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Abstract 

The thesis presented herein is a compilation of two different research projects I have been 

fortunate enough to work on during my graduate career at Syracuse University. The first and 

most complete project is a data analysis study using linear discriminant analysis to differentiate 

between sources of groundwater salinity in water samples from shallow groundwater wells. It is 

a model validation study that builds on previous work spearheaded by the Earth Sciences 

Department at Syracuse University. It represents some of my best work performed at Syracuse 

and should be considered the bulk of my thesis submission. Due to successful publication of that 

research early into my graduate career I had the opportunity to work on another project. The 

Technical Supplement is a review of the work I have done in collaboration with The Nature 

Conservancy. The main project goal was to study the hydrologic effects that beaver dam 

analogues may have on an incised stream system and to understand the utility of drone-derived 

imagery for hydrologic modeling. During my time working on this project, a lot was learned 

about best practices and avenues of future research. To make sure that this knowledge is not lost, 

it is recorded here. 
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Main Text:  

Discriminant analysis as a decision-making tool for geochemically fingerprinting sources of 

groundwater salinity 
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Abstract 

Concern over contamination of groundwater resources in areas impacted by anthropogenic 

activities has led to an increasing number of baseline groundwater quality surveys intended to 

provide context for interpreting water quality data. Flexible screening tools that can parse 

through these large, regional datasets to identify spatial or temporal changes in water quality are 

becoming more important to groundwater scientists. One such tool, developed from previous 

work by the authors, makes use of linear discriminant analysis (LDA) to identify the most 

probable source of chloride salinity in groundwater samples based on their geochemical 

fingerprints. Here, we applied the model to a dataset of shallow groundwater with known sources 

of contamination compiled from two studies of groundwater quality in Illinois: Panno et al. 

(2005) and Hwang et al. (2015). By predicting the source of salinity in groundwater samples for 

which the sources of contamination are known, we validated model prediction-accuracy. Results 

show high classification accuracy for groundwater samples impacted by basin brines (e.g. deep 

saline groundwater) and road salt (>80%), with diminishing success for those impacted by 

organic sources of chloride, such as septic effluent and animal waste. Posterior probabilities, a 

statistic inherent to LDA, provide a proxy for prediction confidence that enables the model to be 

used for assessment and accountability measures, such as identifying parties responsible for 

contamination. LDA is complementary to fingerprinting using halogen ratios (e.g. Cl/Br) 

because it implicitly relies on halogen ratios for classification decisions while providing a 

clearer, more quantitative classification of contamination sources. Our model is ideal for regional 

assessment or initial screening of salinity sources in groundwater because it makes use of 

commonly measured solute concentrations in publicly available water quality databases. 
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1. Introduction 

Identifying sources of chloride contamination in groundwater is difficult because multiple 

chloride sources may exist in any one area. Anthropogenic sources of chloride present a growing 

threat with increasing urbanization leading to greater application of road salt along with more 

concentrated sources of effluent from municipal wastewater and septic tanks (Kelly et al. 2012; 

Panno et al. 2006; Hwang et al. 2015; Kelly and Matos 2014, Thunqvist 2004). Water softening, 

detergents and bleach, as well as human and animal waste cause wastewater and septic effluent 

to be saline. Chloride also occurs naturally in the environment by way of basin brines (e.g. deep 

saline groundwater) that mix with valley aquifers, soil/rock-water interactions, and atmospheric 

deposition (Panno et al. 2005). High-volume hydraulic fracturing, used to extract natural gas 

trapped in low permeability shale layers, poses a more recent and contentious threat to 

groundwater quality. Brine contamination from hydraulic fracturing can originate from either 

wastewater spills during the transport and disposal of saline flowback water or the migration of 

brines stored in hydraulically fractured shale units to shallow aquifers (Vidic et al. 2013; Lauer et 

al. 2016). In addition, high density animal feeding operations can lead to elevated chloride 

concentrations in groundwater due to the accumulation of animal waste and subsequent seepage 

into the groundwater system (Becker et al. 2001, Panno et al. 2005). Other potential sources of 

contamination include agricultural runoff, mine drainage, salt-water intrusion, and industrial 

discharge (Kim et al. 2015, Panno et al. 2005). 

 Halite is an extremely soluble mineral. One of its constituent ions, chloride, behaves 

conservatively in the environment making it a useful tracer of contamination in waterways 

(Whittemore 1995; Panno et al. 2006). While chloride alone is not particularly toxic to humans at 

environmental concentrations, chloride contamination can lead to chronic toxicity for aquatic 
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biota and vegetation (Wilcox 1986, World Health Organization 2004; Corsi et al. 2010). 

Additionally, higher chloride in aquifers that serve as drinking water sources can lead to higher 

treatment costs or even aquifer abandonment. Identification of the source of chloride 

contamination is important for multiple reasons. Primarily, source identification is the first step 

in any future attempts at remediation. But also from a policy perspective, improved methods of 

contaminant identification provide a way to either enforce accountability or develop contaminant 

prevention measures.  

 Progress has been made in fingerprinting diffuse sources of salinity. Previous work has 

often relied on chemical characterization and comparison of contaminated waters with known 

contaminant sources (Panno et al. 2006; Whittemore 1995). Comparisons are made using either 

relatively routine water quality measurements (e.g. major ions, ionic ratios) or specialized 

chemical/biological measurements (e.g. isotopic ratios, trace elements, bacteria populations) 

(Chapman et al. 2012; Warner et al. 2012; Alawattegama et al. 2015; Lauer et al. 2016; 

DeSimone et al. 2009, Tran et al. 2015). Specialized measurements may provide definitive 

assessment of contamination, but they are rarely included in routine water quality sampling and 

thus present a limited opportunity for regional assessment using existing or routinely collected 

data. The abundance of standard groundwater solute concentrations provides an alternative, 

relatively inexpensive, and transferable methodology for assessing groundwater contamination.  

 Previous studies on identifying sources of chloride contamination have relied heavily 

on the chloride:bromide (Cl:Br) ratio of water samples (Whittemore 1995; Davis et al. 1998; 

Panno et al. 2006; Hogan et al. 2007, Mullaney et al. 2009; Katz et al. 2011; Johnson et al. 2015; 

Reilly et al. 2015, Hildenbrand et al. 2017). These two halides are conservative ions with soluble 

corresponding salts. The wide range of distinct values for Cl:Br in waters affected by different 
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sources of salinity make it a promising way to differentiate among contaminant sources 

(Whittemore 1995; Davis et al. 1998; Panno et al. 2006). Other ionic ratios have also been used 

with varying effectiveness. For instance, low measurements of SO4:Cl ratios have been proposed 

as a way to differentiate oil/gas brines from other basin brine sources for waters with similar 

Cl:Br ratios (Whittemore 1995). Iodine, although not routinely measured, also has been proposed 

as a way to trace waters affected by basin brines due to its tendency to accumulate in marine 

organic matter (Lu et al. 2015). While theoretically effective, practical use of ionic ratios is 

limited by a reliance on subjective judgments of how to separate groundwater populations 

affected by different contaminants. While bivariate plots do provide effective means of 

visualizing certain trends (e.g. Cl:Br vs. Cl), the close coupling of different contaminant groups 

can lead to contradictory or equivocal determinations of salinity sources. An ideal fingerprinting 

tool will capture the distinct chemical signature of contaminated groundwater using readily 

available existing datasets and allow for quantifiable assessment of the accuracy of those 

predictions. 

 In previous studies, we applied a geochemical fingerprinting model to determine the 

most probable sources of salinity in groundwater samples with elevated chloride concentrations 

(Lautz et al. 2014, Gutchess et al. 2016). Our approach was to develop a discriminant analysis 

model that leveraged widely available information on solute concentrations in groundwater and 

contaminant sources. The machine learning classifier functioned through a process of 

dimensionality reduction, creating linear combinations of different solute concentrations that 

optimize separation of groundwater samples impacted by different contaminant sources. These 

separations, referred to as discriminants, became the basis for classifying high salinity 

groundwater samples as affected by a specific contaminant source (basin brines, road salt, septic 
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effluent or animal waste). In that prior work, we were able to corroborate model classifications 

using water quality indicators that were independent of the geochemical fingerprinting model. 

Groundwater samples classified as impacted by basin brines had statistically significant elevated 

methane concentrations relative to other groups. Similarly, we found that groundwater classified 

as impacted by septic effluent tended to have elevated levels of nitrate. Despite these successes, a 

more direct method for validating the model was needed. Although methane and nitrate 

concentrations provide indirect confirmation of model classification of salinity sources, 

groundwater samples classified in Lautz et al. (2014) did not have known sources of 

contamination, so there was no definitive way to validate the accuracy of model output for that 

dataset. 

