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are commonly predicted to exist within compactifications of UV complete theories,
and in particular those theories exhibiting supersymmetry. But if such theories’
dynamics are present during the inflationary phase of the universe and thereafter,
what are the implications for cosmology and the evolution of the universe? In this
thesis a review is presented on generic consequences of the presence of these scalar
fields during inflation and the post-inflationary era of the universe. An unexpected
consequence arises in the study of dark matter production, where a deviation from
the usual thermal production mechanism is shown to be required.

In addition to studies in cosmology, the dynamics of a twisted construction of
supersymmetric lattice quantum field theory is explored. An analysis of the fermionic
sign problem is presented and it is shown to be absent in the studied formulation. A
first study of the phase structure of supersymmetric N = 4 supersymmetric gauge
theory is also presented.
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Chapter 1

Introduction

For the first time in the history of science precise experimental observations are en-

countering theoretical predictions from what may have occurred during the first 10�36

seconds after the Big Bang. In particular, it is the theory of cosmic inflation that

proposes a burst of exponential expansion during these early times which provides

the best candidate theory for this era.

The predictions of inflation include explanations for the observed smooth, large

and nearly isotropic universe as well as the large-scale structure formation we observe

today. Predictions from this theory are tested by experimental observations of the

relic Cosmic Microwave Background Radiation (CMB), a snapshot of the state of

the universe when it was 380,000 years old. In March of 2013, the state-of-the-art

results from the European Space Agency’s Planck satellite were published, reporting

the highest precision measurements of the CMB to date.

In parallel, the Large Hadron Collider at CERN (LHC) has probed energies of 14

TeV, or equivalently 10

�14 seconds after the Big Bang. This experiment has verified

the Standard Model of particle physics, the fundamental theory of the universe up

to energies of 10 TeV and finally discovered the much anticipated Higgs Boson. The

theory of inflation and the standard model tell very precise stories, but unfortunately

of two disjoint eras of the early universe. An understanding of the fundamental physics

between these two eras, is required to link together the experimental observations from

both Planck and the LHC.
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Figure 1-1: An all-sky scan of the Cosmic Microwave Background (CMB) radiation
after the subtraction of background noise (Courtesy of the Planck collaboration). In
this image only the overall difference from the mean temperature is plotted, with the
cooler regions at -230 µK away from the mean depicted in blue and the warmer
regions at +188 µK away from the mean depicted in red.

1.1 Inflation and the uncertainties in its observables

Inflation provides a mechanism for large scale structure formation in the universe [1,2].

Quantum effects result in very small fluctuations around a perfectly homogenous

density distribution in the infant universe. These small differences would be inflated to

much larger scales through the exponential expansion, thus “freezing" these quantum

effects that seed the large scale structure we see today in galactic superclusters and

beyond.

This mechanism results in the CMB possessing regions of over and under densi-

ties, with exceedingly small but finite temperature differences from the overall mean

temperature. This prediction is verified by a careful analysis of the CMB, revealing

small differences of ±3⇥ 10

�4K from the mean temperature of 2.7260± 0.0013 K.

The information for structure formation is encoded in these small temperature

fluctuations and is derived from a fundamental theory via two parameters, ns and

r, which have unique theoretical signatures depending on the model. ns and r are

2



Figure 1-2: The ns vs r confidence contours of the Planck CMB measurements com-
bined with data from WMAP9 and BAO measurements (Courtesy of the Planck
collaboration). In this plot we see the 95% (lighter) and 68% (darker) confidence
contours for the combined experimental measurements while the locations of various
included and excluded inflationary models are listed.

also directly measurable by the Planck satellite, and one may use this as a probe to

determine which inflationary model is in agreement with experimental measurements.

The Planck collaboration successfully placed stringent constraints on the ns and r

parameters restricting the possible set of inflationary models greatly. In figure 1-2, the

95% (lighter) and 68% (darker) confidence contours are shown for the data measured

by the Planck experiment and further supplemented by various other experiments.

In addition to the experimental contours, the Planck team also included where well

studied inflationary potentials fall on this plot.

The mapping from the inflationary model to the observables ns and r is however

inherently imprecise due to our lack of understanding of the post-inflationary history

[3]. A way to establish the post-inflationary history is through its effects on the

evolution of the primordial density perturbations initially provided by inflation [2].

The expansion history during this time can alter both the predictions for the growth

of large-scale structure and the anisotropies of the CMB. The uncertainty in the

expansion history in turn leads to an uncertainty in the inflationary parameters and

3



thus can be used to develop constraints on the post-inflationary history of the universe.

The standard assumption about the cosmological history from post-inflation until

the TeV era is that it was dominated by a radiation bath. This prototypical history

is referred to as a thermal history while any deviation from it is described as non-

thermal. For example, one possibility of such a deviation is depicted in figure 1-3

In this scenario a scalar field from the low-energy limit of a hypothetical quantum

gravity theory modifies the thermal history giving rise to an alternative non-thermal

matter dominated phase as this scalar decays to dark-matter candidate particles.

There are a number of other motivations from fundamental theory for expecting

departures from a strictly thermal history after inflation ends (at a GUT scale). In

fact, the requirement of adequate reheating to realizing a hot big bang consistent with

observations already requires departures from a purely thermal scenario [4]. Addi-

tionally, theories beyond the Standard Model of particle physics generically predict

the existence of additional scalar fields - examples include the sizes and shapes of

extra dimensions, or Supersymmetry (SUSY) flat directions in the moduli space of

the scalars. In the very early universe the vacuum expectation values of these fields

are generically displaced [5] and energy can become stored in the form of coherent

oscillations, forming a scalar condensate.

The cosmological scaling of the condensate depends on the symmetries of the

theory and which term in the scalar potential is dominant. When the dominant term

in the potential scales as V ! �� the pressure of the condensate depends on the

energy density as

p =

�
2�

2 + �
� 1

�
⇢, (1.1)

where ⇢ scales as

⇢ = ⇢
0

a�6�/(2+�), (1.2)

and a(t) is the cosmological scale factor. Two examples are a massive scalar field

with negligible interactions, for which � = 2 and the condensate scales as pressure-

less matter p = 0, whereas if physics at the high scale is dominant - in the form of

non-renormalizable operators - then � � 4 and the condensate evolves as a stiff fluid

4
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Figure 1-3: One possible variation from a thermal history. On the left side the usual
thermal evolution is depicted and on the right hand side one possible deviation from
it. This modification is phenomenologically interesting since it proposes an extra
matter dominated phase which gives rise to an alternative non-thermal origin to dark
matter.

p & ⇢ for large �.

In addition to the presence of condensates, there are many other phenomenologi-

cally motivated reasons to consider a modified expansion history including symmetry

breaking phase transitions, prolonged reheating, curvatons [6], Q-balls [7], kination

models [8], frustrated cosmic string networks [9], or a short period of thermal infla-

tion [10].

Regardless of the consideration however, in many scenarios the post-inflationary

history will depart from a strictly thermal history and the evolution during this time

can be parametrized through an equation of state parameter w(t) = p/⇢. In fact,

one may consider a direct mapping of the exotic scenarios listed above to a particular

value of w. The investigation of the consequences of a departure from a standard

post-inflationary history (being the radiation dominated universe w = 1/3) can thus

be reduced to studying the effects of w on the evolution of cosmological perturbations

through the post-inflationary phase.

Deviations of w from the strictly thermal case (w = 1/3) may lead to observable

5



imprints on the CMB spectrum. For example, situations where w < 1/3 can lead to

an enrichment of substructure (seeded by cosmological perturbations) depending on

the properties and interactions of the particles and fields at this time. If dark matter

primarily originates as a decay product - as in some non-thermal histories - it can

undergo enhanced clumping to form a larger number of sub-halos [11]. If equilibrium

is never reached during the alternative post-inflationary history, CMB measurements

restrict the level of isocurvature modes to be less than around ten percent, thus

providing a constraint on histories that rely on out-of-equilibrium particle decays [12].

We therefore reach the conclusion that the establishment of the post-inflationary

history and its connection to the growth of small and large-scale structure

we can constrain classes of non-thermal histories purely based on CMB

observations. This is the main motivation of the work presented in this thesis and

the focus of chapter 3.

We can now be more concrete about how changes in the post-inflationary expan-

sion history can alter the way in which predictions of fundamental theories of inflation

are linked to cosmological observables. Particularly, we may focus on the effect of the

change in the history to predictions on how long inflation took place measured by a

quantity called e-folds– how many orders of exponential expansion occurred during

inflation. In this analysis we will not be concerned with the total number of e-folds

of inflation, but rather the number of e-folds, denoted by N , that elapsed from the

moment the CMB scale mode left the Hubble horizon to the end of inflation.

The correlation between the post-inflationary thermal history and inflationary

observables is usually expressed via the matching equation, as surveyed in [13–15].

However, changes in the equation of state parameter w̃ following inflation can alter

this matching, since the expansion controls how rapidly perturbations re-enter the

Hubble horizon.

For slow-roll inflation, the number of e-foldings between horizon exit and re-entry
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is given by

N(k) = 56.12� log(

k

k⇤
) +

1

3(1 + w̃)
log(

2

3

) + log(

V
1
4
k

V
1
4
end

) (1.3)

+

1� 3w

3(1 + w̃)
log

� ⇢
1
4
reh

V
1
4
end

�
+ log

� V
1
4
k

10

16GeV

�
, (1.4)

where k⇤ = 0.05Mpc�1 is chosen as the pivot scale1, ⇢1/4r ⇠ Tr is the temperature

at which the thermalization took place, Vend is the value of the slow-roll potential at

the end of inflation and Vk the value of the potential when the k-th mode exists the

horizon, and

w̃ =

1

� log a

Z
w(a)d log(a) (1.5)

is the averaged equation of state parameter. For smaller values of w̃ the value of N

at which the pivot leaves the horizon will be decreased. Therefore, changes to the

equation of state lead to a theoretical uncertainty in the number of e-foldings �N ,

which is found to shift the momentum scale of modes as k⇤ ! k⇤e�N .

For simple models of high scale inflation, where reheating is not immediate but

followed by a short period of matter domination, there is an uncertainty in the number

of e-foldings �N w 10, when thermalization occurs at the TeV scale [16]. This

introduces an error into the tilt of the power spectrum �ns ' 0.005 - comparable

to the statistical errors of Planck. These uncertainties, and additional ones for the

tensor to scalar ratio, result from the correlation between the running of the spectrum

↵s ⌘ dns/d log k and the post-inflationary history - e.g. for a scalar tilt �ns ⇠ ↵s�N .

We therefore carefully consider the implications of the inflationary uncertainties and

use them to constraint inflationary parameters.

In the next section we introduce a lattice formulation of N = 2, 4 Supersymmetric

quantum field theories in two and four dimensions for the purpose of exploring non-

perturbative dynamics of supersymmetric quantum field theories.
1The specific value of this constant is chosen based on the dataset being considered.
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1.2 Supersymmetric quantum field theories, a lattice

description

Though highly successful at describing the universe at the TeV scale, it is clear that the

Standard Model of Particle Physics is an incomplete description of the fundamental

interactions [17]. An extension of the Standard Model to one that exhibits supersym-

metry may enlighten our understanding of nature further and ultimately lead us one

step closer to finding a field theory that encompasses all natural processes.

In essence, supersymmetry (SUSY) is the extension of space time symmetries,

such as Poincaré symmetry, by fermionic generators [18]. This new symmetry then

serves as the theoretical scheme that unifies fermions and bosons, giving each known

particle a superparticle partner through a supersymmetric transformation.

Whether or not supersymmetry is a symmetry exhibited by nature, it is interesting

to study it for purely theoretical reasons. Supersymmetric field theories possess chiral

symmetry breaking, confinement, conformal behavior, a mass gap and more [19].

Thus even if supersymmetry was discredited, the understanding found in studying

confining supersymmetric models for example may lead to new understandings one

of the presently confounding problems of quantum chromodynamics.

Also, many breakthroughs have been made using supersymmetry in fields such as

Topology and String Theory [19]. In String Theory, connections between Large N

supersymmetric field theories and Quantum Gravity have been conjectured [20] and

even extended to condensed matter systems.

With the success of lattice methods in quantum chromodynamics and non-abelian

gauge fields in general, it is quite reasonable to seek a lattice formulation of super-

symmetric field theories on a discretized space-time lattice. Until recently, methods

for formulating supersymmetric field theories on the lattice have been difficult to for-

mulate [19]. The reason for the difficulty is that supersymmetry extends the Poincaré

symmetry which breaks upon discretization, since a generator of infinitesimal trans-

lations does not exist on the lattice. Recent advancements in understanding of the so

called orbifolding/deconstruction and the topological twisting procedure have made
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it possible to construct exact rigorous supersymmetric theories on the lattice [19]. In

this thesis the focus is on the twisted field theory approach.

1.2.1 Global Supersymmetry

As stated previously, supersymmetry is an extension of Poincarè symmetry by adding

fermionic generators. One must be careful as to what is allowed in this extension of

the Poincarè algebra as Coleman and Mandula proved that for any theory with a

mass-gap, the only conserved quantity other than the generators of the Poincarè

algebra must trivially be Lorentz scalars [21]. It was later shown that supersymmetry

was an exception to this theorem since the generators of supersymmetry (the super

charges) are spinors. This result is due to Haag, Lopuszanski and Sohnius [22].

Poincaré symmetry consists of translations in spacetime generated by Pµ and

Lorentz boosts generated by ⌃µ⌫ = �⌃⌫µ . Disregarding structure constants, the

Poincaré algebra has the structure [19]

[P, P ] = 0 , [P,⌃] v P , [⌃,⌃] v ⌃ .

The first term means that each translation Pµ commutes with eachother, the second

that translations transform with the Lorentz group as four vectors (P ), and the last

term means that Lorentz boosts transform under the Lorentz symmetry to something

proportional to another Lorentz boost (at least an antisymmetric tensor).

The supersymmetry algebra is an extension of the Poincaré algebra with the fol-

lowing transformation properties

{Q,Q} = 0 , [P,Q] = 0 , {Q,⌃} v Q , [Q, ¯Q] v P

Where Q↵ and ¯Q↵̇ are the generators of the supersymmetry. The first term tells us

that Q anticommutes with itself or that it is Grassmann; the second term that trans-

lations commute with Q; the third that Q transforms under Lorentz transformations

as a 2-component Weyl spinner; and finally the last term tells us that two successive
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supersymmetric transformations gives something proportional to a translation. The

last point implies that the generator Q is in a sense the square root of a transfor-

mation and hence related to the square root of the Hamiltonian. The ↵ index of Q↵

counts how many generators there are in the given theory ranging from 1 . . N 2 Zn.

Since the number of supercharges changes for a given N changes with d, it becomes

convenient to categorize a theory by how many real super charges Q in a given d. For

example, in N = 1 and d = 4 we have Q = 4 since there is one Q and ¯Q each being

a two component spinor.

It is quite common for supersymmetric theories to possess global chiral symme-

tries (called “R-Symmetries" due to historical reasons). These symmetries do not

commute with Q, meaning that members of the supermultiplets transform as differ-

ent multiplets under R-symmetry transformations. These symmetries play a crucial

role building supersymmetric lattice field theories with scalars, as is discussed in

section 1.2.3.

1.2.2 Accidental symmetries

An “accidental symmetry" is a symmetry that emerges as one takes the continuum

limit of a lattice field theory that was not present on the lattice due to symmetry

breaking operator terms [19]. Essentially building such a theory on the lattice means

to build an action naively and then see which terms violate the symmetry. These

symmetry breaking terms then may be fine tuned so that they disappear in the

continuum limit rendering a symmetric continuum action.

In principle, one may construct a lattice field theory in such a way that any

desired symmetry appear as an accidental symmetry in the continuum limit. This

would require careful work with fine-tuning, and may lead one through a process,

not only unnecessary, but also excessively difficult and prone to errors– it might even

be impossible. Such an undertaking may be used for supersymmetry, to gain all

symmetries as accidental symmetries, however this is not required. A more viable

approach is to impose as many symmetries on the lattice as possible and then aim to

regain the remaining symmetries in the continuum limit.
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The process of constructing such an emergent symmetry is to consider the sym-

metry breaking operators on the lattice. If such operators are irrelevant operators

(tending towards zero in the continuum limit2), then the symmetry is restored in

the continuum, if not, one may also fine-tune certain parameters in order to restore

this symmetry. For the case of supersymmetry, it is shown in [19] that N = 1 in

d = 4 without scalars recovers supersymmetry as an accidental symmetry by setting

a gaugino mass term to zero. This however is not the case for supersymmetry with

scalars.

N = 1 in d = 4 supersymmetric field theory with scalars poses a problem when one

tries to have supersymmetry emerge as an accidental symmetry. One of the symmetry

violating terms emerges as a relevant operator responsible for scalar masses. Following

the process for supersymmetry with no scalar terms, we would like to find a symmetry

that can be implemented on the lattice exactly which is broken by a scalar mass term.

Unfortunately the only symmetry that one can use in this case is supersymmetry itself

and hence unusable for this purpose.

It is then reasonable to consider the possibility that if only a subalgebra of the full

extended supersymmetric algebra is realized on the lattice, the rest may be recovered

in the continuum limit. The full extended supersymmetric algebra is given by the

relations

{Qi
↵, Q

j
�} = 0 , { ¯Qi

↵̇, ¯Q
j
˙�
} = 0 , {Qi

↵, ¯Q
j
˙�
} = 2Pm�

m
↵ ˙�
�ji ,

where i, j range from 1 . . N .

Immediately one realizes a number of issues that need to be considered. How

can one select the correct subalgebra to implement on the lattice given that Pm, the

generator of infinitesimal translations does not exist on the lattice? Secondly, is it

possible to isolate a sector of the subalgebra that will not destroy the hypercubic

lattice symmetry leaving the Poincaré symmetry intact? Another concern is how one

would go about placing the bosons, fermions and scalars on the lattice, considering
2This is of course assuming that such irrelevant operators remain finite as one takes the continuum

limit
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that their superpartner particles, seemingly, have to be placed in the same locations3.

And finally, since supersymmetric theories possess global chiral symmetries, it is not

entirely clear how the boson superpartners of the chiral fermions will be placed on

the lattice.

These issues seem to rule out the construction of supersymmetric lattice field

theories, however the key to circumvent these issues is to first consider that Qi and
¯Qi are independent. Then one may consider a subset of the supercharges {qj} that

remains nilpotent. This resolves the issue of not having infinitesimal Pm generators

on the lattice, however it does not address the issue of Lorentz invariance since the

supercharges on the lattice belong to an incomplete representation of the full Lorentz

group4. A workaround of other issues plaguing supersymmetric formulations on the

lattice is resolved by considering Dirac-Kähler fermions where the discrete point sym-

metry of the lattice is not embedded in the full Lorentz group, but in the product

of the Lorentz ⇥ Flavor group. Under the point lattice symmetry, fermions in this

representation transform as n-index antisymmetric tensors which naturally allows for

scalars to be embedded in the tensors. Then, if one selects the correct supercharges to

maintain on the lattice, the ones that contain the scalars, it is possible that Lorentz

symmetry may be emergent in the continuum theory.

The Dirac-Kähler representation of fermions on the lattice seems to provide a

method for realizing supersymmetry on the lattice, but the exact details are unclear

on how to do this. As is presented in the next section, the deus ex machina appears

to be considering a twisted field theory with the Dirac-Kähler fermions and then

discretizing that continuum theory onto the lattice, preserving only a particular subset

of the supercharges. Orbifolding provides another mean for a lattice construction, yet

this leads to the identical supersymmetric lattice theory.
3That is, if fermions are placed on the vertices, then the bosonic superpartners of the fermions

must also lie on the vertices.
4Euclidean time is assumed throughout unless otherwise noted.
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1.2.3 Twisted supersymmetry

The R-symmetry discussed previously plays a pivotal role in the twisted construction

[23]. The bosonic and fermionic fields described in the Dirac-Kähler context along

with the supercharges provide a representation of the relevant R-symmetry5 and the

SO(d) Lorentz symmetry. The R-symmetry possess a Lorentz subgroup SO(d)R 2 GR

where GR is the full global R-symmetry. We may thus find a subgroup of the full

global symmetry group SO(d) ⇥ SO(d)R ⇢ SO(d) ⇥ GR. To construct the twisted

theory, we first identify the diagonal subgroup of SO(d)⇥ SO(d)R

SO(d)0 = SO(d)⇥ SO(d)R

as the new Lorentz symmetry of the theory, obtaining a new effective supersymmetric

theory. When we discretize this theory, the point group symmetry of the lattice will

be a discrete subgroup of the SO(d)0 symmetry, not of the original SO(d). Thus the

twisting procedure is a way of “twisting together" the R-symmetry and the original

SO(d) symmetry in such a way that the new symmetry of the theory will respect the

lattice point group symmetry upon discretization.

