Epistemology: It’s Elementary! An Architectonically Constructivist Elementary School in Syracuse, NY– Part 2

Tyler Ferrusi

Follow this and additional works at: https://surface.syr.edu/architecture_theses

Part of the Architecture Commons

Recommended Citation
https://surface.syr.edu/architecture_theses/185

This Thesis, Senior is brought to you for free and open access by the School of Architecture Dissertations and Theses at SURFACE. It has been accepted for inclusion in Architecture Senior Theses by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.
Figure 117: The gadget can be operated by the client's own son; gear ratios make this possible.
Figure 118: Detail of the gear mechanism, flyball governor, and the steel plate ringer that hangs below it.
Though the bottom portion of the door is larger, its weight is equal to that of the top half, producing a state of equilibrium that requires less force to pivot. The wheel (1) turns the driveshaft (3). The flyball governor (2) regulates the speed of the gears for safety by spinning in the opposite direction, activating a pendulum which sounds the flat disc under it as a warning.

Figures 120-121 (Middle Left): Kundig worked with Phill Turner to test and engineer the Gizmo.

Figures 122-123 (Bottom Left): Kundig's preliminary sketches for the door.
Figure 124: Detail of the Gizmo.

Driveshaft

Figure 125: Detail of the large swinging door.

Small Window

Door Lever

Figure 126: West Elevation.
Figure 127 (Left): Isometric view of large door, operated by the lever handle mechanism.

Figure 128 (Right): Exploded isometric extrapolating the main building components.
Figure 129 (Top): The movement of the picture window.

Figure 130 (Bottom): Isometric of the picture window and framing system.
The Learning Environment
Learning Environment Components
The Normative and the New

Traditional

![Figure 131](image)

In a traditional learning environment, a rigid curriculum governs the relationship of the teacher and the students. Knowledge comes directly from the teacher who occasionally uses tools to demonstrate and reinforce concepts. Space is only a physical requirement of this process.

Constructivist

![Figure 133](image)

In a Constructivist learning environment, an adaptable curriculum affects both the teacher and the students. Knowledge comes about equally from the teacher and the tools used to discover and investigate concepts. The space has a multitude of effects on the student who utilizes the space as a collection of tools.
In a Montessori learning environment, a rigid curriculum governs the relationship of the teacher and the students. Knowledge comes primarily from tools used to demonstrate concepts with restrained interaction by the teacher. The space allows for a relatively restrained level of direct interaction between the teachers and students to promote constructivist learning.

In a Reggio Emilia learning environment, an adaptable curriculum affects both the teacher and the students. Knowledge comes equally from the teachers and the tools used to discover and reinforce concepts. The space has a primarily behavioral effect on the students, allowing for concentration through privacy.
Learning Environment Spaces
Workspace, perspective, and layout

Traditional

Montessori

Reggio Emilia

Figure 139

Figure 140

Figure 141

Figure 142
Human Factors

The conception of ergonomics is attributed largely to the Polish biologist Wojciech Jastrzebowski, who first coined the word in his 1857 article The Outline of Ergonomics, i.e. Science of Work, Based on the Truths Taken from the Natural Science. Ergonomics later entered the English language and was further developed by the British psychologist Hywel Murrell in 1949 to identify musculoskeletal stress in Navy men.132 Ergonomics was then employed as a method of increasing efficiency and profit. Through ergonomics based studies, Frederic Winslow Taylor developed a ‘scientific management’ system which sought to maximize efficiency in such instances as tripling the weight of coal or brick one man could move in a given time.133

Although the field of ergonomics technically pertains specifically to labor (the roots coming from the Greek for ‘work’ and ‘natural laws,’), the International Standards Organization defines ergonomics to be synonymous with ‘human factors.’134 ‘Human factors’ is a broader phrase which refers to the tailoring of equipment to suit the physical and cognitive properties of the human body and mind to capitalize on optimum health, safety, and productivity. Human factors therefore involve not only biometrics, but also physiology, psychology, architecture, engineering, industrial design, graphic design, operations research, and anthropometry.135

Some human factors standards are outlined by the Occupational Safety and Health Administration and by the International Ergonomics Association. These, however, do not clearly define or enforce codes for minimum and maximum angles, spacing, or heights for furniture design in the same way that there are for architectural design. Human Factors for students are therefore determined at large by the mass produced products of industrial design purchased to occupy architectural space. Such furniture has come a long way since the bulky wood and iron desks of early schools.136 Instead of just scaling down furniture optimized for use by adults, furniture for younger people is being re-proportioned to improve health and performance.

Figure 143 (left) Kindergarten Classroom; Figure 144 (right) Elementary Classroom. Dr. Weeks Elementary, a newly renovated school in Syracuse, NY exhibits newer furniture. Note the various size, flexibility, lightweight construction, and adjustability of the table and chair pieces.
Figure 145: Seat and Table Guide Selector.
Sensory Stimuli

Specific to architecture, it is important to consider every design decision for its sensory stimuli properties not only for health, but also as a way to evoke thought and establish teachable moments for the construction of knowledge.

