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Collective transport in arrays of quantum dots

A. Alan Middleton and Ned S. Wingreen

NEC Research Institute, 4 Independence Way, Princeton, NJ 08540

(Received February 1, 2008)

Collective charge transport is studied in one- and two-dimensional arrays of small

normal-metal dots separated by tunnel barriers. At temperatures well below the

charging energy of a dot, disorder leads to a threshold for conduction which grows

linearly with the size of the array. For short-ranged interactions, one of the correlation

length exponents near threshold is found from a novel argument based on interface

growth. The dynamical exponent for the current above threshold is also predicted

analytically, and the requirements for its experimental observation are described.
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Systems exemplifying collective transport in quenched disorder include sliding charge-

density waves (CDW’s) [1,2], fluids in disordered media [3], and type-II superconductors

[4]. For these dynamical systems, there does not yet exist a classification whereby the long-

wavelength behavior can be predicted from the characteristics of the microscopic degrees of

freedom. To study this question of universality experimentally requires systems where the

microscopic degrees of freedom, the range of interactions, and the nature of the disorder

are well understood. Here, we propose as a model system an array of small-capacitance

normal-metal dots.

In this letter we examine the low-temperature, nonlinear charge transport in such an

array. The dots are treated as capacitively coupled conductors with charges allowed to

tunnel between neighboring dots. In contrast with previous work [5], we explicitly include

the effects of random offset charges on each dot and investigate the limit where the number of

dots becomes large. We find that the onset of conduction occurs at a voltage VT proportional

to the linear array size. One of the correlation lengths that diverges near this threshold

is found from a general argument based on interface growth, while another is found by

focusing on “slow points” which control the current. These correlation lengths determine

the branching of current paths in the array and hence the current near onset. In particular,

we predict that the current through linear and square arrays behaves as

I ∼ (V/VT − 1)ζ (1)

with ζ = 1, 5/3 in dimensions d = 1, 2, respectively.

The array we study is depicted in Fig. 1. For a tunneling resistance R between dots

large compared to the quantum resistance h/e2, the state of the array is fully described by

the number of electrons in each dot. The energy is then all electrostatic and is determined

by a matrix of capacitances Cij. We assume a constant capacitance C between neighboring

dots and between the leads and adjacent dots, and a capacitance Cg between each dot

and the back-gate which underlies the entire array. The leads and back-gate are taken to

have infinite self-capacitance. We concentrate on the Coulomb-blockade regime, where the
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thermal energy is much smaller than the charging energies, i.e., kBT ≪ e2/ [2 max(C, Cg)]

(for 1µm dots, this energy is ∼ 1meV [6]). We measure distances in units of the dot spacing.

Given the charge Qi on each dot, the electrostatic energy is [5]

E =
∑

dots i,j

(Qi + qi)C
−1
ij (Qj + qj) + VLQL + VRQR +

∑

dots i

(ViL + ViR − Vg)Qi, (2)

where QL,R are the charges on the leads, at voltages VL,R, and Vg is the back-gate voltage.

Disorder is included through the offset charges qi which represent the effective charge on each

dot due to nearby charged impurities. Large fluctuations in disorder will be compensated

by an integral number of mobile charges, so that 0 ≤ qi < e. The voltage on dot i due to

the left(right) lead is given by ViL(R) = C−1
iL(R)VL(R). In general, the elements of the inverse

capacitance matrix fall off exponentially with a screening length λ that increases with C/Cg

(for C >> Cg, λ ≈ (C/Cg)
1/2).

At low temperatures, a charge may tunnel between dots only if such an event lowers the

electrostatic energy of the array. The kinetic energy gained by the tunneling electron is as-

sumed to be dissipated [7]. The tunneling rate from one configuration S = (..., Qi, ..., Qj , ...)

to another configuration S ′ = (..., Qi − 1, ..., Qj + 1, ...), where i and j are neighboring dots

or a dot and a neighboring lead is given by

νS→S′ = (e2R)−1 θ (E(S) − E(S ′)) [E(S) − E(S ′)] . (3)

This rate grows linearly with energy gain since the number of electrons available to tunnel

is proportional to the relative shift of the Fermi surfaces in the dots. For arrays of a few

junctions, numerical results on this model [5] compare well with experiment [6].

For large arrays, we find a second-order transition, with associated critical phenomena,

which separates a static, non-conducting state from a dynamic, conducting state. The

control parameter is the voltage difference between the leads. At low voltage differences,

the array always relaxes to a static configuration, while at high voltage differences, charges

traverse the array from one lead to the other.

An important question to ask is whether the conduction transition is hysteretic for a

given realization of disorder. In one-dimensional systems, the current is a unique function
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of the applied voltages, regardless of the magnitude of λ [8]. In two-dimensional arrays at

zero temperature, the current can depend on the history of the applied voltages. To within

our numerical accuracy, however, the current is history independent in typical samples. It

can furthermore be shown that the current is entirely independent of history in the limit of

short screening lengths, C/Cg → 0, to which we shall devote most of our attention.