In most cases of practical importance, fermionic fields transform as spinor repre-

sentations under both SO(d) and SO(d)R. All fermionic degrees of freedom will be

in integer spin representations in SO(d)0 manifesting themselves as general p-form

tensors (direct products of scalars and vectors included). Let us label each p-form

fermion as  (p), then

fermions ! F
2

d

( (0) �  (1) � . . . (p)

)

where F
2

d may either be one, two, four or eight and F is the total number of fermions in

the theory [19]. Supercharges decompose in a similar fashion allowing themselves to be

represented as p-forms also while bosonic degrees of freedom will manifest themselves

as 1-forms. This means that we may write all of the supersymmetric algebra in terms
5Recall that different d and N theories possess different R-symmetries.
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of p-forms with respect to SO(d)0, disregarding spin indices. Since both fermionic and

bosonic degrees of freedom are now in terms of p-forms under SO(d)0, we are much

better suited to place the theory on a lattice. This is the advantage that is gained by

twisting the theory.

As an aside on orbifold lattices, it is of interest to note that from this point one

may either construct a supersymmetric lattice field theory of an orbifold lattice. A

p-form continuum field (in this case a boson or fermion) may naturally be associated

with a p-cell on a hypercubic lattice. The approach taken with the orbifold lattice

method is to map the p-form continuum field onto the p-cell on a hypercubic lattice.

One can then see that the problems with placing supersymmetry on the lattice

previously are avoided by a few ideas. First, by focusing on a subset of the nilpotent

supercharge, the association between Poincaré invariance and infinitesimal transla-

tions is sidestepped. Secondly, if considers the twisted subgroup SO(d)0, it is noted

that the lattice point symmetry is a discrete subgroup of SO(d)0 and implementing

the supercharges as SO(d)0 p = 0 scalars, one may recover full Poincaré invariance

in the continuum limit. Lastly we find that with fermions and bosons both being

represented by p-form tensors, it is natural to imagine that they can coexist as a

similar entity on the lattice.

R-symmetry is the only issue not addressed in this twisting method, however,

it is noted that R-symmetry emerges as an accidental symmetry in the continuum

limit along with Poincaré invariance and full supersymmetry. In order to exemplify

this general discussion on supersymmetric lattices from twisting, let us consider the

example of two dimensional N = (2, 2) supersymmetric Yang-Mills (SYM), and then

on to four dimensional N = 4 SYM.

1.2.4 Two dimensional N = (2, 2) supersymmetric Yang-Mills

The Dirac-Käler fermions discussed previously may be expressed in matrix form as

 = (

1

2

⌘, µ,�12

) encompassing the scalars, vectors and p-forms of the theory.  may
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be written in the basis of gamma matrices (I, �µ, �1�2) as

 =

⌘

2

I +  µ�µ + �
12

�
1

�
2

.

It is known [19] that the fermionic kinetic term may be written in matrix form as

SF =

Z
d2xTr †�.D (1.6)

where the dot operator means to that all corresponding tensor components are mul-

tiplied and then integrated over all space and D is the covariant derivative operator.

The action given in equation 1.6 is invariant under

 !  �

i (1.7)

where i = 1 . . .4 and �i corresponds to one of the members of the (I, �µ, �1�2) basis.

For the case of  !  �
1

�
2

, we find that

⌘

2

! ��
12

�
12

! ⌘

2

 µ ! �✏µ⌫ ⌫ .

This transformation leaves the entire continuum action invariant and is thus a sym-

metry of the theory. By combing this transformation with the action of the original

supercharge Q, one may construct an additional supersymmetry in the theory, one

that corresponds to the twister supercharge Q
12

. The supersymmetric algebra of the

theory is now extended to include

{Q
12

, Q
12

} = ��

{Q,Q
12

} = 0.

In a similar fashion one may also analyze a new supersymmetry produced by con-

15



sidering a transformation of the type in equation 1.7 but for the other basis elements.

With the same procedure as before, one finds other supercharges Q
1

and Q
2

. The

complex combination of these supercharges produces yet another supersymmetry of

the theory. Eventually it is found that

ˆQ± = Q± iQ
12

¯Q± = Q
1

± iQ
2

which are the total pair of complexified nilpotent supercharges of the theory.

1.2.5 Self-dual twist

Defining Q ⌘ ˆQ�, we arrive at the result that

QA = 2( 
1

+ i 
2

)

Q( 
1

+ i 
2

) = 0

Q ¯A = 0.

where A ⌘ A
1

+ iA
2

and ¯A = A
1

� iA
2

.This new supercharge is associated with an al-

ternative twist referred to as the “self-dual twist." Q adds a new set of transformations

to the twisted variables of the theory along with the ones given by Q.

From , the actions of the supercharge Q are

QAµ =  mu

Q mu = �Dµ�

Q¯� = ⌘

Q⌘ = [�, ¯�]

QB
12

= [�,�12]

Q�
12

= B
12

Q� = 0.
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While the actions of the new supercharge Q are

QAµ =  mu

Q mu = 0

Q ¯Aµ = 0

Q�µ⌫ = � ¯Fµ⌫

Q⌘ = d

Qd = 0

with Aµ = Aµ + iBµ. The twisted action may be written in Q-exact form. That is,

that it can be written in the form of S = �Q⇤6. In this case, ⇤ is given by

⇤ =

Z
Tr

✓
�µ⌫Fµ⌫ + ⌫[ ¯Dµ,Dµ � 1

2

⌘d]

◆
(1.8)

where

Dµ ⌘ @µ +Aµ

Dµ ⌘ @µ + ¯Aµ.

Carrying out the Q operation on each term in the action and integrating out the

d field, one finds the action

S =

Z
Tr

✓
� ¯Fµ⌫Fµ⌫ +

1

2

[

¯Dµ,Dµ]
2 �D

[µ ⌫]]� ⌘ ¯Dµ µ

◆
. (1.9)

We will now move on to discretize this twisted self-dual theory.

1.2.6 Lattice theory for (2,2) SYM

We employ a geometric discretization scheme proposed in [24]. In order to map

the continuum theory onto the lattice, we essentially place each p-form with indices
6These actions are of pinnacle interest for topological field theories.
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µ
1

. . . µp on the link connecting x with (x + µ
1

. . . µp). Each link has two possible

orientations and hence an orientation must also be specified for a given field.

On the lattice, continuum derivative operators transform to difference operators

acting on these link fields. Covariant derivative operators appearing in wedge like

operations and acting on positively oriented fields are replaced by forward difference

operators, whose actions on vectors and scalars are given by

D+

µ f(x) = Uµ(x)f(x+ µ̂)� f(x)Uµ(x)

D+

µ fµ(x) = Uµ(x)f⌫(x+ µ̂)� f⌫(x)Uµ(x+ ⌫̂).

Note that Uµ = eiAµ , in the usual way and that µ̂ = (1, 0) and ⌫̂ = (0, 1) since we

are in two dimensions. The backwards difference operator ¯D�
µ replaces the divergence

like operators of the continuum and it’s action on positively oriented lattice vector

fields is simply the adjoint of the forward operator, or

D�
µ fµ(x) = fµ(x) ¯U⌫(x)� ¯Uµ(x� µ̂)f⌫(x� ⌫̂). (1.10)

We adapt only a subagebra of the full supersymmetry as was discussed earlier.

It suffices to include the nilpotent complexified supercharge from the self-dual twist,

and it acts on the lattice fields as

QUµ =  mu (1.11)

Q µ = 0 (1.12)

Q ¯Uµ = 0 (1.13)

Q�µ⌫ = FL†
µ⌫ (1.14)

Q⌘ = d (1.15)

Qd = 0 (1.16)
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where the lattice field strength tensor is written as

FL
µ⌫ = D+

µ Uµ(x) = Uµ(x)U⌫(x+ µ̂)� U⌫(x)Uµ(x+ ⌫̂) (1.17)

Notice that FL
µ⌫ = �FL

⌫µ and hence the continuum limit will also be antisymmetric.

Equation 1.14 implies that �µ⌫ must have the same orientation as FL†
µ⌫ and thus

must be assigned to the negatively oriented link running from (x+ µ̂+ ⌫̂) to x. This

lattice construction admits the following gauge symmetries

⌘(x) ! G(x)⌘(x)G†
(x)

 µ(x) ! G(x) µ(x)G
†
(x+ µ̂)

�µ⌫(x) ! G(x+ µ̂+ ⌫̂)�µ⌫(x)G
†
(x)

U(x) ! G(x)U(x)G†
(x).

Since the continuum action was Q-exact, the lattice action will be Q-exact also

with

⇤ =

X

x

Tr

✓
�µ⌫D+

µ U⌫ + ⌘ ¯D�
µ � 1

2

⌘d

◆
. (1.18)

Again, integrating out the d field and applying the Q variation on ⇤ yields

S =

X

x

Tr

✓
FL†

µ⌫FL

µ⌫ +
1

2

�
¯D�
µ Uµ

�
2 � �µ⌫D+

[µ ⌫] � ⌘ ¯D�
µ  µ

◆
. (1.19)

This is action is also obtained via the orbifold lattice method in [19] showing the

duality between both procedures.

Now we will move on to the four dimensional SYM theory with N = 4. The

construction of this theory is very similar to the two dimensional case with some

differences, but is most relevant to possible phenomenological theory describing TeV

scale physics.
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1.2.7 Four dimensional N = 4 supersymmetric Yang-Mills

Four dimensional N = 4 SYM is potentially one of the most interesting applications

of exact lattice supersymmetry. A lattice theory may be constructed from only one

supercharge that is exact on the lattice, yet the complete supersymmetry is restored

in the continuum limit. One potential application that makes this model so attractive

is that it is hypothesized to be dual to a type IIB string theory in AdS5 ⇥ S5 space.

in the ’t Hooft limit7, d = 4, N = 4 SYM is conjectured to describe the supergravity

limit of that string theory.

This theory possess a global Euclidean Lorentz symmetry SO(4)L and a R-symmetry

of SO(6) [25]. The R-symmetry contains a subgroup SO(4)R ⇥U(1). We declare the

new twisted subgroup SO(4)

0
= diagonal (SO(4)L⇥SO(4)R) and leave the remaining

U(1) intact which remains a global chiral symmetry of the twisted theory.

In this twisted diagonal subgroup, we have two vector boson fields that may be

represented by Vµ and four scalars Sµ. Under this diagonal subgroup, decomposed

into it’s SU(2) representation, both Vµ and Sµ transform as 2-forms. The resulting

theory is compactly written using a complex vector field as

zµ =

1p
(2)

(Sµ
+ iV µ

), z̄µ =

1p
(2)

(Sµ � iVµ) µ = 1 . . . 4. (1.20)

We now construct this theory as a N = 4 five dimensional reduced theory to four

dimensions. First, the complexified gauge fields may be joined by a fifth component

as:  
1p
(2)

(Sµ + iVµ) ,
1p
(2)

(S
5

+ iS
6

)

!
= zm , m = 1, . . . 5. (1.21)

Now we may express the fermionic degrees of freedom as five dimensional antisym-

metric tensor fields as  = (�, m, ⇠mn). A nilpotent supersymmetry relates the
7The ’t Hooft limit is when one takes the large N limit of a gauge theory in such a way that g2N

remains finite. g is the gauge field coupling.

20



components of these fields as

Qzm =

p
2 m

Q m
= 0

Qz̄m = 0

Q⇠mn = �i ¯Fmn

Q� = id

Q id = 0

where

Dµ· = @µ ·+
p
2[zµ, ·], ¯Dµ· = �@µ ·+

p
2[z̄µ, ·], (1.22)

and the field strength tensor given by

Fµ⌫
= �i[Dµ,D⌫

] = Fµ⌫ � i[Sµ, S⌫ ]� iD
[µS⌫]

¯Fµ⌫ = �i[ ¯Dµ, ¯D⌫ ] = Fµ⌫ + i[Sµ, S⌫ ] + iD
[µS⌫]

with d being an auxiliary field as was the case in two dimensions.

We may now extract the Marcus theory directly from a Q exact form as was done

also for the two dimensional case in the previous section. We find that S = �Q⇤
with

⇤ =

Z
Tr

✓
�

✓
1

2

id +

1

2

[

¯D
m

,Dm

]

◆
+

i

4

⇠
mn

Fmn

◆
(1.23)

Carrying through the Q variation on the action and integrating out the auxiliary field

d, one arrives at the action

S =

Z
Tr

✓
1

4

¯F
mn

Fmn

+

1

8

�
[

¯D
m

,Dm

]

�
2

+ � ¯D
m

 m

+ ⇠
mn

Dm n

◆
. (1.24)

This is the dimensionally reduced representation of the action from a five dimensional

effective theory to a four dimensional “target" theory.
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In order to discretize this theory, we employ exactly the same tactic as was used

in the previous section for the two dimensional theory. We first must recognize that

we complexified the gauge fields and hence the Uµ will change to

Uµ
=

1p
2

e(Sµ,n+iVµ,n), U5

=

1p
2

e(S5,n+iS6,n) (1.25)

The exact Q supercharge is implemented on that lattice and its actions on the fields

are

QUm
=

p
2 m

Q m = 0

Q ¯Um = 0

Q�mn = �2FL†
mn

Q� = id

Qd = 0

and the field strength tensor is the same as in section 1.17.

As was cautioned in the two dimensional case, one must also be careful about

the orientation of the lattice fields. Consider a lattice scheme based on a hypercubic

lattice. The link matrices Uµ should be placed on the links in the directions from

x ! x + µ̂. By inspecting the field strength equation, this operation traverses from

x ! x+ µ̂+ ⌫̂ and due to supersymmetry �µ⌫ runs oppositely.

In terms of the lattice gauge transformations, we have

�(x) ! G(x)�(x)G†
(x)

 m
(x) ! G(x) m

(x)G†
(x+ µ̂m)

⇠mn(x) ! G(x+ µ̂m + µ̂n)⇠µ⌫(x)G
†
(x)

Um
(x) ! G(x)Um

(x)G†
(x+ µ̂).

¯Um(x) ! G(x+ µm)
¯Um(x)G

†
(x).
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In the same process as was shown for the two dimensional case, we can thus arrive at

a Q-exact action, conduct the Q variation on a the fields and arrive at

S =

X

x

✓
FL†

mnFL
mn +

1

2

�
¯D�
mUm

�
2 �

p
2

⇣
� ¯D�

m m + ⇠mnD+

[m n]

⌘◆
. (1.26)

This is the same action that is found using the orbifolding procedure.

1.2.8 Summary

It was shown that lattice supersymmetry is not out of reach as it may have seem with

such insurmountable issues (such as the lack of infinitesimal translation generators

on the lattice). Through a twisting approach, that is, combining a subgroup of the

Lorentz symmetry of the original space with a subgroup of the chiral supersymme-

try symmetry (R-symmetry), one may avoid many of the issues seen in constructing

supersymmetric lattice field theories. A review of accidental symmetries was also

presented, and the importance of preserving one exact supercharge on the lattice was

emphasized. All of these points are key ingredients in the construction of supersym-

metric lattice field theories.

Lastly, two examples were given, one on two dimensional N = (2, 2) SYM and

the other in four dimensional N = 4 SYM.

1.3 Outline of the thesis

The focus of this dissertation is twofold. First the implications of supersymmetry

on the inflationary and post-inflationary eras of the universe will be discussed laying

an overarching theoretical foundation over the unknown evolutionary eras. Secondly,

nonperturbative studies on the presented lattice formulation will be discussed.

In chapter 2 we begin by considering the consequences of requiring supersymmetry

during the inflationary phase of the universe. Inflation being driving by Kähler moduli

arising in Type IIB String Theory compactified on O3/O7 orientifolds is presented
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as an example. In chapter 3 the implications for the post-inflationary era of the

universe until LHC energy scales are explored with an emphasis on the effects on

CMB observables and unexpected implications for dark matter production.

The final two chapters conclude by investigating the fermionic sign problem and

then a discussion of the phase structure in maximally extended supersymmetric quan-

tum field theories on the lattice.
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Chapter 2

Kähler Moduli Inflation in Type IIB

String Theory: Insights from the

Holomorphic Curvature

An important question that has guided string phenomenology for over a decade is

whether string theory can make predictive contact with the inflationary paradigm.

The large number of scalar moduli fields that appear in generic string compactifica-

tions provide many candidate fields to drive inflation [26].

The possibility of inflation driven by moduli fields is addressed in the N = 1, D = 4

low-energy effective supergravity theory descending from a UV complete theory of

quantum gravity. The scalar part of the Lagrangian density is given by

L =

1

2

R� gij@�
i@�

j � V (�

i,�
j
) (2.1)

where gij is the metric of moduli space spanned by the scalars �. Given a full

string theoretic construction with stabilized moduli, the potential of the moduli fields

V should in principle be determined to enough accuracy to address an inflationary

scenario that is consistent with cosmological observations. Of course, such a situation

is notoriously difficult to obtain, given the complexity of such compactifications and

the difficulty of fully incorporating quantum corrections [27].
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The purpose of this chapter is to explore slow roll inflation in the context of

the moduli space geometries descending from supersymmetric gravity, taking one

crucial ingredient: the fact that the finite vacuum energy during inflation breaks

supersymmetry.

The connection between supersymmetry breaking and inflation leads to a par-

ticularly simple order parameter for slow roll inflation: the holomorphic sectional

curvature along the Goldstino direction [28, 29]. This order parameter has to be

larger than a value that depends on the relative values of the Hubble scale and the

Gravitino mass during inflation, with an absolute lower bound1 of

H[ ] > �2

3

, (2.2)

where

H[ ] ⌘ �R
    

g
  

g
  

. (2.3)

This condition is necessary (but not sufficient) for slow roll inflation and depends

solely on the details of the Kähler geometry of the moduli space and not on the

superpotential.

This allows one in principle to restrict geometries where the necessary condition

is satisfied, before embarking on the task of constructing a full model including a

realistic superpotential. Secondly, it reduces the problem to one of identifying and

studying the Goldstino direction, which is somewhat simpler than studying the full

scalar potential of inflation.

Several mathematical features of the holomorphic sectional curvature make this

analysis particularly robust: (i) the shape and peak structure of the distribution over

many geometries and field values are largely independent of the number of moduli

and range of field values. Secondly, (ii) incorporating quantum corrections does not

change the distribution structure to any appreciable degree in the geometric limit.

As an example in this chapter we consider the case of Calabi-Yau compactifica-
1This is in the case of low scale inflation where m2

3/2 >> H2.
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tions of the heterotic string which are dual to type IIB compactifications on O3/O7

orientifolds. The main result found is that the vast majority of Calabi-Yau compact-

ifications do not satisfy the inflationary bound. The addition of ↵0 corrections does

not alter this conclusion. We note, therefore, that the majority of compactifications

inspected have a supergravity ⌘ problem even at tree level.

2.1 The Holomorphic Curvature and Slow-Roll In-

flation

For the purpose of exploring how to make use of this technology, we present a study

of inflation within the context of superstring theory, considering the effective D =

4, N = 1 supergravity theory arising in the low-energy limit of the compactified

superstring theory. Considering chiral multiplets �I ⌘ (�i,�i)
2, the scalar potential

depends on the Kähler potential K and the superpotential W , and their derivatives

with respect to �i and �j. We take { I} ⇢ {�I} as the field that acquires non-zero

F�terms during inflation.