The Modes of Human Perception:

Feel Physical Contact:
- Environmental (Passive) air movement and temperature radiation, humidity, and pressure
- Haptic (Active) surface movement, temperature, and tension, shape (texture and contour)

See Visual Perception:
- Shape, size, color, shade, shadow, and motion

Hear Aural Perception:
- Volume, pitch, tempo and localization

Smell Olfactory Perception
- Aroma

Taste Gustatory Perception
- Texture, viscosity, flavor

Kinesthetic Perception (Proprioception)
- One’s discerning of movement and orientation relative to his or her surroundings and self

Proprioception is especially relevant to architecture because one must negotiate built space by navigating through it and interacting with it. Although proprioception may be thought of as a kind of sixth sense, it actually involves the constant processing of all the other senses relative to one’s sense of balance. All architectural materials can be actively felt while the conditioning of a space can be passively felt. All materials can be seen, including glass and clear plastics, as well as other materials that possess the qualities of transparency, reflection, and refraction. All materials possess some sort of acoustic properties in the way they absorb, reflect, direct, and even amplify sound. Many materials possess some sort of smell and taste, especially natural materials which are affected by environmental conditions. People therefore interact with architecture as a collection of sensory stimuli, and it is important to consider design decisions in such terms as they relate to human factors.

Figure 146: Wood grain of acer saccharum (sugar maple).

Finished wood such as sugar maple feels relatively cool and smooth and slightly malleable. The shape and size may reveal the process by which it was cut from a larger whole. The color changes with oxidation to illustrate its age. The wood has a solid bright tone when vibrated and a sweet woody smell. These properties lend themselves to durable surfaces for activities such as indoor sports.
Didactic Material and Space

Montessori didactic materials, such as those produced by Nienhuis Montessori, provide a good example of human factors through sensory stimuli. The pink tower is a tool consisting of a series of cubes of increasing size for learning to distinguish three-dimensional size, the decimal system, geometric concepts, and volume. The brown stair is a related material consisting of a series of square prisms for learning to distinguish width and area to volume relationships. The pink tower consists of ten cubes of hardwood painted pink which increase or decrease by one centimeter in each dimension, whereas the brown stair consists of ten square prisms of unpainted hardwood which increase or decrease by one centimeter in two dimensions. Due to the modular proportions of the materials, they may be employed separately or simultaneously.

The edges of the blocks are just round enough to be comfortable to the touch without distracting from the represented volume. The solid hardwood construction is not only durable, but provides a heft equivalent to the represented volume, and creates a solid sound when placed together or toppled over. The pink paint is important not only to simultaneously distinguish and relate the two sets, but also to subtly signify that the cubes have no directionality. This is distinct from the square prisms whose directionality is present not only in the geometric form, but also in the wood grain.

The design of the box-jointed containers for various materials is also an example of human factors. The type of joint is used expresses the thickness of the material and how it is assembled. Every design decision, no matter how seemingly small, relates to human factors in that it negotiates the requirements of performing some activity with materials that we interpret and interact with based on our senses. This framework may, and indeed should, be applied to every aspect of the architecture of a learning space to maximize the potential for the space to be used as a tool for teaching.

![Pink tower and brown stair.](image)

![A box joint (left) and a rabbet (right).](image)

Montessori didactic material containers and some furniture pieces use box joints to celebrate the material and display its construction and thickness. Traditional school furniture often employs dado joints which are less expensive to produce but do not reveal the construction or thickness of the material. The school building would double as a teaching tool in itself by employing this mentality to the architectonics of a space.
ECOSYSTEM:
A rich learning environment is an ecosystem that provides diverse and stimulating spaces for the child to learn in. These kinds of spaces are less rigid, and more open to freedom of expression. Hence, multiple dimensions coexist which create a series of hybrid environments. In designing learning spaces for children, the environment should not be a distillation of space and program, but rather a fusion of distinct poles. This complex overlapping allows for a greater range of learning experience.

CONNECTIVE TISSUE:
An enriched learning environment permits and encourages relational space, held together by connective tissue. This tissue is an ideal metaphor, since it characterizes space not according to function, but rather the flowing of multiple processes of function between other vital elements. This includes the expected and unexpected, where activities might spontaneously arise from a fluid relationship of parts. Interpretation is not defined, but facilitates a unique way of “seeing, reading, studying, and interpreting reality, and representing it with critical awareness.” The connective tissue lacks formal rules, allowing the child to formulate his or her own thoughts and experience.

OSMOSIS:
Biologically, osmosis describes the passage of fluid solvents through a selectively permeable membrane. Inherently, this condition of passage requires certain conditions to be present within the solvent; some form of degradation must take place in order for its passage. This process can illustrate that nothing is truly isolated, and that interfaces for the dissipation of information exist in order for information of be exchanged. Our contention will explore this information exchange, primarily between the learner and the environment. These interfaces suppose that boundaries aren’t truly boundaries, but membranes that interface between learner and environment for the exchange of information, as opposed to formalized rigid boundaries.
CONSTRUCTIVISM:
The most essential component of an effective learning environment is one which creates an adventure for the child. Because constructivism is a cognitive process, the epistemology develops per the unique characteristics of each learner. An environment can nurture the individual’s construction of knowledge through a dynamic weaving of space, program, and activity. Thus, to do away with the traditional classroom structure and replace it with ecology of laboratory, shop, and group learning spaces, among which the child is free to move and choose between. Order, then, is replaced by an overlapping network of constant exchange and feedback.

MULTISENSORIALITY:
Multisensoriality describes the richness of the sensory experience. Studies have shown that even for very young children, unstimulating environments dull the senses and fail to broaden our perceptions. Learning environments should support varied and overlapping multisensory experiences through light, texture, sound, temperature, and proprioception. This idea emphasizes the profound impact that synesthesia can have on the construction of knowledge through experience.