We have numerically determined the dependence of the threshold voltage for conduction,

VT (N) = VL −VR, on the ratio C/Cg and on the linear system size N (for fixed gate voltage

Vg = 0). We find that the threshold voltage is proportional to N ,

lim
N→∞

VT (N)Cg/Ne = α(C/Cg), (4)

where the overbar represents an average over disorder.

The function α(C/Cg) for one-dimensional arrays is plotted in Fig 1. In the limit C/Cg →

0, the voltage on a dot is just (Qi + qi)/Cg, as the capacitive coupling between dots is

negligible. The schematic in Fig. 2(a) shows that in order to carry a current in this limit,

the voltage difference across the array must be large enough to overcome ≈ N/2 upward

steps in the random potential. This observation gives α(C/Cg → 0) = 1/2. In the limit

of large C/Cg (large λ), VT can be estimated by balancing the “force” on the charges due

to a charge density gradient against the random potential gradient [9]. It is necessary

to recognize that there is a stability limit for the dot-to-dot potential difference: at higher

potential differences, charges will tunnel, reducing the potential across the tunneling barrier.

Estimating the magnitude of the pinning forces to be given by this stability limit, we find

[10] a maximum static density gradient of ∼ e/λ2, that is, a density change of O(1) charge

per screening length is allowed in regions separated by λ. This gives α ∼ (C/Cg)
−1 at large

λ. Numerically, we find in d = 1 that (C/Cg)α → 0.10(1), as C/Cg → ∞.

We now discuss the approach to the conduction threshold in two dimensions, in order

to elucidate the critical behavior of the correlation lengths and current. We concentrate on

the limit C/Cg → 0, that is, λ small, in order to maximize the number of effective degrees

of freedom and to eliminate hysteresis. Taking VR to be fixed and raising VL, charge moves
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from the left lead onto the array. The condition for a charge to overcome the Coulomb

barrier and tunnel from site i to neighboring site j is

Vi > Vj + e/Cg. (5)

At a given VL, this advance of charge is halted when Vi ≤ Vj + e/Cg everywhere. Though

the tunneling is stochastic, the static configuration at any VL < VT is entirely determined by

the disorder realization. The distance to which charge penetrates therefore defines a unique

interface (given Qi = 0 initially). When VL is raised by e/Cg, charge is added to each point

on the interface and therefore the interface must advance by at least one lattice spacing. In

addition, the interface may advance further at some points if the local disorder is favorable.

The motion of this interface is depicted in Fig. 2(b); conduction occurs when the interface

reaches the right lead. Numerical calculations of this threshold give α(C/Cg → 0) = 0.338(1)

in d = 2.

The dynamics of the Coulomb-blockade condition Eq. (5) make the interface “motion”

with increasing VL similar to the stochastic growth of interfaces in models without quenched

spatial disorder, such as the one due to Eden [11]. The results on the Kardar-Parisi-Zhang

(KPZ) equation for a (d − 1)-dimensional interface [12] subject to short-range correlated

noise are therefore useful in understanding the behavior of a d-dimensional array of dots.

This is to be contrasted with the usual motion of interfaces at small velocities through

random media, where the interface can be pinned for some time at one point, resulting in

long time correlations and exponents distinct from those of the KPZ equation [13].

In the case d = 2, the results for KPZ interfaces imply that the width of the interface

must scale as V
1/3
L [12]. Furthermore, the fluctuations in the position of maximum advance

of the interface behave as ∼ V
1/3
L (ln VL)1/2. The rms fluctuations ∆VT in VT and the mean

threshold voltages VT therefore behave as

∆VT /VT ∼ N−2/3(ln N)1/2, (6)

VT (N)Cg/eN − α ∼ N−2/3(ln N)1/2, (7)
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for an N × N array [14] (for d = 1, ∆VT /VT ∼ N−1/2). The fluctuations in the threshold

voltage as a function of size may be used to define a finite-size scaling exponent νT via

N ∼ (∆VT /VT )−νT . This length, besides giving the fluctuations in VT , determines the finite

size crossover in quantities such as the polarization of the array [2]. From Eq. (6), we find

νT = 3/2. Numerical simulations on systems up to size N = 2560 are fit very well by Eq.

(6), as shown in the inset in Fig. 2(a), and by Eq. (7).

The current in the one-dimensional model with only on-site interactions can be under-

stood in detail. For voltages much greater than threshold, v ≡ (VL − VT )/VT ≫ 1, the

charge gradient across each junction is much greater than one. By Eq. (3), the current is

then approximately

I ≈ (e/2RCg)v. (8)

In contrast, near threshold, the discreteness of the charges and the disorder become impor-

tant. The excess charge gradient above the threshold configuration is composed of steps

that occur at well separated “slow points”, located where the potential drop between dots

in the threshold configuration is small compared to e/Cg. It can be shown [10] that the cur-

rent is given by the fastest “slow point”; the tunneling rate across this point is, on average,

(V −VT )/eRN . Interestingly, near threshold this also gives Eq. (8). We therefore find ζ = 1

for Eq. (1) in d = 1. As shown in Fig. 3(a), Eq. (8) is consistent with our numerical results

near and far from threshold.

