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Abstract

This paper develops the adaptive elastic net GMM estimator in large dimensional models with
many possibly invalid moment conditions, where both the number of structural parameters and
the number of moment conditions may increase with the sample size. The basic idea is to
conduct the standard GMM estimation combined with two penalty terms: the quadratic
regularization and the adaptively weighted lasso shrinkage. The new estimation procedure
consistently selects both the nonzero structural parameters and the valid moment conditions. At
the same time, it uses information only from the valid moment conditions to estimate the selected
structural parameters and thus achieves the standard GMM efficiency bound as if we know the
valid moment conditions ex ante. It is shown that the quadratic regularization is important to
obtain the efficient estimator. We also study the tuning parameter choice, with which we show
that selection consistency still holds without assuming Gaussianity. We apply the new estimation
procedure to dynamic panel data models, where both the time and cross section dimensions are
large. The new estimator is robust to possible serial correlations in the regression error terms.
Keywords and phrases: Adaptive Elastic Net, GMM, many invalid moments, large dimensional
models, efficiency bound, tuning parameter choice, dynamic panel.
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1 Introduction

Structural parameter estimation with endogenous regressors is a very common issue in applied
econometrics. For proper inferences, however, researchers need to choose the valid instruments or
moment conditions as well as the correct structural model before estimation. When the number
of moment conditions is small and fixed, the moments/models are normally justified using some
based on some economic theory or intuition; pre-testing procedures based on over-identifying re-
strictions tests are also commonly used, though any ad hoc moment/model selection could affect
the post-selection inferences (e.g., Leeb and Potscher, 2005). Such issues gain more importance in
high dimensional models since we have a higher chance of misspecification with many endogenous
regressors and many instruments/moment conditions. Unfortunately, the standard statistical tool
may not be used immediately with a large number of instruments. For example, the standard
over-identifying restrictions test or some moment/model selection procedure (e.g., Andrews, 1999;
Andrews and Lu, 2001) are computationally challenging and hard to be generalized to the case of
large dimensional models; they may not even follow the standard asymptotics (e.g., Newey and
Windmeijer, 2009; Lee and Okui, 2012). Therefore, with many endogenous regressors and many
moment conditions, the validity of moments and selection of the model come to the fore. In this
case, shrinkage methods can be useful.

Since the valid moment conditions depend on the validity of the instruments as well as the
correct model specification, in fact, they should be considered together. However, the existing
literature on the shrinkage GMM /two-step method mostly does not question on the validity of the
instruments; it is normally assumed that all the available instruments are valid (i.e., orthogonal to
the structural error). For example, a seminal paper by Belloni, Chernozhukov, Chen, and Hansen
(2012) introduces a heteroskedasticity consistent lasso estimator and provides finite sample perfor-
mance bounds, but it focuses on the optimal instrument selection given that all the instruments
are valid. Caner and Zhang (2014) consider the adaptive elastic net GMM estimation with many
structural parameters and instruments, but they assume all the instruments are valid.

This paper develops the adaptive elastic net GMM estimator in large dimensional models with
many possibly invalid moment conditions, where both the number of structural parameters and
the number of moment conditions may increase with the sample size. The basic idea is to conduct
the standard GMM estimation combined with two penalty terms: the quadratic regularization

lo-penalty and the adaptively weighted lasso shrinkage £1-penalty. So the key contribution of



this paper is to handle both the valid moment condition (or instruments) selection problem and
the correct model selection problem simultaneously. The new estimation procedure is shown to
consistently select both the nonzero structural parameters and the valid moment conditions.

Furthermore, the new estimator uses information only from the valid moment conditions to
estimate the selected structural parameters and thus achieves the standard GMM efficiency bound
as if we know the valid moment conditions ez ante. To achieve the efficiency bound, it is shown that
including the fs-penalty of the quadratic regularization is important in this particular problem. It
is because this ridge penalty controls for the possible (near) multicollinearity problem among the
instruments in the first stage regression, so that it allows for the estimation procedure to select all
the valid instruments even when they are highly correlated with each other. Apparently, including
more valid instruments will improve the efficiency of the GMM estimator.

We also discuss about the tuning parameter choice by developing a BIC-type criterion, based on
which we can still achieve the model/moment selection consistency. Unlike the results in the statis-
tics literature (e.g., Wang, Li, and Leng, 2009), our selection consistency result is obtained without
assuming Gaussianity. In addition, this paper shows that the Least Angle Regression (LARS) algo-
rithm by Efron, Hastie, Johnstone and Tibshirani (2004) can be extended to our large-dimensional
GMM framework. This algorithm gives a great computational advantage over downward or upward
testing procedures, especially in this large-dimensional setup. As an illustration, we apply the new
estimation procedure to dynamic panel regression models with fixed effect, where both the time and
cross section dimensions are large. The new estimator can be useful since it is robust to possible
serial correlations in the error terms of dynamic panel regressions.