 Our primary goals for this study were to validate the accuracy of the model with an 

alternative dataset and to demonstrate the model transferability to basins outside of the original 

Marcellus region. Panno et al. (2005) contains a comprehensive geochemical database on the 

chemistry of contaminant sources as well as groundwater samples from Illinois with known 

sources of contamination. By applying a recalibrated version of the Lautz et al. (2014) model to 

predict sources of salinity in groundwater from this new dataset, we have been able to 

demonstrate the accuracy of the model by comparing model classifications with known salinity 

sources in contaminated samples. Our results and the chemical framework that comprises them 

also indicate the strong potential for transferring our model to other datasets of contaminated 

groundwater affected by similar contaminant sources, particularly road salt and basin brines.  

 

2. Methods 

2.1 Model Framework 
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A brief survey of the model design will be given. For a more detailed description of the model 

please reference Lautz et al. (2014). 

 

The model developed for this study is generated using the framework presented in Lautz et al. 

(2014), which is intended to be adaptable to different geographic regions, sources of 

contamination and measured solutes. The framework described here is transferable to other 

studies with minimal changes. Development of the geochemical fingerprinting model consists of 

two complementary algorithms: the creation of a synthetic high salinity training dataset and 

implementation of linear discriminant analysis (LDA). The synthetic high salinity dataset 

simulates the expected distribution of water quality data in groundwater impacted by specific 

sources of contamination. Water quality data in this case includes concentrations of Cl, SO4, Br, 

Na, K, Mg, Ca, Ba, and Sr, but the model is flexible to alternative solute choices. Sources of 

contamination considered in this study are road salt runoff, basin brines, and organic waste. 

Organic waste is defined as septic wastewater effluent or animal waste, which have similar 

geochemical characteristics.  

 Creation of the training dataset is based on a two component, conservative mixing 

model. One component of the mixing model is low salinity (i.e. pristine or uncontaminated) 

groundwater, whose geochemistry is based on groundwater samples that have chloride 

concentrations <20 mg/L. Low salinity is meant to be groundwater only affected by atmospheric 

deposition (Panno et al. 2006). Field observations of low salinity groundwater are provided as 

model input data by the user. Using the mean and covariance matrix of the observed log-

transformed solute concentrations for low salinity groundwater, a larger (n = 3000) vector of 

low-salinity groundwater information are generated using a multivariate lognormal random 
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number generator. The second component of the mixing model is the salinity source, 

representing a random sample from one of a collection of chloride contaminant sources (in this 

case: basin brines, road salt, and organic waste). Observations of contaminant source chemistry 

are provided as input data by the user. Then, using the mean and covariance matrix of the 

observed log-transformed solute concentrations for the various end-members, larger vectors 

(n=3000) of contaminant end-members are generated using a multivariate lognormal random 

number generator. 

 From these two populations the chemical composition of synthetic high salinity 

groundwater samples (GWhigh,i,j) were computed as: 

 

  𝐺𝑊ℎ𝑖𝑔ℎ,𝑖 ,𝑗 = 𝑛𝑖 ,𝑗(𝑠𝑜𝑢𝑟𝑐𝑒𝑖,𝑗) + (1 − 𝑛𝑖,𝑗)𝐺𝑊𝑙𝑜𝑤 ,𝑖   (1) 

 

where ni,j is the percent of end-member j in sample i, sourcei,j is a vector of the solute 

concentrations in a randomly selected sample i of the end-member j, and GWlow,i is a vector of 

the solute concentrations in a randomly selected low salinity groundwater sample i. Sample 

selection was random, with replacement. Mixing percentages ni,j were randomly varied following 

a uniform distribution and were capped at 20% since well water is unlikely to be comprised of 

greater than 20% septic effluent or animal waste (Lautz et al. 2014). A synthetic high salinity 

dataset was created for each separate end member using this method. Since this is a 2-component 

mixing model, multiple contamination sources were not considered. While real aquifers may 

consist of multiple contamination sources, model output (e.g. posterior probabilities), elaborated 

on later, can help assess whether this is a relevant concern for specific samples.  
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 The synthetic high salinity datasets were combined into one complete dataset for model 

training. LDA determines the optimal combinations of solute concentrations that most effectively 

separate the synthetic high salinity data by source of contamination (Figure 1). Output from LDA 

was a set of k - 1 linear discriminant classifiers, where k is the number of classification groups 

(in this case, k = 3 contaminant sources). Backward feature selection sequentially removed 

solutes that decreased the classification accuracy of the model on the training dataset. 10-fold 

cross validation was used to assess model accuracy. Following model training, discriminant 

scores were computed for the observed samples with unknown sources of salinity, using the 

discriminant classifiers trained on the synthetic data. The discriminant scores were used to 

classify the observed high salinity dataset by the most probable source of salinity (Figure 1). 

Prior probabilities of each contaminated groundwater population, a parameter required to classify 

samples, were set equal. Although prior probabilities do influence LDA classifications, they are 

generally unknowable beforehand. However, if information is available to inform prior 

probability values, they can easily be adjusted in the model. 
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Figure 1: Sequence of steps used to identify the most likely source of salinity in an unknown 

groundwater sample using the LDA model. In this case, the unknown would be classified as 
impacted by road salt. *Solute concentrations are log-transformed and normalized before LDA 

scores are calculated. 

 

2.2 Validation Dataset  

The primary source of validation data was a geochemical database of water quality constituents 

found in Panno et al. (2005). An extensive collection of solute and groundwater quality 

information is found within this database for a variety of water sources throughout Illinois. 

Descriptions of sample sources and collection techniques are provided, making delineation of 

contaminant source samples and contaminated groundwater samples relatively clear and 

straightforward. A second smaller dataset of groundwater quality in Illinois was taken from a 

more recent publication by a subset of the same researchers, Hwang et al. (2015). Redundancies 

between the two datasets were removed. A complete listing of validation data can be found in 

Table S3.  
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 In some cases, the latter paper had samples without a clearly defined source of 

contamination. These samples were generically labeled as either Rural or Urban. The author's 

analysis of Urban samples found a strong relationship between urban development and excessive 

application of deicing agents. Therefore, we concluded that those samples labeled as Urban 

could be considered contaminated by road salt. Rural samples were removed, except for ones 

with low salinity, because the source of high salinity in rural samples was ambiguous. 

 One of the most important considerations in using the new datasets for model 

development and validation is the designation of a given water sample as a source of 

contamination (input data for the mixing model) versus affected by contamination (validation 

data). Generally, distinguishing these sets is straightforward. Shallow groundwater samples can 

almost always be considered as observed groundwater and used in the validation dataset. Known 

samples of animal leachates, concentrated saline road salt solutions and septic effluent can be 

considered contamination sources. Similarly, produced water from an oil/gas well or a sample 

defined as formation water/basin brine would be designated as a contaminant source. However, 

some samples fall into a grey area between source of contamination and affected by 

contamination. 

 This concern was particularly relevant for those samples contaminated by basin brines 

in the Panno et al. (2005) database. For instance, one sample collected from a residential well 

had a chloride concentration of 17,000 ppm, a clear example of a groundwater sample that had 

gone from being "affected by contamination" to being more indicative of a "source of 

contamination". This sample was removed from the validation dataset because classifying it as 

affected by basin brines is unnecessary. Besides this residential well, groundwater samples 

contaminated with basin brines were only used if they were clearly defined as from a monitoring 
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or residential well. For clear examples of what samples were chosen as contaminants versus 

contaminated, please reference the Supporting Information. 

 

2.3 Model Validation 

The flexibility of our model allows for different numbers and types of end member 

compositions. The model was originally structured this way to maintain transferability among 

datasets having different measured water quality constituents, or in areas having different 

sources of contamination. For instance, while saltwater intrusion would be an important 

contaminant source to consider for coastal aquifer systems, this source can be neglected in 

Illinois. Here, observed groundwater data points were classified using three primary sources of 

contamination: basin brines, road salt, and organic waste. The organic waste dataset contains 

groundwater samples contaminated by private septic tanks as well as samples contaminated by 

animal waste leachate; for a complete discussion of this combination, please reference the 

Supporting Information. Generally, these three contaminant sources are some of the most 

common forms of shallow groundwater contamination and can be found in almost any 

geographic area within the United States and other densely populated regions (Panno et al. 2005; 

Mullaney et al. 2009; DeSimone et al. 2009). 