EPIGENESIS:
Epigenesis describes the process by which a biological entity develops through its own evolutionary process, rather than according to its internal DNA sequence. This is related to constructivism, which posits that knowledge is built up through one’s personal experiences. Both terms infer a process occurring over time, such that temporality plays a critical role in determining experience. This manifestation of epigenesis can and should be applied to a responsive and transformable learning environment. Like the living organism, the learning environment should evolve to suit modification by the student, and self-learning through interaction. An environment such as this epitomizes learning as a free choice of the individual learner.

CONSTRUCTIVISM:
The most essential component of an effective learning environment is one which creates an adventure for the child. Because constructivism is a cognitive process, the epistemology develops per the unique characteristics of each learner. An environment can nurture the individual’s construction of knowledge through a dynamic weaving of space, program, and activity. Thus, to do away with the traditional classroom structure and replace it with ecology of laboratory, shop, and group learning spaces, among which the child is free to move and choose between. Order, then, is replaced by an overlapping network of constant exchange and feedback.
Site & Program
Site and Program Selection

The program which best demonstrates the contention is a school. Because elementary school is the phase of education wherein one learns how to learn (as opposed to secondary education, wherein the focus shifts to the ability to retain and apply knowledge), an elementary school is best because it aligns with the constructivist theory of education. In addition, constructivist learning is most beneficial if imparted to a child at the inception of his or her compulsory education, as a framework for secondary and higher education and life in general.\(^{142}\)

In the New York State school system, elementary school consists of the first through the fourth, fifth or sixth grade (or through eighth in the case of a combined elementary middle/Jr. high school).\(^{143}\) A small school of around a hundred students, grades K through fifth, ages five through ten respectively, is an appropriate number and age range. Use of the standard grade system is helpful for organizing and comparing a new school curriculum to the traditional system. This range allows for a variation in the design approach with a variety of complexities to the operable components of the school. Also, it allows for the opportunity of creating instances of literal and transformable overlap and separation between different grade levels and other programs.

Selection of a site within the United States eliminates the necessity to research an outside culture which is not required to demonstrate the contention. This is an important consideration because, as proposed by Howard Gardner in his Theory of Multiple Intelligences, the objectives of a place of learning are intrinsically related to local cultural values.\(^{144}\) Although the approach to design proposed by the contention is rooted in approaches to education pioneered and developed primarily in Scandinavia and Italy, the application of the contention may be tailored to serve spaces of learning in any culture or level of education, and to architecture in general.

Refining the site selection area to Syracuse, New York is in keeping with the points above, while allowing for other specific benefits. A familiar sense of the regional culture of the site serves to further define the objectives of the space. In Syracuse, a constructivist school would benefit the educational system which is now aimed at preparing students for careers in the educational and medical sciences, which are best learned by active learning and practice. Close proximity to the site affords an increased ability to visit it in order to obtain a firsthand understanding of its context as it currently exists. Such access also affords us the opportunity to speak with local educators and other community members (such as the principle of Dr. Weeks Elementary, King + King Architects associates, and local residents) about existing conditions and historical perspectives.

The physical manifestation of the contention, as an architecture comprised of transformable components, may benefit from the existing network of related programs in the community. An urban site therefore demonstrates several advantages over a suburban or rural site. In order to make such a comparison, it is necessary to define urbaniy in terms of what serves as a benefit or detriment to the contention.
Urbanity Density Gradient:

<table>
<thead>
<tr>
<th>Urbanity</th>
<th>Density Gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downtown</td>
<td>Central Business District</td>
</tr>
<tr>
<td>Semiurban</td>
<td>Surrounding Metropolitan Zone</td>
</tr>
<tr>
<td>Suburban</td>
<td>Zone Beyond City Limits</td>
</tr>
<tr>
<td>Exurban</td>
<td>Prosperous Commuter Zone</td>
</tr>
<tr>
<td>Rural</td>
<td>Agricultural Country</td>
</tr>
</tbody>
</table>

An urban site possesses a relatively high density of people and structures and close proximities of schools, housing, parks, playgrounds, athletic courts and fields, libraries, museums, and community and recreation centers. Such existing conditions may be utilized to connect the project with these features of the community and increase access to the school. Sharing of these public entities would not be limited to school classes, but also for hosting afterschool programs, meetings, and other community-wide events, to feature the school as a symbol within the fabric of the community which it is woven into. To avoid complications dealing with politics and social structure, the most reasonable siting for the project is to repurpose some percentage of an existing park space in a thickly settled area.

Originally, the concept of redesigning an existing elementary school was appealing because it appeared as an unobtrusive means for testing the contention on a site. Upon realizing, however, the scale difference as well as the intrinsic uniqueness of the curriculum of a constructivist school, there was a shift to designing the school on unoccupied land, specifically a portion of a park space. Syracuse elementary schools have hundreds of students and teach a general curriculum, whereas a constructivist school would have a much smaller student body and focus on a certain field of education – potentially as an experimental charter school for environmental or education studies.

