parameters. Recall that, in the case with fixed number of parameters, they

found that the minimum order of which a local-to-zero coefficient is to be distinguished from zero

is −12, that is smaller than −1
∗
for ∗  2.

As the second main result, we derive the limiting distribution of the adaptive elastic net GMM

estimator of the nonzero coefficients  = (0   0 )0 in the following theorem. Caner and ZhangA A A

(2014) also obtain the limiting distribution of the GMM estimator via adaptive elastic net, but

their focus is in choosing the nonzero structural parameters of 0 when all the moment conditions

are assumed to be valid. We denote the true number of nonzero structural parameters as 0 with

1 ≤ 0 ≤  and the true number of invalid instruments as 0 with 1 ≤ 0 ≤ , so that  is A 0 × 1
and  is A 0 × 1. We further define a (0 + 0)× (0 + 0) matrix given by

Σ = Σ0A  :  −1ΣA  : ,A

where Σ : = [Σ:   ] is a full column rank ×(0+ matrixA A 0) and Σ: is a full column rankA A

 × 0 matrix. Recall that  = [00A    ]0. From the conditions on Σ and  in Assumption−00 0 

1, Σ is symmetric, bounded and positive definite.A

Note that Σ: is defined fromA k−1 0A−Σ:Ak→ 0, which holds from Assumption 1-(iii),

where  is an  × 0 matrix that consists of the (endogenous) regressors corresponding to theA

nonzero structural parameters. Then using a similar argument as (6), we have

k−1 :A −Σ :Ak→ 0,

where  : = [ 0  ] is a A A A × (0 + 0) matrix.

Theorem 2. We let ̂ be the adaptive elastic net GMM estimator in (3) that corresponds to  .A A

We also let ˆ ˆ =  −1, where ̂ is some consistent estimator of  . Under Assumptions 1-3, the

limiting distribution of ̂ is given byA³ ´
ˆ 1

0+0 + 2
−

ˆ 12 ˆ 
 0

A
 −12(  ) (0 1) as  ,

1 + ( 2
2 )

A A − A → N →∞

where ̂ = 
0 ˆ
:  −1 : and  is an arbitrary (A A A 0 + 0)× 1 vector with kk = 1.
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P
From Assumption 1-(ii), ̂ can be consistently estimated by ̂ = −1  ˆ

=1 ̂̂
0
 and so is  , where

˜ ˜̂ = ( −
0) −  ̃ and (

0
 ̃ 0)0 is the ( + ) × 1 vector of initial adaptive elastic net GMM

estimators in (3) with the weight ̂ = . Since ̂ =  − ˜
0( − 0) −  (̃ − 0) and ˜(

0
 ̃ 0)0P P

is consistent to (00  00)
0, it can be verified that ̂P k −  k ≤ k −1 =1 ̂̂

0
 − −1 

=1 
0
k +

k−1  

=1 
0
 −  k→ 0 as →∞.

From (12) and (13), we have k̂ k ≤ k ˆ 12 k2 ˆ= 2(−2 0  −1 ) 2( +A A  :A  :A ≤ 0

ˆ 
 )Eigmax(−2 0  −1 2 ˆ
0  :  ) =  ( ( +  )) since −2 0  −1 Σ 0 fromA  :A  0 0 k  :A  :A − Ak →
Assumption 1. Therefore, for some positive constant  ∞, we can obtain° °°° ˆ 1 °° 0+0 + 2

− °A ° − 0+1 + ( 22 ) 0° (14)° ° n o°° ° °°  2 2 °
2 ° ° ˆ( 1

2 ) (−  )− 
0+ +  °° 0 (2 )0+0 ° ° A  °≤ 0+° − 0

0+

−
1 + ( 2) 0°+ °

2 ° 1 + (22
° = (1)

) °
as  → ∞, for  2 ˆ

2 → 0 from Assumptions 2-(iii). This implies that, though  is a consistentAp
estimator of  , the rate of convergence of ̂ is (0 + 0), which is affected by the true numberA A

of invalid moment conditions 0. Therefore, existence of invalid moment conditions makes the rate

of convergence of ̂ slower. When 0 + 0 is fixed, however, it retrieves the optimal rate of
√
.A

Finally, an interesting question is whether we can achieve the efficiency bound of the structural

parameter estimators of  from the adaptive elastic net GMM procedure as if we had known

all valid instruments. Note that it is generally the case if we use the entire valid (and strong)

instruments. Since k−2 ˆ 
 − Σ 0, however, Theorem 2 and the result (14) show thatA Ak →

Σ−1 = (Σ0 1
A  :  − ˆΣ 1

 A  : )
− corresponds to the asymptotic variance of  , which is obtained byA A

letting  =  −1 as in the conventional efficient GMM theory. The following theorem shows that

the asymptotic variance of the true nonzero structural parameter estimator ̂ , which is givenA

by the 0 × 0 north-west block of Σ
−1, is the same as the efficiency bound obtained when weA

only use all the valid moment conditions. We decompose  = [1 2], where 1 represents the

× ( − 0) valid instruments and 2 represents × 0 invalid instruments. More precisely, theyP
satisfy k − 1   P =1 

1 → 0 and k−1 k =1 
2

   −  k → 0, where 1
0 and 2

0 are the th rowA

of 1 and 2, respectively, and  is the 0 × 1 vector collecting all the nonzero elements of A 0.

Theorem 3. We let Σ11 be the 0×0 north-west block of Σ−1, which corresponds to the asymptoticA A

variance of the true nonzero structural parameter estimator ̂ . Under Assumptions 1-3, it holdsA P
that


Σ11 = (Σ0 :  −1 )−111 Σ1: , where 1
A A A k−110 − Σ 1 1 2A 1: → 

1
k−Ak 0 and =1  

0 −
11k→ 0 as →∞.
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Note that the efficiency bound of the true nonzero structural parameter estimator is given by

(Σ01:  −111 Σ
1

1: )
− , which can be obtained by only using all the valid moment conditions (i.e.,A A

excluding all the invalid moment conditions). Therefore, this result implies that even when we

have potentially many invalid instruments, we can still estimate the nonzero elements in 0 as if

we were using only the valid instruments, which gives the oracle result. The adaptive elastic net

GMM estimation does not require any pre-testing for the instruments validity.

It is well known that adding more valid instruments will improve the efficiency in the standard

GMM setup and Theorem 3 manifests that including all the valid instruments is important to

achieve the efficiency bound. As discussed in Section 2.2, therefore, adding the 2 penalty here

is quite important to achieve the efficiency. As shown in Zou and Hastie (2005), the (adaptive)

lasso, which only has the 1 penalty, is more likely to select only one variable among the relevant

variables if they are highly correlated. In our setup, omitting 2 penalty thus could result in selection

inconsistency, which means that the procedure fails to select all the valid moment conditions when

they are highly correlated with each other. Apparently, omitting valid instruments results in

efficiency loss.

3.3 An example: Dynamic panel regression

As an illustration, we consider the following dynamic panel regression model given by

 = 0 1 + 00 + −  +  (15)

for  = 1 · · ·   and  = 1 · · ·   , where |0|  1,  is a scalar,  is a  × 1 vector of strictly
exogenous regressors and  is the unobserved individual effects that can be correlated with −1

or . Under the condition that

[| −1   ] = 0,

where −1 = ( 
1 · · ·   1)

0 and  = (01 · · ·  0 )0, we can estimate − 0 and 0 using the

moment conditions given by

[∆∆] = 0 (17)

[
−2∆] = 0 (18)

for  ≥ 2 as Arellano and Bond (1991), where ∆ = −−1 and similarly for ∆ and ∆.

However, the moment condition (18) is vulnerable since it heavily depend on the condition that  is

serially uncorrelated, whereas the moment condition (17) is robust to the possible serial correlations
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in .
7 So, with potentially serially correlated , we have  ≡ ( − 2) + ( − 2)( − 1)2

number of total moment conditions, among which (at most)  ≡ (−2)(−1)2 number of moment
conditions are potentially invalid under the possible serial correlation in . For identification

purposes, however, we need  ≤ ( − ), which corresponds to  + 1 ≤ ( − 2) for all 

and  and is thus satisfied with  ≥ 4. With  → ∞, we allow for    → ∞ in this

case. However, the ratio of the number of moment conditions  to the sample size  =  is

 = ( + ). So in order to satisfy Assumption 2-(i), we need max{} → 0

as  → ∞. But this condition naturally holds for the conventional panel data with large
cross-sectional observations.