 While multiple trials with different combinations of solutes and end-members were 

explored, the model presented here consisted of the following solutes: Na, Cl, Br, K, Mg, Ca, Ba, 

Sr, SO4. Although SO4 may be significantly more reactive than the other solutes, it was included 

due to the abundance of SO4 concentration measurements in groundwater quality data and its 

potential to differentiate animal waste from other contaminant sources (Whittemore 1995; Reilly 

et al. 2015). Additionally, linkages between high sulfate concentrations and basin brine 
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contamination have been observed in aquifers overlying geologic units actively involved in 

unconventional oil and gas extractions (Hildenbrand et al. 2017).  Limited availability of 

nitrogen species in end-member datasets as well as their non-conservative nature in the 

environment prevented their use in the mixing model.  

 

3. Results & Discussion 

3.1 Classification Accuracy 

Assessment of the accuracy of our geochemical fingerprinting model was done by comparing the 

model predictions of salinity sources with the known sources of contamination provided with the 

validation dataset. We know of few, if any, geochemical fingerprinting models that have been 

tested after their initial development to see how well they perform on independent, validation 

data. Confusion matrices for both the synthetic (i.e. training) and validation data are shown in 

Tables 1 and 2, respectively. The confusion matrix for the synthetic data reflects classification 

accuracy for the model training data. The training dataset is used to develop the model classifiers 

and, as a result, is not a wholly independent check of prediction-accuracy, although 10-fold 

cross-validation was used to develop the confusion matrix. In contrast, the confusion matrix for 

the validation data reflects classifications independent of data used in model development.  

 The diagonals of the matrices represent accurately classified samples for each 

contaminant source. The values populating the remainder of the table indicate which 

contaminant sources were commonly "confused" for one another. For both the synthetic and 

validation data matrices, basin brine had the highest classification accuracy with diminishing 

accuracy for road salt and organic waste.  
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Synthetic Training Data 

Known Group Predicted Group 

 basin brine road salt organic waste 

basin brine 96.2 (2840) 1.1 (32) 2.7 (79) 

road salt 5.1 (144) 85.7 (2434) 9.3 (263) 

organic waste 1.8 (28) 6.1 (95) 92.1 (1442) 

Table 1: Confusion matrix showing model classification accuracy for the synthetic training data. 
Numbers outside of parentheses are the percentage of samples classified correctly of the total 

samples contaminated by a single source (designated by the first column). Numbers within 
parentheses indicate total number of samples in each respective cell. Bold numbers along 

diagonals emphasize correct classifications. The synthetic data include 2951 basin brine, 2841 
road salt, and 1565 organic waste contaminated samples. The synthetic-groundwater dataset 
size varies by contaminant due to the capped mixing percentage. 

 

 

Validation Data 

Known Group Predicted Group 

 basin brine road salt organic waste 

basin brine 100 (7) - - 

road salt 0 88.2 (15) 11.8 (2) 

organic waste 35.3 (6) 11.8 (2) 52.9 (9) 

Table 2: Confusion matrix showing model classification accuracy for the validation data. 
Numbers outside of parentheses are the percentage of samples classified correctly of the total 

samples contaminated by a single source (designated by the first column). Numbers within 
parentheses indicate total number of samples in each respective cell. Bold numbers along 
diagonals emphasize correct classifications. The validation data include 7 basin brine, 17 road 

salt, and 17 organic waste contaminated samples.  

 

 All 7 samples known to be contaminated by basin brine were classified correctly, with 

a similarly high (96.2%) classification accuracy for the synthetic training data. The relatively 

high classification accuracy of basin brine samples illustrates that basin brine has a distinct 

chemical signature that LDA is able to distinguish from other contaminant sources. Road salt 

samples also had very high classification accuracy for the validation data with only 2 

misclassifications out of a total of 17 samples. Samples contaminated by organic waste appear 
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relatively distinct from those contaminated by road salt or formation water, with a 92.1% 

classification accuracy for the organic waste training data. But, for the validation data, 

classification accuracy for samples contaminated by organic waste is the lowest of the three end-

members.  

 While there were no false negative basin brine classifications for the model, there were 

six false positive basin brine classifications. That is, six samples not contaminated by basin 

brines were classified as such. This has important relevance to any kind of accountability 

measures. While groundwater contaminated by basin brines is unlikely to be misclassified, there 

is a chance that it will be misidentified. There is potential to differentiate false positives from 

true positives by looking at additional chemical parameters. For instance, all of the six false 

positives were actually contaminated by organic waste. On average, these samples all had 

significantly higher total nitrogen concentration (58.5 ppm) than the true basin brine samples 

(2.4 ppm) (Fig. S1). But, nitrogen concentrations are not universally high in misidentified 

samples, showing such information does not provide a definitive test for false positives. 

 If, when using this model, the issue of false positives is raised, group prior probabilities 

can be adjusted to lower the likelihood of any given sample being classified as basin brine. Prior 

probabilities represent the probability that a given sample, without any chemical information, 

will fall into a given class. Lowering the prior probability of basin brine is equivalent to lowering 

the likelihood that there is basin brine contamination in the study area. The result is a model less 

likely to classify an unknown as contaminated by basin brine. In the case of our model, lowering 

the prior probability of basin brines to 10% reduced the number of false positives for basin brine 

from 6 to 4. Further, lowering the prior probability to 4% reduced that to only 2 false positives. 

But, both these cases resulted in a groundwater sample actually contaminated by basin brine 
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getting misclassified as road salt (a false negative). Although we can test the effect of adjusting 

prior probabilities for our validation dataset, it is unlikely that information on prior probabilities 

would be available in other studies. While modifying prior probabilities slightly improved model 

performance in this case, prior probabilities should not be adjusted without strong justification. 

 Consideration of model-independent parameters, such as total nitrogen concentrations, 

or the model parameters specific to LDA, like prior probabilities, can be used to compare 

alternate model structures and view results from many different sides. However, whenever 

testing a dataset under different parameter combinations, reporting both manipulated- and 

default-parameter results is imperative for fair and transparent analysis. Additionally, LDA has 

other built-in metrics for examining the validity of a given classification. These will be explored 

in the following sections. 

 

3.2 Posterior Probabilities 

A limitation of many geochemical fingerprinting tools is the inability to quantify the level of 

confidence in a given prediction of a contaminant source. This limitation arises from the fact that 

models developed using, for example, bivariate plots of elements and elemental ratios (e.g. Cl:Br 

vs Cl plots) do not define boundaries between contaminant groups using numerical functions, but 

rather outlines of fields on the plot that are drawn empirically. In contrast, LDA classifications of 

contaminant sources are based on posterior probabilities; calculations of the likelihood that a 

sample falls within a given class (e.g. impacted by basin brines, road salt, or organic waste). 

While prior probabilities are input by the user, posterior probabilities are model output that is 

calculated as a function of the LDA scores (see later discussion) and prior probabilities. For 

every sample, LDA calculates the posterior probability of membership in each of the different 
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classes. The class with the highest posterior probability then becomes the group assigned to the 

sample. Comparisons of classification accuracy for different ranges of posterior probabilities 

reveal that these probabilities are useful gauges of prediction confidence (Fig. 2). 

 

 

Figure 2. Classification accuracy for different posterior probability ranges. Each bar represents 
the total number of samples that have posterior probabilities greater than the x -axes percentage. 
The binary color scale delineates how many samples were classified correctly within each group. 

 

 For classifications with posterior probabilities greater than 90%, 95% and 99% there 

were 2 misclassifications and 22, 19 and 13 correct classifications, respectively. One additional 

misclassification and two additional correct classifications were added when the threshold was 

dropped to 80%. Limiting model results to those with high posterior probabilities (e.g. >90%) 

reduces the number of misclassifications, but also reduces the number of samples that are 

classified correctly because many correct classifications have posterior probabilities lower than 

90%. So, there is a tradeoff in defining an acceptable limit for posterior probabilities. An optimal 

threshold value for posterior probabilities would be sufficiently high to minimize 
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misclassifications, but also sufficiently low to avoid limiting the number of samples classified by 

the model. Regardless of the threshold selected, it is important to understand the degree to which 

posterior probabilities reflect true model uncertainty. 

 Besides the 95% and 99% posterior probability ranges, all the other thresholds had 

posterior probabilities that closely resemble prediction confidence. For instance, 22-of-24 

samples (92%) were classified correctly for probabilities greater than 90% and 24-of-27 (89%) 

for probabilities greater than 80%. These two posterior probability thresholds are well within the 

actual classification accuracy for samples within those ranges. Of course, low sample size limits 

the probabilities from being exact replicas of each other. But one would predict, as is the case for 

any collection of probabilistic events, that as sample size approaches infinity these two numbers 

would converge.  

 Posterior probabilities tend to act as conservative estimates of classification accuracy. 