Lincoln Park was ultimately selected for its proximity to Dr. Weeks Elementary and the attached Northeast Community Center, as well as the existing infrastructure in the park. By constructing the school on the Southwest corner of the park, we hope to activate the site by providing programs shared by the school and community, such as a gym and auditorium. We also hope to connect the community to the existing amenities by redesigning the paths, trails, and stairs throughout the park based upon a study of the patterns of movement through the site and park. Preexisting on the site is a tennis court, ball field, playground, pool, restroom, and lookout. The site selection enables the school to be set back from the street and incorporate the landscape into its formal articulation.
Program

Dimensioned Components

School Size:
- **Student Body**: 120 (6 Grades of 20)

Classrooms:
- **Kindergarten (20)**: 700sqft, 9ft ceiling (35sqft/student)
- **Toilet room (1)**: 25sqft, 9ft ceiling (5ft X 5ft)3
- **1st to 5th Grades (20)**: 600sqft X5, 9ft ceiling (30sqft/student)
- **Resource Room (5)**: 250sqft, 9ft ceiling (50sqft/student)

Administrative Suite:
- **Principal’s Office**: 180sqft, 9ft ceiling
- **Vice Principal’s Office**: 120sqft, 9ft ceiling
- **Secretary’s Office**: 120sqft, 9ft ceiling
- **Conference Room (10)**: 300sqft, 9ft ceiling (30sqft/student)
- **Break Room (10)**: 300sqft, 9ft ceiling (30sqft/student)

Health Suite:
- **Waiting Space (2)**: 60sqft, 9ft ceiling (30sqft/student)
- **Bathroom (1)**: 25sqft, 9ft ceiling
- **Resting Space (2)**: 80sqft, 9ft ceiling (40sqft/student)
- **Nurse’s Office**: 120sqft, 9ft ceiling
- **Guidance Office**: 120sqft, 9ft ceiling

Collective Spaces:
- **Lobby (40)**: 1200sqft, 20ft ceiling (30sqft/student)
- **Art Room (20)**: 600sqft, 9ft ceiling (30sqft/student)
- **Music Room (20)**: 600sqft, 9ft ceiling (30sqft/student)
- **Library (20)**: 500sqft, 20ft ceiling (25sqft/student)
- **Librarian’s Office**: 120sqft, 9ft ceiling
- **Cafeteria (60)**: 1,080sqft, 20ft ceiling (18sqft/person)
- **Gymnasium**
 - Court: 4,200sqft, 20ft ceiling (84ft X 50ft)
 - Bleachers (50): 350sqft, 20ft ceiling (7sqft/person)
- **Auditorium**
 - Seating (120): 840sqft, 20ft ceiling (7sqft/person)
 - Stage: 350sqft, 25ft ceiling
Toilet Rooms:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>120sqft</td>
<td>9ft ceiling</td>
<td>(2 sinks; 2 stalls)</td>
</tr>
<tr>
<td>Male</td>
<td>120sqft</td>
<td>9ft ceiling</td>
<td>(2 sinks; 1 stall; 2 urinals)</td>
</tr>
</tbody>
</table>

Service:

- Storage ... 9ft ceiling
- Tele-Data Room 25sqft 9ft ceiling
- Mechanical Room ... 9ft ceiling
- Kitchen, Pantry, Dish Room 600sqft 20ft ceiling
- Custodial Room 35sqft 9ft ceiling