More precisely, we let ∆ = (∆3 · · · ∆ )0, ∆(−1) = (∆2 · · · ∆−1)0, ∆ =
(∆3 · · · ∆ )0, ∆ = (∆3 · · · ∆ )0, and the  × ( − 2) instrument matrix  =

[ ]
0, where ⎛ ⎞

∆3 0 · · 0⎜ · ⎟⎜ ⎟⎜ 0 ∆4 0 ⎟
 = ⎜ ⎟⎜ .. . . ⎟ and⎜ .. . .. ⎟⎝ ⎠

0 0 · · · ∆⎛ (−2)×(−2)⎞
⎜ 1 0 0 · · · 0 · · · 0 ⎟⎜ ⎟⎜ 0 1 2 0 0 ⎟

 = ⎜ ⎟
 ⎜ .. . . ⎟ .⎜ .. . .. ⎟⎝ ⎠

0 0 0 · · · 1 · · · −2
(−2)×((−2)(−1)2)

Then, with possible serial correlations in , we have the  × 1 moment condition

 [∆ − 0] = 0

for each  as (2), where 0 is a ×1 vector of unknown parameters. The adaptive elastic net GMM

7Under an additional condition of the mean stationarity (i.e., [] =  for all  and ), we further have

[∆ 1( −  1 − 0)] = 0 for  ≥ 2 as Blundell and Bond (1998) and Bun and Kleibergen (2013). When− −

 is close to one, the moment condition (18) is prone to have weak identification (i.e., weak instrument problem)

whereas this new moment condition is robust to such a persistency. We could find valid more moment conditions (e.g.,

[− ∆] = 0 for some   2 under m-dependence type restriction on ; [∆∆] = 0 for  = 2 · · ·  
under strict exogeneity of ; or second moment restrictions with homoskedasticity assumption) but we only consider

the most conventional moment conditions given as (18).
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estimator of 0 = (0 
0
0 

0
0)
0 is then given byµ ¶ (Xˆ 2

 − ˆ = 1 + arg min ((∆ − ∆( 1) ∆)− )0
( )2 =(0 0)0

−
=1 ⎫X+ X+ ⎬

×((∆ − ∆( 1) −∆)− ) + ∗1 ̂ | | 2
 + − 2 ⎭

=1 =1

for some positive definite × weight matrix ̂ , where + = (+1)+( −2)( −1)2. For the
choice of the optimal weight matrix, we first obtain the elastic net estimator ˜ ˜ = (˜ 

0
 ̃ 0)0 with

ˆ ˜ =  and let ̂ = (∆− ̃∆(−1)−∆)− ̃ . Then the optimal adaptive elastic net GMMP
estimator can be obtained using ̂ = |̃ |− and ˆ  = ( 1

=1 ̂̂
0
)
− as discussed after Theorem 2.

4 Computation

4.1 Tuning Parameter Selection

One important issue of penalized estimation is the choice of the tuning parameters. The con-

ventional approach is to choose the tuning parameters based on some information criterion. For

example, Wang, Li, and Leng (2009) show that, for shrinkage estimation of linear models, BIC can

be used to select the tuning parameter that produces correct model selection w.p.a.1. Similarly, we

also consider the following BIC-type information criterion:

ˆ = (()) + |S| ln()max{ln[ln(+ )] 1},

where  = (∗1 2)0 is the vector of tuning parameters and ̂() is the adaptive elastic net GMM

estimator defined in (3) indexed by . ˆ ˆ ˆ ˆ(()) = −1( −  ())
0 ( −  ()) is the

-statistic of GMM and S = { ˆ : () = 0} denotes the collection of nonzero estimates given
. This criterion is also similar to the BIC-type criteria of Andrews (1999) and Andrews and Lu

(2001). But note that the -statistic ˆ(()) in (19) is based on the recentered moment conditions

(i.e., [( − 
00) − 0] = 0) that accommodate the invalid moment conditions, whereas

Andrews (1999) and Andrews and Lu (2001) do not consider such recentering. We choose the

tuning parameters by minimizing :

̂ = argmin  (20)
∈Λ

for some finite choice set Λ. Note that the term ln[ln( + )] is to handle the case of a diverging

number of parameters as in the current setup.
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In this case, the key question is, even with the tuning parameters ̂ selected from (20), whether

or not the adaptive elastic net GMM estimation still yields selection consistency under the case of

a diverging number of parameters:  (Sˆ =
A) → 1 as  → ∞. In order to verify this result, we

need the following condition. We let a  × 1 vector ̃ 2
 =  −1  and ̃ be the th element of ̃,

where  is given in (5).

Assumption 4. For any   0, there exists a positive constant 0  ∞ not depending on  such

that Ã ¯ ¯ !¯X X¯  ¯ ¯ 0(log)
12

 max ¯
1≤ 

√ ̃¯ ¯  
  ¯≤

=1

≤ ,


=1 P
where  are some constants satisfying


max1   2 ≤  ¯ ∞, and  is≤ ≤ =1 some integer with

 ≤  but →∞ as →∞.

This assumption regulates the tail behavior of ̃, but it does not restrict the distribution family

or the dependence structure in ̃ over . Note that we can obtain the same result as Lemma

1-(ii)-(a) of Huang, Ma, and Zhang (2007) if we let ̃ be uncorrelated over  and  with  (|̃| 
0) ≤ 1 exp(− 

20) for some positive constants 0, 1, 2, and 1 ≤  ≤ 2, which can be easily
satisfied when ̃ is independent over  and uncorrelated multivariate normal for each . (In this

sub-Gaussian case,  = 2.)

The following theorem obtains the selection consistency of the adaptive elastic net GMM estima-

tion even when the tuning parameters are selected by (20). We do not suppose that ̃ is Gaussian

here. So this result extends that of Wang, Li, and Leng (2009), which assumes the Gaussianity of

the linear regression error terms. Recall that  = min∈A |0|.

Theorem 4. If 2((+) ln() ln[ln(+)])→∞, then under Assumptions 1, 2 and 4, we have
 (Sˆ = A)→ 1 as →∞, where ̂ is given in (20).



4.2 Optimization algorithm

Though we can run the adaptive elastic net GMM as (3) directly, we can consider more efficient

algorithm for computation. More precisely, we discuss how to apply the LARS algorithm of Efron,

Hastie, Johnstone and Tibshirani (2004) to the case of the adaptive elastic net GMM estimation.

Basically, we first reformulate the adaptive elastic net GMM problem into a lasso problem by

extending Lemma 1 of Zou and Hastie (2005) using the Algorithm 1 of Zou (2006, Section 3.5).

Then we apply the LARS algorithm on this transformed problem, in which we also consider tuning
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parameter selection as described above. Note that the tuning parameter choice preserves selection

consistency of the parameter estimates.

To describe the algorithm, we define the naive adaptive elastic net GMM estimator as⎧° ° ⎫⎨° °2° X+ ° X+ X+ ⎬
̂ = arg min ° ˆ° 12

  °
 − ˆ 2

  1
  ° + 1

∗ ̂ 2 2  +  ,
=(1··· +)⎩° =1 ° =1

| | ⎭
=1

whose objective function is simply an unscaled version of (3). ̂ is obtained as the conventional

efficient GMM procedure as described in the previous section. We denote  as the th column

of  . Given the adaptive weights ̂ , we further define ( + (+ ))× 1 vectors given by⎛ ⎞ ⎛ ⎞
̂ 12 ˆ  12

ˆ ˆ ⎝ ˆ − 
= ̂ 1 ⎠ ⎝

 √ and
ˆ   ⎠

  = ,
 2 0+1

where  is the th column of +. Then we formulate a lasso problem as⎧° ° ⎫⎨° + °2° X ° X+ ⎬
ˆ ˆ̂  = arg min ° ˆ⎩° ˆ °

 °  − ° + ° 1
∗ 

=(1··· +) =1

| 

=1

| ,⎭
and we can apply the LARS algorithm on this lasso problem. See Efron, Hastie, Johnstone and

Tibshirani (2004) for further details. Note that for each given  = (∗1 2), we calculate ̂ as

well as  in (19). The choice of  is determined at the smallest level of  as we discussed in

the previous subsection and the adaptive elastic net GMM estimator can be obtained asµ ¶ µ ¶
ˆ 2 ˆ 2

 = 1 +  1
 = 1 + ̂

2 2
−
 ̂

for all  = 1 · · ·  +  at given .

5 Monte Carlo Simulation

In this section, we study the finite sample performance of our estimator. We let  denote a × 1
vector of ones and define the set of valid instruments as⎡ ⎤ ⎛⎡ ⎤ ⎡ ⎤⎞

01 0 Ω0 0
1 = ⎣ ⎦ ∼  ⎦


N ⎝⎣ ⎣ ⎦⎠

1
1 0 0 Ω1

for  = 1 2 · · ·  , where dim(01) = 2(− 0)3, dim(
1
1) = (− 0)3, Ω0 is dim(

0
1)×dim(01),

and Ω1 is dim(
1
1)×dim(11). The ( )-th element of Ω 

0 is set equal to 05
| −| and the ( )-th
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element of Ω1 is set equal to 
|−


|
. We consider  ∈ {050 095 099} to allow for the case where

some of the instruments are highly correlated (when  = 095 in particular). We also define⎡ ⎤ ⎡ ⎤
 00⎣ 0  

 = ⎦ 1 0 + 0
 = ⎣ ⎦ ,

101 11 + 1

where 0 = 2
− dim( )12(2 ⊗ 1

 1 12
dim(0 )) and 1 = (2 + 2 )− (2 t

1
⊗ dim(1 )). In his setup, all the

 1

instruments 1 are valid, and  =dim() = ( − 0)2. Note that we choose ( 0) such that

− 0 is a multiple of 6 to ensure all the dimensions are integers. For the random components, we

let ⎡ ⎤ ⎛⎡ ⎤ ⎡ ⎤⎞
⎢ 1 0 1 0 0 0⎥ ⎜⎢ ⎥ ⎢ ⎥⎟⎢ ⎥ ⎜⎢ ⎥ ⎢ ⎥⎟⎢ 2 ⎥ ⎜⎢ ⎥ ⎢⎢ ⎥ ⎢ 0 1 ⎥⎥⎢ ⎥⎢ 3 ⎥ ∼  ⎜⎢ 0 ⎥ 0 0 ⎟⎟N ⎜⎢ ⎥ ⎢ ⎥⎟⎜⎢⎣ ⎦ ⎝⎣ 0 ⎥ ⎢⎦ 0 0  0 ⎥⎟⎣ ⎦⎠
4 0 0 0 0 0

and define

p
 =

√
1 + 1− 2

√ p
 = [0

0
 1

0
]
0 = 1 ·  + 1− 3

with  ∈ {05 095}. Similarly as Cheng and Liao (2013) and Liao (2013), the 0 × 1 vector of
invalid instruments are generated from

2 = 4 +  A  · 0 ,

where we set  ∈ {03 06 09} that controls the severity of the invalid moment conditions. NoteA

that Σ = [Σ  ] has full column rank even if 2 is uncorrelated with .  is defined as

 = 
00+. For the simulation, we consider the sample size  = 250 1000 and ( 0  0 ) =

(18 3 15 6 42), which implies that dim(01) = 24, dim(
1
1) = 12, dim(2) = 6, dim(0) = 12,

and dim(1) = 6. We also set

0 = [ 01×10  01×5]
0,

where the nonzero structural parameter  is set as  ∈ {025 05 075}. In order to guarantee the
identification of 0, we suppose that we know the first 18 elements of 

0
1 and the first 9 elements

of 11 are the (−)-number of valid instruments; we call them “surely-valid” instruments whereas
we call the rest of the instruments in 1 as “unsurely-valid” instruments. We conduct 2000

replications.
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We summarize the simulation results in Tables 1 to 4. AENet is the estimator proposed in

(3) and is solved by the algorithm in Section 4. We set  = 2 and use the conventional two-

step GMM estimator to obtain the adaptive weight ˆ̂ and the optimal weighting matrix  .