For instance, the >50% range had the highest number of misclassifications of the ranges 

presented, 10-of-39 samples. This threshold provides a good cutoff for the utility of these 

probabilities. At this cutoff, of the set of samples with posterior probabilities greater than 50%, 

fewer than 50% of samples were misclassified. Below this cutoff, a single contaminant stops 

becoming the most likely source of contamination. Both samples below the 50% cutoff were 

incorrectly classified. For any group of classification results, it is unlikely for there to be more 

misclassifications than the 50, 70, 80 and 90% posterior probability range dictates. In cases 

where policy recommendations or accountability considerations need to be made, posterior 

probabilities provide an effective means of demonstrating the prediction confidence of any given 

LDA classification. While higher probabilities are desired, lowering the probability threshold 
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increases the number of classifications considered with comparatively little reduction in 

classification accuracy. 

 

3.3 Linear Discriminants 

Although LDA address limitations of other geochemical fingerprinting tools, the linear 

discriminants used for determining the most probable salinity source are less intuitive to 

understand than concentrations of individual solutes, or solute ratios. By examining the origin of 

the linear discriminants, we can gain better intuition for why the model is successful and what 

geochemical information drives model accuracy. Analysis of the linear discriminants (i.e. 

discriminant-scores), which are the variables responsible for classification, provides more 

information on the success of the model and allow us to visualize sources of misclassification.  

 Linear discriminants are linear combinations of the original chemical dataset that 

effectively reduce dataset dimensionality while optimizing the separation between classes. In the 

case of our model, the linear discriminant scores are computed as the sum of standardized, log-

transformed solute concentrations that have been multiplied by a coefficient that is unique for 

each solute, while the classes represent the source of groundwater salinity. When the 

discriminant scores are plotted on a simple bivariate plot, the amount of overlap between data 

clouds reflects ambiguity of classification. 

 The discriminant scores divide the samples impacted by the three contaminants in two-

dimensional space (Fig. 3). Score-1 (S1) is responsible for dividing the formation water samples 

(S1<0) from the road salt samples (S1>0). There is positive correlation between S1 and basin 

brine classifications, and negative correlation between S1 and road salt classification. Few 

training data points fall in the incorrect quadrant, reflecting the strong separation and high 
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classification accuracy for basin brine and road salt samples. Tables 1 & 2 reinforces the success 

of this separation. Only 176 of 5450 synthetic samples (3%) and 0-of-22 observed samples of 

basin brine or road salt contaminated groundwater were confused for each other. Score-2 (S2) 

separates the road salt (S2>0) from the organic waste class (S2<0). There is a negative 

correlation between score-2 and organic waste samples and a positive correlation between score-

2 and road salt samples. While there is a clear separation between populations, neither axis acts 

as a definitive separator. 

 

 

Figure 3. LDA scores for validation data (filled symbols) and synthetic training data (small open 
circles). For data symbolized as circles, colors represent known sources of contamination: 
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formation water (red), road salt (yellow), or organic waste (brown). The shapes that are not 
circles are misclassifications of validation data. Each shape represents a different type of 

misclassification delineated in the legend. 
 

 Figure 3 is a visualization of the confusion matrix for observed groundwater samples, 

in addition to the training data. Inherently, it is also a visualization of posterior probabilities. 

Samples that plot closer to the axes have lower posterior probabilities and therefore more closely 

resemble multiple contaminants. For model classification, only three of six possible sources of 

confusion were observed for the organic waste model. Road salt was confused as organic waste 

(2 samples) and organic waste was confused as either road salt (2) or formation water (6). Of the 

ten misclassifications, only two plot far from the axes and have high posterior probabilities as a 

result. This is corroborated by Figure 2 where two misclassifications were seen at the higher 

posterior probability range. All other misclassified samples plotted at the boundaries of synthetic 

groundwater clouds, near the axes. Either method, graphical or numerical (direct calculation of 

posterior probabilities), can be used to better understand the uncertainty of a classification. 

 

3.4 Chemical Fingerprinting Contaminated Groundwater 

 Prior to this study, the most prominent method for differentiating groundwater 

contaminants involved examining variations in the chloride:bromide ratios (Whittemore 1995; 

Davis et al. 1998; Panno et al. 2006; Mullaney et al. 2009; Katz et al. 2011; Johnson et al. 2015; 

Reilly et al. 2015, Hildenbrand et al. 2017). Bromide and chloride are conservative ions that 

behave similarly in natural waters. However, their concentrations vary depending on their 

source. Basin brines have high bromide/chloride values relative to dissolved halite or modern 

oceans (Davis et al. 1998). During halite precipitation, bromide is excluded from the crystal 

lattice. This leads to enrichment of bromide in residual waters nearing the end of halite 
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precipitation such as in modern basin brines (Davis et al. 1998; Whittemore 1995). Basin brines, 

with a long residence time in groundwater, are enriched in bromide compared to groundwater 

that is saline due to halite dissolution (e.g. through contamination with road salt runoff). 

Ultimately, the distinctive ranges of bromide:chloride ratios in groundwater from different 

sources have made it the primary mechanism for identifying the origin of different high salinity 

groundwater samples (Davis et al. 1998). 

 Plots of chloride vs. chloride/bromide ratios can be used to qualitatively differentiate 

groups of groundwater samples (Whittemore 1995; Davis et al. 1998; Panno et al. 2006; 

Mullaney et al. 2009; Katz et al. 2011; Johnson et al. 2015; Reilly et al. 2015). These figures 

have been relatively useful in prior studies to map out major trends in groundwater chemistry 

from different sources. However, there remains a high level of ambiguity in making any kind of 

authoritative conclusion on the source of a contaminated groundwater sample from these plots, 

particularly at moderate salinities (e.g. 20-100ppm Cl). 

 Our use of LDA is founded on the same principle as plots of the chloride:bromide ratio. 

In some respects, LDA is an elaboration on this simple relationship, incorporating additional 

relationships that may exist between solutes. The chemical relationships that control how LDA 

separates contaminant groups can be determined in a number of different ways. One of the most 

straightforward approaches is to look at the linear combinations themselves, that is, the 

coefficients used to combine solute chemistry into an algebraic expression. Figure 4 visualizes 

these coefficients and Table 3 provides a summary. Direct comparison of the magnitude of these 

coefficients yields information on the relative importance of different solutes in constructing 

scores.  
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Figure 4. Vectors representing the relative weight of the solute coefficients used to compute 
linear discriminants. All vectors originate from the origin and point towards their weighted 

score-1, score-2 coefficients. Coefficients were multiplied by 2.5 for visual clarity. Label 
locations represent the endpoints of their respective weighted (x,y)-pair. E.g. 6.39 is the 

coefficient for the bromide term of score-1 and so appears as 16.0 on this figure.  

 

Solute Score-1 Coefficient Score-2 Coefficient 

Na -0.89 -0.30 

K -1.07 -1.28 

Mg -0.04 -0.85 

Cl -1.07 3.29 

Br 6.39 -1.76 

Sr 1.39 0.44 

Ba -0.14 1.36 

SO4 0.09 0.07 

Table 3. LDA coefficients that are multiplied by each solute concentration and summed for the 2 
different scores. These coefficients provide a proxy for the influence of various solutes. See 

Figure 1 and 4 for further clarity. 
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 The emphasis that LDA places on chloride and bromide is represented by the weights 

of their coefficients (Table 3). Chloride concentrations are weighted by 3.29 for score-2 and 

bromide by 6.39 for score-1 (Fig. 4). The least important solutes can be easily distinguished this 

way too. Sulfate for instance has coefficients below 0.10 and therefore is minimally involved in 

data transformation. The relative weight of the solute vectors can be used to determine which 

constituents are most important for fingerprinting contaminant sources, and which can be 

ignored with minimal impact on model results. This is an advantage of LDA because 

groundwater data available in existing public databases are missing some constituents, and 

therefore may be of different utility in the model. Also, these results can be used to prioritize the 

solute concentrations to be measured in future baseline water quality data acquisition. 

 The relative magnitudes of the different solute coefficients (Table 3), as well as the 

direction and length of the vectors in Fig. 4, provide information on the chemical nature of the 

different contaminated populations. For example, score-2 values are strongly and positively 

influenced by chloride concentrations. Low chloride concentrations contribute to low score-2 

values, and classification of a sample as impacted by organic waste. This reflects the overall 

lower salinity of the organic waste end-member, relative to road salt runoff or basin brines. We 

simply do not expect groundwater contaminated by organic waste to have very high salinity 

because the organic waste that is the source of the contamination (e.g. septic effluent) does not 

have sufficiently high chloride concentrations to elevate the groundwater salinity above a few 

hundred milligrams per liter. In contrast, road salt runoff and basin brines can readily increase 

the salinity of fresh groundwater, even at low mixing percentages. Score-2 values are also 

negatively influenced by potassium concentrations. This reflects the fact that potassium is a 

nutrient commonly put into solution during the decomposition of organic matter. As a result, 
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high potassium concentrations at low chloride concentrations (or high K:Cl ratios) result in 

classification of a sample as impacted by organic waste.  