There are some studies, that are closely related with the current paper, on the shrinkage method
with increasing number of moment conditions. Gautier and Tsybakov (2011) provide finite sample
performance bounds for Danzig selector when there are large number of invalid instruments. Fan
and Liao (2012) analyze the ultra high dimensional case when the number of moments are larger
than the sample size. Cheng and Liao (2013) provide asymptotic results in adaptive lasso when
there are many invalid moments. However, the current paper is different from the aforementioned
ones in the following sense. First, we develop the adaptive elastic net GMM estimation procedure,
which selects both the correct model and the valid moment conditions at the same time, when both
dimensions are large. Second, unlike the lasso method, by including the ¢ penalty as well as the
£1 penalty, we are able to control for the multicollinearity problem among the instruments so that

we can achieve the efficient GMM estimator. Also note that, though the current paper appears



similar to Caner and Zhang (2014), their technical aspects are fundamentally different because we
allow for invalid moment conditions.

The remainder of the paper is organized as follows. Section 2 introduces the basic setup and the
adaptive elastic net GMM estimator. Section 3 provides some technical assumptions and develops
the oracle property of the new estimator. As an illustration, the new estimation procedure is
applied to dynamic panel data regressions. Section 4 discusses some computational issues including
tuning parameter choice based on BIC-type criterion and computational algorithm using the LARS.

Section 5 provides simulation results and Section 6 concludes. Proofs are given in the Appendix.

2 Adaptive Elastic Net GMM

2.1 The setup

We consider a structural equation given by
Yi = XiBo +ui (1)

for i+ = 1,2,--- ,n, where X; is the p x 1 vector of endogenous regressors and 3, is the p x 1
true structural parameter vector. We assume the ¢ x 1 vector of instrumental variables Z;. For
simplicity, we assume all variables are demeaned. We allow that both the number of endogenous
regressors p and the number of instruments ¢ increase with the sample size n. However, we assume
that some components of (3 are zero so that the true model has a sparse representation. We denote
po as the number of nonzero components of 3. Similarly, we assume that the set of g-number of
instrumental variables Z; is a mixture of valid (i.e., they are uncorrelated with u;) and invalid (i.e.,
they are correlated with u;) instruments. We denote sy as the number of invalid instruments in Z;,
that is sg corresponds to the number of nonzero components of the ¢ x 1 moment condition vector

Though we have limited information about the validity of the moment conditions, we presume
a minimal set of valid moment conditions in Z;. We assume that at least (¢ — s)-number of moment
conditions are valid, where p < (¢ — s) < (¢ — s9) so that 8y in (1) is well identified. In this case,
s is the maximal number of invalid moment conditions such that sy < s, which is restricted as

(p+5) < g < n. Note that we assume p < n and ¢ < n but p + ¢ can be larger than n.! More

"We do not consider the case of ¢ > n in this paper, which is completely a different problem. For the case of
convex loss with exogenous covariates, recently Caner and Kock (2014) handle oracle inequalities and estimation

errors. Note that the techniques are entirely different from this paper because of the singularity of Gram matrix.



precisely, we rewrite the ¢ moment conditions as

E[Zu;) — Fro = E[Z;(Y; — X[By) — F10] =0 (2)
for each ¢ = 1,2--- ;n, where F'is the ¢ X s matrix given by
F— Oqfs,s
I

with 04— s being the (¢ — s) x s matrix of zeros and I, is the identity matrix with rank s. The s x 1
vector 7¢ includes all the sp-number of nonzero components of the moment condition E[Z;u;]. For
example, when all the moment conditions are valid and the researcher also believes so, it is simply
the case of s = 0, yielding the standard GMM case with E[Z;u;] = 0.

Note that some of the elements of 7¢ can be zero since sy < s. Therefore, the subset of moment
conditions E[Z;u;] that correspond to the first-block of F' (i.e., 04— s) are the minimal set of valid
moment conditions, which are required to know for identification, whereas the moment conditions
that correspond to the second-block of F' (i.e., I5) are potentially invalid moment conditions. The
main purpose of this paper is to develop a simultaneous procedure of model selection (i.e., choosing
the regressors that correspond to nonzero ;) and valid moment condition selection (i.e., choosing
the instrumental variables in Z; that are uncorrelated with u;) among this set of potentially invalid
moment conditions, as well as efficient estimation of the nonzero components of the structural

parameters (3.