The optimal tuning parameters for ∗1 and 2 are selected by (19) from the grid search over

{001 0025 005 0075 (01 : 005 : 1)} and {001 005 (01 : 01 : 2) 25 3 4 5},
respectively, where the grids (01 : 005 : 1) means it starts with 01 and increases by 005 until

1. ALasso-LARS is the same as AENet except that 2 is restricted to be zero, so ALasso-LARS is

the adaptive lasso GMM estimator solved by the LARS algorithm. ALasso-CL is the adaptive lasso

estimator proposed by Cheng and Liao (2013). The main difference between ALasso-CL and our

estimator is that ALasso-CL does not select variables in the structural equation (1) but only selects

valid instruments in (2). ALasso-CL is solved by the algorithm proposed by Schmidt (2010) and

the tuning parameter is selected following Cheng and Liao’s (2013) suggestion. We let A and A

denote the zero elements in 0 and 0, respectively, so that 0 = (
0  0 )0 and  = ( 0   0 )0,A A 0 A A

where  and  collect the nonzero elements in  pA 0 and  sA 0, re ectively.

Table 1 reports the root mean squared errors (RMSE) of the three estimators, AENet, ALasso-

LARS, and ALasso-CL, when  = 05 and all the valid instruments are relevant. For each case,

the RMSEs of estimators of   ,  ,  , and  are denoted by  ,  ,  and  ,A A A A 1 2 3 4

respectively. First, for each , the RMSEs of  , A A , and  increase when  increases fromA 

05 to 095. This is intuitive because the instruments in 11 are highly correlated when  = 095

and thus provide less information about 1 than the case of  = 05. Second, the RMSEs of the

nonzero structural parameter  are very similar for all three estimators when  = 05. However,A

both AENet and ALasso-LARS have smaller RMSEs for  than ALasso-CL when  = 095.A

Since ALasso-CL does not conduct variable selection, it is not surprising that its estimator for A

is less efficient especially when  = 095. To make the comparison fair, we also look at the moment

selection performance in Table 2 and consider the case with redundant instruments in Table 4.

Table 2 reports the accuracy of moment/instrument selection by different estimation procedures

under the same condition as Table 1. 1 stands for the percentage of replications that yield zero

estimates for   ; 2 for the percentage yielding nonzero estimates for  . First, for the unsurely-A A

valid instruments, all selection procedures perform well in the sense that 1 is close to one.

Second, for invalid instruments, it is not surprising that 2 increases with  because detectingA

invalid instruments gets easier as  gets larger. Third, our estimators outperform ALasso-CL inA

instrument selection when  = 250 or  = 095. When (   ) = (03 025 095) and  = 250,A
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for example, AENet detects 75.8% of the invalid instruments, but ALasso-CL only detects 1.7%. As

 increases to 1000, our estimators can pick up the invalid instruments all the time while ALasso-CL

performs well only for  = 05. Recall that the differences between ALasso-LARS and ALasso-CL

are the algorithm and tuning parameter selection method. It seems that ALasso-CL tends to select

relatively large tuning parameters for  , which results in over-selection of valid moment conditions.

In order to manifest the difference between AENet and ALasso-LARS further, Table 3 sum-

marizes the simulation results when the instruments  are highly correlated with each other (and

so are the regressors ). In particular, we set  = 099 and  = 095, under which we can

also calculate the population correlation between any two variables in 1 lies between 0963 and

0972 with our data generating process. In general, AENet yields smaller RMSEs for A and A

than ALasso-LARS. The difference between AENet and ALasso-LARS vanishes as  increases from

250 to 1000. These results show that adding a ridge penalty is helpful to reduce the RMSEs of

the estimated structural parameters when some instruments are highly correlated or the structural

regression suffers near-multicollinearity.

As for the last experiment, we investigate the performance of our estimators when some in-

struments are redundant. An additional instrument is considered redundant for a given set of

instruments if it does not improve the efficiency of the GMM estimator based on the given set of

instruments. Following Cheng and Liao’s (2013) simulation design, we use irrelevant instruments

to play the role of redundant ones. From the simulation design above, we replace 6 of the unsurely-

valid instruments in 1 with 6 independent standard normal random variables. The simulation

results are reported in Table 4, in which 5 denotes the percentage of replications that yield

nonzero estimates for  for the redundant instruments. Since ALasso-CL is designed to detect the

redundant instruments, its 5 increases with . Though not reported in the table to save space,

extra simulations show that 5 of ALasso-CL is equal to 60.8% for  = 2500. Also, our estimators

cannot detect redundant instruments by design. 5 of AENet and ALasso-LARS is close to zero

regardless of the sample size. However, our estimators have very similar RMSEs to ALasso-CL for

nonzero 0 and smaller RMSEs for zero 0. Hence, our estimation procedure is robust to presence

of a moderate amount of redundant instruments.
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6 Conclusion

This paper develops an adaptive elastic net GMM estimator with possibly many invalid moment

conditions. The number of structural parameters as well as the number of moment conditions are

allowed to increase with the sample size. The moment selection and model selection are conducted

simultaneously. The moment conditions are written in a way to take into account the possibly

invalid instruments. We use the penalized GMM to estimate both structural parameters along

with the parameters associated with the invalid moments. The penalty contains two terms: the

quadratic regularization and the adaptively weighted lasso penalty. We show that our estimator

uses information only from the valid moment conditions to achieve the efficient GMM variance

as if we had known all the valid instruments. The estimator is thus very useful in practice since

it conducts the consistent moment selection and efficient estimation of the structural parameters

simultaneously. We also establish the order of magnitude for the smallest local to zero coefficient

to be selected as nonzero. An algorithm is proposed based on LARS for the implementation of our

estimator. Simulation results show that our estimator have good finite-sample performance.
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Appendix

Proof of Lemma 1 We first define a ridge estimator given by⎧ ⎫⎨ X+ ⎬
ˆ ˆ = argmin ( 2⎩  − )

0 ( − ) + 2  . (A.
 ⎭

=1

We obtain the desired results using

k̂ −  2
 0k ≤ 2k̂ − ̂k2 + 2k̂ − 0k2,

where ̂ is defined in (11) and by deriving the bounds for k̂ − ̂k2 and k̂ −  2
 0k .

For the first term k̂ − ̂k2 in (A.2), we note that

X+ X+
− ˆ 0 ˆ − ˆ |ˆ ˆ2(  ) (  ) + 1 ̂  + 2

=1

| 
=1X+ X+

≤ ( − ˆ ˆ ˆ ˆ ˆ2 )
0 ( − ) + 1 ̂  + 2 , (A.3)

=1

| |
=1

which is from the definition of ̂ and ̂. But we can rearrange (A.3) as

X+ n o n o
ˆ |ˆ ˆ ˆ ˆ

1 ̂ |− || ≥ ( − ˆ 
2

)
0 ( − ) + 2



k
=1

kn o
− − ˆ ˆ(  )

0 ( − ˆ ) + 2k̂k2 , (A.4)

where ⎛ ⎞X+ n o 12X+ X+
ˆ ˆ ˆ ˆ ˆ ˆ̂ ||− |   A

=1

≤ 2
| ̂   ⎝ ̂ ⎠   . ( .5)

 =1

| − | ≤
=1

k − k

Moreover, we find the ridge solution from (A.1) as

ˆ ˆ ˆ = [(
0  ) + 2

1
+]

− [
0 ] (A.6)

yielding

( − ˆ )
0̂ ( − ˆ ) + 2k̂k2

= 
0̂ − ˆ2

0


0 ˆ ˆ + 
0 ˆ ˆ
[

0  + 2+]

=  0 ˆ ˆ 
0 ˆ

 − [
0 ˆ + 2+] (A.7)

since from (A.6)

̂
0
(

0 ̂) = (
0 ˆ ˆ ˆ )[(

0  ) + 2+]
−1(

0 )

ˆ ˆ= 
0
[(

0 ˆ ) + 2+].
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Similarly, we also have

( − ˆ ˆ ˆ )
0 ( − ) + 2k̂k2

= 
0̂ − ˆ ˆ2

0


0 ˆ ˆ  + 
0 ˆ

 [
0  + 2+]

0 ˆ − ˆ0 ˆ ˆ ˆ0 ˆ ˆ=  2[
0  + 2+] + [

0  + 2+] (A.8)

from (A.6). By subtracting (A.7) from (A.8), the right-hand-side of (A.4) satisfiesn o
( − ˆ ˆ )

0 (n − ˆ ˆ ) + 2kk2 o
− ( − ˆ )

0 ˆ ˆ ˆ ( − ) + 2kk2

ˆ= ( − ˆ ˆ ˆ ˆ)
0[

0  + 2+]( − )

≥ [Eigmin( 0 ˆ ˆ ) +  ]k̂ −  k2  2    0 (A.9)

as ̂ is positive definite. Therefore, using (A.4), (A.5), and (A.9), we haveP+ P+
 2 12 2
1( =1 ̂ ) 1( =1 ̂ )

12

k̂ − ̂k ≤ (A.10)
Eigmin(

0 ̂ 2
 ) + 2

≤
 + 2

w.p.a.1 or
2

P+
 ( ̂2)

ˆ ˆ 1 =1 
k −  k2  ≤ (A.11)

(2 + 2)2

w.p.a.1 as Eigmin(
0 ̂ ) + 2  2 + 2  0 from (8).