Exterior Spaces
- Play Grounds
- Courts and Fields
- Gardens
- Parking

Grounds and Maintenance
- Paths and Steps
- Pool Building
<table>
<thead>
<tr>
<th>Program</th>
<th>Activities:</th>
<th>Adjacencies:</th>
<th>Separations:</th>
<th>Open/closed:</th>
<th>Lighting Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindergarten</td>
<td>Activity; play; sleep</td>
<td>Toilet; classes; court</td>
<td>-</td>
<td>T Cluster court</td>
<td>diffuse single</td>
</tr>
<tr>
<td>1st to 5th grades</td>
<td>Activity; instruction</td>
<td>Toilet; classes; court</td>
<td>-</td>
<td>T Cluster court</td>
<td>diffuse double</td>
</tr>
<tr>
<td>Resource room</td>
<td>Activity; instruction</td>
<td>Toilet; classes; court</td>
<td>-</td>
<td>T Cluster court</td>
<td>diffuse double</td>
</tr>
<tr>
<td>Principal's office</td>
<td>Administrative work</td>
<td>Other administration</td>
<td>Gymnasium</td>
<td>C</td>
<td>diffuse single</td>
</tr>
<tr>
<td>V. Principal's office</td>
<td>Administrative work</td>
<td>Other administration</td>
<td>Gymnasium</td>
<td>O Lobby</td>
<td>diffuse single</td>
</tr>
<tr>
<td>Secretaries' office</td>
<td>Administrative work</td>
<td>Other administration</td>
<td>Gymnasium</td>
<td>C</td>
<td>diffuse dimmer</td>
</tr>
<tr>
<td>Conference room</td>
<td>Present; discuss</td>
<td>Administration; hall</td>
<td>Gymnasium</td>
<td>C</td>
<td>diffuse single</td>
</tr>
<tr>
<td>Break room</td>
<td>Relax; eat; converse</td>
<td>Administration; Toilet</td>
<td>Gymnasium</td>
<td>C</td>
<td>diffuse single</td>
</tr>
<tr>
<td>Toilet rooms (kids)</td>
<td>Relieve; wash</td>
<td>Classes</td>
<td>-</td>
<td>C</td>
<td>diffuse single</td>
</tr>
<tr>
<td>Resting space</td>
<td>Relax; sleep</td>
<td>Nurses’ office</td>
<td>Gymnasium</td>
<td>C</td>
<td>diffuse dimmer</td>
</tr>
<tr>
<td>Nurse’s office</td>
<td>Assess; assist</td>
<td>Administration</td>
<td>Gymnasium</td>
<td>C</td>
<td>diffuse single</td>
</tr>
<tr>
<td>Guidance office</td>
<td>Assess; assist</td>
<td>Administration</td>
<td>Gymnasium</td>
<td>C</td>
<td>diffuse single</td>
</tr>
<tr>
<td>Lobby</td>
<td>Gather; converse</td>
<td>Offices; Gym; Aud; Classes</td>
<td>T Outside</td>
<td>d and d double</td>
<td></td>
</tr>
<tr>
<td>Art room</td>
<td>Watch, create</td>
<td>Resource; music; cy</td>
<td>Gymnasium</td>
<td>T Music room</td>
<td>d and d double</td>
</tr>
<tr>
<td>Music room</td>
<td>Listen; create</td>
<td>Resource; art; court</td>
<td>Gymnasium</td>
<td>T Art room</td>
<td>diffuse single</td>
</tr>
<tr>
<td>Library</td>
<td>Listen; read</td>
<td>Librarian; court</td>
<td>Gymnasium</td>
<td>C</td>
<td>diffuse single</td>
</tr>
<tr>
<td>Librarian’s office</td>
<td>Administrative work</td>
<td>Library</td>
<td>Gymnasium</td>
<td>C</td>
<td>diffuse single</td>
</tr>
<tr>
<td>Cafeteria</td>
<td>Eat; converse</td>
<td>Kitchen; dish room</td>
<td>Administration</td>
<td>T Outside; Courts</td>
<td>d and d double</td>
</tr>
<tr>
<td>Gymnasium</td>
<td>Kinesthetic play</td>
<td>Locker room; lobby</td>
<td>Administration</td>
<td>T Outside; Courts</td>
<td>d and d dimmer</td>
</tr>
<tr>
<td>Auditorium</td>
<td>Watch; listen</td>
<td>Lobby; stage</td>
<td>Mechanical room</td>
<td>C</td>
<td>Controlled</td>
</tr>
<tr>
<td>Stage</td>
<td>Perform</td>
<td>Auditorium</td>
<td>Mechanical room</td>
<td>T Auditorium</td>
<td>Controlled</td>
</tr>
<tr>
<td>Storage</td>
<td>Store; access</td>
<td>Gymnasium</td>
<td>-</td>
<td>C</td>
<td>diffuse single</td>
</tr>
<tr>
<td>Courtyards</td>
<td>Activity; instruction</td>
<td>Classes; library</td>
<td>-</td>
<td>T Classes, ETC</td>
<td>diffuse double</td>
</tr>
<tr>
<td>Tele-data room</td>
<td>House; service</td>
<td>Administration</td>
<td>-</td>
<td>C</td>
<td>diffuse single</td>
</tr>
<tr>
<td>Mechanical room</td>
<td>House; service</td>
<td>-</td>
<td>Most things</td>
<td>C</td>
<td>diffuse single</td>
</tr>
<tr>
<td>Kitchen, dish room</td>
<td>Cook, serve; wash</td>
<td>Cafeteria</td>
<td>Most things</td>
<td>C</td>
<td>d and d single</td>
</tr>
<tr>
<td>Custodial room</td>
<td>Store; access</td>
<td>X</td>
<td>-</td>
<td>C</td>
<td>diffuse single</td>
</tr>
<tr>
<td>Play grounds</td>
<td>Kinesthetic play</td>
<td>Gymnasium</td>
<td>-</td>
<td>(Outside)</td>
<td>direct</td>
</tr>
<tr>
<td>Courts and fields</td>
<td>Kinesthetic play</td>
<td>Play grounds</td>
<td>-</td>
<td>(Outside)</td>
<td>d and d single</td>
</tr>
<tr>
<td>Gardens</td>
<td>Plant; tend; harvest</td>
<td>X</td>
<td>-</td>
<td>(Outside)</td>
<td>direct</td>
</tr>
<tr>
<td>Locker Room</td>
<td>Wash; change</td>
<td>Gymnasium</td>
<td>Administration</td>
<td>C</td>
<td>diffuse single</td>
</tr>
<tr>
<td>Brightness (fc)</td>
<td>Acoustics (rel. vol.)</td>
<td>Materials:</td>
<td>Multivalence:</td>
<td>Entry Via:</td>
<td>Window Type:</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>30</td>
<td>Project 30-35</td>
<td>gypsum; wood</td>
<td>Transformable</td>
<td>hall; court</td>
<td>clearstory, level</td>
</tr>
<tr>
<td>30</td>
<td>Project 30-35</td>
<td>gypsum; wood</td>
<td>Transformable</td>
<td>hall; court</td>
<td>clearstory, level</td>
</tr>
<tr>
<td>30</td>
<td>Project 30-35</td>
<td>gypsum; wood</td>
<td>Transformable</td>
<td>hall; court</td>
<td>clearstory, level</td>
</tr>
<tr>
<td>30</td>
<td>Absorb 25-35</td>
<td>gypsum; wood</td>
<td>Closed</td>
<td>secretaries' office</td>
<td>level</td>
</tr>
<tr>
<td>30</td>
<td>Absorb 25-35</td>
<td>gypsum; wood</td>
<td>Closed</td>
<td>secretaries' office</td>
<td>level</td>
</tr>
<tr>
<td>30</td>
<td>Absorb 25-35</td>
<td>gypsum; wood</td>
<td>Closed</td>
<td>lobby</td>
<td>level</td>
</tr>
<tr>
<td>30</td>
<td>Project 30-35</td>
<td>gypsum; wood</td>
<td>Transformable</td>
<td>hall</td>
<td>clearstory</td>
</tr>
<tr>
<td>30</td>
<td>Project 30-35</td>
<td>gypsum; wood</td>
<td>Closed</td>
<td>hall; secretaries' office</td>
<td>level or none</td>
</tr>
<tr>
<td>10</td>
<td>Absorb 30-35</td>
<td>concrete; wood</td>
<td>Closed</td>
<td>hall; Kindergarten</td>
<td>clearstory / high</td>
</tr>
<tr>
<td>10</td>
<td>Insolate 20-25</td>
<td>fabric; wood</td>
<td>Closed</td>
<td>nurse's office</td>
<td>level app</td>
</tr>
<tr>
<td>30</td>
<td>Absorb 20-30</td>
<td>concrete; wood</td>
<td>Closed</td>
<td>hall</td>
<td>level</td>
</tr>
<tr>
<td>30</td>
<td>Absorb 25-35</td>
<td>gypsum; wood</td>
<td>Closed</td>
<td>hall; secretaries' office</td>
<td>level</td>
</tr>
<tr>
<td>20</td>
<td>Project 35-45</td>
<td>gypsum; wood</td>
<td>Transformable</td>
<td>Outside</td>
<td>clearstory, level</td>
</tr>
<tr>
<td>30</td>
<td>Project 30-35</td>
<td>gypsum; wood</td>
<td>Transformable</td>
<td>hall; court</td>
<td>clearstory, level</td>
</tr>
<tr>
<td>30</td>
<td>Project 30-35</td>
<td>gypsum; wood</td>
<td>Transformable</td>
<td>hall; court</td>
<td>clearstory, level</td>
</tr>
<tr>
<td>30</td>
<td>Absorb 30-40</td>
<td>gypsum; wood</td>
<td>Closed</td>
<td>hall; court</td>
<td>clearstory, level</td>
</tr>
<tr>
<td>30</td>
<td>Absorb 25-35</td>
<td>gypsum; wood</td>
<td>Closed</td>
<td>library</td>
<td>level</td>
</tr>
<tr>
<td>20</td>
<td>Absorb 40-50</td>
<td>concrete; wood</td>
<td>Transformable</td>
<td>hall</td>
<td>clearstory, level</td>
</tr>
<tr>
<td>20</td>
<td>Absorb 40-50</td>
<td>concrete; wood</td>
<td>Transformable</td>
<td>lobby</td>
<td>clearstory</td>
</tr>
<tr>
<td>10</td>
<td>Insolate 20-25</td>
<td>fabric; wood</td>
<td>Transformable</td>
<td>lobby</td>
<td>None</td>
</tr>
<tr>
<td>30*</td>
<td>Project 20-25*</td>
<td>concrete; wood</td>
<td>Transformable</td>
<td>auditorium</td>
<td>None</td>
</tr>
<tr>
<td>10</td>
<td>Absorb N/A</td>
<td>gypsum; wood</td>
<td>Closed</td>
<td>hall</td>
<td>None</td>
</tr>
<tr>
<td>20</td>
<td>Project 30-35</td>
<td>concrete; wood</td>
<td>Transformable</td>
<td>classes; library</td>
<td>Level, high</td>
</tr>
<tr>
<td>10</td>
<td>Absorb N/A</td>
<td>gypsum</td>
<td>Closed</td>
<td>secretaries' office</td>
<td>None</td>
</tr>
<tr>
<td>10</td>
<td>Absorb N/A</td>
<td>gypsum</td>
<td>Closed</td>
<td>hall</td>
<td>None</td>
</tr>
<tr>
<td>30</td>
<td>Absorb 20-25</td>
<td>gypsum</td>
<td>Closed</td>
<td>hall; outside</td>
<td>Level, high</td>
</tr>
<tr>
<td>10</td>
<td>Absorb N/A</td>
<td>gypsum</td>
<td>Closed</td>
<td>hall</td>
<td>None</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>grass; wood</td>
<td>Transformable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>20</td>
<td>N/A</td>
<td>grass</td>
<td>Transformable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>plants; wood</td>
<td>Transformable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>10</td>
<td>Absorb 40-50</td>
<td>concrete; wood</td>
<td>Closed</td>
<td>lobby; gym</td>
<td>clearstory, high</td>
</tr>
</tbody>
</table>
Figure 162: Data From Syracuse Hancock International Airport (4 miles away).
Wind Roses