The scalar fields (�i,�i) span a Kähler manifold which yields a scalar potential

given by3

V = eK(gijFiFj � 3|W 2|) , (2.4)

where

Fi = DiW = @iW + @iKW

m2

3/2 = eK |W |2. (2.5)

While equation 2.1 describes a generic gravity theory coupled to scalars, the above

potential is the unique potential generated by a supergravity theory. The metric,
2We use the same notation for a superfield and its scalar component.
3We work in units where the Planck Mass M2 = 1
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connection, and curvature tensor of the Kähler manifold is given by

gij = @i@jK,

�

k
ij = glk@igjl,

Rklij = @i@j@l@kK � gnm(@i@k@mK)(@j@l@nK). (2.6)

The other geometric quantity of interest is the the holomorphic sectional curvature

of a plane ( , ) defined in the tangent space at a given point in the manifold as [28]

H[ ] = �R
    

g
  

g
  

. (2.7)

For a general theory of Kähler moduli inflation, the holomorphic sectional curvature

H[ ] becomes intrinsically tied to the slow-roll condition [29]. To see this, we first

consider the multifield potential slow-roll parameters given by [30] as

✏ =

riVriV
V 2

⌘ = min eigenvalue {N} , (2.8)

where

N =

1

V

0

@ rirjV rirjV

rirjV rirjV

1

A . (2.9)

The covariant derivative on the Kähler manifold is defined as

rif
k ⌘ @if

k
+ �

k
ijf

j (2.10)

for any vector fk on M. In the above, I = (i, i) and J = (j, j) and ri is a covariant

derivative with respect to the metric gij. For any given unit vector uI
= (ui, ui

) one

has ⌘  uIN I
Ju

J . Choosing uI
= (F , F )/(

p
2|F |) and evaluating the relevant

covariant derivatives, one finds that

⌘  ⌘
max

⌘ 2

3�
+

1 + �

�
H[ ] +O(

p
✏) , (2.11)
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where � =

1

3

V
m2

3/2
⇠ H2

m2
3/2

. We drop all terms involving ✏, since
p
✏ < O(10

�3

). The

spectral index is given by ns = 1+2⌘ ) ⌘
observed

⇠ �0.01. Therefore, ⌘
max

� �0.01.

This yields the following necessary bound on the holomorphic sectional curvature

along the SUSY breaking direction

H[ ] � �2

3

1

1 + �
. (2.12)

While this bound depends on the ratio of the inflationary scale and the value of m
3/2,

the hard bound is given by Eq. 2.2 [29]. This is a necessary but not a sufficient

condition for slow-roll inflation. We may therefore consider the case in which once we

found a suitable Kähler function that satisfies relation 2.12, we can attempt to pair it

with a superpotential W which could then possibly result in a rich phenomenological

model.

2.2 Heterotic Calabi-Yau Compactifications

With the geometric bound of the holomorphic sectional curvature defined, we may

now consider Kähler functions of a specific type. In this section we consider the case

of heterotic string models with Calabi-Yau compactifications since they are physically

dual to Type IIB compactified on O3/O7 orientifolds. The moduli space manifold

of these geometries have Hodge numbers (h1,1, h2,1
) with a basis of divisors Si, i =

1, ..., h1,1 [31]. The Kähler moduli ti are defined from the Kahler form J = tiSi. In

the case of a Calabi-Yau 3-fold the volume of the moduli space is given by

V
CY

=

1

6

dijk(ti � ¯ti)(tj � ¯tj)(tk � ¯tk), (2.13)
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with the dijk being the triple intersection numbers in the integral basis of the toric

divisors4. The Kähler potential for the moduli ti is given by

K = �3 lnV
CY

, (2.14)

in the absence of ↵0 and gs corrections.

As an example of these constructions, consider the case where h1,1
= 1. The

moduli space volume then takes the form

K = �3 ln

✓
1

6

(t
1

� ¯t
1

)

3

◆
, (2.15)

and it is simple to check that H[t
1

] = �2/9 and hence the bound is satisfied for

low-scale inflation but not high-scale.

The situation changes slightly when the Kähler potential takes the form

K = �n log(t
1

� ¯t
1

+XX) 8n , (2.16)

which defines maximally symmetric coset spaces. for which H(t
1

) = H(X) = �2/n.

This implies that inflationary scenarios based on these stringy supergravity geometries

in which n = 3 and supersymmetry breaking is dominated by the modulus t
1

or the

field X face the ⌘ problem [32].

2.2.1 Randomized Supergravity

Given a suitable potential that satisfies the slow roll conditions, it is of course possible

to embed such a potential in supergravity - see for example [33]. The embedding will

satisfy the constraint on the sectional curvature, and typically locate the supersym-

metry breaking field to a flat, decoupled sector.

Conversely, it is interesting to ask what happens in the case of supergravity po-

tentials one obtains from string theory. As outlined in the introduction, this is the
4Because the metric of the moduli space is uniquely determined by the Kähler function, the set

of dijk determines the overall topology of the Calabi-Yau manifold.
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goal of the present work. We will consider Kähler geometries of the form Eq. 2.14,

with supersymmetry breaking during inflation dominated by a modulus. Moreover,

we will consider Kähler potentials of the sequestered form

K = �3 log(V +XX) . (2.17)

We first note from Eq. 2.14 that the Kähler function can be seen as a log of a

cubic polynomial, where the precise form of the cubic polynomial is given when the

intersection numbers dijk are specified.

For example, consider the form of the volume for the case of two moduli

V = a
1

s3
1

+ a
2

s2
1

s
2

+ a
3

s
1

s2
2

+ a
4

s3
2

(2.18)

where the ai’s take the obvious definition and ti � ¯ti = si.

With random cubic functions of this general form we can make general statements

about the holomorphic sectional curvature. First consider the simplified case when

K = �n lnV (2.19)

V / (t
1

� ¯t
1

)

p (2.20)

which corresponds to the case when a single term of the volume dominates. In this

case, by a simple computation similar to Eq. 2.15, one obtains H[t
1

] = � 2

np
. This

leads to an understanding of the expected peak structure of a randomized distribution

in the two moduli case based on Eq. 2.14: the peaks of the distribution will lie at

values given by

peak values of H[t
1

] = � 2

np
with p = {1, 2, 3}. (2.21)

This result is immediately extended to the logs of random polynomials of degree m

as

peak values of H[t
1

] = � 2

np
with p = {1, 2, . . . ,m} (2.22)

32



allowing one to analyze more generic geometries56. We also expect that the expecta-

tion value over all fields will yield

< H[t
1

] > = < H[t
2

] > = . . . < H[tN ] > (2.23)

where N is the dimension of the moduli space.

Moreover, three important facts are clear:

(i) the peak structure in Eq. 2.22 is independent of the dimensionality of the

moduli space.

This is because the structure only depends on the fact that the volume is a generic

polynomial of degreee m, regardless of the number of variables. This makes it clear

that this generic polynomial procedure is orthogonal to random matrix theory meth-

ods which rely crucially on large numbers of moduli.

(ii) the peak structure is independent of the range of the variables xi, as long

as the range is democratic in moduli space.

This is due to the fact that the Kähler potential is a log of a homogeneous polyno-

mial, and the sectional curvature only depends on derivatives of the Kahler potential.

(iii) the peak structure is independent of the range of the intersection numbers,

as long as the range is democratic, for the same reason as above.

These three features make the study of a distribution over geometries exceptionally

general, a fact that will be apparent when we study candidate Calabi-Yau geometries.

A statistical scan is performed over a representative range of intersection numbers and
5Though this may be physically unnecessary since we need only consider CY 3 folds for our given

universe.
6This result has use beyond inflation in string models as one can right-away consider if the

holomorphic bound is satisfied by analyzing the exponents in Kähler functions.
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field values (with values at least O(1) in string units to suppress ↵0 corrections) and

intersection numbers dijk.

This study is orthogonal to a study performed in [34] where methods in compu-

tational algebraic geometry [35] were utilized to arrive at similar (negative results).

2.2.2 The basis of the complexified volumes of divisors

The holomorphic coordinates that appear in Type IIB compactifications on O3/O7

orientifolds [34] are not the ti moduli, but the complexified volumes of divisors

⌧i =

Z

Si

1

2

J ^ J � iC
4

. (2.24)

The volume and hence the Kahler potential can be written implicitly in terms of the

⌧i, by using the relations

⌧i =

@V

@ti
=

1

2

SiJ
2

=

1

2

dijkt
jtk . (2.25)

In Type IIB, the natural supersymmetry breaking variables are the ⌧i hence the

phenomenologically correct distribution to study is the distribution of H(⌧i) for this

case7.

The Legendre transformation in Eq. 2.25 is in general non-trivial, and obtaining

an analytical expression for the Kähler potential and hence H(⌧i), given the intersec-

tion numbers dijk may also be non-trivial. However, within the method of generic

polynomials described above, the volume may simply be regarded as a homogeneous

function of power 3/2 with random coefficients

V = a
1

s3/2
1

+ a
2

s
1

s1/2
2

+ a
3

s1/2
1

s
2

+ a
4

s3/2
2

(2.26)
7The reader may notice that in the heterotic case, the distributions turn out to be identical. This

is because there exist dualities between Type IIB and the heterotic string such that the inflationary
observables are exactly the same in both cases, as they should be.
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Figure 2-1: The distribution of H[t
1

] sampled over moduli values between [1, 12]
and intersection numbers ranging between [�8, 8]. The peak values are as expected,
though the -1.0 and -2/3 peak dominates the distribution possibly for deeper sym-
metry reasons.

where the Kähler potential in the case of Type IIB is given by

K = �2 lnV. (2.27)

The corresponding peak distribution for the holomorphic sectional curvature would

therefore be given by peak values of

H[t
1

] = {�2, � 1, � 2

3

}. (2.28)

We verified this claim by investigating the distribution of H[t
1

] by sampling over

moduli values between [1, 12] and intersection number range between [�8, 8]. The

distribution is presented in figure 2-1 and verifies our claim. The only exception is

that the peak at -2 is no where nearly as pronounced as the peaks at -1 and -2/3. We
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hypothesize deeper symmetry reasons within the functional form of H[t
1

]. Never the

less, the conclusion remains that the majority of holomorphic curvature values lies in

the forbidden inflation region.

We thus conclude that while in general, the Legendre transformation in

Eq. 2.25 is difficult to solve explicitly, the generic polynomial method shows that

the peaks for the holomorphic sectional curvature lead to the conclusion that

low-scale inflation is unlikely in Type IIB compactifications and hence, due to

dualities between Type IIB and the heterotic string, also unlikely in Calabi-Yau

compactifications.

Since quantum corrections to the Kähler potential are proportional to the

Euler character of the Calabi-Yau 3-fold [36], this result does not affect the holo-

morphic sectional curvature calculation and are therefore inconsequential8. Hence

modular inflation in type IIB and heterotic models lead to a severe eta problem.

2.3 Conclusions

In this chapter we discussed the implications of considering supersymmetry to be

present during the inflationary phase of the universe. We considered in more detail

the example of Calabi-Yau compactications in the heterotic string and then type IIB

O3/O7 orientifold compactifications. We showed that in these examples inflation

driven by moduli fields is unlikely from a statistical analysis.

Though these results are negative, we only considered the case where moduli fields

could drive inflation and break supersymmetry. Since the full form of the quantum

gravity potential that explains the dynamics of the universe during the inflationary era

(supposing there was indeed an inflationary era) is unknown, it is entirely possible

that other fields are present during this time. For example if there was a Kähler

potential of the form

K = �2 lnV +X ¯X (2.29)
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the holomorphic sectional bound would be trivially satisfied for all scenarios since

H[X] = 0.
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Chapter 3

Supersymmetry, Nonthermal Dark

Matter and Precision Cosmology

Within the Minimal Supersymmetric Standard Model (MSSM), LHC bounds sug-

gest that scalar superpartner masses are far above the electroweak scale. Given a

high superpartner mass, nonthermal dark matter is a viable alternative to WIMP

dark matter generated via freezeout. In the presence of moduli fields nonthermal

dark matter production is associated with a long matter dominated phase, modifying

the spectral index and primordial tensor amplitude relative to those in a thermal-

ized primordial universe. Nonthermal dark matter can have a higher self-interaction

cross-section than its thermal counterpart, enhancing astrophysical bounds on its

annihilation signals. The contributions to the neutralino mass from the bino, wino

and higgsino are constrained using existing astrophysical bounds and direct detection

experiments for models with nonthermal neutralino dark matter. Using these con-

straints we quantify the expected change to inflationary observables resulting from a

nonthermal phase.

3.1 Introduction

Cosmological observations allow us to determine the geometry, composition and age

of the universe with great accuracy, and to tightly constrain the primordial pertur-
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bation spectrum. Big Bang Nucleosynthesis (BBN) and the recently revealed cosmo-

logical neutrino background imply that the universe was thermalized at MeV scales.

Further, the correlation between temperature and E-mode polarization anisotropies

in the Cosmic Microwave Background (CMB) gives strong evidence that primordial

perturbations were laid down before recombination.

Standard Model physics cannot generate the primordial perturbations, drive baryo-

genesis or supply the dark matter content of the universe. Consequently, key processes

occur at very high energies during the primordial dark age in which the universe is

dominated by physics beyond the Standard Model. This period is weakly constrained,

given our ignorance of the underlying physics. Crucially, while the neutrino back-

ground and BBN require that the universe was thermalized at MeV scales, it need

not be thermalized at higher energies. The equation of state during the primordial

dark age determines the expansion rate, and thus the rate at which modes (re)enter

the horizon, modifying the observed power spectrum if the spectral index, ns, is not

strictly scale-invariant [13, 16, 37–43]. This issue has primarily been discussed in the

context of inflation, but it arises in any mechanism generating perturbations well

beyond Standard Model scales.

If the primordial universe is thermalized, massive long-lived particles may freeze-

out with a final abundance determined primarily by their mass and annihilation

cross-section [44]. This is the basis of thermal WIMP1 dark matter, which assumes a

weak-scale cross-section, � and h�vith ' 10

�26 cm3/s, where v is the typical velocity.

Alternatively, nonthermal dark matter is produced via the decay of heavier particles

into a long-lived final state and does not require thermal equilibrium [45–49] (for a

review see [50], and for recent related work [51–53]). Dark matter models are con-

strained by both direct detection experiments and searches for astrophysical signals

generated by their annihilation products. Nonthermal dark matter can have a higher

self interaction cross-section than thermal dark matter so astrophysical signals are

potentially stronger for these scenarios, particularly in indirect experiments such as

FERMI and AMS-2 [54–59].
1Weakly Interacting Massive Particles
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Simple supersymmetric (SUSY) versions of the Standard Model face considerable

pressure from LHC data, but SUSY remains a candidate symmetry of high energy

physics and SUSY models provide a wide range of dark matter candidates. In the

Minimal SUSY Standard Model (MSSM), LHC data requires large scalar superpartner

masses of 10 TeV or more [60] while the dark matter species can be lighter. This a

situation that naturally leads to nonthermal dark matter production (e.g. [61, 62])

and a similar argument applies to anomaly mediated SUSY breaking [63]. Further,

a primordial nonthermal phase may be generic in SUSY models with a high energy

completion in the presence of gravity [50,64]. This was seen explicitly in the G2-MSSM

[65], and later generalized to models with strong moduli stabilization [66,67]. In many

cases nonthermal dark matter production is naturally favored in these scenarios.

Given LHC bounds on the SUSY spectrum in the MSSM, cosmological constraints

– while indirect – are key to explorations of the SUSY parameter space at higher ener-

gies. In this paper we explore nonthermal dark matter production in the MSSM, quan-

tifying the extent to which the nonthermal phase changes expectations for inflationary

observables. For nonthermal production, the cross-sections are often larger than typ-

ical for thermal dark matter, increasing the sensitivity of astrophysical searches for

dark matter decay products. In particular, we discuss constraints on the mass of

neutralino dark matter and the allowed contributions to the neutralino mass from

the bino, wino and higgsino.

The paper is organized as follows. In Section 2 we review uncertainties in infla-

tionary observables derived from the unknown post-inflationary equation of state. In

Section 3, we summarize nonthermal dark matter phenomenology and the associated

expansion history. In Section 4, we explore the post-inflationary expansion history

of the universe in an MSSM model with SUSY breaking above the TeV scale, and

show how this is constrained by existing and future constraints from dark matter

experiments. In the final section we conclude.
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3.2 CMB Uncertainties from the Post-Inflationary

Expansion

To determine the predictions of a specific inflationary model2 the comoving wavenum-

ber k is matched to the instant it exits the Hubble horizon [13,16,37–43]. This occurs

when k = akHk where H and a denote the Hubble parameter and scale factor respec-

tively, and a subscript k labels values at horizon crossing. N is defined as the number

of e-efolds before the end of inflation,

eN(k) ⌘ aend
ak

, (3.1)

where aend denotes the scale factor at the end of inflation and rewrite N(k) as

N(k) = ln

✓
Hk

Hend

◆
� ln

✓
k

a
0

H
0

◆
+ ln

✓
aendHend

a
0

H
0

◆
, (3.2)

where (a
0

H
0

)

�1 is the value of the co-moving Hubble radius today [16]. The first

term in equation (3.2) can be determined for any specific model, while the final

term depends on the post-inflationary expansion history of the universe. We assume

single-field slow-roll inflation for the purposes of illustration and characterize the post-

inflationary expansion by an effective equation of state w. One finds the matching

equation [13]

N(k, w) ' 71.21� ln

✓
k

a
0

H
0

◆
+

1

4

ln

✓
Vk

m4

p

◆
+

1

4

ln

✓
Vk

⇢end

◆
+

1� 3w

12 (1 + w)
ln

✓
⇢r
⇢end

◆
,(3.3)

where ⇢end is the value of the energy density at the end of inflation, Vk is the inflaton

potential as the kth mode leaves the horizon, and ⇢r is the energy density at which the

universe is assumed to become thermalized. The first two terms in (3.3) are model

independent. For GUT scale inflation the third term is roughly �10. The fourth

term is typically order unity given that the value of the inflaton potential necessarily
2We focus on inflation, but our arguments apply to any mechanism which generates perturbations

on super-Hubble scales with a power spectrum whose spectral index in not strictly scale-invariant.
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evolves slowly as inflation proceeds. Finally, if the universe thermalizes promptly the

last term is negligible, and we recover the familiar result that 50 . N . 60 for modes

contributing to the CMB.

If ⇢1/4end � ⇢1/4r and w 6= 1/3 then N differs from its benchmark value3 by

�N =

1� 3w

12(1 + w)
ln

✓
⇢r
⇢end

◆
, (3.4)

where ⇢
end

= 3V
end

/2 for a given potential. If w < 1/3, �N is negative, since

⇢r < ⇢end.

The equation of state during the primordial dark age induces uncertainties in

inflationary predictions for the scalar tilt and tensor-to-scalar ratio ns and r. The

uncertainty in ns is clearly associated with the running ↵s = dns/d ln k and to lowest

order in slow roll [68–70]

�ns = (ns � 1)


� 5

16

r � 3

64

r2

ns � 1

������N,

�r = r
h
(ns � 1) +

r

8

i����N. (3.5)

The resulting fractional uncertainties �r/r, �ns/|ns� 1| in these observables can be

substantial [16,40]. In particular, the theoretical uncertainty in ns can be comparable

to the precision with which it is measured by Planck [71]. Our primary focus is the

implications for w and ⇢r of MSSM scenarios with nonthermal dark matter, which will

lead to tighter predictions for the primordial spectrum of specific inflation models.

3.3 Thermal and Nonthermal Dark Matter

In the early universe, the density in WIMPs relative to the critical density at freeze-

out is [72]

⌦dmh
2 ' 8.63⇥ 10

�11

 
mX

g1/2⇤ h�viT

!
GeV�2. (3.6)

3In models that make an explicit prediction for ⇢r we can insert this value into equation (3.3).
If the post-inflationary thermal history is unknown ⇢

1/4
r is the energy scale by which thermalization

is required to have occurred [38].
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Figure 3-1: The lefthand timeline represents the thermal history of the early universe
when dark matter is populated in the thermal bath that emerges shortly after after
inflation. The right timeline represents a possible nonthermal history where dark
matter production occurs directly from scalar decay.

where mX is the dark matter particle’s mass, h�vi is the total thermally averaged

cross-section, g⇤ and T are the number of relativistic degrees of freedom and temper-

ature at freeze-out and h is the present Hubble parameter in units of 100 km/s/Mpc.

If the universe is thermalized, freeze-out occurs at Tf ' mX/20 and g⇤ ⇠ 100, as-

suming the effective number of degrees of freedom is similar to that of the Standard

Model [73]. The abundance simplifies to

⌦

therm
dm h2 ' 0.12

✓
1.63⇥ 10

�26cm3/s
h�vi

◆
. (3.7)

where we have used GeV�2 · c ' 1.17 ⇥ 10

�17 cm3/s. WIMPs with typical speeds

(v ' 0.3c) and electroweak cross-sections (⇡ 1 pb) yield ⌦therm
dm h2 ' 0.12 in agreement

with the data, a coincidence often called the WIMP miracle.