For the second term ˆ|| − 0||2 in (A.2), we note that from (1)

 =  00 + 0 + (
0− 0) =  0 + ,

where we let  = [
0 ], 0 = (

0
0 

0
0)
0 and  =  0− 0. From (A.6), we thus have

̂ = [(
0 ̂ ) + 2+]

−1[
0 ̂ ( 0 + ) + 20 − 20]

= 0 + [
0 ˆ ˆ ˆ +   1

2 +]
− [

0 ]− 2[
0  + 2

1
+]

− 0 (A.12)

yielding

2 2{2k k22 0 + k
0 ̂ 0

k̂ − 0
k2} {2k ˆ2  k2 + k k2}k ≤ 

) +  2
≤ 2 0

(Eigmin ˆ( 0  2) (2 + 2)2

w.p.a.1 similarly as above. However,

k 0 ̂k2 ≤ Eigmax ˆ(  0 ̂ )kk2   ,

where Eigmax(ˆ 
0 ̂ ) ≤ 2 w.p.a.1 from (9) and⎡ ⎤X X £ ¤
kk2 =  ⎣ 0⎦ ≤ × max  0 = 

1
=1 =1

≤≤P P
for some positive constant   ∞ since   = =1  = =1( − 0) from (5) and the  × 1
vector  is independent over  with the bounded second moment from Assumption 1-(ii). It follows

that
2{22 2k0k2 ˆ+ 0 2ˆ  0

k 2


k2
2

} { 2
2

k k − k ≤
( +  )

≤ 0k2 + 3}
(A.13)

2 (2 + 2)2
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w.p.a.1, in which  is redefined as  without loss of generality.

Therefore, by combining the results in (A.2), (A.11), and (A.13), we obtain the desired result

as

22
P+

( ̂2) { 2k k 2 2
P+ 2

4   2 3
1 kˆ 

  −  k2 ≤ =1  2 +30  +  ( ̂ )
+ 2 0 + 

 ≤ 2
4

k k
2 +  )2

} 1 =1 
0

(2 +  )22 ( 2 (2 + 2)2

w.p.a.1. The result for ̂ readily follows by letting ̂ = 1 for all . Q.E.D.

We now provide a useful lemma before we proof Theorem 1. Note that the difference between

this lemma and Theorem 1 is that we can tell the local-to-zero coefficients as nonzero from Theorem

1, provided they vanish at the rate slower than certain threshold.

Lemma A.1. We define⎧ ⎫⎨ X X ⎬
̃ = argmin ( − : )0̂ ( − ̂ 2A  A : ) + ∗⎩ A 1  | ,


|+ 2  (A.14)⎭

∈A ∈A

where  consists of the sub-columns of  that correspond to nonzero elements in A 0. Under

Assumptions 1 and 2, w.p.a.1, ˜((1 + (2
2))  0) is the solution to the minimization problem ofA

adaptive elastic net in (3).

Proof of Lemma A.1 We show that ((1 + 2
2 ˜)  0) satisfies the Karush-Kuhn-Tucker con-A

ditions of the adaptive elastic net GMM optimization problem in (3) w.p.a.1. More precisely, from

the definition of ̃ , we need to showA n o
For all ∈ A, |− 0 ˆ ˜  2 ( − :  )A A | ≤ ∗1̂ → 1

or equivalentlyn o
≡ There exist ∈ A such that |− 0 ˆ − ˜Ψ   2 (  :  )|  ∗1̂ → 0 (A.15)A A

as →∞, where  is the th column of  . We let  = min ∈A|0| and ̂= min∈A |̂|.
Similarly as Zou and Zhang (2009), we haveX n o

ˆΨ ≤ ˜ |− 2
0
 ( − :  )|  ∗1̂ and  ˆ 2 + 

∈A

A A


{̂ ≤ 2} , (A.16)

where the second term is bounded byn o
 {̂ ≤ 2} ≤  k̂ − 0k  2

k̂ 2

≤  − 0k 2 k2 3 2

≤ 16 2k0 2 + + 1(+ )
(A.17)

24 (2 + 2)22
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¡ ¢
w.p.a.1 from Lemma 1. For the first term in (A.16), letting

12
 = ∗2 

1  , we haveX n o
| ˆ ˜ − 2

0
 ( − :  )|  ∗1̂ and  ˆ 2A

 A

A
∈X n o X n o

≤ |− ˜ ˆ ˆ 2 0 ˆ
 (



− :  )A A |  ∗1̂ ,  ˆ 2, 



| | ≤ +  
∈A ∈A

| |  

X n o X n o
≤ |− 0 ˆ ˜ 2 

 ( − :  )|  ∗1
− and |ˆ ˆ 2 +  A A 

   

|  

∈A ⎡ ⎤ ⎡ ∈A ⎤
42 X X

≤ ⎣ 1| 0 ˆ − ˜ | ˆ   ( 2
   :  ) 1 ⎦∗ A A {ˆ  +  ⎣2} | 2


⎦

 2 2
1 

|
⎡ ∈A  A⎤ ∈

2 X ˆ4  ≤ 
 ⎣ 2  2

∗ |
0 ˆ
 ( − ˜  0

 :  ) 1 ⎦+
2 ˆ 2

k
2

− k
1

}
∈A

A A | {
⎡ ⎤

42 X⎣ 2  2 +3 + 2(+ )≤ | 0 ˆ − ˜ 0
  (  2 2 2 1

∗  :  )A A | 1 ⎦
ˆ 2 + 4

k k
(A.18)

 2


{ }
(2 +  2 2

1 2) 
∈A

w.p.a.1 from Lemma 1, where 1 is the binary indicator.8 The last expression in (A.18) can be{·}
further bounded as⎡ ⎤X

 ⎣ | 0 ˆ ˜ ( − ˜ :  )|21 ⎦
ˆ 2 ≤ 224(  3



A A { k ) + 2} A − Ak221  (A.19){ˆ 2}
∈A

w.p.a.1 sinceX X
| ˜ 0 ̂ ( − 2 ˆ ˜ ˆ 2

   :  )A | = | 0 A A −A  ( :  :  ) + 0

A ∈A

A A 



|
∈  X X

≤ ˆ ˜2 | 0 2 ˆ 2
 ( :   A A  :  ) + 2 A A 

0


 

− | |
∈A ∈A

|

≤ 22k̂ 12 ( − ̃ )k2 2
 + 2 2
: A A A kk

≤ 22 ×2k − ̃ k2 + 23A A

w.p.a.1 from (8) and (9). Note that Eigmax(−2 0 ˆ ˆ
:  2

 A  : ) A ≤ Eigmax(− 
0  ) ≤ .

Furthermore, by defining ⎧ ⎫⎨ X ⎬
̃ = argmax ( − )

0̂ ( − ) + ⎩ 2 2A  , (A.2
 ⎭

∈A

we have
∗̂− + k˜

√
A − ˜  1

Ak ≤ (A.21)
2 + 2

8Though the proof steps are similar to Zou and Zhang (2009, p.1746), note the difference in  ; finding a new 

for the GMM setup is not trivial.
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w.p.a.1 similarly as (A.10) since max |ˆ̂2 = (min  |)−2∈A  ∈A  ≤ ̂−2 , 0 + 0
2 ˆ

≤  + , and

Eigmin(− 
0
: A  : )A ≥ ˆEigmin(−2

0  ) ≥ . Similarly as the proof of Lemma 1

above, we thus have

2k k2 +3 + ∗2(2)−2(+ )
 kA − ˜( Ak21 2 0 1

{ˆ 2 ) 4} ≤ (A.22)
(2 +  2

2)

w.p.a.1. Therefore, by combining the results in (A.17), (A.18), (A.19) and (A.22), we can find the

upper bound of Ψ in (A.16) as

42
½ 2 2 3 2 2

¾
Ψ ≤ 224

2k0k +  + ∗1 (2)− (+ )
 + 2

∗2
× 4 3

(2 +  2
2)1

22k0k2 +3 + 21(+ )
+4

(2 + 2)22

22k0k2 +3 + 2
+16 1(+ )

(2 + 2)22

≡ ¯ ¯ ¯Ψ1 +Ψ2 +Ψ3

w.p.a.1, in which each term of the bound goes to zero as  → ∞ yielding the desired result in

(A.15).