Minimum and maximum average wind speed in mph by cardinal direction. The wind patterns of this region are caused by the warm, humid southwest winds and the cold, dry north winds as they move along the coast. The prevailing wind throughout the year comes from the West. The average speed is around 8 mph.

Figure 163: Data From the City of Syracuse and Syracuse Hancock International Airport (4 miles away).
Figure 164: View towards the northeast, from the southeast corner of the site at the corner of Mather and Hawley.

Figure 165: View east, with existing basketball courts shown before the steep ascension of the park’s hill.
Figure 166: View to the west, showing the gradual grade of the proposed corner site.

Figure 167: View to the east up Hawley, framing the beautiful steeple of the church a block away.
Figure 169: The beginning of a series of tangled footpaths that gracefully wander through the hill's treecover.

Figure 170: View southwest towards a low angled setting sun.
Studies
Figure 171: Renderings of model, with louvers opened at various angles.
Figure 172: Isometric rendering of a study model created at the outset of our cooperative odyssey in a charrette undertaken to better understand the manifestation of our goals through our thesis. The central idea was to create a louver-like system as a means of testing the filtering of light and views. The operation requires physical input by the user to turn a wheel system which translates the motion to a series of gears and other moving components. Implemented at the scale of a wall system, the idea is intended to operate at the hands of a child user. The logic behind color-coding the separate pieces and components is to allow for an easier understanding of how connections are achieved. This also correlates to our thesis, which posits that the didactic use of color and material can help the child user understand connection, movement, and construction, as well as other physical properties of a system.
This campaign desk was designed for a furniture design and fabrication course. The goal was to create a portable work station for guitar repair and drafting. The piece consists of aspen board, maple plywood, and brass piano hinges. The materials are each used to their respective advantages and celebrated in the final piece. By hinging in multiple axes, the desk may be used or stored in a relatively flat compact position, or raised to work surface height. The incline of the top of the desk is infinitely adjustable for drawing. The parts tray panel is removable for providing birth to a headstock and the drawers are deep and shallow for small parts and utensil storage. The desk was also designed to be produced from a single sheet of plywood and formatted to enable reuse of the material upon the end of the piece’s life.
Figure 174: Rendering of desk collapsing.
Distinct from traditional architecture in education, the application of constructivist philosophy to the physical aspects of a learning environment produces engaging spaces of learning that foster the learners’ social and cognitive development by anticipating and facilitating the observation, interpretation, and modification of the environment itself by the learner.