 Score-1 values, which separate road salt and basin brine classes, are strongly influenced 

by bromide concentrations (Fig. 4). High bromide concentrations relative to chloride (or high 

Br:Cl ratios) result in classification of a sample as impacted by basin brine. These relationships 

reflect the differences between road salt and basin brine geochemistry that are the result of the 

processes that drive their formation. Basin brines are the residual water remaining following 

evaporation and the resultant precipitation of halite. Since bromide is excluded from the halite 

crystal lattice, it is enriched in residual waters and basin brines. The consistency between our 

empirical model results (e.g. relative magnitude and sign of score coefficients) and what we 

expect for the chemical differences between end-members provides additional credibility to our 

model results. 
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Figure 5. A) Chloride/bromide versus chloride plot for observed end-member samples used to 

create the synthetic dataset as well as groundwater samples (known sources of contamination 
are not demarcated). B) LDA scores for observed and synthetic groundwater samples, without 

the known sources of contamination. C) Chloride/bromide versus chloride for observed end-
member samples, used to create the synthetic dataset along with groundwater samples (stars) 
colored with their known source of contamination. D) LDA scores for observed and synthetic 

groundwater samples, with colors representing known sources of contamination. 

 

 Given the clear importance of chloride and bromide in calculating the LDA scores, one 

question that might be raised is: how is LDA an improvement on previous chemical 

fingerprinting that only uses chloride and bromide concentrations? Figure 5 compares the two 

methods. Figures 5A and 5B both present the scenario typical to groundwater contamination 

A B

C D
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investigations. Groundwater samples have been collected and their chemistry has been 

determined but their source of contamination is unknown (open white circles). In order to utilize 

the Cl:Br ratios in Figure 5A, hypothetical mixing lines could be drawn connecting end-member 

populations to pristine groundwater (black dots). From there, samples that fall close to a certain 

mixing line will be delineated as contaminated by that end-member. Which end-member/mixing 

line a sample belongs to becomes more unclear the closer it plots to the pristine groundwater 

samples. In contrast, the groundwater samples as well as samples from prior studies (LDA is a 

machine learning algorithm and thus can continue to update itself as new data representing 

different populations is added) can be input into the LDA framework presented above. This is an 

automatic process that will return both scores for each sample and posterior probabilities for each 

contaminant. Classification confidence can be assessed in-bulk by removing posterior 

probabilities below a certain threshold or assessed for individual samples. A qualitative 

comparison of the two methods is seen in Figures 5C and 5D. There is no way to show 

quantitative results of this methodological comparison primarily because the former method, 

making use of chloride and bromide exclusively, does not provide unequivocal classification of 

unknowns, and therefore has the potential to yield multiple classifications for unknowns. 

 LDA is an improvement on graphical techniques for two reasons. For one, LDA 

provides a clear quantitative, and thus transferable, calculation of posterior probabilities to 

evaluate classification accuracy. This is in contrast to graphical techniques that are more 

subjective. The second improvement is that graphical analysis is limited to two dimensions 

whereas LDA can summarize the role of many constituents and therefore make use of many-

dimensional solute datasets. 
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4. Conclusion 

The model proposed above that makes use of LDA and natural variations in solute 

concentrations has clear implications for discriminating contaminants in groundwater. Between 

the work done in model validation (this paper) and our previous work (Lautz et al. 2014), 

methods have proven transferable across groundwater regions. The benefit of using our 

fingerprinting implementation is the clear and unambiguous use of chemical ratios (such as 

chloride:bromide). Whereas examining the range of chloride:bromide graphically can be 

equivocal for identifying the contaminant sources in groundwater, LDA returns calculated 

probabilities of class membership. Such probabilities tend to be conservative estimates of actual 

classification accuracy and give users a gauge on the general utility of any given classifications. 

The flexibility of the model framework, in terms of which solutes to input and which 

contaminants are of import, makes large-scale assessment of routine groundwater quality data 

highly feasible for a range of different contamination and data availability scenarios.  

 Going forward, proper use of this model is contingent on understanding the limitations 

of the approach.  The current configuration of the model is transferable to other regions with few, 

if any, changes. However, the model does assume that no other contaminants are present besides 

those included, and assumes the observed data input to the model (e.g. low salinity groundwater 

samples, end-member samples) are representative of the regional low salinity groundwater 

chemistry and end-member chloride sources. If another potential source of chloride, such as 

seawater intrusion, is present in a study region, it must be included as a distinct end-member in 

the model and observations of that end-member must be included as input data. Accuracy of the 

model with inclusion of other contaminants, like landfill leachate, has not been validated and 

therefore analysis of model output needs to be critically evaluated under new conditions. The 
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current model configuration uses 9 solute concentrations in the LDA model. More or fewer 

solute concentrations could easily be considered in the model, depending on data availability and 

the effectiveness of various solutes for discriminating between end-members. While default 

model parameters, such as prior probabilities and which contaminant groups to include, are 

based on these authors’ best-judgment, ultimately, the appropriate parameter values to use for a 

given study area are up to the discretion of users.  

 Interest in water quality monitoring has been increasing in the public and scientific 

consciousness. With that, more data at a wider variety of sites has been increasing. Our model, 

which utilizes a machine learning approach to understanding large data sets, has the ability to 

parse through and make use of those datasets. In fact, the ideal usage of this model would be to 

assess regional changes in LDA classifications through time as industry practices (e.g. farming, 

resource extraction, de-icing application, etc.) and land-use change. Our statistical approach to 

fingerprinting salinity sources has a unique advantage of utilizing commonly available solute 

concentrations; concentrations that have been measured historically and continue to be measured 

in baseline/background databases. While novel tracers are ultimately useful for point specific 

investigations, the ease and frugality of using this model make it ideal for assessing change over 

a wide area and through time. The combination of our approach with new tracers may provide a 

more comprehensive evaluation of salinity sources in a wider range of settings than was 

previously available. 
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Supporting Information 

Chien & Lautz, 2017 – Science of the Total Environment  

Section 1. Combining Septic Effluent and Organic Waste 

Synthetic Training Data: Full Model 

Known Group Predicted Group 

 formation water road salt septic effluent animal waste 

formation water 89.3 (2635) 3.4 (99) 2.6 (78) 4.7 (139) 

road salt 4.6 (132) 82.0 (2330) 12.1 (345) 1.2 (34) 

septic effluent - 2.9 (35) 89.3 (1089) 7.8 (95) 

animal waste 1.5 (43) 2.5 (72) 29.5 (851) 66.5 (1921) 

Table S1: Confusion matrix showing model classification accuracy for the training data for the 
Full Model. Numbers outside of parentheses are the percentage of samples classified correctly of 

the total samples contaminated by a single source (designated by the first column). Numbers 
within parentheses indicate total number of samples in each respective cell. Bold numbers along 

diagonals emphasize correct classifications. The synthetic-groundwater dataset size varies by 
contaminant due to the capped mixing percentage. 

 

Validation Data: Full Model 

Known Group Predicted Group 

 formation water road salt septic effluent animal waste 

formation water 100 (7) - - - 

road salt 5.9 (1) 82.4 (14) 11.8 (2) - 

septic effluent 33.3 (1) - 66.7 (2) - 

animal waste 28.6 (4) 7.1 (1) 42.9 (6) 21.4 (3) 

Table S2: Confusion matrix showing model classification accuracy for the validation data for the 

Full Model. Numbers outside of parentheses are the percentage of samples classified correctly of 
the total samples contaminated by a single source (designated by the first column). Numbers 
within parentheses indicate total number of samples in each respective cell. Bold numbers along 

diagonals emphasize correct classifications.  

  

 Septic effluent and animal waste show relatively poor classification accuracy for the 

validation data as well as discrepancies in classification accuracy between the synthetic and 
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validation data. The poor classification accuracy for septic effluent validation data can in part be 

attributed to the low number of samples with known septic effluent contamination (only 3). 

Another possible explanation for the poor classification is that these two contaminants have 

indistinguishable chemical fingerprints for the solutes used in our analysis. This is corroborated 

by the fact that for both datasets, animal waste and septic effluent are likely to be misclassified 

for each other. 6 of the 14 total animal waste samples were misclassified as septic effluent for the 

validation data and 29.5% of animal waste samples for the synthetic data. It is possible that 

septic effluent and animal waste are better characterized as one distinct organic-waste end-

member, at least in the context of the solutes chosen and the conservative 2-component mixing 

model. To test this hypothesis, septic effluent and animal waste samples (end-member and 

observed groundwater data) were grouped together and classified under the assumption that they 

represent one contaminant: organic waste. The revised version of the LDA model is referred to 

as the “organic waste model” and is used throughout the bulk of the main text. To develop this 

model, animal waste and septic effluent end-member data were pooled before being input to the 

model. The single organic waste pool was subsequently used to generate synthetic training data 

representing the chemistry of groundwater contaminated by a random source of organic waste. 
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Section 2. Data 

Table S3: Groundwater chemistry data used for validation compiled from Panno et al. (2005) 

and Hwang et al. (2015). “PRISTINE” is low salinity groundwater used in the mixing model. 