2.2 The adaptive elastic net GMM estimator

For estimation, we generalize the adaptive elastic net estimation of Zou and Zhang (2009) to the
GMM setup. The basic idea is to conduct the standard GMM combined with two penalty terms
(i.e., the quadratic regularization and the adaptively weighted lasso shrinkage) so that both nonzero
Bo and valid moment conditions in (2) are correctly chosen as well as their consistent estimators
are obtained simultaneously. We let X = (X3, ,X,,)" and similarly for Y, Z and u. We define a
gxlvector Y, =2'Y =31 | ZY;, aqx (p+s) matrix X,p = [Z'X,nF] = > ,[Z;X],F], and a
(p+ s) x 1 vector of parameters 0y = (8(, 7))’ € RPTS. In this setup, the adaptive elastic net GMM

estimator for Oy is defined as

. Ao : . sy Ax g,
0= <1 + ﬁ> argmin q (V- — X.p0)W (Y, — X.p0) + X} Z;ijﬂ + Ao ;ej (3)
J= J=



from the moment condition (2), where W is some g X q symmetric and positive definite weight matrix,
and A\] and A2 are some positive tuning parameters. {ﬁj}fif are some data-dependent weights and
they are usually obtained as 7; = |9j7enet|_7 with some v > 1, where Oopor = (él,enet, e ,9p+57enet)’
denotes the (naive) elastic net estimator. @epes is obtained by minimizing (3) with 7; =1 for all j

and without the scaling factor 1+ \g/n%:

pts p+s

. ) R ‘ )

Ocnet = arg min (Y, — X, p0)W (Y, — X.p0) + )\ g 1 1601 + A2 E 1 05 ¢, (4)
]: ‘7:

in which A1 can be difference from A] in (3). So in practice, we run elastic net to obtain data
dependent weights 7; in the first step and run the adaptive elastic net using 7; in the second step.
See Zou and Zhang (2009) for further details in the context of the least squares adaptive elastic
net estimator.

Note that the scaling factor 1+ A\2/n? in (3) will undo the shrinkage from the ridge penalty and
thus reduce extra bias caused by double shrinkage. Unlike the least squares case, however, we use
a finite sample correction of 1 + Ay/n? instead of 1 + A\2/n that is used by Zou and Zhang (2009)
and Caner and Zhang (2014). The reason for this different scaling factor becomes clear later, but
intuitively it is because the GMM objective function is of the quadratic form of the sample average,
whereas the least squares objective function is simply the sample average.

The objective function in (3) includes two penalty terms. The first ¢; penalty term corresponds
to the adaptively weighted lasso shrinkage of Zou (2006) for both 3, and 7, which results in consis-
tent model (for nonzero components of ;) and moment (for nonzero components of 7¢) selections.
On the other hand, the second /2 penalty term, which corresponds to the quadratic regularization,
is included mainly for the moment selection problem.? Basically it will resolve possible collinearity
problem particularly among the instrumental variables Z;. Note that introducing the fs penalty
allows the procedure to select all the valid instruments even when they are highly correlated with
each other. Using more number of instruments will improve the predictability from the first stage
regression, which results in more efficient estimator of 3,. Moreover, in this setup, including the /2
penalty will result in a less biased estimator of j3,.

For example, suppose that there are two invalid instruments that are highly correlated. Without
this ¢ penalty, the ¢; penalty will choose only one of them as an invalid one, which will result in

that the other remains in the pool of valid instruments. Apparently, this result will yield a biased

*Note that if the main purpose is to predict Y;, then adding the £o-penalty also improves the predictability of (1)
as emphasized in Zou and Hastie (2005).



estimator of 3y. On the other hand, when both of the highly correlated instruments are valid and
if the ¢; penalty only choose one of them, then it will result in less efficient GMM estimator. Note
that when we include the f2 penalty, those two instruments are more likely to be selected (or not)
together. This idea is confirmed in the simulation studies below, in which the RMSE estimate of the
structural parameter estimators is smaller with the inclusion of the ¢5 penalty when the correlation

between valid instruments is high.

3 Statistical Theory

3.1 Assumptions

We first provide technical conditions for the main theorems. We suppose triangular arrays Y;, =

(X! . 7!

m? Tan?