More precisely, note thatµ ¶ µ µ
2 2

¶
2

¶ µ ¶
2 2 3 (∗)2(+ ) 2

Ψ̄1 =  2k0k +   + 1 + 3 =  (1),
 2  2 1
∗ ∗

1


 2 2 2
1
∗

1
∗ 



where the second (and the last) term satisfies

2 1
3

∗2
 = 1 3

3+
 = 0

∗2 1 ∗2 1

→

¡ ¢
by Assumption 2-(ii) as  = ∗2 12

1  and  = () from Assumption 2-(i); the first term is

dominated by the second term since 22k0k2 ≤ 22(+ ) ≤ (223)(3) and 2 3
2 is bounded by

Assumption 2-(iii); and the third term satisfies

2  ∗ (+ )
1)

2 ( + ) 2

( ∗ = 1

( )2 2 1
∗ 2

→ 0 (A.23)

by Assumption 2-(iv) for   3. Similarly,µ 2 µ ¶k2 ¶ µ ¶
2 k0 1  1 2 (+ ) 1

Ψ̄2 =  + + 1
 = (1),

3  2 2 3  2

where the second term is dominating as 2 3
1 → 0 and 22

3 → 0 by Assumption 2-(i) and

k0k2 ≤ (+ ) ≤ (); and the second term satisfies⎛³ ´ µ "
 −1

¶ # ⎞
1

−(1−)
 =  = 

⎝  ⎠
2 2 (∗1)2

→ 0
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by Assumption 2-(iv) as ¯  0. Finally, Ψ3 = (1) can be shown similarly as Ψ̄2 sinceµ ¶
2

¶ µ ¶ µ
Ψ̄3 =  2

 3

k0k2 1  1 2 (+ ) 1
+ + 1


  2  2 3  2

and ⎛µ ¶ µ ¶ " # ⎞
1

 1 −(1−) ∗2
 =  = 

⎝   1

2 1− ∗)2
× 1 (+ ) ⎠ 0 (A.24)

2 ( 32 
1

×
(+ ) −3 →

by Assumption 2-(iv) as   0 and   3. Q.E.D.

Proof of Theorem 1 Using Lemma A.1, we only need to show that the minimal element of the

estimator of nonzero coefficients is larger than zero w.p.a.1: {min∈A |˜ ˜ A|  0}→ 1, where A
is the th element of ̃ in (A.14). Note that by (A.21)A

∗̂− + ˜min |˜
√

 |  min
∈A

| 1


A A∈A

|− ,
2 + 2

where ̃ is the th element of ̃A  in (A.20) andA

˜ ˜min 
 A

| A|  min
∈A

|A∈
|− kA − Ak.

But from (A.13), it holds that ∙
3
¸

2 2
˜(kA − Ak2) ≤ 2k0k2 +  

2
(2 +  2µ ¶2)
2

µ
=  2(+ ) 3

¶ ³ ´
+ =  (A.27)

4 4 

w.p.a.1 since 22
3 → 0 and +  ≤ . Moreover,Ã µ ¶ !

 µ ¶
∗1̂

−√+  1
∗√+  ̂

−
1

= 
2 +  2 

2  
× = 


√ (1), (A.


where µ ¶
∗1
√
+  1 ∗

√
=


√

× 1 +  1

= 
2 32

√ (A.29)


by Assumption 2-(iv) and"µ ¶ #
2

̂ 2
 ≤ 2 + [(̂ − )2]

 2

2≤ 2 + 
2

k̂ − 0k2

2 2 )≤ 2 + 2k0k2 +3 + 21(+  → 2
2 (2 + 2)2

as we showed Ψ̄3 = (1) in the proof of Lemma A.1 above that gives

(̂)− 2= [(ˆ ) ]−2 = (1).
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Therefore, we have r µ ¶
 1

min |̃ |  min | |−  A (1)


AA ∈A 
− 

∈ 
√  (1)
p p

and we have the desired result since 1 ≤  converges to zero faster than  by (A.24).

Q.E.D.

Proof of Theorem 2 Using ̃ in (A.14), we note thatA µ ¶


 0 ˆ ˆ 12 ˜(0+0 + 2
−1) −12 A A A − A

1 + 22

=  0 ˆ ˆ 12 ˜ ˜(0+0 + 2
−1) −12(A A A −  ) (A.31)A
ˆ ˆ 12 ˜+ 0( 0 + 2
−1

0  ) −12+ (A A   )µ A − A¶
+ 0 ˆ 12

( +  −1 ˆ) −12
2

0+0 2
A

,A A 2 + 2

where ̃ is given in (A.20). Since ˜ ˆ −  = ( + 2
1

0+0)
− ˆ(

0 ˆ
 :  )A A A A − 2( +A A A

2
1

0+0)
−  from (A.12), the second term in (A.31) satisfiesA

ˆ−1 ˆ 12 −12 ˜(0+0 + 2 )  (A A A −  )A
ˆ−12 ˆ 12 ˆ 12 ˆ 12 ˜=  ( + A A 2

−
) −12(A A A −  )A

ˆ−12 ˆ 12 ˆ=  ( + A A 2
−12

)n A o
× ˆ 12 ˆ−12 −1 −12 0 ˆ − ˆ 12 ˆ ˆ−12( + 2 )  ( : ) 2( + 2Σ )−1−12A A A A A A

ˆ= 
−12 ˆ 12 ˆ 12 12
A 

0
: −  2

−
−A −  ,A A

where  =  0− 0 =  0−   . Therefore, by Theorem 1, we can writeA A

ˆ( 1

≡ 0 0+Φ  0 + 2
− )A ˆ 12 −12 ˆ(

1 + 2
A A −  )A

= Φ1 +Φ2 +Φ3

w.p.a.1, where

0 ˆ−1 ˆ 12 −12 ˜ ˜Φ1 =  (0+0 + 2 )  ( A A A −  ),µ A¶
1 12  ˆΦ2 =  0  + 2
− ˆ 2 ˆ 12

(0+ 0 ) −12 A −  02
−

−12 ,A A 2 + 2
A A

0 ˆ−12Φ3 =    0 ˆA  : −12.A
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We will show that Φ1 = (1),


Φ2 = (1), and Φ3 → N (0 1) to obtain the desired result.
First note that w.p.a.1 we have µ ¶2

2 1 ≤ 2 k ˆ 12 ˜ ˜Φ1 1 +  (
 2 A A −  )A k2µ ¶2
1 ≤ 2

1 + 2
 2

k̃A − ̃Ak2µ ¶2 µ
1  ∗̂−

√ ¶2
+ ≤ 2

1 + 2 1

 2 2 + ⎛ ⎞ 2" µ ¶ #2
1 


∗
1

√ 
̂

= ⎝ + 
− ⎠ = (1)

  

from (A.21), (A.28), (A.29) and (A.30). In a similar way, w.p.a.1, we have° °
2 2 °   °2°≤ ˆ−1 2ˆ 12 2 ˆ 12
Φ2 °(0+0 + 2 )

A °° +
−

 A A 
k2 

2 + 2
A Ak2

2 µ ¶2
2   2 1≤ 2

 2 + 2)2
k ˆ 12  k2 2

1 + + 2  2

( A A
2  2k Ak

2

22
µ ¶2 2

≤ 2 2 2  2

2 1 +  2 + 2

(2 +  )2
k Ak

0
 2 2

k Ak
3

→

from (8) and Assumption 2-(iii) for k k2 ≤ k0k2. Finally, we prove that 
ΦA P 3 → N (0 1). RecallP

that  =  − 0 = 
12 1

−  that   so  = =1  =1 ˆA , and we can rewrite Φ3 =A  

with ˆ ˆ ˆ ˆ̂ =  0−
 12 1

A 
0
:  − −  by letting  =  − as the optimal weight. We also defineA

0 −12 0 − − ˆ  
 =  Σ Σ :  1 12 2 1

A  A . Then, since −  Σ 0, −  : Σ : 0, and

kˆ − k→
k A − Ak→ k AP− Ak→

  0 with Eigmax( ) ∞ from Assumption 1-(ii), we have ΦP 3 = =1  + (1). Also

note that 
=1 

2
 = 1 + (1) since¯ ¯ ¯ Ã !¯X ¯ ¯ X¯ ¯ 

2
¯¯ − 1¯ = ¯ 0Σ−12Σ0  −1

1¯  ¯ ¯ A  :  0  −1Σ Σ
−12

A 
   :A A

=1 =1 ¯
− 0Σ−12 12 ¯ 

Σ0  −1  −1Σ  : Σ
−

A  :  ¯A A A → 0

P
for  0  

 = 1, Σ = Σ0 :  −1ΣA  : , andA k−1A =1 
0
 −  k → 0. Therefore, for some   0,

w.p.a.1 we obtain the Lyapunov condition asÃ !X  µ ¶X 2

| |2+ ≤  max | | 2 
  1

=1
≤

=1

≤  max 2
1


≤ ≤≤

→ 0

that gives the desired CLT, where the second inequality is from Jensen’s. Note that using Cauchy-

Schwartz ° °°2 1 2 max 2
°

 ≤ ° 0Σ−12Σ0 :  −1°
1  

A A≤
×  max

 1≤≤
k≤
k ,
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in which  0Σ−12Σ0 sA  :  −1 2 is bounded inceA° || ° ||°° 0Σ− 2 ° °
12
Σ0 1° 1 ° 12 12°2

A  :  − ° ≤ Eigmax( − ) ° 0Σ− Σ0 :  − °A A A

≤ Eigmax( −1)Eigmax(Σ−12Σ0 2
A  :  −1 Σ

−12
Σ ) A  :A A k k

= [Eigmin( )]−1Eigmax 2(0+0) kk ∞
from Assumption 1-(ii) but −1 2max1≤≤ kk → 0 from Assumption 3. Q.E.D.