“FW” indicates groundwater contaminated by formation water. “RS” indicates groundwater 

contaminated by road salt. “SEP” and “ANIM” indicate septic effluent contaminated 

groundwater and animal waste contaminated groundwater, respectively, and were combined to 

create the organic waste dataset. 

 
Sample 

Name 

Expected 

Type Source 

I 

ppm 

Na  

ppm 

K 

ppm 

Mg  

ppm 

Ca  

ppm 

Cl  

ppm 

Br  

ppm 

Sr  

ppb 

Ba  

ppb 

SO4 

 ppm 

Aq1 PRISTINE Panno2005 3.9 29 2 33 85 0.9 0.02 390 80 43 

Aq2 PRISTINE Panno2005 1.3 14 1 34 77 7.2 0.014 450 60 25 

Aq3 PRISTINE Panno2005 9.1 45 1 35 85 6.7 0.027 660 100 51 

Aq4 PRISTINE Panno2005 13 49 2 28 73 0.8 0.031 690 120 8.7 

Aq5 PRISTINE Panno2005 26 70 1 61 163 9.8 0.075 1110 20 406 

Aq6 PRISTINE Panno2005 2.9 7 2 51 109 12 0.031 291 810 39 

Aq7 PRISTINE Panno2005 3.7 13 10 29 67 2.4 0.029 2500 1760 2.8 

Aq8 PRISTINE Panno2005 18.7 90 3 8.8 17 2 0.036 526 23 119 

Aq9 PRISTINE Panno2005 4.7 31 5 78 130 3.2 0.023 906 590 268 

Aq10 PRISTINE Panno2005 0.6 2.3 8 43 127 3.5 0.154 643 41 91 

Aq11 PRISTINE Panno2005 28.4 119 6 11 16 6.6 0.167 499 46 1 

Aq12 PRISTINE Panno2005 3.3 12 1 29 73 9.3 0.054 141 64 0.1 

H_3 PRISTINE Hwang2015 0.7 10.7 1 29 72.6 19.7 0.034 51 17 18.4 

H_9 PRISTINE Hwang2015 0.9 37.9 1 58.7 108 12.3 0.088 95 51 34.8 

H_15 PRISTINE Hwang2015 0.8 3.1 5 49.1 95.5 16.8 0.038 77 35 64.2 

H_18 PRISTINE Hwang2015 0.9 3.2 6 42.2 91.2 12.2 0.027 57 20 56.3 

H_20 PRISTINE Hwang2015 0.7 6.1 5 49.8 93.1 19.4 0.031 80 46 36.9 

H_21 PRISTINE Hwang2015 2.9 15.3 5 38.2 61.3 1.42 0.021 2100 122 1.3 

H_29 PRISTINE Hwang2015 1.7 12 5 39 91.4 19.8 0.031 80 27 15.7 

H_31 PRISTINE Hwang2015 NaN 5.2 4 42.9 93 15.4 0.1 101 24 15.2 

B2 FW Panno2005 86.6 308 1 38 96 474 1.075 660 490 0.1 

B3 FW Panno2005 112 220 2 25 59 237 0.56 637 275 0.01 
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B6 FW Panno2005 NaN 167 5 24 135 292 1.35 1280 90 87 

B8 FW Panno2005 126 117 1 37 74 72 0.265 760 560 0.6 

B10 FW Panno2005 NaN 73 1 58 127 109 0.3 307 81 129 

B11 FW Panno2005 7.8 72 1 59 129 113 0.445 298 82 134 

B13 FW Panno2005 10.3 127 6.3 30 44 118 0.167 818 361 8.7 

S1 RS Panno2005 64.8 218 3 80 166 416 0.255 152 129 46 

S2 RS Panno2005 4.9 59 2 70 156 150 0.096 107 55 28 

S3 RS Panno2005 7 224 18 47 134 392 0.102 370 100 42 

S4 RS Panno2005 70 224 19 43 126 352 0.104 310 90 42 

S5 RS Panno2005 3.6 111 7 34 92 219 0.056 149 25 30 

S6 RS Panno2005 2.3 54 4 44 100 229 0.054 115 23 35 

S7 RS Panno2005 3.3 99 4 42 101 135 0.061 184 29 14 

S8 RS Panno2005 4.2 92 4 60 122 169 0.127 127 81 26 

S9 RS Panno2005 4 59 8 63 121 167 0.143 102 55 41 

S10 RS Panno2005 4 204 7 32 73 170 0.076 69 36 48 

S11 RS Panno2005 10.9 191 7 54 128 301 0.151 140 63 42 

S12 RS Panno2005 1.7 42 5 49 100 84 0.05 124 62 34 

S13 RS Panno2005 2.7 20 5 48 101 44 0.036 203 55 137 

H_14 RS Hwang2015 4 58.6 8 62.5 121 170 0.076 102 55 41.1 

H_16 RS Hwang2015 4 204 7 31.7 73.4 167 0.0143 69 36 48.1 

H_17 RS Hwang2015 2.8 23.8 6 52.4 111 66.2 0.046 131 73 76.4 

H_23 RS Hwang2015 5.1 34.5 5 36.6 90.5 56 0.047 151 24 28.6 

Em1 SEP Panno2005 9 21 3 45 105 50.6 0.1 120 30 54 

Em2 SEP Panno2005 7 19 4 43 101 39.7 0.08 100 30 56 

Em3 SEP Panno2005 36 75 13 47 111 116 0.29 240 80 77 

H_5 ANIM Hwang2015 26 23.3 119 38.5 81.3 30.9 0.076 115 40 13.7 

H_11 ANIM Hwang2015 1 14.3 1 53 106 47.2 0.032 83 37 46 

H_25 ANIM Hwang2015 0.7 3.8 5 49.9 105 32.2 0.058 71 65 62.4 

Am1 ANIM Panno2005 21 66 2 64 205 127 0.515 530 300 59 

Am2 ANIM Panno2005 38.8 45 2 32 127 33 0.118 200 90 15 

Am3 ANIM Panno2005 17.4 65 2 20 107 38 0.132 190 110 21 

Am4 ANIM Panno2005 16.8 102 2 44 113 51 0.149 260 100 36 

Am5 ANIM Panno2005 43.3 70 2 117 275 280 0.368 349 199 52 

Am6 ANIM Panno2005 77.8 113 23 84 116 171 0.216 471 417 22 

Am7 ANIM Panno2005 1.6 15 1 70 173 50 0.098 241 128 75 

Am8 ANIM Panno2005 1.7 13 3 68 156 65 0.107 177 50 151 

Am9 ANIM Panno2005 12.6 27 6 100 192 69 0.152 200 103 236 

Am10 ANIM Panno2005 35.1 20 67 71 147 56 0.201 142 161 68 

Am11 ANIM Panno2005 21.9 18 87 49 125 37 0.084 151 48 38 
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Table S4: Compiled chemistry data for Illinois formation water 