Simple SUSY models with thermal WIMPs are in growing conflict with collider

data and direct detection experiments [74]. By contrast, nonthermal models posit

that dark matter production occurs at temperatures below standard thermal freeze-
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out4 leading to dark matter with novel and unexpected experimental signatures. For

example, if a heavy relic comes to dominate the energy density following inflation and

the dark matter particle is one its decay products, the resulting relic density is still

given by (3.6) but with T = Tr and g⇤ = g⇤(Tr), the value at the time of reheating

⌦

NT
dm h2 ' 8.60⇥ 10

�11

✓
mX

g⇤(Tr)
1/2h�viTr

◆
,

' 0.10
⇣ mX

100 GeV

⌘✓
10.75

g⇤

◆
1/2✓

3⇥ 10

�23 cm3/s
h�vi

◆✓
10 MeV

Tr

◆
.(3.8)

The similarity to the thermal freezeout result (3.6) arises because when the WIMPs

are produced from scalar decay they will rapidly annihilate until their number den-

sity reduces to the point where annihilations can no longer occur. This process is

essentially instantaneous (on cosmological time scales) and so this second “freeze-

out” occurs at the reheat temperature Tr (see [50] for a review). Any thermally

produced dark matter is diluted by the increase in entropy during the decay by a

factor of (Tr/Tf )
3. Equation (3.8) demonstrates both the benefits and disadvantages

of nonthermal dark matter. There is no longer a robust relationship between mX

and and freeze-out temperature but there is more flexibility to satisfy the observa-

tional constraint ⌦dmh2

= 0.12, and the possibility of larger annihilation rates. The

extreme case of MeV scale reheating enhances the annihilation rate by three orders

of magnitude, relative to the thermal WIMP case. This would yield larger fluxes

in indirect detection experiments, and modifies design strategies for direct detection

and collider probes. This has led to new model building possibilities for SUSY neu-

tralino dark matter, many of which are already tightly constrained by PAMELA and

FERMI [55–59].

There have been several phenomenological studies of nonthermal dark matter over

the years. This option became more attractive when it was realized that in SUSY

based solutions to the hierarchy problem – where gravity is important – the reheat

temperature is not a free parameter, but is fixed by the high energy behavior of the
4If the particles were produced above their freeze-out threshold, they could thermalize via their

mutual interactions.
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theory [64,65]. In combination with tightening collider and dark matter detection con-

straints on thermal dark matter there is thus considerable motivation for considering

nonthermal dark matter.

A comparison of the thermal history of the universe for representative thermal and

nonthermal scenarios appears in Figure 1. There are many possible alternatives to a

strictly thermal history, which are generally associated with dark matter production

that occurs at a temperature below that of thermal production, or out of equilibrium.

These can include cosmic histories where there is a second phase of low-scale inflation

(thermal inflation [10]), or if the decay of heavy particles leads to a significant source

of dark matter and entropy production prior to BBN.

3.3.1 Nonthermal Dark Matter: A Realization Through Scalar

Decay

Many Beyond the Standard Model (BSM) proposals contain scalar degrees of free-

dom beyond the minimal higgs. This is the case in supergravity and string theoretic

approaches to BSM, where the vacuum expectation values of scalar fields determine

the couplings of the low energy theory. However, these fields also lead to the cosmo-

logical moduli problem [75–77] – the fields are displaced from the low-energy minima

in the early universe and undergo coherent oscillations, mimicking a matter domi-

nated epoch5 prior to BBN. The fields typically decay through gravitational strength

couplings, and the universe reheats via the production of relativistic Standard Model

and BSM particles – the lightest of which, if stable, may provide a WIMP candidate.

For scalars of mass m� the decay rate typically scales as � ⇠ m3

�/m
2

p and the

corresponding reheat temperature is

Tr '
⇣ m�

10 TeV

⌘
3/2

MeV. (3.9)

If this temperature is below the thermal freeze-out scale Tf ' mX/20 and the
5This is strictly true only if the mass term in the potential gives the dominant contribution,

otherwise the cosmological scaling of the energy density is determined by the dominant term in the
potential [78].
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field dominates the energy density at the time of decay we have a nonthermal dark

matter scenario. Successful BBN and observations of neutrino decoupling require

Tr & 3 MeV [79–82]. For dark matter with a mass not too far above the electroweak

scale, fixing Tr < Tf ⇠ mx/20 provides an upper bound

20 TeV . m� . 10

4 TeV. (3.10)

To give a specific example6, consider a supersymmetric model with a singlet scalar

field � with a shift symmetry � ! � + c where c is a constant, so the potential is

independent of the field, or V (�) = 0. If this remains a good symmetry until SUSY

breaking and SUSY breaking is mediated by gravitational interactions the resulting

mass is comparable that of the gravitino m
3/2. If SUSY addresses the electroweak

hierarchy problem

m
3/2 =

⇤

2

mp

' 0.1� 10

3 TeV, (3.11)

where ⇤ is the SUSY breaking scale, the electroweak hierarchy implies ⇤ ' 10

11 �
10

12 GeV. Thus, SUSY theories can easily lead to masses in the range given by

equation (3.10). The lower bound of 0.1 TeV is the origin of the term cosmological

moduli problem, as it leads to scalar decay and a reheat temperature in conflict with

the bounds set by BBN and neutrino decoupling. Within the MSSM, such low scales

are already disfavored by LHC data since squarks in this mass range have not been

detected, pushing up the mass scale of the gravitino.

A shift-symmetric scalar in a fundamental theory – such as supergravity or string

theory – typically has additional geometric factors that lift its mass to larger values.

For Type-IIB flux compactifications the mass is of order m� ⇠ log(mp/m3/2)m3/2

[83] if the model accounts for both the electroweak hierarchy and the present-day

vacuum energy. The authors of [64] argued that in supergravity and string frameworks

the mass of a scalar which is stabilized and which meets the above requirements is

typically within the range of equation (3.10), implying a nonthermal history.
6The arguments that follow will not rely strongly on the presence of SUSY, and it would seem that

the main ingredients in our argument – the existence of scalars and symmetry breaking associated
with the electroweak scale – could be realized in other approaches to BSM physics.
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In the early universe and during inflation, the shift symmetry is broken by both

the finite energy density of the universe and quantum gravity effects, contributing

a Hubble scale mass and a tower of non-renormalizable operators to the effective

potential,

�V (�) = �c
1

H2

inf�
2

+

c
2

m2

p

�6

+ . . . , (3.12)

where we expect the couplings c
1

, c
2

' O(1). During high scale inflation H > m�

and h�i ' mp, as opposed to the low-energy minimum h�i ' 0 resulting from SUSY

breaking. The displacement from the low energy minima provides the initial ampli-

tude for the coherently oscillating field �. The energy density of the coherent field is

⇢�osc(t) =
1

2

m2

���
2

✓
a(tosc)

a(t)

◆
3

. (3.13)

Coherent oscillations begin as the expansion rate reaches H ' m�, corresponding to

a temperature

Tosc =

✓
⇡2g⇤(Tosc)

90

◆�1/4

(m�mp)
1/2 ' 2.25⇥10

11

✓
g⇤(Tosc)

200

◆�1/4 ⇣ m�

100 TeV

⌘
1/2

GeV.

(3.14)

The Universe remains effectively matter dominated until the field decays into Stan-

dard Model and SUSY particles when �� ' H. For a gravity mediated process, the

decay rate is

�� = c
3

m3

�

m2

p

, (3.15)

where c
3

= 1/(4⇡) is a typical value. At the time of decay the transfer of energy

from the scalar field to Standard Model and SUSY particles will be instantaneous

compared to the expansion rate and, because the scalar dominates the energy density,

we expect a large yield of dark matter and radiation7. The radiation represents the

relativistic Standard Model particles, whereas the dark matter results from rapid

decays of SUSY particles down to the Lightest SUSY Particle (LSP). Due to the large

production of LSPs, some annihilations take place, and these particles will achieve
7If the decay to SUSY particles was for some reason further suppressed compared to the Standard

Model, amount of dark matter would be set by the corresponding branching ratio and the initial
amount of scalar field condensate. Such a situation is difficult to arrange in practice.
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kinetic equilibrium quickly by scattering off the relativistic bath of Standard Model

particles.

The reheat temperature of the universe is

Tr =

✓
⇡2g⇤
90

◆�1/4

(��mp)
1/2 ' 20 c1/2

3

⇣ g⇤
10.75

⌘�1/4 ⇣ m�

100 TeV

⌘
3/2

MeV. (3.16)

and g⇤ ⌘ g⇤(Tr) = 10.75 if Tr is low. Using this expression and (3.8), we estimate the

relic density in nonthermal dark matter,

⌦

NT
dm h2 ' 8.60⇥ 10

�11

 
mX

g1/2⇤ h�viTr

!
,

' 0.08

 
mX

g1/4⇤ h�vim3/2
�

!
, (3.17)

which now depends only on the properties of the dark matter (mass and annihilation

rate) and the mass of the decaying scalar resulting from SUSY breaking. As discussed

above, in most models the scalar mass is not a free parameter, but similar to the

gravitino mass m
3/2, which is related to the scale of SUSY breaking as ⇤2

susy =

m
3/2mp. Thus, the mass of the scalar (and so the relic density of dark matter) is

controlled by the need for SUSY to generate a hierarchy between the electroweak

and Planck scale (i.e. ⇤EW ⇠ m
3/2 ⌧ mp). With a typical SUSY breaking scale of

⇤ = 10

11 GeV, corresponding to a gravitino mass of around 4 TeV the resulting relic

density is

⌦

NT
dm h2 ' 0.11

⇣ mX

100 GeV

⌘✓
10.75

g⇤

◆
1/4✓

3⇥ 10

�23 cm3/s
h�vi

◆✓
4 TeV
m

3/2

◆
3/2✓

34

k

◆
3/2

(3.18)

where we have set c
3

= 1/(4⇡), and the ratio between the scalar and gravitino mass

as k = m�/m3/2 ' log(mp/m3/2) – which is only logarithmically sensitive to changes

in the hierarchy. This constant is model dependent and typically between O(1�100).

We have chosen a fiducial value for the annihilation rate that yields roughly the right

amount of dark matter for the hierarchy set by the choice of low-scale SUSY breaking

⇤ = 10

11 GeV. The cross-section is three orders of magnitude higher than expected
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with a thermal history with important experimental consequences, as discussed in

Section 4.

The reheat temperature in this framework is not a free parameter, but a conse-

quence of the hierarchy between the electroweak and Planck scale (determined by

⇤

2

susy = m
3/2mp), which also helps determine the SUSY breaking masses of other

sparticles in the theory. In both supergravity and string motivated approaches, the

key lesson is that the reheat temperature is intimately connected to other aspects of

the theory and not a free and tunable parameter. Given that gravitationally coupled

scalars are generic in high energy completions of the Standard Model and in no sense

exotic, we see that nonthermal histories are a feasible and robust possibility.

3.3.2 Nonthermal Histories and CMB Observables

For simplicity we assume inflationary (p)reheating was instantaneous (on gravita-

tional time scales) and focus on the oscillations of the scalars, which come to dom-

inate the energy density, as specified by equation (3.14). Following [13, 16, 40], we

make the substitution ⇢end ! ⇢�osc, using ⇢�r = (⇡2/30)g⇤(T �
r )(T

�
r )

4. At the onset of

oscillations ⇢�osc(tosc) = 1

2

m2

���
2 and

�N = �0.04 +
1

12

ln

✓
g⇤(T �

r )T
4

r

m2

���
2

◆
,

= �10.75 +
1

12

ln

"✓
g⇤(T �

r )

10.75

◆✓
Tr

3 MeV

◆
4

✓
100 TeV

m�

◆
2 ⇣mp

��

⌘
2

#
, (3.19)

where we used w = 0, and the second line expresses the parameters relative to fiducial

values. If scalar decay proceeds via a gravitational strength coupling, equation (3.15)

eliminates the mass dependence in (3.19). With c
3

= 1/(4⇡) we find

�N = �10.68 +
1

18

ln

"✓
g⇤(T �

r )

10.75

◆✓
Tr

3 MeV

◆
4 ⇣mp

��

⌘
3

#
. (3.20)

This shift and its effect on physical modes is described qualitatively in Figure 3-

2. We see that �N is logarithmically sensitive to changes in parameters, including
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Figure 3-2: Evolution of physical wavelengths as labelled by their inverse wavenumber
k�1

p during inflation (below the x-axis) and during the post-inflationary epoch (above
the x-axis). The solid (blue) line represents the Hubble radius, H�1

r in a Universe
dominated by a radiation fluid w = 1/3, the dashed (red) line is the Hubble radius,
H�1

m in a post-inflationary era dominated by a pressure-less fluid, w = 0. We compare
the evolution of a physical mode k⇤ that re-enters at CMB decoupling in the standard
scenario (Radiation ! Matter ! Dark energy) with a mode k

0
⇤ that re-enters at

CMB decoupling in the nonthermal scenario (Matter! Radiation! Matter! Dark
Energy). These modes exit the Hubble radius at different times during inflation,
t⇤ and t

0
⇤, which translates into a shift in the number of e-folds �N = H�t. The

corresponding shift in the pivot scale or any co-moving mode is given by k0
⇤ = k⇤e��N .
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the reheat temperature. To generate nonthermal dark matter, the reheat temperature

must typically be below about Tr ' 10 GeV, but above the BBN and neutrino bounds

of about Tr ' 3 MeV. The range of possible temperatures is more than four orders of

magnitude, but (3.20) the corresponding shift in�N is �10.68 . �N . �8.51. Thus,

for the scenarios considered here we have a relatively robust |�N | ' 10. Physically,

a more massive field decays earlier while a lighter field decays later, but oscillations

and the corresponding matter dominated phase also begin later as well (as seen from

(3.14)), leading to similar values of �N .

The change in inflationary observables is estimated by recalling that for most

simple models of inflation, the running of the spectral index ↵s ⌘ dns/d log k is

typically �10

�4 & ↵ & �10

�3 [16], so �ns is between �10

�3 and �10

�2, relative to

the value seen with instant reheating. The remaining uncertainty in the ns and r is

significantly reduced, since these models predict that the universe is matter dominated

through most of the primordial dark age.

3.4 Constraining Nonthermal Dark Matter

We focus on SUSY neutralinos as the WIMPs, but we expect our conclusions to be

easily extended to other non-SUSY dark matter candidates. The neutralino is an

electrically charge neutral state and linear combination of the superpartners of the

Standard Model B, W 3, and higgses8

�0

= N
10

˜B +N
20

˜W 3

+N
30

˜H0

1

+N
40

˜H0

2

, (3.21)

where ˜B and ˜W 3 are the bino and wino, and ˜H
1,2 are higgsinos. The Ni0’s denote

the amount each component contributes to the neutralino. The neutralino or WIMP

mass is determined by9 diagonalizing a matrix which depends on the masses of the

bino, wino, and higgsino (M
1

, M
2

, and µ, respectively), the Weinberg angle ✓W , and

tan(�) which is the ratio of the vacuum expectation values of the higgs vevs.
8The MSSM extension of the Standard Model higgs sector requires two higgs doublets.
9We refer the reader to [84] for more details.
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When dark matter is composed of thermally produced neutralinos, the neutralino

must be bino-dominated, which causes neutralinos to annihilate less efficiently, gener-

ating the correct relic density of dark matter [84]. However, if the reheat temperature

following scalar decay is below thermal freeze-out, larger annihilation cross-sections

are required. Likewise, because the decaying scalar gets a mass from SUSY breaking

there is a natural relationship between the reheat temperature and the scale of SUSY

breaking, which addresses the hierarchy problem and sets other sparticle masses. The

hierarchy problem requires m� ⇠ m
3/2 ⇠ TeV, which results in reheat temperatures

below neutralinio freeze-out temperature (Tf ' mX/20), favoring a nonthermal his-

tory. The resulting dark matter density is given by (3.8) as

⌦

NT
dm h2 ' 0.10

⇣ mX

100 GeV

⌘✓
10.75

g⇤

◆
1/2✓

3⇥ 10

�23 cm3/s
h�vi

◆✓
10 MeV

Tr

◆
,(3.22)

requiring a larger annihilation cross-section. For neutralinos, the larger cross-section

requires a more significant contribution from wino and higgsinos, changing expecta-

tions for colliders, and for direct and indirect detection experiments.

Existing data from these experiments place a lower bound on the reheat tem-

perature. From (3.22), with Planck’s central value ⌦dmh2 ' 0.12 and constraints

from indirect detection on �v and solving for the reheat temperature we arrive at

a minimum value which is typically above the hard lower bound of 3 MeV, further

constraining the equation of state in the primordial dark ages.

3.4.1 Nonthermal Wino-like Neutralinos

The thermally averaged cross-section for the dominantly wino-like neutralino is given

by [63]

h�vi = g4
2

2⇡M2

2

✓
(1� xW )

3/2

(2� xW )

2

◆
(3.23)

where xW ⌘ m2

W/M2

2

(mW is the mass of the W-boson), g
2

' 0.66 is the SUL(2)

electro-weak gauge coupling (at the weak scale) in the MSSM, M
2

is the wino mass,

and we note that the result is independent of the velocity (s-wave channel). From
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Figure 3-3: The thermally average annihilation rate h�vi for a dominantly wino
neutralino to annihilate to a pair of W -bosons, as a function of mass. The Fermi
constraint comes from two years of data from 10 Dwarf spheroidal galaxies [85].
These results have been obtained using DarkSUSY [86], but the general shape of the
curve is in good agreement with the analytic expression (3.23). For this scan we took
the MSSM parameters to vary over: M

2

= 100 GeV to 2 TeV, µ = 100 GeV to 2 TeV,
and tan � = 5 to 50. We applied all LEP2 constraints and color charged particles
were taken to decouple by setting their masses to be above 2 TeV, allowing agreement
with LHC constraints.

(3.23), a wino of mass M
2

= 100 GeV, the annihilation rate will be around h�vi =
4.06⇥10

�24 cm3/s, exceeding the cross-section expected for thermal WIMPs by about

two orders of magnitude. The cosmological constraint (3.22) then requires a reheat

temperature of around 67 MeV. From (3.23) we see that as the wino mass increases,

the corresponding annihilation rate decreases, requiring larger reheat temperatures

via (3.22). At this point it seems that the reheat temperature is a free and tunable

parameter. However, additional experimental constraints can be placed on the wino

cross-section through the indirect detection of dark matter.
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The wino annihilation rate is s-wave10 so the annihilation rate above remains rele-

vant for winos in the galaxy today, which are non-relativistic with v ' 10

�3c. Annihi-

lation is dominantly into W-boson pairs, providing a source of anti-protons, positrons,

and gamma rays. Indirect detection measurements constrain the cross-section, but

suffer from a number of astrophysical complications, which includes uncertainties in

the halo profile and propagation models [89]). Therefore, the best constraints on

the wino arguably come from gamma rays as opposed to charged anti-matter, and

we will use bounds from FERMI’s two year data from observations of 10 Dwarf

Spheroidal galaxies [85], showing our results for the cross-section in Figure 3-3. For

masses less than roughly 375 GeV the wino annihilation rate is too large, giving

h�vi . 6.13 ⇥ 10

�25 cm3/s. Using this in the cosmological constraint (3.22) we find

Tr & 696 MeV (where g⇤ = 61.75). Finally, the corresponding change in the number

of e-folds from (3.20) is �N = �9.37.

3.4.2 Neutralino WIMPs: The General Case

Neutralinos can also contain bino and higgsinos in their composition as indicated in

(3.21). We now consider more general neutralinos within the nonthermal framework.

For a large bino contribution to (3.21) the annihilation rate is too small to allow a

nonthermal history. Thus, we restrict the bino fraction to be less than 10% to ensure

that a nonthermal history is realized11. On the other hard, a neutralino with a large

higgsino component is compatible with a nonthermal history. In Figure 3-4 we present

the FERMI constraints on annihilations to W-bosons allowing for this possibility. We

scan the MSSM parameter space using DarkSUSY [86] and present results for around

100, 000 models. We restrict the bino-fraction to be less than 10%, and we take µ and

the wino mass (M
2

) to range from 100 GeV up to 2 TeV, and tan � between 10� 50.
10We note that annihilations with other light MSSM states (coannihilations) can be crucial when

calculating the relic density [87], and for high mass winos (mX >> TeV) Sommerfield enhancement
may also play an important role [88]. However, for the range of masses and temperatures we will
consider (in order to establish a lower bound on the reheat temperature) these effects are negligible.