Uin) € RPHIFTL for 4 = 1,2,--- .n and n = 1,2,--- defined on the probability space
(Q, B, P,), where the probability measure P,, can change with n. For the sake of simplicity, we
assume {Y;,} are independent and identically distributed across i for each n, though they do not
need to be identically distributed. All parameters that characterize the distribution of Y;, are
implicitly indexed by P, and hence by n. We suppress the subscript n to simplify the notation
though.
We first let
ei = Ziu; — E|Zu;]| = Zju; — Fro (5)

for each 4, based on which the moment condition (2) can be simply rewritten as E[e;] = 0. Through-
out the paper, we let 2 denote the convergence in probability, and ||D|| = [tr(D'D)]'/? for any

matrix D.

Assumption 1. (i) HW— W]l L0 as n — oo, where W is a g x q symmetric, bounded and positive
definite matriz. (i){X;, Z;,u;}1, are independent and identically distributed over i. We also have
[n=t 30 el — V| L0 as n — oo, where V is a ¢ X q symmetric, bounded and and positive
definite matriz. (iii) |n"'Z'X — .|| £ 0 as n — oo, where X, is a q X p bounded matriz of full

column rank p.

As noted in Newey and Windmeijer (2009), Assumption 1 restricts the rate at which ¢ can grow
with the sample size n, which is frequently used in the many (weak) moment literature. Assumption
1-(ii) defines the variance matrix of e; or equivalently that of u;, which takes into account the effect

of moment invalidity. Assumption 1-(iii) assumes that all the instruments Z; are strongly correlated



with the endogenous regressors X; so that 3., has full column rank.? It also implies that
||n71XzF — Yoor | = 0, (6)

where ¥, r = [X.2, F] is a ¢ X (p + s) matrix of full column rank (p + s). It follows that, for each
given g,

0 < Eigmin(X,, zW¥,,r) and Eigmax(X,,,W¥,,r) < oo, (7)

where Eigmax(-) and Eigmin(-) denote the maximal and the minimal eigenvalues of a matrix,
respectively, since W is a ¢ X ¢ symmetric, bounded and positive definite matrix. From Assumption
1-(i), therefore, (6) and (7) implies that there exist positive constants b and B, which do not depend

on n, such that
Eigmax(n2X!,WX,r) < B<oo and Eigmin(n 2X ,WX,r)>b>0 (8)

with probability approaching one (w.p.a.l, hereafter) from Newey and Windmeijer (2009, Lemma

A0). Similarly, from Assumption 1-(iii), we also have
Eigmax(n 2WX,p X' ;W) < B < 00 9)

w.p.a.l, which will control for the second moment of the estimators when there are many invalid
instruments.
Welet A={j:0;0#0,7=1,2,---,p+ s}, which collects the index of nonzero coefficients in

0y. The minimum absolute value of the nonzero coefficients is denoted as
=min |0,

which may depend on n and possibly local to zero. We impose conditions on the tuning parameters

as follows. Note that the tuning parameters A1, A], and A2 all diverge to infinity as n — co.

Assumption 2. (i) limg o0 ¢/n% < 00 and limy, 5 p—oo(p + 5)/n” < 1 for some 0 <v < a <1,
where (p+ s) < q for any n. (ii) There exist positive constants v and k satisfying a < (K — 3) <
Y(1 —a) —v. (iii) A3||6o|]>/n® — 0 and \3/n® — 0 as n — oco. (i) A\2(p + s)/n*n*’ — 0 but

N2 /ns=7(1-0) 50 as n— 0.

3Under the case with many weak moment conditions, GMM estimation normally yield inconsistent estimators
(e.g., Newey and Windmeijer, 2009). For Lasso type estimators, same problem is pointed in Caner (2009) by showing
that even with fixed number of instruments only nearly-weak asymptotics can give consistent estimates. We think
that many weak moment case will be interesting but it needs to be handled in the GEL or CUE framework, which is

outside the scope of this paper.



Assumption 2 establishes the rates for tuning parameters as a function of the total number of mo-
ment conditions and the number of parameters. Note that the total number of moment conditions
q can come arbitrarily close to the full sample size n when « is close to one.* Recall that ~ is
chosen for defining the weights in the lasso penalty (i.e., 7; = |9j7enet|_7), and thus ~ is closely
related with the degree of penalty on the small coefficients. Assumption 2-(ii) requires that ~ is to
be chosen such that v > (a+v)/(1—«), where the same conditions can be found in Zou and Zhang
(2009) when o = v. Once 7 is determined, the tuning parameters A1, A], and Ay are to be chosen
according to Assumptions 2-(iii) and (iv). Note that these conditions allows for larger values of the
tuning parameters than those of Zou and Zhang (2009) or Caner and Zhang (2014), though we can
still choose smaller values similar to theirs. The constant k is introduced for the technical reason
proving selection consistency.