Sample 
Name Source 

I  
ppm 

Na  
ppm 

K 
ppm 

Mg  
ppm 

Ca  
ppm 

Cl  
ppm 

Br 
ppm 

Sr  
ppb 

Ba  
ppb 

SO4 
ppm 

B14 Panno2005 NaN 100000 63 73 750 150000 17 NaN 38800 1900 

B15 Panno2005 NaN 34500 88 924 2540 101500 197 122000 320 NaN 

B16 Panno2005 NaN 44400 86 1290 4700 89600 334 200000 750 NaN 

B17 Panno2005 3900 48540 280 1720 4710 85000 180 199000 550 720 

B18 Panno2005 8600 50280 282 1640 5650 89000 190 242000 3130 590 

Stueb_29 Stueber1991 NaN 39000 246 2110 5510 77320 249 337 4930 54 

Stueb_213 Stueber1991 NaN 31500 375 1570 4020 59660 212 225 NaN 120 

Stueb_31 Stueber1991 NaN 36600 228 2270 5860 73460 235 393 29300 1 

Stueb_153 Stueber1991 NaN 30900 412 1700 3390 58010 215 369 66500 10 

Stueb_176 Stueber1991 NaN 52100 542 1510 6600 94010 297 260 670 1647 

Stueb_177 Stueber1991 NaN 51200 1270 2430 9600 97220 397 243 NaN 1190 

Stueb_187 Stueber1991 NaN 38600 509 2250 6310 76690 250 393 NaN 1 

Stueb_187A Stueber1991 NaN 36400 576 2110 6000 75960 264 379 NaN 70 

Stueb_190 Stueber1991 NaN 22400 148 1180 2790 42610 151 291 NaN 127 

Stueb_190A Stueber1991 NaN 16300 108 792 1800 30160 114 186 NaN 42 

Stueb_34 Stueber1991 NaN 21600 436 960 2400 41310 162 177 16100 25 

Stueb_2 Stueber1991 NaN 68200 1870 2390 12150 136900 470 431 1110 727 

Stueb_7 Stueber1991 NaN 26700 325 1190 2900 53380 185 212 7740 72 

Stueb_10 Stueber1991 NaN 30900 289 2030 4630 65840 216 932 4220 162 

Stueb_35 Stueber1991 NaN 14100 141 760 980 27220 89 103 6250 6 

Stueb_44 Stueber1991 NaN 26600 173 1610 3470 51960 188 577 20100 8 

Stueb_45 Stueber1991 NaN 26800 159 1610 3470 52230 184 504 19400 1 

Stueb_99 Stueber1991 NaN 25800 260 1710 3810 53140 197 541 18900 1 

Stueb_49 Stueber1991 NaN 35900 513 2010 6230 71370 232 160 390 1706 

Stueb_51 Stueber1991 NaN 30500 369 1650 4530 59750 189 177 550 934 

Stueb_54 Stueber1991 NaN 35100 496 2050 5830 70580 235 215 990 925 

Stueb_58 Stueber1991 NaN 25300 188 1530 3290 48530 170 193 1150 129 

Stueb_58A Stueber1991 NaN 26700 260 1560 4040 50520 186 202 NaN 787 

Stueb_66 Stueber1991 NaN 22000 193 1130 3210 42910 147 145 780 649 

Stueb_68 Stueber1991 NaN 25800 230 1600 5380 53930 179 172 530 1197 

Stueb_69 Stueber1991 NaN 31300 278 1980 5140 62780 210 284 720 678 

Stueb_70 Stueber1991 NaN 33700 274 1970 5420 67350 219 287 910 603 

Stueb_72 Stueber1991 NaN 37600 355 2190 6630 76750 267 321 930 445 

Stueb_75 Stueber1991 NaN 31100 299 1620 4830 62890 219 317 1370 413 
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Stueb_256 Stueber1991 NaN 36030 621 2490 6970 75200 255 204 NaN 1367 

Stueb_257 Stueber1991 NaN 36100 608 2420 6520 74400 259 276 NaN 687 

Stueb_258 Stueber1991 NaN 36950 503 2440 6380 73900 258 328 NaN 693 

Stueb_259 Stueber1991 NaN 37400 663 2440 6810 76400 262 228 NaN 1133 

Stueb_260 Stueber1991 NaN 37150 632 2430 6390 75300 252 345 NaN 444 

Stueb_262 Stueber1991 NaN 34250 629 2380 9090 75300 230 297 NaN 93 

Stueb_21 Stueber1991 NaN 33100 379 1550 4670 66850 224 183 490 1139 

Stueb_76 Stueber1991 NaN 27200 322 1310 3450 53470 198 213 12400 1 

Stueb_78 Stueber1991 NaN 42900 440 2110 5910 82970 276 265 700 423 

Stueb_79 Stueber1991 NaN 41800 419 2070 5910 83350 274 259 630 469 

Stueb_80 Stueber1991 NaN 1550 23 22 38 2020 6.7 1.9 110 195 

Stueb_85 Stueber1991 NaN 1610 24 24 50 2130 7.1 2.3 100 217 

Stueb_86 Stueber1991 NaN 3840 26 49 55 5570 16.5 7 4020 8 

Stueb_89 Stueber1991 NaN 3310 40 72 100 4950 13.1 6.5 30700 7 

Stueb_97 Stueber1991 NaN 4130 32 54 50 6010 17.5 8.3 34600 1 

Stueb_110 Stueber1991 NaN 20400 249 990 2170 39210 137 145 25200 1 

Stueb_110A Stueber1991 NaN 23000 296 1130 2350 41440 156 171 NaN 1 

Stueb_114 Stueber1991 NaN 27700 309 1460 3550 53340 199 231 3180 7 

Stueb_117 Stueber1991 NaN 26800 322 1360 2950 50450 182 164 5800 1 

Stueb_120 Stueber1991 NaN 37400 424 1990 4510 71200 244 223 4830 1 

Stueb_122 Stueber1991 NaN 43500 526 2010 6030 82340 273 258 780 173 

Stueb_125 Stueber1991 NaN 41000 481 1810 5380 76580 233 241 980 342 

Stueb_181 Stueber1993 NaN 30900 93 790 2070 54300 90.5 103000 34100 1 

Stueb_189 Stueber1993 NaN 31300 116 927 1990 55560 96.6 107000 61300 1 

Stueb_208 Stueber1993 NaN 9860 53 312 397 16630 53 77000 14600 1 

Stueb_209 Stueber1993 NaN 11700 51 342 476 20110 67.8 74000 13600 1 

Stueb_210 Stueber1993 NaN 12000 37 351 496 20900 65.7 47000 38500 1 

Stueb_173 Stueber1993 NaN 14500 54 266 551 24170 46.1 28000 16000 1 

Stueb_212 Stueber1993 NaN 17300 87 352 506 28730 52.3 35000 39000 1 

Stueb_214 Stueber1993 NaN 15800 93 366 491 26350 46.1 38000 44300 1 

Stueb_16 Stueber1993 NaN 44100 85 1890 5200 84750 144 453000 747000 1 

Stueb_8 Stueber1993 NaN 21800 130 900 2780 42290 120 145000 4010 108 

Stueb_12 Stueber1993 NaN 36500 172 1090 4910 64430 160 402000 22200 17 

Stueb_139 Stueber1993 NaN 13600 47 585 6410 23670 77 79000 2580 1 

Stueb_140 Stueber1993 NaN 34100 166 1650 3580 65370 136 273000 103000 1 

Stueb_146 Stueber1993 NaN 33300 152 969 4810 63650 138 352000 14100 1 

Stueb_185 Stueber1993 NaN 21200 80 852 1730 39300 114 135000 139000 1 

Stueb_196 Stueber1993 NaN 39800 192 1410 4910 79310 147 236000 79800 9 

Stueb_199 Stueber1993 NaN 45300 155 1330 4360 82800 164 191000 2130 529 

Stueb_206 Stueber1993 NaN 18100 61 425 3570 30330 55 71000 24300 1 

Stueb_4 Stueber1993 NaN 30200 106 1260 2300 56350 165 135000 2300 1 
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Stueb_6 Stueber1993 NaN 44500 211 1830 5370 85490 186 375000 7590 41 