11We refer the reader to [90] for a recent account of the phenomenology of bino-mixed neutralinos
as thermal dark matter and their observational consequences.
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Figure 3-4: The thermally average annihilation rate h�vi for a general neutralino to
annihilate to a pair of W -bosons, with a bino fraction of less than 10%, to realize a
nonthermal history. The constraint from Fermi comes from two years of data from
10 Dwarf spheroidal galaxies [85]. These results have been obtained using DarkSUSY
[86], however the general shape of the upper curve is in good agreement with the
analytic expression (3.23) and the shape of the lower, higgsino curve agrees with the
expectation that h�vi ⇠ 1/µ2. Other parameter choices match those in Figure 3-3.

We reject models that are incompatible with collider data, but properties of neu-

tralino WIMPs are primarily determined by the gaugino masses (M
1

and M
2

), µ and

tan � – see e.g. the recent discussion in [91]. Thus, it is easy to obtain models consis-

tent with LHC constraints on color charged super-partners. We also require a 126 GeV

higgs12. From Figure 3-4, we see that our numeric results agree well with the analytic

expectation that a pure wino annihilation rate should scale as 1/M2

2

(top curve in

Figure 3-4), whereas a pure higgsino would scale as 1/µ2 (bottom curve in Figure 3-

4). Allowing for a higgsino contribution relaxes the bound on the reheat temperature

provided by FERMI – with a pure higgsino being completely unconstrained.

We have restricted attention to the W -boson annihilation channel, which is typ-
12There are constraints from LHC on light neutralinos, but because we are considering masses

larger than around 100 GeV these constraints are not important here [92,93].
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Figure 3-5: The WIMP-nucleon (proton) scattering cross-section as a function of
WIMP mass. For wino-higgsino mixtures we find that most models are excluded by
the Xenon 2011 / 2012 data. For purified WIMPs (dominantly wino or higgsino)
many models escape existing constraints and for models with wino fractions 90% we
must wait until Xenon1T for meaningful constraints to be established. However, for
the dominantly higgsino models many are already disfavored. For this scan we took
the MSSM parameters to vary over: M

2

= 100 GeV to 2 TeV, µ = 100 GeV to
2 TeV, and tan � = 5 to 50. We have applied all LEP2 constraints and color charged
particles were taken to decouple by setting their masses to be above 2 TeV – allowing
agreement with LHC constraints.

ically dominant for well-mixed neutralinos, but we find similar constraints for anni-

hilations to other common channels such as bottom quarks. Our key observation is

that indirect detection alone does not put a useful bound on the reheat temperature

when more general neutralinos are considered. However, bounds from direct searches

partially remedy this situation. Recall that a pure wino-like neutralino gives little

direct detection signal, as the WIMP-nucleon interaction is loop suppressed [91] but

for more general neutralinos the situation changes and direct detection experiments
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provide meaningful constraints.

Consider the spin independent constraints provided by Xenon100 [94], as well as

future constraints expected from Xenon1T [95]. In Figure 3-5 we use the Xenon 2011

and 2012 null results to constrain the nonthermal neutralino models considered above.

Although higgsino mixing relaxed the constraint on the reheat temperature coming

from FERMI, many of these models are then ruled out by Xenon100. As seen in

Figure 3-5, unless the neutralino is purely wino or higgsino, it is typically in tension

with the Xenon100 data. Xenon1T will constrain these models even further, and

would potentially bringing the pure wino into tension if it yields a null result. Thus,

for generically mixed neutralinos, the nonthermal history is in tension with direct

detection data, and for the pure wino the lower bound on the reheat temperature is

696 MeV. The only exception is the pure higgsino, which in the low mass range is

somewhat constrained by direct detection but does allow in some cases for a lower

reheat temperature.

3.5 Conclusion

Current LHC constraints on scalar super-partner masses suggest a new mass scale

m
3/2 = ⇤

2/mp around the 10� 100 TeV range. When the MSSM is accompanied by

additional singlets which receive SUSY breaking masses near this scale, this implies

a nonthermal history for the early universe. It has been shown that a nonthermal

history modifies the predictions of inflationary models relative to those seen with a

thermal history, and that these changes are comparable to the precision of parameter

estimates made with Planck data.

A caveat to this analysis is provided by the recent work in [91] (see also [87,96]),

showing that there are certain regions of the neutralino parameter space ‘hidden’ to

direct detection experiments. Although one may expect such points to be atypical, it

has been argued for some time that special relations between parameters (e.g. in the

case of well-tempered neutralinos [87]) may be the only way for SUSY based WIMPs

to survive, given existing collider constraints. We leave a more detailed analysis –
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including these subtleties and constraints from spin-dependent interactions – to future

work. In addition, perturbations grow in a matter dominated universe, so density

inhomogeneities with an initial amplitude of �⇢/⇢ ⇠ 10

�5 grow to be of order unity

during the matter dominated phase, a phenomenon also seen in inflationary models

with inefficient reheating [97]. Consequently, there will be large, short wavelength

inhomogeneities in the moduli fields before thermalization, and the impact of this on

their dynamics has not yet been properly explored.

More generally, these preliminary results show that within a complete theory of

particle physics (in this case SUSY), understanding the origin of the present-day

dark matter abundance can constrain the expansion history of the universe during

the primordial dark age, and lead to more precise predictions for the primordial power

spectrum.

While this thesis was being prepared, word was received about a draft from the

authors of [98]. In their paper they perform a comprehensive study of the non-

thermal wino, performing a careful analysis which takes into account astrophysical

uncertainties associated with indirect detection and additional data from HESS [99].

In some instances they are able to arrive at more stringent constraints on the wino

self-annihilation cross-section. This should lead to an improvement in the theoretical

priors used for our analysis here and so stronger constraints on inflationary model

building.

For the remainder of the thesis physics in the energy scales of 10-100 TeV will be

considered in lattice constructions of supersymmetric gauge theories.
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Chapter 4

On the sign problem in 2D lattice

super Yang–Mills

In recent years a new class of supersymmetric lattice theories have been proposed

which retain one or more exact supersymmetries for non-zero lattice spacing. Recently

there has been some controversy in the literature concerning whether these theories

suffer from a sign problem. In this chapter this issue is addressed by conducting

simulations of the N = (2, 2) and N = (8, 8) supersymmetric Yang–Mills theories in

two dimensions for the U(N) theories with N = 2, 3, 4, using the new twisted lattice

formulations. The results presented here provide evidence that these theories do not

suffer from a sign problem in the continuum limit. These results thus boost confidence

that the new lattice formulations can be used successfully to explore non-perturbative

aspects of four-dimensional N = 4 supersymmetric Yang–Mills theory.

4.1 Introduction

Supersymmetric Yang-Mills (SYM) theories are interesting from a variety of perspec-

tives; as toy models for understanding theories such as QCD, as potential theories of

Beyond the Standard Model (BSM) physics and via the AdS/CFT correspondence

because of a possible connection to quantum gravity. Many features of these theories,

for example, dynamical supersymmetry breaking, are inherently non-perturbative in
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nature and this serves as motivation to study such theories on the lattice.

Unfortunately, historically it has proven difficult to discretize supersymmetric the-

ories using traditional methods. This stems from the fact that the supersymmetry

algebra is an extension of the usual Poincaré algebra and hence is broken completely

by naïve discretization on a space-time lattice. However, recently the development of

a series of new theoretical tools have enabled us to construct certain supersymmetric

theories on the lattice while preserving a subset of the continuum supersymmetries

- see the reviews [19, 100–102] and references therein. Other recent complementary

approaches to the problem of exact lattice supersymmetry can be found in [103–111].

One way to understand the new constructions is to realize that they correspond

to discretizations of topologically twisted forms of the target continuum theories.

Currently, lattice constructions exist for a set of SYM theories, including the four-

dimensional N = 4 SYM theory.

Lattice theories constructed this way are free of doublers, respect gauge-invariance,

preserve a subset of the original supersymmetries and target the usual continuum

theories in the naïve continuum limit. These constructions are possible only if the

continuum SYM theories possess sufficient extended supersymmetry; the precise re-

quirement is that the number of supercharges must be an integer multiple of 2D where

D is the space-time dimension. This includes the N = (2, 2) SYM theory in two di-

mensions and N = 4 SYM in four dimensions. In this paper we study both theories

in two dimensions -the N = 4 model yielding the N = (8, 8) theory after dimensional

reduction from four to two dimensions.

However, even when a supersymmetric lattice construction exists, it is still possible

to encounter an additional difficulty that renders the use of numerical simulation

problematic – the fermionic sign problem. To understand the nature of this problem

consider a generic lattice theory with a set of bosonic � and fermionic  degrees of

freedom. The partition function of the theory is

Z =

Z
[d�][d ] exp

⇣
� SB[�]�  TM [�] 

⌘
,

=

Z
[d�] Pf(M) exp

⇣
� SB[�]

⌘
, (4.1)
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where M is antisymmetric fermion matrix and Pf(M) the corresponding Pfaffian.

For a 2n⇥ 2n matrix M , the Pfaffian is explicitly given as Pf(M)

2

= DetM . In the

supersymmetric lattice constructions we will consider in this paper, M at non zero

lattice spacing is a complex operator and one might worry that the resulting Pfaffian

could exhibit a fluctuating phase depending on the background boson fields �. Since

Monte Carlo simulations must be performed with a positive definite measure, the only

way to incorporate this phase is through a reweighting procedure, which folds this

phase in with the observables of the theory. Expectation values of observables derived

from such simulations can then suffer drastic statistical errors which overwhelm the

signal – the famous fermionic sign problem. Thus, if such a complex phase is present,

the Monte Carlo technique is rendered effectively useless. Lattice theories such as

QCD with finite chemical potential are known to suffer from a severe sign problem,

which makes it very difficult to extract physical observables from simulations using

conventional methods. The lattice sign problem exists not only in relativistic field

theories but also in a variety of condensed matter systems [112].

In the construction of supersymmetric lattice gauge theories, there has been an

ongoing debate on the existence of a sign problem in the two-dimensional N = (2, 2)

supercharge lattice theory [113–115]. The resolution of this sign problem is crucial

as the extraction of continuum physics from the lattice model depends very much

on whether the results from phase quenched simulations can be trusted. Moreover,

if a sign problem were to be found in this model it makes it more likely that the

four-dimensional N = 4 theory also suffers from a sign problem which would ren-

der practical simulation of this theory impossible. In [113], it was shown that there

is a potential sign problem in the two-dimensional N = (2, 2) SYM lattice theory.

Furthermore, in [115] numerical evidence was presented of a sign problem in a phase

quenched dynamical simulation of the theory at non-zero lattice spacing. More re-

cently Hanada et al. [114] have argued that there is no sign problem for this theory

in the continuum limit. However, the models studied by these various groups differed

in detail; Catterall et al. studied an SU(2) model obtained by truncating the super-

symmetric U(2) theory and utilized bosonic link fields valued in the group SL(2, C),
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while Hanada et al. used a U(2) model where the complexified bosonic variables take

their values in the algebra of U(2) together with the inclusion of supplementary mass

terms to control scalar field fluctuations.

In this paper, we present results from simulations of the two dimensional N =

(2, 2) U(N) SYM theory (which we will refer to from now on as the Q = 4 theory,

with Q the number of supercharges) and the maximally supersymmetric N = (8, 8)

U(N) SYM theory (we refer to this theory as the Q = 16 theory). Our results provide

strong evidence that there is no sign problem in the supersymmetric continuum limit

for these theories. In the next four sections we summarize the details of the lattice

constructions of both theories including a discussion of the possible parameterizations

of the bosonic link fields. We then present our numerical results for Q = 4 and Q = 16

lattice SYM theories in two dimensions.

4.2 Supersymmetric Yang–Mills theories on the lat-

tice

As discussed in the introduction it is possible to discretize a class of continuum SYM

theories using ideas based on topological twisting1. Though the basic idea of twisting

goes back to Witten in his seminal paper on topological field theory [23], it actually

had been anticipated in earlier work on staggered fermions [119]. In our context, the

idea of twisting is to decompose the fields of the Euclidean SYM theory in D space-

time dimensions in representations not in terms of the original (Euclidean) rotational

symmetry SO
rot

(D), but a twisted rotational symmetry, which is the diagonal sub-

group of this symmetry and an SO
R

(D) subgroup of the R-symmetry of the theory,

that is,

SO(D)

0
= diag(SO

Lorentz

(D)⇥ SO
R

(D)) . (4.2)

As an example, let us consider the case where the total number of supersymmetries

is Q = 2

D. In this case we can treat the supercharges of the twisted theory as a
1Note that the lattice actions constructed using orbifold and twisted methods are equivalent

[116–118].
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2

D/2 ⇥ 2

D/2 matrix q. This matrix can be expanded on the Dirac–Kähler basis as

q = QI +Qa�a +Qab�a�b + . . . (4.3)

The 2

D antisymmetric tensor components that arise in this basis are the twisted

supercharges that satisfy the corresponding supersymmetry algebra inherited from

the original algebra

Q2

= 0 (4.4)

{Q,Qa} = pa (4.5)
... (4.6)

The presence of the nilpotent scalar supercharge Q is most important; it is the algebra

of this charge that is compatible with discretization. The second piece of the algebra

expresses the fact that the momentum is the Q-variation of something which makes

the statement plausible that the energy-momentum tensor and hence the entire action

can be written in a Q-exact form2. Notice that an action written in such a Q-exact

form is trivially invariant under the scalar supersymmetry Q provided the latter

remains nilpotent under discretization.

The recasting of the supercharges in terms of twisted variables can be repeated for

the fermions of the theory and yields a set of antisymmetric tensors (⌘, a,�ab, . . .),

which for the case of Q = 2

D matches the number of components of a real Kähler–

Dirac field. This repackaging of the fermions of the theory into a Kähler–Dirac field

is at the heart of how the discrete theory avoids fermion doubling as was shown by

Becher, Joos and Rabin in the early days of lattice gauge theory [120, 121]. It is

important to recognize that the transformation to twisted variables corresponds to a

simple change of variables in flat space – one more suitable for discretization.
2In the case of four-dimensional N = 4 SYM there is an additional Q-closed term in the action.
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4.2.1 Two-dimensional Q = 4 SYM on the lattice

The two-dimensional Q = 4 SYM theory is the simplest example of a gauge theory

that permits topological twisting and thus satisfies our requirements for supersymmet-

ric lattice constructions. Its R-symmetry possesses an SO(2) subgroup corresponding

to rotations of the its two degenerate Majorana fermions into each other. After twist-

ing the fields and supersymmetries of the target theory, the action takes the following

form in the continuum

S =

1

g2
Q
Z

Tr

✓
�abFab + ⌘[Da,Db]� 1

2

⌘d

◆
, (4.7)

where g is the coupling parameter. We use an anti-hermitian basis for the generators

of the gauge group with Tr(T aT b
) = ��ab.

The degrees of freedom appearing in the above action are just the twisted fermions

(⌘, a,�ab) and a complexified gauge field Aa. The latter is built from the usual gauge

field Aa and the two scalars Ba present in the untwisted theory: Aa = Aa+ iBa. The

twisted theory is naturally written in terms of the complexified covariant derivatives

Da = @a +Aa, Da = @a +Aa , (4.8)

and complexified field strengths

Fab = [Da,Db], Fab = [Da,Db] . (4.9)

Notice that the original scalar fields transform as vectors under the original R-

symmetry and hence become vectors under the twisted rotation group while the gauge

fields are singlets under the R-symmetry and so remain vectors under twisted rota-

tions. This structure makes the appearance of a complex gauge field in the twisted

theory possible. This action is invariant under the original U(N) gauge symmetry

from the untwisted theory.

The nilpotent transformations associated with the scalar supersymmetry Q are
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given explicitly by

Q Aa =  a

Q  a = 0

Q Aa = 0

Q �ab = �Fab

Q ⌘ = d

Q d = 0 (4.10)

Performing the Q-variation on the action and integrating out the auxiliary field d

yields

S =

1

g2

Z
Tr

✓
�FabFab +

1

2

[Da,Da]
2 � �abD[a b] � ⌘Da a

◆
. (4.11)

The prescription for discretization is somewhat natural. The complexified gauge

fields are represented as complexified Wilson gauge fields

Aa(x) ! Ua(n) , (4.12)

living on links of a lattice, which for the moment can be thought of as hypercubic,

with integer-valued basis vectors

bµ
1

= (1, 0), bµ
2

= (0, 1) . (4.13)

They transform in the usual way under U(N) lattice gauge transformations

Ua(n) ! G(n)Ua(n)G
†
(n+

bµa) . (4.14)

Supersymmetric invariance then implies that  a(n) live on the same links and trans-

form identically. The scalar fermion ⌘(n) is clearly most naturally associated with a
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Figure 4-1: The 2d lattice for the four supercharge theory with field orientation
assignments.

site and transforms accordingly

⌘(n) ! G(n)⌘(n)G†
(n) . (4.15)

The field �ab(n) is slightly more difficult. Naturally as a 2-form it should be associated

with a plaquette. In practice we introduce diagonal links running through the center

of the plaquette and choose �ab(n) to lie with opposite orientation along those diagonal

links. This choice of orientation will be necessary to ensure gauge invariance. Figure

4-1 shows the resultant lattice theory.

To complete the discretization we need to describe how continuum derivatives are

to be replaced by difference operators. A natural technology for accomplishing this in

the case of adjoint fields was developed many years ago and yields expressions for the

derivative operator applied to arbitrary lattice p-forms [122]. In the case discussed

here we need just two derivatives given by the expressions

D(+)

a fb(n) = Ua(n)fb(n+

bµa)� fb(n)Ua(n+

bµb) , (4.16)

D(�)

a fa(n) = fa(n)Ua(n)� Ua(n� bµa)fa(n� bµa) . (4.17)

The lattice field strength is then given by the gauged forward difference acting on

the link field: Fab(n) = D(+)

a Ub(n), and is automatically antisymmetric in its indices.
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Furthermore, it transforms like a lattice 2-form and yields a gauge invariant loop

on the lattice when contracted with �ab(n). Similarly the covariant backward differ-

ence appearing in D(�)

a Ua(n) transforms as a 0-form or site field and hence can be

contracted with the site field ⌘(n) to yield a gauge invariant expression.

This use of forward and backward difference operators guarantees that the solu-

tions of the lattice theory map one-to-one with the solutions of the continuum theory

and hence fermion doubling problems are evaded [120]. Indeed, by introducing a lat-

tice with half the lattice spacing one can map this Kähler–Dirac fermion action into

the action for staggered fermions [123]. Notice that, unlike the case of QCD, there is

no rooting problem in this supersymmetric construction since the additional fermion

degeneracy is already required in the continuum theory.

As for the continuum theory the lattice action is again Q-exact:

S =

X

n

Tr Q
⇣
�ab(n)D(+)

a Ub(n) + ⌘(n)D(�)

a Ua(n)� 1

2

⌘(n)d(n)
⌘
. (4.18)

Acting with the Q transformation on the lattice fields and integrating out the auxiliary

field d, we obtain the gauge and Q-invariant lattice action:

S =

X

n

Tr

⇣
F †

ab(n)Fab(n) +
1

2

⇣
D(�)

a Ua(n)
⌘
2

� �ab(n)D(+)

[a  b](n)� ⌘(n)D(�)

a  a(n)
⌘
.

(4.19)

4.2.2 Four-dimensional Q = 16 SYM on the lattice

In four dimensions the constraint that the target theory possess sixteen supercharges

singles out a unique theory for which this construction can be undertaken – the N = 4

SYM theory.

The continuum twist of N = 4 that is the starting point of the twisted lattice

construction was first written down by Marcus in 1995 [25] although it now plays an

important role in the Geometric-Langlands program and is hence sometimes called

the GL-twist [124]. This four-dimensional twisted theory is most compactly expressed

as the dimensional reduction of a five-dimensional theory in which the ten (one gauge

69



field and six scalars) bosonic fields are realized as the components of a complexified

five-dimensional gauge field while the 16 twisted fermions naturally span one of the

two Kähler–Dirac fields needed in five dimensions. Remarkably, the action of this

theory contains a Q-exact term of precisely the same form as the two-dimensional

theory given in Eq. (4.7) provided one extends the indices labeling the fields to run

now from one to five. In addition, the Marcus twist of N = 4 YM requires a new

Q-closed term which was not possible in the two-dimensional theory

S
closed

= �1

8

Z
Tr ✏mnpqr�qrDp�mn . (4.20)

The supersymmetric invariance of this term then relies on the Bianchi identity

✏mnpqrDpF qr = 0 . (4.21)

The four-dimensional lattice that emerges from examining the moduli space of the

resulting discrete theory is called the A⇤
4

-lattice and is constructed from the set of five

basis vectors bea pointing out from the center of a four-dimensional equilateral simplex

out to its vertices together with their inverses �bea. It is the four-dimensional analog

of the two-dimensional triangular lattice. Complexified Wilson gauge link variables

Ua are placed on these links together with their Q-superpartners  a. Another 10

fermions are associated with the diagonal links bea + beb with a > b. Finally, the exact

scalar supersymmetry implies the existence of a single fermion for every lattice site.