It is important to note that Assumption 2-(iv) allows the nonzero coefficients to be local-to-
zero but it restricts the rate at which the nonzero coefficients should vanish so that they can be
distinguished from the true zero coefficients. In fact, from this condition, we are able to come up
with the lower bound of the local-to-zero rate of 7: if a nonzero coefficient is local-to-zero but it
vanishes faster than this rate, it cannot be selected as nonzero in our adaptive elastic net GMM
procedure. Apparently this condition also imposes restrictions on the tuning parameter A} for
the ¢; penalty in (3) so that we can achieve the selection consistency in Theorem 1 below. In
comparison, Assumption 2-(iii) on A; for the ¢; penalties in (4) and (11) is required to obtain an
asymptotically negligible upper bound of the estimation error of the elastic net estimator.

The lower bound of the local-to-zero rate of  depends on the number of structural parameters
p, the number of moment conditions ¢, and the maximal number of (potentially) invalid moment
conditions s. If either the number of moments or parameters increases, then the required lower
bound of the threshold defining the local-to-zero parameter gets larger. For example, we suppose

n =n"1¢ for some £ > 0. Then Assumption 2-(ii) and (iv) imply that
N2 (p + 8) /0" = AP 0
for some positive constant ¢ < 1, and thus

n_)‘5+7(1_a) /ny+(27/§)_3 — 00

T max;<i<p, Maxi<j<4 F(Z;ui)* < 0o as Newey and Windmeijer (2009, p.706), where Z; ; is the jth instrument
of Z;, we need ¢*/n — 0 to satisfy Assumption 1-(i). Since ¢ = O(n®) and (p+s) = O(n"), however, it restricts that
0<v<a<l/2



as )\1‘2/71%—7(1—00 — 00, which requires —k + (1 —a) > v+ (2y/§) — 3 or

2y .
§>'y(1—a)—1/—/-$+3 & (10)

Note that £* > 0 since v > 0 and (1 —a) —v —k+3 > 0 from Assumption 2-(ii). Since ¢ = O(n®)
and (p+s) = O(n”) in Assumption 2-(i), it thus follows that the lower bound of the local-to-
zero rate of 7 increases as the number of moment conditions ¢ (i.e., the size of ) or the number
of parameters p + s (i.e., the size of v) gets larger. As an illustration, when the system is just
identified with o = v = 1/2, we have v > 2 and 7 < 2k < 5 + v from Assumption 2-(ii), which
can be satisfied with v = 4 and k = 4. The true local-to-zero but nonzero coefficients thus cannot

vanish faster than n~1/¢" = p~1/16

in order to be selected as nonzero. For example, even when
n =105, n = minje 4 |0;0| is about 0.5 in this case. This illustration shows that in an environment
with many moments and/or parameters, it will be difficult to do perfect model selection unless the
coefficients are large enough.

We let 04 = (B4, 7'4)’; which collects the nonzero parameters in 6y. Then 7 4 is an sg x 1 nonzero

subvector of 7o that represents invalid moment conditions. We also let Fq = [0/ The

4—s0,50 Lol
last condition is useful to obtain the Lyapunov condition in Theorem 2 below, which is similar to

what Zou and Zhang (2009) assumes in the context of simple least squares.

Assumption 3. max;<i<, |[n~Y2(Ziu; — Far.a)||> 2 0 as n — oco.

3.2 The oracle property

For analytical convenience, we define

p+s p+s
Or = argmin § (Vz = Xop) W(Y: = Xopt) + A1 ) 70050+ X2 ) 05 (11)
j=1 J=1
for nonnegative tuning parameters A\; and A2, where A; is introduced in (4) and 7; = |9j7enet|_7

in (3). Apparently, this estimator becomes the elastic net GMM estimator in (4) when 7; = 1
for all j; or the adaptive elastic net GMM estimator in (3) with the scaling factor 1 + A\g/n? and
the tuning parameter \] instead of A;. We first obtain the risk bound of this interim estimator,
which is useful to obtain the selection consistency in Theorem 1 and the asymptotic normality in

Theorem 2 below.”

"This result seems quite similar to that of Zou and Zhang (2009). But this result is obtained w.p.a.l since
we consider stochastid regressors in the GMM setup; whereas Zou and Zhang’s result is exact since they consider

deterministic regressors in the least squares setup.