The pattern of current flow in a typical two-dimensional array is shown in Fig. 3(b). At

voltages just above threshold, VL −VT << e/Cg, the current is in general carried on a single

path, with little or no branching. This path is exactly the one with the minimal number of

upward steps in the potential between the two leads. Previous work [12] shows that such

paths have transverse fluctuations ∼ n2/3, where n is the distance from the left lead; this

is consistent with our numerical results. Increasing the voltage to a few times e/Cg above

threshold opens multiple channels which branch and reconnect, as shown in Fig. 3(b). Note

that at voltages VL exceeding threshold by O(eN1/3(ln N)1/2/Cg), current can in principle
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flow anywhere in the array, as the charge invasion interface contacts the right lead at each

point. However, near threshold, all but a small fraction of the current is confined to a few

major current-carrying paths. The selection of these paths out of all possible paths results

from a characteristic length for branching, as we now discuss.

Any current-carrying channel between the two leads must have (VL −VT )Cg excess steps

in the charge density relative to the threshold configuration. This gives a correlation length

ξ‖ = eN/(VL − VT )Cg which separates the steps in the excess charge, as in d = 1. This

length determines the separation between branch points along the channels [10]. The chan-

nels therefore wander transversely a distance ξ
2/3
‖ between branch points, giving a channel

separation of ξ⊥ ∼ v−2/3. The current through each channel behaves as ∼ (e/2RCg)v, since

each segment between branch points is one-dimensional. The current through the array is

then given by

I ∼ (e/2RCg)vN/ξ⊥ ∼ (e/2RCg)Nv5/3, (9)

resulting in ζ(d = 2) = 5/3.

Our numerical results for the transport in two-dimensional systems are shown in Fig.

3(b). The current-voltage relationship is approximately fit by I/N ∼ v2.0, over the range

10−2 < v < 10−1, but the slope on a log-log plot does not converge in the range we have

studied numerically. To observe the true exponent requires arrays larger than 4002, either

numerical or experimental.

In conclusion, we have determined the threshold for conduction in arrays of small normal-

metal dots with disorder. By examining correlation lengths that describe the separation of

parallel current paths and the distance between dynamically important “slow points” we

have determined the transport behavior near the threshold. The critical exponents for the

current and correlation lengths which we have derived using the KPZ interface model are

distinct from those found for elastic media [1] and fluid flow [3,15]. These differences are

clearly related to the novel features of this system, namely the discreteness of the carriers

and (quantum) stochastic flow, which result in (a) an always advancing charge interface
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below threshold and (b) the non-local selection of current paths above threshold.

We wish to thank Paul McEuen for encouraging our interest in arrays, and Chao Tang

for many valuable discussions.
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FIGURES

FIG. 1. The threshold voltage per dot, VT /N , in units of e/Cg, for conduction through

a one-dimensional array of normal-metal dots as a function of C/Cg. The dashed lines show

analytical predictions. A two-dimensional array of dots is shown in the inset. The indicated

capacitance between dots is C, while the capacitance between each dot and the back-gate (the

dashed rectangle) is Cg. At T = 0, charges may only tunnel between neighboring dots if this

lowers the total electrostatic energy. The voltages applied to the left lead, the right lead, and the

gate are indicated as VL, VR, and VG, respectively.

FIG. 2. (a) Schematic of dot voltages for a one-dimensional array below the threshold for

conduction, in the limit of short screening length λ. Each square indicates an increase in the

on-site voltage by e/Cg due to an added charge; the relative offset in the voltages is caused by

quenched disorder. If the left-lead voltage VL is further raised by e/Cg, charges will tunnel onto the

array until stopped by the next upward step, as indicated by the dashed squares. The inset shows

the calculated sample-to-sample fluctuation of threshold voltages, VT , in one and two dimensions

as a function of linear system size, N , with fits described in the text ( Eq. (6)). (b) Contours

of constant charge occupation in a 1602 array at the threshold VT (contour spacing is 5 charges).

Successive contours coincide with the distance to which charge flows for various voltages below

threshold, VL < VT . Conduction occurs at the voltage where the charge first reaches the right lead.

FIG. 3. (a) Plot of current-voltage relationship near threshold for one- and two-dimensional

arrays of various sizes. The numbers in parentheses give the number of disorder realizations. For

one-dimensional arrays, the current both near and far from threshold is well fit by Eq. (8). The data

for the d = 2 arrays are approximately fit by I ∼ (V −VT )2.0 at the lowest currents shown, though

the local slope on the log-log plot has not converged. (b) Current paths in a two-dimensional array

(of size 1602) at two voltages near threshold. Very near threshold, the current flows in a single

narrow channel (dark line). Multiple, branching channels are shown for a voltage 3e/Cg above

threshold (light lines).
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Fig. 1 -- Middleton and Wingreen, "Collective transport in arrays of quantum
dots"
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(b)

Fig. 2 -- Middleton and Wingreen, "Collective transport in arrays of quantum
dots"
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(a)

(b)

Fig. 3 -- Middleton and WIngreen, "Collective transport in arrays of quantum
dots"
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