The lattice action corresponds to a discretization of the Marcus twist on this A⇤
4

-

lattice and can be represented as a set of traced closed bosonic and fermionic loops.

It is invariant under the exact scalar supersymmetry Q, lattice gauge transformations

and a global permutation symmetry S5 and can be proven free of fermion doubling

problems as discussed above. The Q-exact part of the lattice action is again given by

Eq. (5.23) where the indices a, b now correspond to the indices labeling the five basis

vectors of A⇤
4

.

While the supersymmetric invariance of this Q-exact term is manifest in the lattice

theory, it is not clear how to discretize the continuum Q closed term. Remarkably,
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it is possible to discretize Eq. (5.4) in such a way that it is indeed exactly invariant

under the twisted supersymmetry

S
closed

= �1

8

X

n

Tr ✏mnpqr�qr(n+

bµm +

bµn + bµp)D(�)

p �mn(n+

bµp) (4.22)

and can be seen to be supersymmetric since the lattice field strength satisfies an exact

Bianchi identity [122].

✏mnpqrD(+)

p F qr = 0 . (4.23)

The renormalization of this theory has been recently studied in perturbation the-

ory with some remarkable conclusions [125]; namely that the classical moduli space

is not lifted to all orders in the coupling, that the one loop lattice beta function van-

ishes and that no fine tuning of the bare lattice parameters with cut-off is required

at one-loop for the theory to recover full supersymmetry as the lattice spacing is sent

to zero.

4.3 Towards the continuum limit

4.3.1 Parametrizations of the gauge links

There exist two distinct parameterizations of the gauge fields on the lattice that

have been proposed for these theories. The first one follows the standard Wilson

prescription where the complexified gauge fields in the continuum are mapped to link

fields Ua(n) living on the link between n and n+

bµa through the mapping

Ua(n) = eAa(n) , (4.24)

where Aa(n) =
PNG

i=1

Ai
aT

i and T i
= 1, . . . , NG are the anti-hermitian generators of

U(N). The resultant gauge links belong to GL(N,C). We call this realization of the

bosonic links the exponential or group based parametrization3.
3Notice that our lattice gauge fields are dimensionless and hence contain an implicit factor of the

lattice spacing a.
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The other parametrization of the bosonic link fields that has been used, particu-

larly in the orbifold literature, simply takes the complex gauge links as taking values

in the algebra of the U(N) group

Ua(n) = Aa(n) . (4.25)

In this case to obtain the correct continuum limit one must subsequently expand

the fields around a particular point in the moduli space of the theory corresponding

to giving an expectation value to a component of the link field proportional to the

unit matrix. This field can be identified as the trace mode of the scalar field in the

untwisted theory.

Ua(n) = IN +Aa(n) . (4.26)

Usually the use of such an algebra based or non compact parametrization would signal

a breaking of lattice gauge invariance. It is only possible here because the bosonic

fields take values in a complexified U(N) theory – so that the unit matrix appearing

in Eq. (4.26) can be interpreted as the expectation value of a dynamical field - the

trace mode of the scalars. We will refer to this parametrization as the linear or algebra

based parametrization4.

Both parameterizations of the gauge links are equivalent at leading order in the

lattice spacing, yield the same lattice action and can be considered as providing

equally valid representations of the lattice theory at the classical level. The exponen-

tial parametrization was used in studies of both Q = 4 and Q = 16 theories in [115]

while in [114] the linear parametrization was employed to perform simulations of the

Q = 4 theory. In this work we have concentrated on the linear parametrization prin-

cipally because it is naturally associated with a manifestly supersymmetric measure

in the path integral - the flat measure. Explicit comparison with results from the

exponential parametrization can be found in [130].
4In fact, a non-compact parametrization of the gauge-fields has also been recently used to restore

BRST symmetry on the lattice in Ref. [127], i.e., to evade the so-called Neuberger 0/0 problem [128]
(see also Refs. [127] and [129] for the recent progress, and [130] for the relation between the Neuberger
0/0 problem and sign problem for the lattice SYM theories.).
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4.3.2 Potential terms

As we have described in the previous section, the linear parameterization only yields

the correct naïve continuum limit if the trace mode of the scalars develops a vacuum

expectation value so that appropriate kinetic terms are generated in the tree level

action. In addition, we require that the fluctuations of all dimensionless lattice fields

vanish as the lattice spacing is sent to zero; a non-trivial issue in theories possessing

flat directions associated with extended supersymmetry. Since no classical scalar

potential is present in the lattice theory5 it is crucial to add by hand a suitable gauge

invariant potential to ensure these features6. Specifically we add a potential term of

the following form [114]

SM = µ2

X

n

✓
1

N
Tr(U †

a(n)Ua(n))� 1

◆
2

, (4.27)

to the lattice action. Here µ is a tunable mass parameter, which can be used to

control the expectation values and fluctuations of the lattice fields. Notice that such

a potential obviously breaks supersymmetry – however because of the exact super-

symmetry at µ = 0 all supersymmetry breaking counterterms induced via quantum

effects will possess couplings that vanish as µ ! 0 and so can be removed by sending

µ ! 0 at the end of the calculation.

To understand the effect of this term let us consider the full set of vacuum equa-

tions for the lattice theory. These are given by setting the bosonic action to zero

Fab(n) = 0 , (4.28)

D(�)

a Ua(n) = 0 , (4.29)
1

N
Tr

⇣
U †
a(n)Ua(n)

⌘
� 1 = 0 . (4.30)

The first two equations imply that the moduli space consists of constant complex
5Lattice theories based on supersymmetric mass deformations have also been proposed in two

dimensions [111,114]
6It was precisely this requirement that led to a truncation of the U(N) symmetry to SU(N) in

the original simulations of these theories. One can think of this truncation as corresponding to the
use of a delta function potential for the U(1) part of the field [115].
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matrices taking values in the N -dimensional Cartan subalgebra of U(N).

Assuming that the matrix valued complexified link fields Ua(n) are nonsingular7,

we can decompose them in the following way

Ua(n) = Pa(n)Ua(n) , (4.31)

where Pa(n) is a positive semidefinite hermitian matrix and Ua(n) a unitary matrix.

The form of the mass term clearly does not depend on the unitary piece and clearly

is minimized by setting Pa(n) = IN . Expanding about this configuration gives the

following expression for the complex link matrices

Ua(n) = Pa(n)Ua(n) =
⇣
IN + pa(n)

⌘
Ua(n) , (4.32)

where pa(n) is a hermitian matrix. Minimizing the mass term leads to

0 =

1

N
Tr

⇣
U †
a(n)Ua(n)

⌘
� 1 ,

=

1

N
Tr

h
U †
a(n)

⇣
IN + pa(n)

⌘ih⇣
IN + pa(n)

⌘
Ua(n)

i
� 1 ,

=

1

N
Tr

h
IN + 2pa(n) + p2a(n)

i
� 1 ,

=

1

N

h
2p
N
p0a(n) +

NX

A=1

(pAa (n))
2

i
. (4.33)

where we have adopted a basis in which T 0 is proportional to the unit matrix and all

other (Cartan) generators are traceless. Analyzing the gauge transformation proper-

ties of the complexified link fields,

Ua(n) ! G(n)Ua(n)G
†
(n+

bµa) , (4.34)

we see that the unitary piece Ua(n) transforms like a link field

Ua(n) ! G(n)Ua(n)G
†
(n+

bµa) (4.35)
7Having zero eigenvalues for the matrices Ua(n) would not cause a problem for us, as we are

interested in expanding these fields around the point IN instead of the origin of the moduli space.
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while the hermitian matrix pa(n) transforms like a scalar field

pa(n) ! G(n)pa(n)G
†
(n). (4.36)

Thus in this language we can identify the pa(n) with the scalar field fluctuations

Ba(n). The mass term then becomes

SM = µ2

X

n

1

N2

h
2p
N
B0

a(n) +
NX

A=1

(BA
a (n))

2

i
2

. (4.37)

From this expression it is straightforward to see that the fluctuations of the scalar

trace mode are governed by a quadratic potential while the traceless scalar field

fluctuations feel only a quartic potential. Thus, if we keep µ ⌘ µa fixed as a ! 0 the

trace mode will acquire an infinite mass in the continuum limit and hence fluctuations

of the trace more around its vacuum expectation value will be completely suppressed

in that limit. In the same limit the presence of the quartic potential for the traceless

Cartan generators is sufficient to regulate possible infrared problems associated with

the flat directions of the SU(N) sector. Finally, once the continuum limit is attained,

we can restore supersymmetry by taking the final limit µ ! 0.

Notice that the fact that this potential term selects out preferentially the trace

mode of the scalars is trivially obvious if we adopt the exponential parametrization

of the complexified gauge links since in that case we can identify I + pa with eiBa .

4.4 Simulation Results

As noted previously, we have rescaled all lattice fields by powers of the lattice spacing

to make them dimensionless. This leads to an overall dimensionless coupling param-

eter of the form N/(2�a2), where a = �/T is the lattice spacing, � is the physical

extent of the lattice in the Euclidean time direction and T is the number of lattice
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sites in the time-direction. Thus, the lattice coupling is

 =

NL2

2��2

, (4.38)

for the symmetric two-dimensional lattice where the spatial length L = T 8. Note

that ��2 is the dimensionless physical ‘t Hooft coupling in units of the area. In

our simulations9, the continuum limit can be approached by fixing ��2 and N and

increasing the number of lattice points L ! 1. In practice we fix the value of � = 1

and vary �. We have taken three different values for this coupling � = 0.5, 1.0, 2.0

and lattice sizes ranging from L = 2, · · · , 16. Systems with U(N) gauge groups with

N = 2, 3 and 4 have been examined.

The simulations are performed using anti-periodic (thermal) boundary conditions

for the fermions10. An RHMC algorithm was used for the simulations as described

in [126]. The use of a GPU accelerated solver [131] allowed us to reach larger lattices

than have thus far been studied.

4.4.1 Q = 4 Supersymmetries

In figure 4-2. we show results for the absolute value of the (sine of) the Pfaffian phase

| sin↵| as a function of lattice size L = 1/a for the Q = 4 model with gauge group

U(2). The data corresponds to � = 1 but similar results are obtained for � = 0.5, 2.0

and larger numbers of colors. Three values of µ are shown corresponding to µ = 0.1,

µ = 1.0 and µ = 10.0. While modest phase fluctuations are seen for small lattices for

the smallest value of µ, we see that they disappear as the continuum limit is taken.

As a practical matter, these results make it clear that no re-weighting of observables

is needed over much of the parameter space. This point is reinforced when we plot

a histogram of the phase angle in figure 4-3. Clearly the angle fluctuations contract

towards the origin as the continuum limit is approached.
8Notice that this coupling multiples all terms in the bosonic action including those associated

with the scalar potential.
9See [126] for the details of the code we used to simulate these theories.

10This forbids exact zero modes that are otherwise present in the fermionic sector.
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Figure 4-3: Histogram for ↵, with Q = 4, U(2), µ = 0.1 and volumes of 6x6, 8x8 and
10x10.

To check for the restoration of supersymmetry in the continuum limit and as the

scalar potential is sent to zero, we show in figure 4-4. a plot of the bosonic action

density vs lattice size L. While the curves plateau for large L indicating a well defined

continuum limit it is clear that in general supersymmetry is broken there. Indeed,

the exact value of the bosonic action which is shown by the dotted line in the plot

can be computed using a simple Q Ward identity and yields [115]

<
1

L2

SB >=

3

2

NG (4.39)

It should be clear from the plot that the measured action indeed approaches this

supersymmetric value if the subsequent limit µ ! 0 is taken11. Thus the regulating

procedure we have described does indeed provide a well defined procedure for studying

the supersymmetric lattice theory.

Finally, to reassure ourselves that L ! 1 indeed corresponds to a continuum
11Actually strictly we only expect this as � ⌘ � ! 1 and thermal effects are suppressed. These

appear to be already small for � = 1 in this theory
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limit, figure 4-5. shows a plot of the expectation value of the maximal eigenvalue of

the operator (U †
aUa � 1) averaged over the lattice as a function of L for � = 1. To

leading order, this expression yields the largest scalar field eigenvalue in units of the

lattice spacing. Reassuringly we see that the eigenvalue indeed approaches zero as

L ! 1 corresponding to a vanishing lattice spacing.

4.4.2 Q = 16 Supersymmetries

The results for the absolute value of the (sine of) the Pfaffian phase for the Q = 16

supercharge model with U(2) gauge group in two dimensions are shown in figure. 4-6.

As for the Q = 4 case, we see that the average Pfaffian phase is small and decreases

with L. Indeed, the magnitude of these angular fluctuations are O(10

�4

) for all L and

µ - much smaller than that observed for Q = 4. Thus, even on the coarsest lattice and
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smallest µ, there is clearly no practical sign problem and certainly no sign problem

in the continuum limit. Again, this picture is reinforced by looking at a histogram of

the phase angle ↵ as seen in figure 4-7.

The corresponding plot of the expectation value of the bosonic action vs lattice

size L is shown in figure 4-8. In the case of the Q = 16 model the exact expression

for the bosonic action is given by

<
1

L2

SB >=

9

2

NG (4.40)

The data shown in this plot allow us to conclude that a well defined continuum

limit exists for non-zero µ and furthermore, Q-supersymmetry can be restored by

subsequently sending the parameter µ ! 0. As a final cross check that the limit

L ! 1 indeed corresponds to a true continuum limit, we have again examined the

the behavior of the maximal eigenvalue of U †
aU � I as L ! 1. The result is shown

in figure 4-9. and is consistent with a vanishing lattice spacing in this limit.
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These results generalize to large numbers of colors as can be seen in figure 4-10.

where we plot the expectation value of the absolute value of the sine of the Pfaffian

phase for the case of the U(4) group. Notice that the Pfaffian can be proven real in

the limit that the Q = 16 theory is reduced to zero dimensions for two and three

colors so that it is necessary to examine the U(4) case to be sure of seeing truly

generic behavior.

Nevertheless we see that U(4) looks qualitatively the same as for U(2). In fact the

fluctuations in the phase angle that we observe are even smaller than those seen for

the U(2) theory. This again indicates that this theory exhibits no sign problem even

on small lattices and certainly in the continuum limit.

The plot of the bosonic action for U(4) is shown in figure 4-11. While the largest

lattice we have been able to simulate thus far is rather too small to get a good contin-

uum limit the measured bosonic action is nevertheless within a percent or so of the

exact value expected on the basis of Q-supersymmetry. The scalar field fluctuations
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also decrease toward zero as the number of lattice points increase as shown in figure

4-12.

It is at first sight rather remarkable that the observed Pfaffian phase fluctuations

are small in the Q = 16 theory given that the Pfaffian is certainly complex when

evaluated on a generic set of background scalar and gauge fields. It appears to

be a consequence of very specific dynamics in the theory which ensure that only

certain special regions of field space are important in the path integral. Of course

the continuum theory does possess very special dynamics; for example the twisted

supersymmetry ensures that the torus partition function Z is a topological invariant.

One immediate consequence of this is that Z may be computed exactly at one loop

where Marcus has argued that it simply reduces to an unsigned sum over isolated

points in the moduli space of flat complexified connections up to complex gauge

transformations [25]. Furthermore, much of this structure survives in the lattice
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theory; the full partition function including any Pfaffian phase may be calculated

exactly at one loop. As in the continuum theory there is a perfect cancellation of

contributions from fermons and bosons and the final result is real [125]. Of course

this does not mean that simulations at finite gauge coupling should not suffer from

sign problems but certainly makes it less likely. More prosaically, it is easy to see that

the Pfaffian is real positive if the lattice scalar fields are set to zero - and this is what

effectively happens in the continuum limit as a result of the scalar potential that we

use to control the vacuum expectation value and fluctuations of the trace mode.

4.5 Conclusions

Numerical simulations were performed of the four and sixteen supercharge lattice

SYM theories in two dimensions to investigate the occurrence of a sign problem in

these theories. In contrast to the usual situation in lattice gauge theory, we utilize

a non compact parameterization of the gauge fields in which the lattice fields are
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expanded on the algebra of the group. While such a scheme would ordinarily break

lattice gauge invariance it is shown that in the case of these twisted supersymmetric

models this preserves gauge symmetry since the models in question are formulated

in terms of a complexified gauge field valued in U(N). The correct continuum limit

is then ensured by adding an appropriate gauge invariant potential term which picks

out a non-zero vacuum expectation value for the trace mode of the scalar fields in

the continuum limit. It is argued that the effects of this potential on the remaining

traceless modes can be subsequently removed by sending the potential to zero after

the continuum limit is taken.

Both supersymmetric theories have been examined for several values of the di-

mensionless ’t Hooft coupling ��2 and for gauge groups U(2), U(3) and U(4). A

careful continuum limit was taken by simulating the theories over a range of lattice

size L = 2�14. In both cases it is shown that the average Pfaffian phase goes to zero

for a fixed gauge invariant potential as the continuum limit is taken. The subsequent

limit in which the potential is removed is also examined and evidence is shown that

supersymmetry is restored. While the absence of a sign problem is not surprising in

the Q = 4 case (where one can prove the Pfaffian reduces to a real positive definite

determinant in the continuum limit) it is much more non trivial matter in the Q = 16

supercharge case. In that case the Pfaffian evaluated on a generic background is com-

plex even in the continuum limit. Nevertheless, we observe that the Pfaffian phase

is small and decreases to zero as the continuum limit is taken. Indeed, in practice it

is sufficiently small even on coarse lattices that there is no need to use a reweighting

procedure to compute expectation values of observables. The analysis of the Q = 16

model is complicated by the fact that the U(2) and U(3) theories exhibit some spe-

cial properties since in the matrix model limit they are real positive definite and real

respectively. Nevertheless, the pattern we observe for the U(4) group is similar to

that seen for the smaller groups and the trend supports the conjecture that the sign

problem is absent in the continuum limit.

These results thus help to strengthen the case that there may be no sign problem

for the Q = 16 theory in four dimensions and hence no a priori barrier to numerical
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studies of this theory. In the next chapter we conclude by examining the phase

structure of Wilson loops in these theories.
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Chapter 5

Phase Structure of Lattice N = 4

Super Yang-Mills

A first study of the phase diagram of four-dimensional N = 4 super Yang-Mills

theory is presented regulated on a space-time lattice. The lattice formulation we

employ is both gauge invariant and retains at all lattice spacings one exactly preserved

supersymmetry charge. Our numerical results are consistent with the

5.1 Twisted Supersymmetric N = 4 Yang-Mills The-

ory

As discussed in the Introduction, it is possible to discretize a class of continuum su-

persymmetric Yang-Mills theories using ideas based on topological twisting1. Though

the basic idea of twisting goes back to Witten in his seminal paper on topological field

theory [23], it had actually been anticipated in earlier work on staggered fermions on

the lattice [119]. In our context, the idea of twisting is to decompose the fields of

a Euclidean supersymmetric Yang-Mills theory in D space-time dimensions in rep-

resentations not of the original (Euclidean) rotational symmetry SO
rot

(D), but a

twisted rotational symmetry, which is the diagonal subgroup of this symmetry and
1Note that the lattice actions constructed using the orbifolding and twisted methods are equiva-

lent [116–118,132]. Indeed the original orbifold construction of this theory constitutes an independent
UV complete construction of the Marcus/GL twist of N = 4 Yang-Mills
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an SO
R

(D) subgroup of the R-symmetry of the theory, that is,

SO(D)

0
= diag(SO

Lorentz

(D)⇥ SO
R

(D)) . (5.1)

The continuum twist of N = 4 that is the starting point of the twisted lattice con-

struction was first written down by Marcus in 1995 [25]. It now plays an important

role in the Geometric Langlands program and is hence sometimes called the GL-

twist [124]. In the case of N = 4 super Yang-Mills this amounts to treating the

original four Majorana fermions as a 4 ⇥ 4 matrix and subsequently expanding this

matrix on products of Dirac gamma matrices

 = ⌘I +  µ�µ + �µ⌫�µ�⌫ +  µ�5�µ + ⌘�
5

(5.2)

The sixteen component fields (⌘, µ,�µ⌫ , µ, ⌘) (�µ⌫ is antisymmetric) are the twisted

fermions. In a similar fashion, four of the scalars which originally transformed as a

vector under the SO(4) flavor subgroup become vectors Bµ under the twisted rota-

tional symmetry and combine with the usual gauge fields Aµ to produce complexified

gauge fields Aµ = Aµ + iBµ in the twisted theory. The remaining two scalars remain

as singlets under twisted rotations.