Proof of Theorem 3 Conformable to the decomposition of  = [
1

0 2

0]0, we decompose the
 × (0 + 0) matrix Σ : asA ⎡ ⎤

Σ : 0
Σ : = [Σ:   ⎣ 

] =
1 A −00 ⎦ (−0)

,A A A
Σ2: A 0 0

0 0

where k− 110 −Σ
1: k→


 0 and k−120 −Σ2: k→ 0. Note that ΣA A A A 1: is (A − 0)× 0

and Σ2: is 0 × 0. Similarly, we letA ⎡ ⎤


 = ⎣ 11 12 ⎦ (−0)

12
0 22 0

(−0) 0

and ⎡ ⎤
 11  12

 − ⎦ )1 = ⎣ (−¡ ¢ 0
,

 12
0

 22 0

(−0) 0

where explicit expressions of each term become clear at the end of this proof. Given Σ : andA
 −1 decompositions above, we can write ⎡ ⎤

Σ Σ
Σ = Σ0  −1Σ : = ⎣ A11 A12 ⎦ 0

 ,A :A A
Σ0A12 ΣA22 0

0 0

where

ΣA11 = Σ01:  11Σ 12
A 1: +Σ0A 1:

 ΣA 2: (A.32)A
+Σ02: (

12)0ΣA 1: +Σ0A 2:
 22ΣA 2: ,A

Σ 12 = Σ01:  12 +Σ0A A 2:
 22,A

Σ 22 =  22.A

We now let Σ11 be the A 0 × 0 north-west block of Σ
−1. From the partitioned inverse matrixA

formula, we thus have £ ¤− −1 0 −1
Σ11 = ΣA A11 ΣA12ΣA22ΣA12 ¡ ¢

= [Σ0 12
1:

 11Σ 22 1 12
1: −Σ01:  ( )− 

0
Σ1: ]

−1
A © A A ª A

= [Σ01:  11 −  12( 22)−1( 12)0 ΣA 1: ]
−1A

= [Σ0
1

1:
 −A 11 Σ1: ]

−1A

30



from (A.32), where the last equality is from the fact that  11 =  −111 +  −111 12
2212

0  −111 and

 12 = − −111 12
22. Q.E.D.

Recall that A = { : 0 = 0  = 1 2 · · ·  + } denotes the true model (i.e., collection of
nonzero coefficients). We let S = { :  = 0  = 1 2 · · ·  + } denote a generic candidate model
and |S| = card(S), where  denotes a generic estimate for 0. We also let  = {1 · · ·   + }
denote the full model and A = \A. We define

¨ − ˆS ≡ arg min (  )
0 (  ), (

{
−

∈R+:=0 ∀ ∈S}

which is the unpenalized GMM estimator under the restriction that  = 0 and all  ∈ S. We also
define

¨ = ( ) + |S| ln()max{ln[ln(+ )] 1S S }.
The following two lemmas are useful to prove Theorem 4.

Lemma A.2. Under Assumptions 1 and 2, we have {min ( )  S+A S S } → 1 as  → ∞,
provided that 2(+ ) ln() ln[ln(+ )]→∞.

Proof of Lemma A.2 We let ¨ denote the unpenalized GMM estimator for , i.e., ¨   =
¨ ˆ


from (A.33). Since ̈ is a special case of the ridge estimator  .1)S  with 2 = 0 in (A , by

the result in (A.13) we have

k̈ − ˆ ˆ k20 = k(
0  )

−1
0 k2


[Eigmin(−2

2≤ 
0 ˆ  2


− ˆ )] 2k − 

0 k2 ≤
2

and hence k̈ 2
 − 0k = (). We can obtain

1 1 1¨ ¨ ¨ ¨min k −  k2 ≥ min k − 0k2− k − 0k2 ≥ min(2S 0)−() = 2S −(),
S+A 2 S+A 2 ∈A 2

(A.34)

in which 2 from (A.24) so that the right hand side of (A.34) is positive w.p.a.1. Note

that 0 ˆ
→ ∞

 = (
0 ˆ ¨ ) , so we have

¨ − ¨ −1 − ¨ 0 ˆ ¨( ) ( S ) = (   ) (S  − 1 ¨ ˆ ¨
  )− − ( − )

0 ( S  − )

= −1 ¨(S − ̈)
0 ¨( 

0 ˆ  )(S − ̈) ∙ ³ ´¸
2 2 2 ≥  · ˆm − 

0  )k¨ ¨Eig in(   =   .S − k − 
2 

Therefore, h i
¨ ¨min( − 


) ≥ min ( ) ( ) (+ ) ln()max ln[ln(+ )] 1

+
S S

+
S −  − { }

S A S A

≥ [22−()]− (+ ) ln()max{ln[ln(+ )] 1},
which is positive w.p.a.1 from the condition that 2(+ ) ln() ln[ln(+ )]→∞. Q.E.D.

Lemma A.3. Under Assumptions 1, 2, and 4, {minS⊃AS= ( )  A S A}→ 1 as →∞.
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Proof of Lemma A.3 In this case, we have A ⊂ S but A = S. Hence, A = S\A = ∅. Recall
that  : consists of the columns of  that correspond to nonzero elements in 0. We let A  :S
be the columns of  that are selected by model S. We also let  :A denote the columns of

 : that correspond to zero elements in 0. We defineS

̌ = arg min ( − : )0̂ (A 
 R +0 0

A − : ), (AA∈
ˇ ˆ = arg min (S   : )

0 (  : ),


− S
∈R|S|

− S

̌  = arg min  − ˆ(  : )0 (  )A   :  .
∈R|S|−|A|

A − A

In this case, we have
ˇ( ) = −1A k̂ 12 − ̂ 12 ˇ :  2A Ak .

For the model S, by the Frisch-Waugh Theorem, we have
ˇ ˆ ˆ( ) = min −1 12 2S k 12 

|S|
−  : 


S k

∈

= min kỸA − X̃A
 |S|−|A|

k2,
∈

where Ỹ  ˆ ˜ ˆ=   12 1
 and X  =   2 : . Note that we define  = A A A A A  −  andA

ˆ = 12 ˆA : (
1 ˆ 12

 A 
0
:  : )

− 
0
:  . Therefore,A A A

ˇ ˆ( )− ˇ ˆ ˇ ˜ ˜ ˇ( ) = −1  12  12  2 −1 Y X  2A S k  − A Ak − k A − A Ak

= −1k ˆ ˆ ˇ ˆ 12 − 12  k2 − −1k 12 ˇ ˇ
   − ̂ 12 ˜  XA A A A − AAk2

ˇ ˜ ˜ ˇ= −10A(X0AXA)A

˜ ˜ ˜ ˜ ˜ ˜= −1Y0AXA(X0 XA)−1 X0A AYA

= −10̂ 12X̃  ˜ ˜ ˜ ˆ(X0 X )−1X0  12,A A A A

where the last equality uses the fact that Ỹ ˆ=   12
 ˆ A  =  12 and since  = A A  −

 :  . We now let ˜ X X̃
≡ X̃  ˜( 0

)−1X̃0  , which is positive semi-definite with rankA A XA A A A A
|S|−0−0. Recall that the optimal weighting matrix ̂ is chosen such that ||̂ − −1||→ 0 and
it holds that ||− →1 −Σ || 0, so there exists a nonrandom matrix  0

X̃
such that

A
||X̃A −

 0˜ || → 0, where  0˜ is symmetric and idempotent. Therefore, by the Spectral decomposition,
XA XA
we can decompose  0

X̃
= 0, where  is an  ( 0 0) orthonormal matrix consisting

of the eigenvectors corresp
A

× |S| − −
onding to the eigenvalues of 1. If we let  denote the th column of ,

then (A.37) can be rewritten as

ˇ( )− ˇ( ) = −10 −120 −12[1 + A S (1)]

|S|−X0−0 ¯ ¯¯ ¯2
= ¯−120 −12¯ [1 + (1)]⎛ =1 ¯ ¯ ⎞¯ X ¯2¯  ¯≤ ⎝ max ¯−12 0

−12¯ ⎠ (|S|− 0 − 0) [1
=1 ¯··· |S|−0−0 ¯

=1

× + (1)].
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P
However,

 P
2  P P

12 12   12
=1  = 1 for all  and − =1 

0  −  = =1 =1 
− ̃, where 

is the th element of  and ̃ is the th element of 
−12. Moreover, by the Assumption 4, we

have Ã ¯ ¯ !¯X¯  X ¯ ¯  log[   )] 12 
 max ¯ √ ̃¯ ¯  log( { |S|− − }

=1  0 0  ¯ |S| ≤ 0 0 0 0
)

··· |S|− − log(|S|) ≤
[log( 


|S 1

=1 =1
|)]− 2

for some positive constant 0 ∞. It thus follows that

ˇ( )− ˇ( ) ≤ log(|S|)(|S|− 0 − 0)[1 + (1)]A S

w.p.a.1. Therefore,

 − ˇ ˇ = ( ) ( ) + (   ) ln()max ln[ln(+ )] 1S A S − A |S|− 0 − 0 { }

≥ (|S|− 0 − 0) (ln()max{ln[ln(+ )] 1}− log(|S|)[1 + (1)])

yielding ½ ¾
 

min
S − A ≥ ln()max{ln[ln(+ )] 1

S⊃AS=A ( 0 0)
}− log(+ )[1 + |S|− − (1)]

≥ ln() (max{ln[ln(+ )] 1}− [1 + (1)]) , (A.38)

where lim [(+ ) ]  1 for some 0→∞ ≤  ≤   1 from Assumption 2-(i). Since 1− [1 +

(1)]  0 w.p.a.1 and ln[ln(+ )]→∞ as + →∞, the right hand side of the above inequality
is positive w.p.a.1. Q.E.D.