Lemma 1. Under the model (1), (2) and Assumption 1, we have

Bl — o2 < 4A%||90||2+Bn3q+A?E(Z§ITﬁ§)
o = (02 + Ag)2
A3)l60]|* + Bnq + M (p + s)

(bn2 + )\2)2

and

EIH(ge'rzet_gOH2 S 4

w.p.a.1, where B and b are some positive constants given in (8) and (9).

Since the risk bounds in Lemma 1 go to zero as n — oo under Assumptions 1 and 2, both 0, and
éenet are consistent estimators of 6y. Therefore, we can use éenet to construct the adaptive weight
7; in (3). Notice that, as in Zou and Zhang (2009) and Caner and Zhang (2014), the upper bounds
are formulated using [|6p||? instead of the sparsity of the vector 6y (i.e., p + s). In comparison,
the sparsity index is commonly used in the high dimensional models literature (e.g., Belloni, Chen,
Chernozhukov, and Hansen, 2012), which is because of singularity of the design matrix.

Note that the mean squared error expressions depend inversely on b, which is a lower bound of
the minimum eigenvalue of n=2X ! FWX .r defined in (8). When the regressors are highly correlated
with each other, b can be close to zero. In this case, without the tuning parameter Ao in the
denominator (e.g., lasso or adaptive lasso), the error bounds in Lemma 1 can be quite large. This
implies that the error bound of the adaptive elastic net estimator will be smaller than that of the
adaptive lasso estimator when b is close to zero because of highly correlated regressors.

We now obtain one of the main results: the selection consistency. This result shows that the
adaptive elastic net GMM procedure automatically selects the valid moment conditions as well as
the relevant regressors in the structural equation. This extends Zou and Zhang (2009) in two ways:
it finds the relevant regressors in the linear GMM setup instead of the linear least squares case; it

also tells if each moment condition is valid or not.

Theorem 1. Under Assumptions 1 and 2, the adaptive elastic net estimator 6 in (8) satisfies the

selection consistency: P({j:0; #0} = A) — 1 as n — occ.

The selection consistency in Theorem 1, which mainly comes from the ¢; penalty in (3),°

means
that the true nonzero coefficients are to be selected as nonzero. For some local-to-zero coefficients,
they are to be concluded as nonzero coefficients provided that they vanish slower than the lower

bound of the local-to-zero rate in Assumption 2. As we discussed after Assumption 2, however, it

5In principle, we expect that the same goals can be achieved using different types of penalties that possess the

oracle property such as Bridge (e.g., Huang, Horowitz and Ma, 2008) and SCAD (e.g., Fan and Li, 2001).
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will be difficult to do perfect model selection unless the nonzero coefficients are large enough in an
environment with many moments and/or parameters. For example, if we suppose n = O(nfl/ §) for
some & > 0, the lower bound of the local-to-zero rate is given by O(n_l/ €"), where £* given in (10) is
normally much larger than 2. In this sense, Theorem 1 extends Leeb and Potscher (2005)’s criticism
to the context of many parameters. Recall that, in the case with fixed number of parameters, they
found that the minimum order of which a local-to-zero coefficient is to be distinguished from zero
is n~1/2, that is smaller than n=/¢" for £* > 2.

As the second main result, we derive the limiting distribution of the adaptive elastic net GMM
estimator of the nonzero coefficients 4 = (8’4, 7/4)" in the following theorem. Caner and Zhang
(2014) also obtain the limiting distribution of the GMM estimator via adaptive elastic net, but
their focus is in choosing the nonzero structural parameters of 5, when all the moment conditions
are assumed to be valid. We denote the true number of nonzero structural parameters as py with
1 < po < p and the true number of invalid instruments as so with 1 < sg < s, so that 54 is pg x 1

and 74 is sgp x 1. We further define a (pg + so) X (po + so) matrix given by
Y4 =Yr AV Sra, (12)

where ¥,,p.4 = [X22:4, Fl4] is a full column rank ¢ x (pp+ so) matrix and X, 4 is a full column rank
q % po matrix. Recall that Flq = [0;_ ., Is])'- From the conditions on 3., and V' in Assumption
1, 3 4 is symmetric, bounded and positive definite.

Note that ;.4 is defined from |[n=1Z'X 4 — S.4.4]| 2> 0, which holds from Assumption 1-(iii),

where X 4 is an n x pg matrix that consists of the (endogenous) regressors corresponding to the

nonzero structural parameters. Then using a similar argument as (6), we have
||n_1XzF:A - Z]zzF:AH L 0, (13)
where X, p. 4 = [Z' X 4,nF4] is a ¢ X (po + so) matrix.