It is actually possible to pack these twisted fields into a more compact structure

by replacing the Greek index µ running from 1 . . . 4 with a Roman index running

from 1 . . . 5. The sixteen twisted fermions then comprise the set (⌘, a,�ab) while the

bosons can be packed into five complex gauge fields Aa. The rationale for this final

change of variables is that the twisted action can then be written in the very simple

form

S =

1

g2
Q
Z

Tr

✓
�abFab + ⌘[Da,Db]� 1

2

⌘d

◆
+ S

closed

(5.3)

where Q represents a supersymmetry transformation that transforms as a scalar under

the twisted rotation group (its appearance in the theory parallels that of the scalar

fermion ⌘). Furthermore the original supersymmetry algebra implies that this charge

will be nilpotent with Q2

= 0 so that the first term appearing in the action Eqn. 5.3
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is trivially invariant under Q transformations. The second Q-closed term takes the

form

S
closed

= �1

8

Z
Tr ✏mnpqr�qrDp�mn . (5.4)

The supersymmetric invariance of this term then relies on the Bianchi identity

✏mnpqrDpF qr = 0 . (5.5)

The nilpotent transformations associated with the scalar supersymmetry Q are given

explicitly by

Q Aa =  a

Q  a = 0

Q Aa = 0

Q �ab = �Fab

Q ⌘ = d

Q d = 0, (5.6)

where the complexified field strength Fab is given by

Fab = [Da,Db], Fab = [Da,Db] , (5.7)

and the complex covariant derivatives are given by

Da = @a +Aa, Da = @a +Aa . (5.8)

It is important to recognize that the five-dimensional look of the theory is nothing

to be afraid of; in fact, it simply reflects the fact that this four-dimensional field

theory can be viewed as the dimensional reduction of N = 1 super Yang-Mills theory

in D=10 dimensions. The five complexified gauge connections are the ten gauge fields

of that theory. In the next section we will review how easily this picture translates
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into the lattice formulation.

5.2 N = 4 Super Yang-Mills Theory on the Lattice

The prescription for discretization is actually quite natural. The complex gauge

fields are represented as Wilson gauge fields which take their values in the algebra of

a complexified U(N) gauge group 2

Aa(x) ! Ua(n) =
N2X

C=1

TCUC
a (n) (5.9)

Since we need five links in four dimensions we can simply place these Wilson link

fields on a hypercubic lattice with an additional body diagonal

bµ
1

= (1, 0, 0, 0)

bµ
2

= (0, 1, 0, 0)

bµ
3

= (0, 0, 1, 0) (5.10)

bµ
4

= (0, 0, 0, 1)

bµ
5

= (�1,�1,�1,�1) .

Thus while Ua, a = 1 . . . 4 are associated with the usual unit vectors of a hypercubic

lattice the field U
5

is then placed on the body diagonal link. Notice that the basis vec-

tors sum to zero, consistent with the use of such a linearly dependent basis. However,

it should also be clear that a more symmetrical choice would be preferable in which

the five basis vectors are treated in an entirely equivalent manner. A four dimensional

lattice with this higher S5 point group symmetry exists and is called the A⇤
4

lattice.

It is constructed from the set of five basis vectors bea pointing from the center of a

four-dimensional equilateral simplex out to its vertices together with their inverses

�bea. It is the four-dimensional analog of the two-dimensional triangular lattice. A
2The generators are normalized as Tr(TATB) = ��AB
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specific basis for the A⇤
4

lattice is given in the form of five lattice vectors

be
1

=

⇣
1p
2

,
1p
6

,
1p
12

,
1p
20

⌘
(5.11)

be
2

=

⇣
� 1p

2

,
1p
6

,
1p
12

,
1p
20

⌘
(5.12)

be
3

=

⇣
0,� 2p

6

,
1p
12

,
1p
20

⌘
(5.13)

be
4

=

⇣
0, 0,� 3p

12

,
1p
20

⌘
(5.14)

be
5

=

⇣
0, 0, 0,� 4p

20

⌘
. (5.15)

The basis vectors satisfy the relations

5X

m=1

bem = 0;

bem · ben =

⇣
�mn � 1

5

⌘
;

5X

m=1

(

bem)µ(bem)⌫ = �µ⌫ ; µ, ⌫ = 1, · · · , 4. (5.16)

It is not hard to see that the basis vectors of A⇤
4

are a simple deformation of the

those used in the hypercubic representation and indeed a simple Gram matrix allows

one to map between the coordinates of some field in hypercubic representation to

the physical coordinates relative to the A⇤
4

lattice (see [19] for details). Indeed for

the action and other local quantities it is not necessary to explicitly perform this

mapping; the hypercubic lattice representation furnishes a simple arena in which one

can calculate the action, check gauge invariance and carry out supersymmetry vari-

ations without explicit reference to the A⇤
4

lattice. Only when we consider questions

associated with rotational invariance or space-time dependent correlation functions

do we need to map the coordinates of lattice fields into their positions relative to the

“physical ” A⇤
4

lattice. We stress this point because it means that simulations can

be performed in a quite standard hypercubic lattice set-up, without concerns about

details of the A⇤
4

lattice.

The Wilson links transform in the usual way under ordinary non-complexified

U(N) lattice gauge transformations

Ua(n) ! G(n)Ua(n)G
†
(n+

bµa) . (5.17)
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Supersymmetric invariance then precisely implies that  a(n) live on the same links

and transform identically. A local scalar fermion ⌘(n) must clearly live on a site. It

transforms accordingly,

⌘(n) ! G(n)⌘(n)G†
(n) . (5.18)

In a similar fashion we place the fermionic fields �ab on new links leading from the

origin out to bµa+bµb. In the hypercubic representation these would correspond to links

on two and three dimensional faces associated with the hypercube. However, there

is one crucial difference from the fields  a - the fields �ab are chosen with opposite

orientation on these links as encoded from their gauge transformation property:

�ab(n) ! G(n+

bµa + bµb)�ab(n)G
†
(n) . (5.19)

This shows how naturally the supersymmetric degrees of freedom can be distributed

on the lattice - the sixteen fermionic degrees of freedom at a site can all be associ-

ated with the sixteen distinct links that can be drawn in the unit four dimensional

hypercube located at that site.

To complete the discretization we need to describe how continuum derivatives are

to be replaced by difference operators. A natural technology for accomplishing this

in the case of adjoint fields was developed many years ago. It yields expressions for

the derivative operator applied to arbitrary lattice p-forms [122], and is thus very

naturally tied to geometry. In the case discussed here, we need just two derivatives

given by the expressions

D(+)

a fb(n) = Ua(n)fb(n+

bµa)� fb(n)Ua(n+

bµb) , (5.20)

D(�)

a fa(n) = fa(n)Ua(n)� Ua(n� bµa)fa(n� bµa) . (5.21)

These difference operators appeared automatically as a result of orbifold projection

in the original constructions of supersymmetric lattice Yang-Mills theories from ma-

trix models [133–135]. A beautiful feature has appeared here: the construction of

supersymmetric lattice gauge theories by means of orbifolding is in one-to-one corre-
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spondence with a simple geometrical principle [136]. Indeed, using this geometrical

prescription is by far the easiest way to see how this lattice theory emerges. The

lattice field strength is given by the gauged forward difference acting on the link field:

Fab(n) = D(+)

a Ub(n). It is automatically antisymmetric in its indices. Furthermore,

as hoped for it transforms like a lattice 2-form and yields a gauge invariant loop on

the lattice when contracted with �ab(n) (this is precisely the reason that the field � is

chosen to have opposite orientation relative to  a). Similarly, the covariant backward

difference appearing in D(�)

a Ua(n) transforms as a 0-form or, correspondingly, as a site

field. It can hence can be contracted with the site field ⌘(n) to yield a gauge invariant

combination. Thus, the twin requirements of gauge invariance and supersymmetry

naturally places strong constraints on the whole construction.

Furthermore, this use of forward and backward difference operators guarantees

that the solutions of the lattice theory map one-to-one with the solutions of the

continuum theory and the fermion doubling problems are hence evaded [120]. Another

way to understand this is to see that by introducing a lattice with half the lattice

spacing one can map this Kähler–Dirac fermion action into the action for staggered

fermions [123]. We emphasize that, unlike the case of two-flavor or three-flavor QCD,

there is no rooting problem in this supersymmetric construction since the additional

lattice fermion degeneracy is precisely as already required in the continuum theory.

Just like the continuum theory, the lattice action again contains a Q-exact term:

S =

X

n

Tr Q
⇣
�ab(n)D(+)

a Ub(n) + ⌘(n)D(�)

a Ua(n)� 1

2

⌘(n)d(n)
⌘
. (5.22)

Acting with the Q transformation on the lattice fields and integrating out the auxiliary

field d, we obtain the gauge and Q-invariant lattice action:

S
0

=

X

n

Tr

⇣
F †

ab(n)Fab(n)+
1

2

⇣
D(�)

a Ua(n)
⌘
2

��ab(n)D(+)

[a  b](n)� ⌘(n)D(�)

a  a(n)
⌘
.

(5.23)

As in the continuum theory, the Q-exact action must be augmented by an additional
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piece that is only Q-closed,

Sclosed =
1

2

✏abcde�de(n+

bµa + bµb + bµc)D(�)

c �ab(n+

bµc), (5.24)

which is the direct analog of Eqn. (5.4) in the continuum theory. Remarkably, and as

shown in [117], an exact lattice analog of the Bianchi identity,

✏abcdeD(�)

c Fab(n+

bµc) = 0, (5.25)

guarantees that the above term is invariant under Q-transformations on the lattice.

Note, incidentally, that the coefficient in front cannot be chosen freely. Only with the

specific coefficient shown will we recover the correct naive continuum limit with full

supersymmetry and Lorentz invariance. It is intriguing to speculate what happens to

this relative coefficient under radiative corrections.

To show that the full action correctly reproduces the continuum theory in the

naive continuum limit, one must (in some suitable gauge) expand the gauge fields

around the unit matrix,

Ua(n) = I + aAa(n) (5.26)

The following interesting phenomenon occurs: Usually the unit matrix appearing

here arises trivially once one expands the group element Uµ = eaAµ in powers of the

lattice spacing. However supersymmetry requires that the bosons and the fermions

be treated on an equal footing. Since the fermions are expanded in the algebra

this necessitates doing the same for the bosons. Usually this would be a disaster

since it would make it impossible to introduce the expansion seen in Eqn. (5.26)

without breaking gauge invariance. However, in the case of a complexified U(N)

gauge group we have another option: the unit matrix can arise from the acquired

vacuum expectation value of a dynamical field in the theory – here the trace mode of

the imaginary part of the connection or, equivalently, the trace mode of the scalars

in the original (untwisted) theory3

3A recent construction employing only SU(N) gauge symmetry is discussed in [137].
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This expectation value can be achieved by adding to the supersymmetric action

a gauge invariant potential of the form [114]

SM = µ2

L

X

n

✓
1

N
Tr(U †

a(n)Ua(n))� 1

◆
2

. (5.27)

Here µL is a tunable mass parameter, which can be used to control the fluctuations

of the lattice fields. Notice that such a potential obviously breaks supersymmetry –

however because of the exact supersymmetry at µL = 0 all supersymmetry breaking

counterterms induced via quantum effects will possess couplings that vanish as µL ! 0

and so can be removed by sending µL ! 0 at the end of the calculation. By adopting

the polar parametrization Ua = eAa+iBa it should be clear that the leading effect of

this term is to set the expectation value of the trace mode of Ba to unity as required.

Furthermore, fluctuations of this trace mode are governed by the mass µL while all

traceless scalar modes feel only a quartic potential. Thus the limit µL ⌘ µa ! 0

restores the usual flat directions associated with the SU(N) sector as the lattice

spacing a ! 0. A finite mass remains for the U(1) mode but since this naively

decouples in the continuum limit our expectation is that this should not lead to any

observable effects in the SU(N) sector. This is one of the key issues we wish to

investigate in this paper.

The above discussion illustrates the subtle way in which the continuum limit of

this theory must be reached. Without a vacuum expectation value of the scalar

trace mode, even the notion of a four dimensional continuum limit with canonically

propagating degrees of freedom cannot be introduced.

Once one has such a lattice action an obvious thing to do is to perform a strong-

coupling expansion. Normally, such an expansion around infinitely strong bare gauge

coupling reveals a phase of the theory that is non-universal, confining, chirally broken

and with a mass gap that is given in terms of the strong coupling string tension.

Remarkably, such a standard strong-coupling expansion is not easily implemented in

this theory. It is exact supersymmetry, or rather exact Q-symmetry that gets in the

way: this theory is massless and has only one coupling to all fields. The (inverse)
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bare coupling multiplies all terms of the lattice action. This suggests that the only

consistent strong-coupling expansion will be based on expanding the full Boltzmann

factor and bringing down powers of the action. However, there is then no damping

term of the functional integral. The bosonic degrees of freedom have non-compact

support, and the Grassmann integrals provide the heuristic ’zero’ that nevertheless

could give formal meaning to such an expansion. However, the precise way in which

such an expansion scheme could be implemented seems, at best, to be unclear. It

is tempting to view the lack of a natural strong-coupling expansion as evidence that

this theory indeed may have no strong-coupling, confining, phase at all.

One further complication should be discussed: the potential sign problem in the

lattice theory. To simulate the theory requires carrying out an integration over the

fermions. This process generates a Pfaffian which is generically complex. This invali-

dates the usual Monte Carlo method for computing observables since the measure is

no longer real and positive definite. However, in earlier numerical work it has been

shown that the phase is actually very small for this theory, at least after dimensional

reduction to two dimensions and contrary to the naive expectation [138–140]. To

understand this result, one can compute the partition function at one loop. This was

done in Ref. [125] with the result that the exact supersymmetry leads to a perfect

cancelation between bosons and fermions and no phase appears in the final effective

action. This is equivalent to the statement that the Pfaffian is in fact real and posi-

tive definite when evaluated on the moduli space corresponding to constant complex

commuting matrices4 Furthermore since the partition function is a topological invari-

ant it can be calculated exactly at one loop – so this result holds to all orders in

perturbation theory. Since the expectation value of the Pfaffian phase factor in the

phase quenched ensemble is proportional to this full partition function, this argument

suggests that the phase should play no role in the lattice theory. Of course, these

arguments require exact Q supersymmetry, which is broken by the mass term we use
4At least in the four supercharge case, this phenomenon can be related to the so-called Neuberger

0/0 problem which presents a hurdle to constructing a BRST transformation in lattice gauge theories
where the fields are defined on a finite group manifold. For a discussion of this connection see
Ref. [139]
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to control the fluctuations of the scalar trace mode. Since the arguments given above

do not depend on this dimensional reduction, one could expect it should also be true

in the full four-dimensional theory. As we will show in the next section, our numerical

results for the bosonic action (related to a derivative of the partition function) back

up this conclusion – it approaches the exact supersymmetric value as µL ! 0 in the

phase quenched ensemble.

One final wrinkle occurs when we contemplate doing simulations with periodic

fermion boundary conditions in all four dimensions - as is natural in an exactly

supersymmetric Euclidean theory. The form of the fermion action then allows for an

exact zero mode of the form (⌘A, A
a �

A
ab) = (�0A, 0, 0) on any background gauge field

(A is an adjoint index here). This zero mode can be lifted either by use of a thermal

boundary condition or by the addition of a supersymmetric term

Sextra = µFQ[Tr (⌘)Tr (UaU
†
a)] . (5.28)

Performing the Q variation leads to two new contributions to the action

Tr [D(�)

a Ua]Tr (U †
aUa)� Tr (⌘)Tr ( aU

†
a) . (5.29)

The second of these removes the fermion zero mode. Thus the complete action to be

simulated is

S = S
0

+ Sclosed + SM + Sextra. (5.30)

Although Q-exact, we should emphasize that the last piece Sextra has no analog in

the full N = 4 super Yang-Mills theory. Thus also this term must be tuned to zero

before continuum results can be extracted. In practice we have confined our study to

systems with antiperiodic boundary conditions and thsi additional term Sextra is set

to zero.

As usual in Monte Carlo simulation, the fermion variables are integrated out and

their effect in the simulation is represented by a set of pseudofermion fields. Notice

though that the integration measure involves only the fields (⌘, a,�ab) and not their
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complex conjugates. Thus it is a Pfaffian rather than a determinant that is generated.

Up to a phase this in turn can be produced with a pseudofermion action of the form

SPF = �

†
(M †M)

� 1
4
� , (5.31)

where M is the antisymmetric twisted fermion bilinear in S. The fractional power of

the matrix is approximated by a partial fraction (multimass) expansion implemented

using the Rational Hybrid Monte Carlo (RHMC) algorithm.

Thus for the lattice practitioner we have a system of

• A set of bosonic variables appearing as noncompact complex gauge fields

• A set of (twisted) fermions whose effect can be encoded using the usual RHMC

algorithm.

• Both sets of fields are defined over a hypercubic lattice with additional face and

body links.

This is somewhat Baroque, but it is simple and it is completely manageable. It

might be useful to list what can be computed at this stage:

• We can simulate with periodic or antiperiodic fermionic boundary conditions

so that we can do either zero or finite temperature (supersymmetry-breaking)

simulations

• We can dial in various masses (µL, µF ) to explicitly break various symmetries.

This will ultimately be useful for computing critical exponents.

• We can compute eigenvalues of the fermion (Dirac) operator.

• We can measure Wilson and Polyakov lines to extract, for example, the static

quark-antiquark potential and look for confinement/deconfinement.

• We can monitor the distribution of gauge invariant scalar eigenvalues extracted

from the observable U †
aUa which gives us a handle on possible problems associ-

ated with integration over the flat directions.
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Finally, we should stress the following. To obtain physical correlation functions

from this twisted theory, one must perform the appropriate un-twisting on observ-

ables. In terms of our twisted variables, physical quantities will generically appear in

rather complicated combinations of the variables described here. However, the map

is straightforward and can easily be implemented in measurements. And, in the cases

of spectral observables, we do not need to perform the un-twisting: operators with

the same sets of space-time symmetries couple to the same set of physical states; only

the relative coupling coefficients will be different.

5.3 Simulation Results

5.3.1 Introduction to the simulations

We begin with a few words about lattice observables. As usual, gauge invariance

implies quite strict limitations on the observables we can construct out of our lattice

variables. What is new in this theory as compared to ordinary lattice gauge theory

is the natural appearance of link variables that live in the algebra of the gauge group

rather than in the group itself. This also implies that the integration measure nat-

urally is over anti-Hermitian gauge variables rather than being the invariant gauge

group (Haar) measure. The reason is that the measure must remain invariant under

an arbitrary shift symmetry, as is clear from Eqn. 5.6. This brings to the open an

important point regarding the ordinary Yang-Mills gauge symmetry of this theory:

The gauge transformations of the gauge links (which live in the algebra of the gauge

group) are defined by the multiplication rule (5.17). At first glance it is not obvious

that the flat integration measure associated with the gauge links is invariant under

these gauge transformations: the non-linear transformation begs for the left and right

invariant Haar measure instead. However, since the links are complexified one must

integrate over both the field and its complex conjugate and this saves the day; the

Jacobians arising after a gauge transformation cancelling against each other leaving

the final measure invariant as required5. However this argument fails for the fermion
5We thank Issaku Kanamori for pointing this out
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link fields since they do not appear with their complex conjugates in the measure.

Remarkably, however one does find that the ordinary flat measure is invariant after

taking the product over all lattice points. This is not totally surprising from the point

of view of the orbifolding construction, and it is instructive to see how it arises in

detail.