Nov 6th

Applying constructivist philosophy to the architectonics of an elementary school fosters and augments the learners’ cognitive and social development by facilitating learning through direct handling by the learners, and thereby generating an architecture which serves as a device for constructing knowledge.

Nov 12th

The constructivist theory of education is applicable to both curricula and architecture. Designing an elementary school within a constructivist framework generates an interactive and transformable learning environment through which children generate learning experience. The design of the school enables children to operate the architecture as a system of components such as cranks, gears, and pulleys. Such architecture allows children to continually reinterpret the built environment in a multiplicity of ways, facilitating the construction of knowledge.

Nov 18th

The constructivist theory of education is applicable to both curricula and architecture. Designing a school within a constructivist framework will generate an interactive learning environment. The design of a constructivist school enables children to continuously transform their spaces by interacting with a composition of interpretable and operable components. Allowing children to continually reinterpret the built environment in a multiplicity of ways facilitates the construction of knowledge through experience.

Nov 30th
Tentative Process

Schedule:

<table>
<thead>
<tr>
<th>Week</th>
<th>Scale</th>
<th>Focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>January, 13</td>
<td>First Day of Classes</td>
<td></td>
</tr>
</tbody>
</table>

January:
- 13 – 17 Large Site Context, Program Relationships, Building Scale Parti
- 20 – 24 Large
- 27 – 31 Medium Design effects and Components

Design architecture as a syllabus:
- Conceive Potential Lessons List
- Conceive Potential Mechanics List

Large Enforce Lesson with Mechanics and Vice Versa to Yield Didactic Architectural Components
- Locate/Aggregate Components to Yield Space Making and (Transformable) Program Relationships

Sketch to Digital and Digital to Physical Production of Component Studies/Mockups at various Scales

February:
- 3 – 7 Establish and Develop Program Relationships
- 10 – 14 Situate ‘Building’ in Relation to Site Context and Community Scale Parti
- 17 – 21 Review One Production of Current Progress
- 24 – 28 Begin Process Anew with Feedback

March:
- 3 – 7 Focus on the Classroom Scale (Composition of Components)
- 10 – 14 (Spring Break) Post Analysis of Components
- 17 – 21 Focus on the Building Scale (Composition of Spaces)
- 24 – 28 Review Two Production of Current Progress

April:
- 31 – 4 Advance and Refine Design
- 7 – 4 Transition to Production
- 14 – 18 Production and Resolution
- 21 – 25 Final Production

April, 29 Last Day of Classes

Partial Final Production Expectations:

Extra Large:
Site Context Drawings

Large:
Site Model of Immediate Context (Urban fabric, Existing Amenities, Topography, ETC.)

Medium:
Architectural Drawings and Renderings (Plans, Sections, and Elevations), Large Scale Operable Building Model

Small:
Architectural Drawings, Schematic/Shop Drawings and Renderings of Component Mockups and Mechanism Studies

Extra Small:
Architectural Drawing, Schematic/Shop Drawings and Renderings of Building Details
Works Cited
Endnotes:

14. Montessori School of Syracuse, personal visit.

34. “Great Expectations: Syracuse City School District Strategic Plan 2012-2017.”

35. Ibid.

47. Ibid., 79.

48. Ibid., 85.

50. Mark K. Smith, “Kurt Lewin, groups, experiential learning and action research.”

51. Ibid.

54. Jean McNiff, “Action research for professional development: Concise Advice for new researchers.”

55. Ibid.

59. Don Clark, “Constructivism”.

64. Rita Kramer, Maria Montessori, 113-116.

65. Ibid., 115-121.

78. Ibid., 4.

79. Ibid.

81. Carlina Rinaldi, (1990, October), *Social Constructivism in Reggio Emilia, Italy*, Keynote address, annual conference of the Association of Constructivist Teachers, Northampton, MA, translated by Baji Rankin and Lella Gandini. (Carlina Rinaldi is currently the director of the Municipal Infant-Toddler Centers and Preschools of Reggio Emilia, Italy. She is also a professor at the University of Modena and Reggio in the faculty of Science and Early Education).

84. Tiziana Filippini, (1990), Introduction to the Reggio approach, In R. New (Chair), *The Hundred Languages of children: More contributions from Reggio Emilia, Italy*. Symposium at the annual conference of the National Association for the Education of Young Children, Washington D.C. (Tiziana Filippini has been working as a pedagogista for the Municipality of Reggio Emilia since 1978, and is a member of the Pedagogical Coordinating Team of the Municipal Infant-Toddler Centers and Preschools of Reggio Emilia, Italy).

95. Ibid.
96. Ibid., 21-22.
97. Ibid., 22.
98. Ibid., 23.
99. Ibid.
100. Ibid., 26.
101. Ibid.
105. Ibid., 30.
106. Ibid., 30-31.
107. Ibid., 34.
108. Ibid.
109. Ibid.
117. Ibid.