Theorem 2. We let 9,4 be the adaptive elastic net GMM estimator in (3) that corresponds to 0 4.
We also let W = V_l, where V is some consistent estimator of V.. Under Assumptions 1-3, the
limiting distribution of 0 A 1S given by

1 + )\2[‘}_1)
’( poto A ) fy2o 17205 d
H - 1
L+ (\a/n2) A2 (04— 04) 5 N(0,1) asn — oo,

where H 4 = X;F:Af/*lXZp:A and ¢ is an arbitrary (po + so) X 1 vector with ||C|| = 1.
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From Assumption 1-(ii), V can be consistently estimated by V = n~! S éiél and so is W, where
éi = Zi(Y; — X!B) — F7 and (B,,i")’ is the (p + s) x 1 vector of initial adaptive elastic net GMM
estimators in (3) with the weight W = I,. Since é; = ¢; — Z; X!(B — By) — F(¥ — 7¢) and (B,,%')’
is consistent to (8f,74), it can be verified that |V — V| < |0t 0, &él —n 300 el +
It S ee — V|| £ 0 as n — oo.

From (12) and (13), we have |Hal < |HY?|2 = n2tr(n =X,V "1X.pa) < n?(po +
so)Eigmax(n X!, VX, p.4) = Op(n®(po + s0)) since |[n=2X! . VX, 4 — X4l 2 0 from
Assumption 1. Therefore, for some positive constant ¢ < oo, we can obtain

Ipg+so + AQI:I;ll _I
L+ (Ag/n2) TPt

(14)

< Lpotso + c(A2/n?) Lo+, 7 N (A2/n?) {(”72HA)71 - dpo+so} —o(1)
N 1+ (Ag/n?) poctso 1+ (Aa/n2) = %

as n — 00, for Ay/n? — 0 from Assumptions 2-(iii). This implies that, though 64 is a consistent
estimator of 6 4, the rate of convergence of 6 418 \/m , which is affected by the true number
of invalid moment conditions sg. Therefore, existence of invalid moment conditions makes the rate
of convergence of ] 4 slower. When pg + s is fixed, however, it retrieves the optimal rate of /n.
Finally, an interesting question is whether we can achieve the efficiency bound of the structural
parameter estimators of S from the adaptive elastic net GMM procedure as if we had known
all valid instruments. Note that it is generally the case if we use the entire valid (and strong)
instruments. Since |[n 2H4 — $4]| & 0, however, Theorem 2 and the result (14) show that
Z;tl = (X, AV_IEZJE F.4) ! corresponds to the asymptotic variance of 0 A, which is obtained by
letting W = V! as in the conventional efficient GMM theory. The following theorem shows that
the asymptotic variance of the true nonzero structural parameter estimator B 4, which is given
by the pg X pg north-west block of Z;‘l, is the same as the efficiency bound obtained when we
only use all the valid moment conditions. We decompose Z = [Z!, Z?], where Z' represents the
n x (g — so) valid instruments and Z? represents n x sq invalid instruments. More precisely, they
satisfy ||n=' o0, Ziui|| B 0 and |[nt SO0, Z2u; — 74| & 0, where Z) and Z? are the ith row

of Z! and Z?, respectively, and 74 is the sg x 1 vector collecting all the nonzero elements of 7.

Theorem 3. We let 2341 be the pg X pg north-west block of E;ll, which corresponds to the asymptotic
variance of the true nonzero structural parameter estimator B 4- Under Assumptions 1-3, it holds
that Y = (2L, aVi1' Saree) ™ where |07 ZYXa = Sapall 0 and |0t Y0, 2206} —

Vil 2 0 as n — co.
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Note that the efficiency bound of the true nonzero structural parameter estimator is given by
(2, AVii'S22:4) 71, which can be obtained by only using all the valid moment conditions (i.e.,
excluding all the invalid moment conditions). Therefore, this result implies that even when we
have potentially many invalid instruments, we can still estimate the nonzero elements in 3 as if
we were using only the valid instruments, which gives the oracle result. The adaptive elastic net
GMM estimation does not require any pre-testing for the instruments validity.

It is well known that adding more valid instruments will improve the efficiency in the standard
GMM setup and Theorem 3 manifests that including all the valid instruments is important to
achieve the efficiency bound. As discussed in Section 2.2, therefore, adding the fs penalty here
is quite important to achieve the efficiency. As shown in Zou and Hastie (2005), the (adaptive)
lasso, which only has the ¢; penalty, is more likely to select only one variable among the relevant
variables if they are highly correlated. In our setup, omitting ¢» penalty thus could result in selection
inconsistency, which means that the procedure fails to select all the valid moment conditions when
they are highly correlated with each other. Apparently, omitting valid instruments results in

efficiency loss.