Proof of Theorem 4 We note that ˇ ˆ ˆ = ( 1

0
:  : )

− 
0
:  from (A.35), so we haveA A A A³ ´ ∙ ¸

1

̃ =  0 ˆ
− 1ˆ ˆA  :  +    0  ∗diag sgn( ) ̂A : A 2 0+0  :A  −

2 1 { A } A³ ´
ˆ

−1 1ˆ ˇ ˆ= 
0
:  : + 20+0 [

0 A A :A  :  A − 1
∗diagA {sgn( )

2
A }̂ ]A

from (A.14), where ̂ is the column vector of the adaptive weights corresponding to nonzeroA
coefficients of ˆ ˆ. Recall that  is the adaptive elastic net GMM estimator ̂ in (3) that correspondsA
to  . ˆdiag{sgn( )} is the diagonal matrix whose diagonal elements are ˆsgn( ). We further letA A A
 be the sequence of ˆ such that  defined in (3) has the properties shown in Theorem 1. Then

 (S = A)→ 1 by Theorem 1, where S ˆ
 = { :  = 0}. It follows that w.p.a.1

˜( )− ˇ( ) =  1 ̂ 12 ˆ  ̌A S   1 2 ˜ ˆ  2  1 ̂ 12  12 2


− k  −  :A k − −A k  −  :A Ak
−1˜ ˆ ˜=  

0

0
:   − 2−1 ˆ ˜ ˇ ˆ ˇ

:  0A A   :  + −10  0
A A A A A  :  A  :A A

˜ ˇ= ( − ˇ ˜ )0(−2
0 ̂ )(A A  A −  )A

≤ Eigmax(−2 ˆ ˜ ˇ 2

0  )kA − Ak .
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Note that, however, w.p.a.1° °°³ ´ 1 1 °2
ˇ

−
k̃ −  k2 = ° ˆ ˇ°  0 ˆ ˆ ˇ

 :  : + 20+0 [
0
:  :  − ∗diag sgn( ) ̂ ]  °A A A A A A A

2 1 { A } A − A°° °°Ã ! ∙ °° 1 ¸
ˆ

− 2
ˇ°   ° 

0
: 

= : A A 2 2  °
+  1

∗
ˆ °

0+ + diag
2  22

{sgn( )A° 0

A }̂
2 2

A °°" Ã !# 2 ° °


−0 ˆ ° ˇ 2

 :  : 2 °2 ∗ °°≤ Eigmin A A
+  +

A
+ 1 ˆdiag sgn( ) ̂

2 0 °2 0 ° 2 22
{ A } A³ ´

≤ 2−2 k−2 ˇ ˆ  2
2 Ak2 + k−22∗1diag{sgn( ) ̂A Aµ ¶ Ã

2
! } k

22(+ ) ∗ )
=  + 1 (+

 = (
4 42

−1) (A.39)

since Eigmin(
0 ˆ ˆ ˆ
:  : +20+0) ≥ Eigmin(

0
A : A  : )A ≥ Eigmin(

0 A  ). Hence,
˜( ) − ˇ(


) = 

 (1) w.p.a.1 from Assumption 2-(iii) and (iv). Also note that ˆ [ = (1 +A S A
2

2 ˜) ]→ 1 by Lemma A.1, so w.p.a.1 we haveA

ˆ( )A − ˜( )A

−1k ˆ 12 − ˆ 12 ˆ k2 − −1k ˆ 12 − ˆ 12 ˜=      :    A A    2
 : A A³ ´ k

= −32̃ −2 ˆ ˜ 3 ˜ ˆ ˜
2 

0
: A A  : A A − 2− 2( − :  )0A A  : A A

≤ −3 2 −2 0 ˆ k˜ k2 − −3 ˇ ˇ ˜ ˆ ˜ 2Eigmax(  )  2 2[ A − : +A A  : (A A −  )]0A  : A A³ ´
≤ −3 2 k˜ k2 − −1 ˇ( − ˜ ˆ ˜2  2 2   )0 −2

0
:  A A A A  :A A

≤ −322k˜ ˇ ˜ k2 + 2−12A kA − Ak · k̃Akµ 2
!#1

2
¶ Ã ! " µ ¶ Ã 2

2(+ ) 2(+ )12 2(+ ) ∗ (+ )
=  +  2 + 1

    = (1),
3 32

·
3 32

where we use (A.39) and Assumptions 2-(iii) and (iv) in the last equality. Hence, ˆ ˇ( )A −(S ) =

(1) w.p.a.1, which implies

 − S = 
 (1)

w.p.a.1. We now define Ω = { : S + A}, Ω+ = { : A ⊆ SA = S} and Ω0 = .− { : S = A}
Note that  (S = A)→ 1, so w.p.a.1 we have

inf ()−  ≥ inf () 
∈Ω− ∈Ω

−  +A (1)
−

≥ min ( )−  + S
S+

A (1)
A

= min ( )  +  (1) +   .
+

S − S  S − A
S A
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From Lemma A.2, we know that min ( )− 

+ (1)  0S w.p.a.1. In addition, Lemma+A S S

A.3 shows that  (

−   0) → 1. We thus have S A {inf∈Ω (− ) −   0} → 1 as

→∞. Similarly, we have

inf ()−  ≥ inf ()−  + (1) min ( )  + (1).
 Ω

A∈Ω+ ∈ +

≥ S AA⊆SA=S
−

Recalling that ½ ¾


min
− S A ≥ ln() (max

A⊆SA=S ( 0 0)
{ln[ln(+ )] 1}− [1 + |S|− − (1)])→∞

in (A.38), we can conclude that {inf∈Ω+()−   0}→ 1, which gives the desired result.

Q.E.D.
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Table 1: RMSE of estimators of   ,  ,   , and A A A A

 = 250,  = 18, 0 = 3,  = 15, 0 = 6,  = 42 and  = 05

AENet ALasso-LARS ALasso-CL

A   1 2 3 4 1 2 3 4 1 2 3

.3, .25, .5 0.014 0.160 0.037 0.112 0.015 0.159 0.037 0.111 0.005 0.282 0.096

.3, .50, .5 0.013 0.166 0.033 0.089 0.013 0.166 0.033 0.087 0.005 0.282 0.096

.3, .75, .5 0.013 0.166 0.033 0.088 0.013 0.167 0.032 0.086 0.005 0.282 0.096

.6, .25, .5 0.013 0.203 0.034 0.111 0.013 0.197 0.033 0.112 0.005 0.557 0.105

.6, .50, .5 0.012 0.213 0.029 0.083 0.012 0.210 0.029 0.083 0.005 0.557 0.105

.6, .75, .5 0.012 0.215 0.029 0.082 0.012 0.212 0.028 0.081 0.005 0.557 0.105

.9, .25, .5 0.013 0.278 0.033 0.111 0.014 0.261 0.032 0.111 0.005 0.820 0.107

.9, .50, .5 0.012 0.289 0.028 0.082 0.012 0.280 0.028 0.082 0.005 0.820 0.107

.9, .75, .5 0.012 0.291 0.028 0.081 0.012 0.283 0.027 0.080 0.005 0.820 0.107

.3, .25, .95 0.009 0.202 0.079 0.181 0.009 0.202 0.080 0.183 0.010 0.298 0.225

.3, .50, .95 0.008 0.209 0.072 0.164 0.008 0.210 0.073 0.167 0.010 0.298 0.225

.3, .75, .95 0.007 0.212 0.066 0.145 0.007 0.213 0.066 0.147 0.010 0.298 0.225

.6, .25, .95 0.008 0.234 0.071 0.176 0.008 0.229 0.072 0.177 0.010 0.594 0.232

.6, .50, .95 0.007 0.249 0.065 0.156 0.007 0.246 0.066 0.157 0.010 0.594 0.232

.6, .75, .95 0.007 0.253 0.058 0.133 0.007 0.250 0.058 0.134 0.010 0.594 0.232

.9, .25, .95 0.008 0.297 0.068 0.176 0.008 0.284 0.067 0.176 0.010 0.887 0.235

.9, .50, .95 0.007 0.320 0.062 0.154 0.007 0.309 0.062 0.155 0.010 0.887 0.235

.9, .75, .95 0.006 0.327 0.054 0.129 0.007 0.316 0.055 0.130 0.010 0.887 0.235

 = 1000,  = 18, 0 = 3,  = 15, 0 = 6,  = 42 and  = 05

AENet ALasso-LARS ALasso-CL

A   1 2 3 4 1 2 3 4 1 2 3

.3, .25, .5 0.004 0.049 0.008 0.039 0.004 0.049 0.007 0.039 0.004 0.054 0.040

.3, .50, .5 0.003 0.050 0.007 0.037 0.003 0.050 0.007 0.037 0.004 0.054 0.040

.3, .75, .5 0.003 0.050 0.007 0.037 0.003 0.050 0.007 0.037 0.004 0.054 0.040

.6, .25, .5 0.004 0.065 0.007 0.039 0.004 0.063 0.007 0.039 0.004 0.097 0.040

.6, .50, .5 0.003 0.067 0.007 0.037 0.003 0.066 0.007 0.036 0.004 0.097 0.040

.6, .75, .5 0.003 0.067 0.007 0.037 0.003 0.066 0.007 0.036 0.004 0.097 0.040

.9, .25, .5 0.003 0.087 0.007 0.039 0.004 0.084 0.007 0.039 0.004 0.140 0.040

.9, .50, .5 0.003 0.090 0.007 0.036 0.003 0.088 0.007 0.036 0.004 0.140 0.040

.9, .75, .5 0.003 0.091 0.007 0.036 0.003 0.089 0.006 0.036 0.004 0.140 0.040

.3, .25, .95 0.002 0.053 0.029 0.088 0.002 0.053 0.029 0.088 0.007 0.291 0.157

.3, .50, .95 0.002 0.056 0.022 0.067 0.002 0.056 0.022 0.067 0.007 0.291 0.157

.3, .75, .95 0.002 0.056 0.020 0.057 0.002 0.056 0.019 0.057 0.007 0.291 0.157

.6, .25, .95 0.002 0.066 0.028 0.088 0.002 0.064 0.028 0.088 0.007 0.574 0.172

.6, .50, .95 0.002 0.071 0.021 0.066 0.002 0.069 0.021 0.066 0.007 0.574 0.172

.6, .75, .95 0.002 0.072 0.018 0.055 0.002 0.070 0.018 0.055 0.007 0.574 0.172

.9, .25, .95 0.002 0.089 0.027 0.088 0.002 0.083 0.027 0.089 0.007 0.854 0.176

.9, .50, .95 0.002 0.094 0.021 0.066 0.002 0.090 0.021 0.066 0.007 0.854 0.176

.9, .75, .95 0.002 0.096 0.018 0.054 0.002 0.092 0.018 0.055 0.007 0.854 0.176

Note: AENet is the estimator defined in (3) and solved by the LARS algorithm. ALasso-LARS is the same as AENet

except that 2 is restricted to be zero. ALasso-CL is the estimator proposed by Cheng and Liao (2013).  controls

the correlation of 1
1. A is the expectation of the invalid moment conditions.  is the value of nonzero structural

parameters. 1, 2, 3 and 4 denote the RMSEs of A , A, A , and A, respectively.
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Table 2: Moment Selection Accuracy