120. Bruce Coleman, Advanced Building Systems Professor, Syracuse University.

122. Bruce Coleman, Advanced Building Systems Professor, Syracuse University.

125. Ibid., 23.

126. Ibid., 230.

127. Ibid.

139. Ibid., 16-17.
140. Ibid., 18-19.
141. Ibid., 22-23.
142. McLeod, Saul, “Jean Piaget,” SimplyPsychoLOGY, Nov, 16, 2013,
http://www.simplypsychology.org/piaget.html
Figure Notes:

2-4. Created by the authors.

6-7. Created by authors.

8. From: William Harms, Experiencing Education: 100 Years of Learning at The University of Chicago Laboratory Schools (Chicago: The University of Chicago Laboratory Schools, 1996), iv.

13. Adapted from: John Dewey, The School and Society, 73.

16. Created by authors.

20. Created by author.

34. Diagram by the authors.

40. Adapted from Figure 61 by authors.

52. Created by authors.

54-58. Created by the authors.

60. Photo from: Hille R., “Hertzberger in Delft.”

62. Photo from: Godel, "Doctor Casino’s Flicker."

63. Photo from: Ibid.

65. Photo from: Hille R., “Hertzberger in Delft.”

69. Drawings by the authors.

71. Drawing by the authors.

72. Photos by the authors.

76. Drawing by the authors.

78. Photo from: Ida van Ziji, Gerrit Rietveld.

79. Photo from: Ibid.

80. Photo from: Ibid.

81. Photo from: Ibid.

82. Drawing by the authors.

84. Photo from: Ida van Zijl, *Gerrit Rietveld*.

85. Photo from: Ibid.

86. Photo from: Ibid.

87. Photo from: Ibid.

88. Drawings by the authors.

91. Drawing by the authors.

100. Philippe Duboy and Peter Noever, *The Other City: Carlo Scarpa: the architect’s working method as shown by the Brion cemetery in San Vito d’Alvitoe*, (Berlin: Ernst & Sohn, 1989), 68.

109-112. Created by authors.

124-125. Created by authors.

127. Created by authors.

129-130. Created by authors.

132. Diagram by the authors.

133. Rendering by the authors.

134-135. Created by the authors.

137. Diagram by the authors.

142–144. Diagrams by the authors.

147. Photo from “The Pink Tower and the Broad Stairs are Shown Here Together in an Extension Activity,” ookaboo: free pictures of everything on earth, Dec, 3, 2013, http://ookaboo.com/o/pictures/picture/21071590/The_Pink_Tower_and_the_Broad_Stairs_are_.

148. Diagrams by the authors.

149 – 160. Diagrams by the authors.

163. Wind data from: “Syracuse, NY, Hancock International Airport” Climate Consultant 2011 weather data.

164-170. Photos taken of site by authors.

171-172. Created by authors.

173. Photos from: Tyler Ferrusi and Alec Hembree from ARC 500 Furniture Design and Fabrication, Syracuse University course.

174. Drawings from: Tyler Ferrusi and Alec Hembree from ARC 500 Furniture Design and Fabrication, Syracuse University course.
Bibliography:

Montessori, Maria, Education for a New World, (Santa Barbara, CA: ABC-CLIO, 1989).

Filippini, Tiziana (1990), Introduction to the Reggio approach, In R. New (Chair), The Hundred Languages of children: More contributions from Reggio Emilia, Italy. Symposium at the annual conference of the National Association for the Education of Young Children, Washington D.C. (Tiziana Filippini has been working as a pedagogista for the Municipality of Reggio Emilia since 1978, and is a member of the Pedagogical Coordinating Team of the Municipal Infant-Toddler Centers and Preschools of Reggio Emilia, Italy).

Rinaldi, Carlina, (1990, October), *Social Constructivism in Reggio Emilia, Italy*, Keynote address, annual conference of the Association of Constructivist Teachers, Northampton, MA, translated by Baji Rankin and Lella Gandini. (Carlina Rinaldi is currently the director of the Municipal Infant-Toddler Centers and Preschools of Reggio Emilia, Italy. She is also a professor at the University of Modena and Reggio in the faculty of Science and Early Education).
Selected Annotated Bibliography:

Thorough resource of Reggio Emilia tenants and structure.

Primary insight into the conception of the Reggio Emilia Approach.

Critical analysis of the Theory of Multiple Intelligences.

Comprehensive collection of Herman Hertzberger’s architectural projects and social ideas.

Methodical account of Garritt Rietveld’s drawings, models, furniture, architecture, and life.

A deep architectural study of immersive learning spaces, a book geared towards Reggio Emilia pedagogists but also architects.

Dewey’s very short and readable volume of the philosophical and progressive underpinnings of his experiential learning theory.

Dewey’s most concise work, written very early in his philosophical career. Written as a series of ten-commandment-like mandates, it is the work that most clearly articulates his ideas.

A book of beautiful, full page images, with useful excerpts from interviews with the architect.

Within this volume is an entire section on the environment as a learning tool in the Reggio Emilia education, with quotes from Malaguzzi and other prominent theorists about the importance of architecture in the lives of Reggio schoolchildren.
Designing a school within a constructivist framework will generate an interactive learning environment. The design of a constructivist school enables children to continuously transform their spaces by interacting with a composition of interpretable and operable components. By allowing children to reinterpret the built environment in a multiplicity of ways, the construction of knowledge is facilitated through experimentation and experience.