3.3 An example: Dynamic panel regression

As an illustration, we consider the following dynamic panel regression model given by
Yit = Polit—1+ 5400 + p; + uiy (15)

fori=1,--- ,Nandt=1,---,T, where |pg| < 1, y;+ is a scalar, z;; is a K x 1 vector of strictly
exogenous regressors and j; is the unobserved individual effects that can be correlated with ;1
or z;;. Under the condition that

Bluiglps,yi ' xf] =0, (16)

t—1 / T ! /
where ¥ = (yi1,- - wie-1) and @7 = (i, 7

; 1), we can estimate p, and o using the

moment conditions given by
E[A(Ifi’tAui?t] = 0 (17)

E[yiAuy] = 0 (18)

for t > 2 as Arellano and Bond (1991), where Az;; = z;; — x;4—1 and similarly for Ay;; and Aw; ;.
However, the moment condition (18) is vulnerable since it heavily depend on the condition that w; ¢ is

serially uncorrelated, whereas the moment condition (17) is robust to the possible serial correlations
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in u;s.” So, with potentially serially correlated wu;+, we have ¢ = (T — 2)K + (T — 2)(T — 1)/2
number of total moment conditions, among which (at most) s = (7'—2)(7'—1)/2 number of moment
conditions are potentially invalid under the possible serial correlation in u;;. For identification
purposes, however, we need p < (¢ — s), which corresponds to K +1 < (T' — 2)K for all T
and K and is thus satisfied with T' > 4. With N, T, K — oo, we allow for ¢,s,p — oo in this
case. However, the ratio of the number of moment conditions ¢ to the sample size n = NT is
q/NT = O(K/N + T/N). So in order to satisfy Assumption 2-(i), we need max{K,T}/N — 0
as N,T, K — oo. But this condition naturally holds for the conventional panel data with large
cross-sectional observations.

More precisely, we let Ay; = (Ayis, -, Avir)'s Ayy—y = (Ayig, -, Ayir—1), Ar; =
(Amiz, -, Azir), Au; = (Auigz, - ,Au;r), and the ¢ x (T' — 2) instrument matrix Z; =
[Z2i, Zyi) , where

A$i73 0 0
0 A.’L’i’4 0
Dpi = . . and
0 0 - Az (T—2)x(T—2)K
yii 0 0 o 0 - 0
2y = 0 w1 ¥i2 0 0
0 0 0 e yi71 e yi,T—Q

(T-2)x((T-2)(T-1)/2)

Then, with possible serial correlations in u; ¢, we have the ¢ X 1 moment condition
E[ZiAui —FT()] =0

for each i as (2), where 7¢ is a s X 1 vector of unknown parameters. The adaptive elastic net GMM

"Under an additional condition of the mean stationarity (i.e., E[y;:] = p for all 4 and t), we further have
E[Ayit—1(yit — pyi—1 — @} 10)] = 0 for t > 2 as Blundell and Bond (1998) and Bun and Kleibergen (2013). When
p is close to one, the moment condition (18) is prone to have weak identification (i.e., weak instrument problem)
whereas this new moment condition is robust to such a persistency. We could find valid more moment conditions (e.g.,
E[yfthui,t] = 0 for some h > 2 under m-dependence type restriction on w;¢; F[Ax; sAu;] =0 for s =2,--- | T
under strict exogeneity of z; ;; or second moment restrictions with homoskedasticity assumption) but we only consider

the most conventional moment conditions given as (18).

14



estimator of 0y = (py, 0y, 7()" is then given by

N

R Ao > Jon

0 = (14+—==)arg min Zi(Ay; — pAy;_1y — Ax;0) — Fr)'W

(1+ gz ) one,_min ),{;< (Ays — pAyi(_1) — Azid) — 1)
p+s p+s

X (Zi(Ay; — pAyi—1) — Az 8) — F'1) + A ZWJIG !+)\2292

for some positive definite ¢ x ¢ weight matrix W, where p+s = (K 4 1)+ (T —2)(T —1)/2. For the
choice of the optimal weight matrix, we first obtain the elastic net estimator 6 = (p, SI,%' ) with
W = I, and let &; = Z;(Ay; — pAy;—1) — Az;0) — F7. Then the optimal adaptive elastic net GMM

estimator can be obtained using 7; = |0;|~Y and W = (Zfil é;65)~1