 = 250,  = 18, 0 = 3,  = 15, 0 = 6,  = 42 and  = 05

AENet ALasso-LARS ALasso-CL

A   1 2 1 2 1 2

.3, .25, .5 0.957 0.920 0.956 0.922 0.997 0.256

.3, .50, .5 0.963 0.912 0.962 0.913 0.997 0.256

.3, .75, .5 0.964 0.912 0.963 0.912 0.997 0.256

.6, .25, .5 0.965 1.000 0.962 1.000 0.997 0.368

.6, .50, .5 0.970 1.000 0.968 1.000 0.997 0.368

.6, .75, .5 0.970 1.000 0.969 1.000 0.997 0.368

.9, .25, .5 0.967 1.000 0.961 1.000 0.997 0.424

.9, .50, .5 0.972 1.000 0.967 1.000 0.997 0.424

.9, .75, .5 0.972

.3, .25, .95 0.977

1.000 0.968

0.758 0.977

1.000 0.997 0.424

0.762 0.988 0.017

.3, .50, .95 0.980 0.732 0.980 0.734 0.988 0.017

.3, .75, .95 0.982 0.725 0.981 0.726 0.988 0.017

.6, .25, .95 0.981 0.995 0.980 0.995 0.987 0.024

.6, .50, .95 0.983 0.993 0.982 0.994 0.987 0.024

.6, .75, .95 0.985 0.993 0.984 0.993 0.987 0.024

.9, .25, .95 0.982 0.999 0.980 0.999 0.987 0.035

.9, .50, .95 0.984 0.999 0.982 0.999 0.987 0.035

.9, .75, .95 0.986 0.999 0.984 0.999 0.987 0.035

 = 1000,  = 18, 0 = 3,  = 15, 0 = 6,  = 42 and  = 05

AENet ALasso-LARS ALasso-CL

A   1 2 1 2 1 2

.3, .25, .5 0.993 1.000 0.992 1.000 0.995 1.000

.3, .50, .5 0.993 1.000 0.993 1.000 0.995 1.000

.3, .75, .5 0.993 1.000 0.993 1.000 0.995 1.000

.6, .25, .5 0.993 1.000 0.992 1.000 0.995 1.000

.6, .50, .5 0.993 1.000 0.993 1.000 0.995 1.000

.6, .75, .5 0.994 1.000 0.993 1.000 0.995 1.000

.9, .25, .5 0.993 1.000 0.992 1.000 0.995 1.000

.9, .50, .5 0.994 1.000 0.993 1.000 0.995 1.000

.9, .75, .5 0.994

.3, .25, .95 0.997

1.000 0.993

1.000 0.997

1.000 0.995

1.000 0.977

1.000

0.066

.3, .50, .95 0.997 1.000 0.997 1.000 0.977 0.066

.3, .75, .95 0.997 1.000 0.997 1.000 0.977 0.066

.6, .25, .95 0.997 1.000 0.996 1.000 0.977 0.109

.6, .50, .95 0.998 1.000 0.997 1.000 0.977 0.109

.6, .75, .95 0.998 1.000 0.997 1.000 0.977 0.109

.9, .25, .95 0.997 1.000 0.996 1.000 0.977 0.139

.9, .50, .95 0.998 1.000 0.997 1.000 0.977 0.139

.9, .75, .95 0.998 1.000 0.997 1.000 0.977 0.139

Note: AENet is the estimator defined in (3) and solved by the LARS algorithm. ALasso-LARS is the same as

AENet except that 2 is restricted to be zero. ALasso-CL is the estimator proposed by Cheng and Liao (2013). 

controls the correlation of 1
1. A is the expectation of the invalid moment conditions.  is the value of nonzero

structural parameters. 1 is the percentage of replications that yield zero estimates for A . 2 is the percentage

of replications that yield nonzero estimates for A. 38



Table 3: RMSEs in the Case of Highly Correlated Endogenous Variables

 = 250,  = 18, 0 = 3,  = 15, 0 = 6,  = 42,  = 095, and  = 099

AENet ALasso-LARS

A  1 2 3 4 1 2 3 4

.3, .25 0.004 0.277 0.126 0.227 0.004 0.276 0.139 0.236

.3, .50 0.003 0.282 0.117 0.241 0.003 0.283 0.128 0.247

.3, .75 0.005 0.434 0.125 0.223 0.005 0.431 0.139 0.231

.6, .25 0.005 0.434 0.125 0.223 0.005 0.431 0.139 0.231

.6, .50 0.004 0.460 0.118 0.237 0.004 0.459 0.130 0.243

.6, .75 0.004 0.463 0.120 0.256 0.004 0.464 0.130 0.262

.9, .25 0.005 0.560 0.120 0.217 0.005 0.546 0.133 0.223

.9, .50 0.004 0.601 0.114 0.229 0.004 0.594 0.125 0.234

.9, .75 0.004 0.611 0.117 0.249 0.004 0.604 0.127 0.253

 = 1000,  = 18, 0 = 3,  = 15, 0 = 6,  = 42,  = 095, and  = 099

AENet ALasso-LARS

A  1 2 3 4 1 2 3 4

.3, .25 0.001 0.083 0.059 0.122 0.001 0.083 0.065 0.125

.3, .50 0.001 0.088 0.063 0.141 0.001 0.090 0.069 0.144

.3, .75 0.001 0.089 0.060 0.139 0.001 0.091 0.065 0.142

.6, .25 0.001 0.112 0.056 0.121 0.001 0.107 0.063 0.123

.6, .50 0.001 0.123 0.061 0.138 0.001 0.119 0.066 0.140

.6, .75 0.001 0.125 0.057 0.134 0.001 0.121 0.063 0.137

.9, .25 0.001 0.155 0.056 0.121 0.001 0.141 0.061 0.123

.9, .50 0.001 0.170 0.060 0.138 0.001 0.157 0.065 0.139

.9, .75 0.001 0.174 0.057 0.134 0.001 0.161 0.062 0.136

Note: AENet is the estimator defined in (3) and solved by the LARS algorithm. ALasso-LARS is the same as AENet

except that 2 is restricted to be zero.  controls the correlation of 
1
1. is the correlation between  and . A

is the expectation of the invalid moment conditions.  is the value of nonzero structural parameters. 1, 2,

3 and 4 denote the RMSEs of A , A, A , and A, respectively.
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Table 4: Redundant Instruments

 = 250,  = 18, 0 = 3,  = 15, 0 = 6,  = 42 and  = 05

AENet ALasso-LARS ALasso-CL

A   3 4 5 3 4 5 3 4 5

.3, .25, .5 0.044 0.113 0.022 0.043 0.113 0.022 0.114 0.092 0.020

.3, .50, .5 0.039 0.088 0.019 0.039 0.087 0.019 0.114 0.092 0.020

.3, .75, .5 0.039 0.088 0.019 0.038 0.086 0.019 0.114 0.092 0.020

.6, .25, .5 0.039 0.111 0.016 0.038 0.112 0.016 0.126 0.100 0.019

.6, .50, .5 0.034 0.083 0.015 0.034 0.083 0.015 0.125 0.100 0.019

.6, .75, .5 0.034 0.082 0.015 0.033 0.082 0.015 0.125 0.100 0.019

.9, .25, .5 0.039 0.112 0.017 0.038 0.112 0.019 0.127 0.101 0.018

.9, .50, .5 0.033 0.083 0.014 0.032 0.082 0.016 0.127 0.101 0.018

.9, .75, .5 0.032 0.081 0.013 0.032 0.080 0.015 0.127 0.101 0.018

 = 1000,  = 18, 0 = 3,  = 15, 0 = 6,  = 42 and  = 05

AENet ALasso-LARS ALasso-CL

A   3 4 5 3 4 5 3 4 5

.3, .25, .5 0.010 0.040 0.003 0.009 0.040 0.004 0.048 0.039 0.286

.3, .50, .5 0.009 0.038 0.003 0.009 0.038 0.003 0.048 0.039 0.286

.3, .75, .5 0.009 0.038 0.003 0.009 0.038 0.003 0.048 0.039 0.286

.6, .25, .5 0.009 0.040 0.003 0.009 0.040 0.003 0.048 0.039 0.284

.6, .50, .5 0.009 0.037 0.003 0.008 0.037 0.003 0.048 0.039 0.284

.6, .75, .5 0.009 0.037 0.003 0.008 0.037 0.003 0.048 0.039 0.284

.9, .25, .5 0.009 0.040 0.003 0.009 0.040 0.003 0.048 0.039 0.284

.9, .50, .5 0.008 0.037 0.003 0.008 0.037 0.003 0.048 0.039 0.284

.9, .50, .5 0.008 0.037 0.003 0.008 0.037 0.003 0.048 0.039 0.284

Note: AENet is the estimator defined in (3) and solved by the LARS algorithm. ALasso-LARS is the same as AENet

except that 2 is restricted to be zero. ALasso-CL is the estimator proposed by Cheng and Liao (2013).  controls

the correlation of 1
1. A is the expectation of the invalid moment conditions.  is the value of nonzero structural

parameters. 3 and 4 denote the RMSEs of A , and A, respectively. 5 is the percentage of replications

that yield nonzero estimates for  for redundant instruments.
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