The gauge transformation for a typical fermion link variable such as  a(n) is

written in eq. (5.17),

 a(n) ! G(n) a(n)G
†
(n+

bµa) , (5.32)

where  a(n) = TA A
a (n) and we integrate over the flat measure in the variables

 A
a (n).

On a finite lattice, G†
(n+bµa) is a function different from G(n). It is still sufficient

to check gauge invariance for infinitesimal (but different) transformations. Let us

choose

G(n) = 1 + ↵ATA

G(n+

bµa) = 1 + �ATA . (5.33)

Expanding and collecting terms we get the same cancellations as in the continuum

plus two new terms in the transformation law for  a(n):

TA A
a (n) ! ↵ATATB A

a (n)� �ATATB A
a (n) (5.34)

In the naive continuum limit, where ↵A��A ⇠ a, these terms can be ignored and the

usual gauge invariance of the continuum is recovered. But for finite lattice spacing a

the new terms remain. However, on the group U(N) we can always expand a product

TATB in the generators of the group:

TATB
=

i

2

fABCTC
+ dABCTC , (5.35)
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where dABC are the symmetric structure constants. We can now read off the additional

terms in the transformation of the components  A
a . The first new piece vanishes

because of fAAC
= 0, and only the second piece remains. For the link fermion  a(n)

it is of the form (↵ � �)CdAAC , which does not vanish. However, the measure is the

product
Q

d A
a over all links on the lattice. Link for link the leftover pieces cancel

among each other because of the conjugation involved in the gauge transformation

(5.17). It is interesting to see how gauge invariance is not insured for a single link,

but recovered once the transformations of the neighboring links are included. From

the orbifolding construction one could perhaps have guessed that such a mechanism

would need to be invoked.

It should be noted here that even for conventional U(1) lattice gauge theories de-

compactified gauge-fields obtained via stereographic projection of the group manifold

can be used in order to construct a lattice BRST symmetry, see [141–143].

The choice of gauge group is clearly not very essential for a first set of simulations.

For simplicity, we have here simulated the (phase quenched) U(2) theory on lattices

of size L = 4

4, 64, 84 for a wide range of bare ‘t Hooft couplings � = 0.2 � 2.6 and

values of the regulator mass in the range µL = 0.1�1.0. The simulations have mostly

been performed using anti-periodic (thermal) boundary conditions for the fermions.

This evidently breaks supersymmetry, but it also removes an exact fermionic zero

momentum mode associated the trace mode of fermions that is otherwise present.

The breaking due to anti-periodic boundary conditions turns out to be tiny, and will

of course disappear as larger volumes are being considered.

An RHMC algorithm has been used for the simulations. It has been described in

detail in ref. [144]. The use of a GPU accelerated solver [131] has allowed us to reach

larger lattices than have thus far been studied. It is important to recognize that the

supersymmetric fermion operator defined on a lattice of size L is equivalent, in terms

of counting degrees of freedom, to a staggered operator on a lattice of size 2L.
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5.3.2 Lattice moduli stabilization

As in continuum N = 4 super Yang-Mills theory, the lattice theory possesses flat

directions corresponding to the continuum of classical vacuum states in which the

bosonic fields take values in the space of constant, mutually commuting, complex

matrices. This continuum of vacuum states is called the moduli space of the theory

and is determined by the expectation values of the scalar fields appearing as imaginary

parts of gauge fields in the twisted formulation. Potential divergences appear in the

partition function of the theory when integrating over these flat directions.

In the lattice theory we stabilize these moduli by the addition of the term Eq. 5.27

to the action. This term certainly lifts the moduli space of the theory but in the

lattice theory with U(N) gauge symmetry it plays an even more important role by

generating a gauge invariant vacuum expectation value for the complexified Wilson

link field Tr U †
aUa = 1. This allows one to argue that in the limit a ! 0 and in a fixed

gauge Ua ⇠ I+Aa+ . . .. This latter expansion is required if the naive continuum limit

of the lattice theory is to target a four dimensional field theory. Furthermore, the

unit matrix that appears in this expression can then be interpreted as corresponding

to giving a fixed vev to the trace mode of the scalar field. However, it is not clear

that this vev survives quantum corrections and in principle one needs to check this

in the simulations.

Clearly the correct vacuum state is picked out uniquely as µL ! 1. But the

supersymmetric limit lies in the opposite direction where µL ! 0. It is important to

be able to locate which regions in the bare parameter space are consistent with such

a link expectation value and simultaneously possess small supersymmetry breaking.

Figure. 5-1 shows a plot of the spatial link and temporal link expectation values

versus µL at ’t Hooft coupling � = 1.0 on lattices of size L = 4 and L = 6. For

small enough µL the link vev can become destabilized either running to zero or large

values. In such regions of the bare parameter space we claim that there is no possible

four dimensional continuum limit. Our data indicates that this region of instability

is pushed to smaller values of µL for larger lattices so it is likely a finite size artifact.

All of the data we show in the following sections corresponds to regions of the phase
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Figure 5-1: 1

N
Tr (U †

aUa) vs mass parameter µL at ’t Hooft coupling � = 1.0.

diagram where the link vacuum expectation value is close to unity.

Beyond leading order, the added potential term also lifts and stabilizes the regu-

lar SU(N) flat directions and one might also worry that as µL ! 0 this stabilization

mechanism would also prove ineffective. To see that it does not consider the distribu-

tion of eigenvalues of U †
aUa for several values of µL on a L = 6 lattice. Fig. 5-2 shows

the distribution of the eigenvalues of the traceless part of this quantity for several ’t

Hooft couplings � and for µL = 0.5. For this value of µL the scalar eigenvalues do

not wander down the flat directions but remain localized close to the origin in field

space. The width of the resulting distributions does however increase as the gauge

coupling is increased. Of course the most interesting issue is whether the scalar fields

remain bounded as we send the supersymmetry breaking mass term to zero. The

answer seems to be in the affirmative; Fig. 5-3 shows the distributions for fixed ’t

Hooft coupling � = 1.0 as the mass parameter µL is decreased. The plots show a very

weak dependence on µL consistent with the distributions approaching a well defined

limit as µL ! 0. However, it is important to note that this limit must be performed
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Figure 5-2: Eigenvalues of the traceless part of U †
aUa averaged over the Monte Carlo

ensemble for µL = 0.5 and � = 0.2, 1.0, 2.0.
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carefully; as we have seen we should send L ! 1 before we can truly set µL to zero.

If we don’t do this we will encounter instabilities associated with the flat directions.

At first sight the apparent localization of the scalar eigenvalues close to the origin

seems to indicate that the classical moduli space is in fact lifted by quantum cor-

rections. Such a conclusion would disagree with the perturbative calculation carried

out in [125] which shows that the single exact supersymmetry is sufficient to ensure

that the effective potential in the lattice theory vanishes to all orders in perturbation

theory in a fashion analogous to the continuum.

We thus do not believe that this is the correct interpretation of the results but

instead that the observed localization is connected to the treatment of the zero modes

in the theory. First notice that the Pfaffian vanishes on the flat directions since

in the presence of a constant commuting bosonic background there appear exact

fermion zero modes. In the full path integral these would formally cancel against the

corresponding bosonic zero modes corresponding to fluctuations in the flat directions.

However the supersymmetry breaking breaking potential we have added lifts these

bosonic zero modes. The net effect is that the configurations corresponding to the

exact flat directions do not contribute to the lattice path integral. Furthermore, since

the valleys corresponding to the flat directions possess increasingly steep sides as we

move away from the origin in field space we expect that the contribution of field

configurations corresponding to fluctuations away from the flat directions will yield a

distribution in the scalar eigenvalues that has a peak close to the origin - as we observe.

These effects have been observed before by Staudacher at al [145] in the context of

supersymmetric matrix models. We think that this is the correct interpretation of

our eigenvalue distributions too - the zero mode sector of N = 4 on a finite lattice

corresponding to the corresponding supersymmetric matrix model.

5.3.3 Bosonic Action and Polyakov lines

In this initial study we have focused on understanding of the phase diagram of the

lattice theory. First let us examine the bosonic action. This quantity is related to
@ lnZ
@�

, which vanishes on account of the topological character of the partition function
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Figure 5-3: Eigenvalues of the traceless part of U †
aUa averaged over the Monte Carlo

ensemble for � = 1.0 and µL = 0.25, 0.5, 1.0.
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Figure 5-4: Expectation value of the bosonic action vs ’t Hooft coupling � for µL =

0.25, 0.5, 1.0. The data is normalized so that the supersymmetric result is unity.

in the supersymmetric limit6. We see in fig. 5-4 that the measured value for < SB >

is indeed approximately �-independent for small µL and agrees very well with the

exact value SB/(9L4N2/2) = 1. Notice that this result is both consistent with exact

supersymmetry in the lattice theory and additionally lends strength to the claim that

a genuine sign problem is absent in this theory, and that the phase quenched ensemble

hence is adequate for studying the theory.

We now turn to the Polyakov lines. Since QUa = 0 we expect that the Polyakov

line is both gauge invariant and supersymmetric. Indeed as for the bosonic action

the latter would guarantee that the Polyakov line would take a value which was

independent of � in the limit µL ! 0. Figure 5-5 shows the (absolute value of the)

temporal Polyakov line versus bare coupling for L = 8 and µL = 0.5, 1.0. The spatial

line agrees with the temporal line within statistical errors. Unlike the bosonic action

we see a dependence on the coupling � and little indication that taking µL to zero
6The fermions appear quadratically in the action and hence their expectation value can be com-

puted via a simple scaling argument
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Figure 5-5: Absolute value of the temporal Polyakov line vs � for µL = 1.0, 0.5 on a
lattice of size L = 8.

will regain the supersymmetric result.

Insight into this problem can be gained by plotting a related quantity; the Polyakov

line projected to the traceless SU(2) sector. This is easily accomplished by taking the

traceless part of Ua(x) and exponentiating the result to achieve a matrix in SL(2, C).

The corresponding temporal Polyakov line computed from this link is shown in fig. 5-

6.

In this case the value of the line is approximately independent of coupling � as

one would expect for an observable invariant under the exact supersymmetry. We

deduce that the supersymmetry breaking we are seeing is associated with the U(1)

sector. Perhaps one should not be too surprised by this; after all the potential term

we add to stabilize the moduli space gives an explicit mass to the U(1) scalars and

hence supplies a strong source of supersymmetry breaking in this sector. Intriguingly

we have also computed the Polyakov line from the unitary projection of Ua and find

a behavior similar to that in fig. 5-5. This is evidence that the breaking is actually
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Figure 5-6: Absolute value of the traceless part of the temporal Polyakov line vs �
for µL = 1.0, 0.5 on a lattice of size L = 8.

associated not with the trace mode of the scalars but the additional massless U(1)

gauge field that appears in the theory.

Let us make a final comment. Both the bosonic action and Polyakov lines show

only smooth behavior as we scan in the ’t Hooft coupling even as µL ! 0. Over the

entire range we have explored, �  2.6, there are no hints of phase transitions in the

system associated with a two phase structure as one might have naively expected. We

will present additional evidence in favor of a single lattice phase in the next section.

5.3.4 Wilson loops and the static potential

Finally we turn to the static potential which we compute using the “supersymmetric”

Wilson loops W (L,M) which include the six scalars. Denoting such Wilson loops by

W (r, t) where the second index indicates that we align the loop along the temporal
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Figure 5-7: Potentials from Wilson loops, from 8

4 µL = 1 simulations. Octagons
label potentials from t = 1� 2, squares from t = 2� 3 and diamonds from t = 3� 4.
(a) � = 0.25; (b) � = 0.45; (c) � = 0.6; (d) � = 0.9; (e) � = 1.2; (f) � = 1.6.

direction, we can define the potential V (r) to be

W (r, t) = exp(�V (r)t) (5.36)

or, equivalently, we make an “effective mass” determination of the potential from

V (r) = � log

W (r, t+ 1)

W (r, t)
. (5.37)

This is a standard technique from the point of lattice QCD simulations. Examples of

this analysis from our 84 data sets are shown in Fig. 5-7. The fact that the data from

different t values are not coincident is a sign that t is not large enough that Eq. 5.36

is obtained; higher-energy excitations of the Wilson loop still contribute to W (r, t).

Nevertheless, the figures already indicate that the potential flattens to a constant at

large r.

We can make this statement a bit more quantitative by taking the largest-t data

(Wilson loops at t = 3 and 4), extracting the potential by fitting Eq. 5.37, and
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Figure 5-8: String tension from fits to from Wilson loops with t = 3 and 4 from 8

4

data sets. Circles are µL = 1.0; diamonds, µL = 0.5.

performing a fit to

V (r) = �C

r
+ A+ �r. (5.38)

For our data sets, with four values of r, we have one degree of freedom. We observe

that � ' 0 and that the fits uniformly have a �2/DoF smaller than unity. Of course,

the quantities in the fit are highly correlated since they come from the same underlying

configurations. Therefore, we fold the whole fit into a jackknife. The extracted string

tension � is shown in Fig. 5-8. Again, it is clearly consistent with zero. Observing

zero string tension raises the possibility that V (r) is, in fact, Coulombic. We thus

repeat the fit, but this time with V (r) = A+ C/r. Again over the observed range of

couplings we have good fits with �2/DoF again less than unity, now for two degrees

of freedom. Fig. 5-9 shows the coefficient of the Coulomb term as a function of the ‘t

Hooft coupling. It is remarkably linear. The naive expectation of perturbation theory

(one gauge boson exchange) is

C =

g2N

4⇡
. (5.39)
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Figure 5-9: Coulomb coefficient from Wilson loops with t = 3 and 4 from 8

4 data
sets. Circles are µL = 1.0; diamonds, µL = 0.5.

This seems to describe the data well, and suggests that the strong coupling regime is

above � � 2.5.

Thus the Wilson loop analysis lends support to the hypothesis of a single phase

structure with vanishing string tension for all bare couplings �.

5.3.5 Fermion eigenvalues and chiral symmetry breaking

If the system is really conformal for all gauge couplings then it should not support

a chiral condensate. To understand this better we have studied the spectrum of

the twisted fermion operator on a small lattice. Fig. 5-10 shows a scatter plot of

the fermion eigenvalues coming from a run with � = 0.8 and µL = 1 on a small

L = 3 lattice. The most obvious feature is that no eigenvalues are found close to the

origin. This is a robust statement; at all couplings� a gap appears in the spectrum

independent of µL. This, by virtue of the Banks-Casher theorem, means that chiral

symmetry is not spontaneously broken in this lattice theory.
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Figure 5-10: Fermion eigenvalues obtained from a Monte Carlo ensemble at � = 0.8,
µL = 1 and L = 3.

We have also measured the Pfaffian on this small lattice as an explicit check that

of possible sign problems. Fig. 5-11 shows the expectation value of both the cosine

and sine of the Pfaffian phase as a function of �. Rather reassuringly we see that the

fluctuations in ↵ are relatively small which provides a concrete numerical justification

of the use the phase quenched approximation in our calculations independent of the

measurement of the bosonic action or analytic arguments based on the topological

character of the lattice partition function.

5.3.6 The continuum limit

Finally, we should address the issue of a continuum limit. If indeed this theory is

conformal at all values of the bare coupling, the beta function vanishes to all orders

in lattice perturbation theory, just as in the continuum7. If correct, this means that

the notion of a “bare” gauge coupling takes on a new meaning: a renormalization
7In [125] this is shown to be true at one loop
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Figure 5-11: cos↵ and sin↵ vs � for µL = 1, L = 3.

group flow is not induced by changing the lattice spacing. Instead, the continuum

limit can be reached anywhere on the real positive bare g2-axis. What about lattice

spacing artifacts? The simple way to eliminate these ultraviolet effects is to go to

large distances (volume). In this sense, detailed simulations of this theory will be

highly unusual, much like the classical solution of differential equations by means of

finite differences. This of course will not mean that the theory is free: there will be

anomalous dimensions and logarithmic behavior beyond classical scaling.

Perhaps it is useful to contrast this situation with ones which are more familiar

to the lattice practitioner. Begin with a pure non-Abelian gauge theory, defined with

an ultraviolet cutoff, the lattice spacing a. It possesses a Gaussian fixed point at

g2 = 0 which is marginally relevant or unstable under flows towards the infrared. To

take the continuum limit, one must tune the bare coupling to zero. In that limit,

correlation lengths ⇠ (inverse masses of bound states) become large compared to a.

These theories are confining, have a mass gap, and correlation functions always decay

exponentially with distance. One can observe the approach to the continuum limit
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in the value of dimensionless ratios of dimensionful quantities (such as mass ratios).

Any lattice discretization of such a system will possess additional irrelevant operators.

They will affect the spectrum, and hence the mass ratios. However, these additional

irrelevant operators automatically cease to affect observables as the bare coupling is

taken arbitrarily close to the Gaussian fixed point. Because these theories have a

mass gap, a finite simulation volume (length L) typically affects observables by an

amount proportional to exp(�mL) where m is some characteristic mass.

Next, consider theories of fermions and gauge bosons “inside the conformal win-

dow”, where the gauge coupling flows to an infrared fixed point under blocking trans-

formations which remove ultraviolet degrees of freedom. For such theories, the fermion

mass is a relevant perturbation and it must be tuned to zero by hand in order that

the system approach this fixed point. In the massless limit, and in infinite volume, all

correlation functions are power-law and the interesting physical parameters are the

critical exponents. The distance of the gauge coupling g from its fixed point value

gc is an irrelevant coupling and the difference |g � gc| governs power law corrections

to scaling, whose size is not universal. These effects – as well as those of all irrele-

vant operators – die away as the correlation length ⇠ becomes much greater than the

cutoff a. Besides the mass, a finite system size (technically, 1/L) is also a relevant

parameter because it converts the power-law fall-off of correlation functions into an

exponential fall-off. A combination of simulations done at small but non-zero values

of the relevant parameter (here the fermion mass) and finite simulation volume (finite

size scaling) can, in principle, elucidate the properties of the system.

A theory with a totally vanishing beta function for all bare couplings is one step

further. Let us assume that this is the case for the theory under study here. This

means that when all relevant couplings in the lattice model – presumably a subset

of them are µL and 1/L – are tuned to their fixed point values, the system will

again exhibit algebraic decay of correlation functions at large distance. This time,

the appropriate exponents will be functions of the bare ’t Hooft coupling �.
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5.4 Conclusions

Numerical simulations of the phase-quenched N = 4 supersymmetric Yang-Mills

theory in four dimensions were performed. In particular, we have examined standard

physical observables such as Wilson loops, Polyakov lines and the bosonic action. We

have found no evidence for phase transitions as the bare gauge coupling is varied.

Furthermore, the effective string tension is consistent with zero for all bare couplings

at the largest distances probed. Indeed we see evidence for Coulomb-like behavior in

the static quark potential and a gap opens up in the spectrum of the fermion operator

indicating the absence of chiral symmetry breaking. Furthermore, the expectation

value of the bosonic action appears to be independent of the gauge coupling as the

regulator mass µL is sent to zero and it equals the value expected on the basis of exact

supersymmetry. This gives indirect evidence that the sign problem is indeed absent

in this lattice theory, and that for all practical purposes the phase of the Pfaffian can

be ignored in actual simulations.

With this first study we have provided ample evidence that it is feasible to study

this supersymmetric lattice gauge theory by numerical means. The effects of phase

quenching, a bosonic mass term to stabilize the flat directions, and anti-periodic

boundary conditions for the fermions, can all be carefully monitored by means of

supersymmetric Ward Identities that are exact in the lattice-regularized theory. The

apparent existence of a single deconfined phase with vanishing string tension at all

bare couplings indicates that this theory is conformal at any coupling, as is the con-

tinuum theory with all the remaining supercharges being conserved. Apparently the

exact conservation of one supersymmetric charge is extremely powerful; in particu-

lar, it ensures a perfect match between bosonic and fermionic degrees of freedom in

the multiplet. We hope this work may stimulate renewed numerical efforts in the

same direction: the lattice offers direct access to the computation of observables in

the most interesting supersymmetric gauge theory in four dimensions. It can probe

both weak and strong coupling, and comparisons can be made to predictions from

the continuum based on gauge-gravity duality.
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Our results presented here are of course only a beginning and should be confirmed

by future studies on bigger systems and at stronger coupling. The evaluation of

non-trivial correlation functions should be initiated. A study of the broken Ward

Identities associated with supercharges that are not exactly conserved on the lattice

should made. This will give direct evidence for how full supersymmetry is recovered

in the continuum limit. There is obviously much exciting work ahead.
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