Stueb_141 Stueber1993 NaN 25700 116 1010 2030 46300 128 176000 3280 2 

Stueb_148 Stueber1993 NaN 35700 260 1240 3400 64650 143 214000 50000 1 

Stueb_149 Stueber1993 NaN 43100 146 1590 3930 78240 171 170000 1020 52 

Stueb_150 Stueber1993 NaN 41900 206 1610 4150 76440 186 236000 58200 1 

Stueb_163 Stueber1993 NaN 39500 180 1610 4810 74780 175 327000 125000 1 

Stueb_164 Stueber1993 NaN 44900 196 1540 5210 83740 180 282000 770 457 

Stueb_182 Stueber1993 NaN 31700 145 1310 2900 59510 160 197000 12000 1 

Stueb_211 Stueber1993 NaN 34400 106 1250 2520 61580 145 142000 5430 12 

Stueb_14 Stueber1993 NaN 49500 307 1870 6950 95670 244 265000 580 1200 

Stueb_19 Stueber1993 NaN 48700 254 1580 6410 90610 187 189000 440 1680 

Stueb_143 Stueber1993 NaN 43900 171 1810 6090 84550 197 401000 1790 339 

Stueb_154 Stueber1993 NaN 44300 218 1680 4660 82170 193 236000 1920 612 

Stueb_156 Stueber1993 NaN 39800 303 2080 5710 78750 218 381000 1100 601 

Stueb_157 Stueber1993 NaN 34500 281 1670 5300 67180 215 217000 420 1110 

Stueb_161 Stueber1993 NaN 38700 267 1580 5170 74680 206 269000 950 423 

Stueb_167 Stueber1993 NaN 36500 253 1890 5390 71280 227 137000 210 1960 

Stueb_168 Stueber1993 NaN 36800 193 1550 6270 73050 211 209000 400 1230 

Stueb_170 Stueber1993 NaN 44500 234 1590 5590 84040 203 153000 380 1590 

Stueb_178 Stueber1993 NaN 40200 237 1680 5070 78330 182 361000 38300 3 

Stueb_198 Stueber1993 NaN 42700 252 1700 5210 80800 178 355000 9660 139 

Stueb_205 Stueber1993 NaN 44900 232 1270 4250 80690 165 212000 1140 520 

Stueb_245 Stueber1993 NaN 42500 205 1790 6290 81800 209 365000 680 702 

Stueb_1 Stueber1993 NaN 49800 315 2840 4780 93780 247 650000 2440 254 

Stueb_15 Stueber1993 NaN 40300 241 2360 6320 79220 237 135000 380 2040 

Stueb_17 Stueber1993 NaN 50000 369 2590 5570 94250 211 343000 1160 680 

Stueb_22 Stueber1993 NaN 52600 NaN 2550 4460 95730 278 580000 NaN NaN 

Stueb_126 Stueber1993 NaN 39600 184 1200 3000 69360 143 199000 740 521 

Stueb_127 Stueber1993 NaN 45900 274 2260 5060 85580 208 531000 1710 379 

Stueb_128 Stueber1993 NaN 41200 520 1630 4540 75530 195 150000 1440 2110 

Stueb_129 Stueber1993 NaN 47900 349 2120 6020 89120 196 153000 410 1510 

Stueb_130 Stueber1993 NaN 41600 300 2270 5550 81630 219 450000 1050 441 

Stueb_133 Stueber1993 NaN 24100 119 1040 2390 41890 125 80000 510 425 

Stueb_134 Stueber1993 NaN 46800 320 1700 5360 83090 170 121000 270 1880 

Stueb_135 Stueber1993 NaN 30100 151 730 2730 49900 100 66000 180 3020 

Stueb_136 Stueber1993 NaN 42500 248 1640 5390 78320 155 113000 430 1900 

Stueb_137 Stueber1993 NaN 28400 170 1150 2260 49310 NaN 153000 510 2550 

Stueb_138 Stueber1993 NaN 39000 192 1930 3140 72410 167 684000 2410 260 

Stueb_151 Stueber1993 NaN 36100 188 1330 3820 64730 122 79000 690 2670 

Stueb_160 Stueber1993 NaN 42900 413 2180 3950 77580 204 228000 620 1190 

Stueb_165 Stueber1993 NaN 44300 289 2750 3970 81650 204 623000 1980 180 
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Stueb_169 Stueber1993 NaN 38400 251 2260 5920 73190 229 128000 330 1910 

Stueb_171 Stueber1993 NaN 44400 304 2630 5080 83630 188 304000 880 1340 

Stueb_179 Stueber1993 NaN 40200 283 2620 3890 77660 200 471000 570 470 

Stueb_194 Stueber1993 NaN 43600 248 1300 4460 78470 167 202000 750 947 

Stueb_195 Stueber1993 NaN 41900 259 1710 4670 76080 179 237000 1940 344 

Stueb_197 Stueber1993 NaN 41500 232 1700 3670 74940 156 261000 550 982 

Stueb_202 Stueber1993 NaN 40000 244 3080 3960 73660 168 279000 700 753 

Stueb_203 Stueber1993 NaN 38700 240 1940 5490 73610 185 120000 350 1810 

Stueb_204 Stueber1993 NaN 39500 196 1740 3080 71140 160 338000 780 529 

 

 

Table S5: Compiled road salt end-member chemistry data from: 

Sample Name Source 
I 

ppm 
Na 

ppm 
K 

ppm 
Mg 

ppm 
Ca 

ppm 
Cl 

ppm 
Br 

ppm 
Sr 

ppb 
Ba 

ppb 
SO4 
ppm 

RS1 Panno2005 360 35496 NaN NaN NaN 54015 4.002 NaN NaN NaN 

RS2 Panno2005 37.6 6270 26 29 241 8930 0.63 1270 192 248 

MDBK2_18_19 Ledford2014 6 1317.8 3.31 33 242 2172.8 0.717 NaN NaN NaN 

Granato_Table3 Granato1996 NaN 11000 5.1 2.2 100 17000 0.29 780 NaN 22 

Howard_40 Howard1993 20 20250 13 5 62.5 30860 NaN NaN 7400 222 

Howard_41 Howard1993 20 21500 11.5 6 141 31640 NaN NaN 16000 232 

Kelly_Willow_Spring Kelly2010 38 6270 NaN NaN NaN 8930 0.63 NaN NaN NaN 

Kelly_Pekin Kelly2010 NaN 279 NaN NaN NaN 1570 0.1 NaN NaN NaN 

Foos_MS3 Foos2003 NaN 1049 10 27 148 1834 0.35 NaN NaN 193 

Foos_GT13 Foos2003 NaN 230 5 19 74 420 0.34 NaN NaN 106 

NYS_1 Lautz2014 2.1 9470 NaN NaN 26 13830 2.82 NaN NaN NaN 

NYS_2 Lautz2014 2.2 7750 NaN NaN 19 11250 4.08 NaN NaN NaN 

NYS_3 Lautz2014 3.0 13390 NaN NaN 33 19820 4.19 NaN NaN NaN 

NYS_4 Lautz2014 10.0 6630 NaN NaN 74 9560 2.12 NaN NaN NaN 

TW_2 Risch2000* 38 4190 14 48 270 7000 1.20 NaN NaN 160 

TW_94D Risch2000* 20 2560 6.9 40 200 3930 1.10 NaN NaN 150 

TW_94E Risch2000* 15 3110 14 64 270 5160 1.10 NaN NaN 130 

MW_3 Risch2000* 14 4420 18 34 230 7230 0.80 NaN NaN 190 

MW_4 Risch2000* 17 3980 15 55 260 7030 0.80 NaN NaN 150 

MW_5 Risch2000* 17 3690 19 77 470 6730 0.60 NaN NaN 110 

MW_7 Risch2000* 24 4400 14 24 210 7200 1.30 NaN NaN 170 

MW_8 Risch2000* 4 263 6.9 52 160 572 0.20 NaN NaN 71 

MW_9 Risch2000* 9 1320 12 110 390 2780 0.90 NaN NaN 44 

MW_13 Risch2000* 14 1440 13 96 360 3340 0.40 NaN NaN 56 

MW_14 Risch2000* 5 613 8.5 66 220 1350 0.10 NaN NaN 36 
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MW_15D Risch2000* 2 128 4 34 100 323 0.20 NaN NaN 36 

Risch2000* - Data from an State University of New York, College of Environmental Science 
and Forestry undergraduate thesis. 

 

Table S6: Compiled chemistry data for septic effluent 

Sample 
Name Source 

I 
ppm 

Na 
ppm 

K 
ppm 

Mg 
ppm 

Ca 
ppm 

Cl 
ppm 

Br 
ppm 

Sr 
ppb 

Ba 
ppb 

SO4 
ppm 

E1 Panno2005 7 2740 26 300 495 5620 1.04 5650 380 19 

E2 Panno2005 13 184 9 53 84 308 0.18 770 40 38 

E3 Panno2005 38.6 416 11 19 84 504 0.28 220 100 52 

E4 Panno2005 34.2 224 12 10 33 91 0.2 70 30 38 

E5 Panno2005 7.3 262 22 23 64 253 0.11 140 30 73 

E6 Panno2005 11 80 345 6.5 59 92 0.71 140 40 59 

E7 Panno2005 NaN 46 17 41 60 35.5 0.09 660 130 22 

E8 Panno2005 NaN 191 15 6 49 49.3 0.09 2209 40 51 

E9 Panno2005 NaN 98 23 22 46 91.7 0.14 170 30 92 

E10 Panno2005 NaN 55 6 39 70 20.8 0.05 530 150 24 

E11 Panno2005 NaN 89 17 26 67 69.1 0.1 280 60 95 

E12 Panno2005 NaN 94 14 23 61 55.5 0.06 210 20 94 

E13 Panno2005 NaN 115 17 24 69 84.3 0.08 210 20 130 

E14 Panno2005 NaN 89 12 24 71 86.7 0.15 260 60 112 

E15 Panno2005 NaN 79 18 26 68 61.5 0.08 260 50 107 

E16 Panno2005 NaN 70 16 26 68 63.2 0.06 250 50 77 

E17 Panno2005 NaN 69 9 24 73 79 0.05 280 70 97 

E18 Panno2005 NaN 77 28 24 118 147 NaN 280 50 84 

E19 Panno2005 NaN 82 18 27 70 66.5 0.22 300 50 109 

E20 Panno2005 NaN 82 16 27 120 118 NaN 350 30 97 

E21 Panno2005 NaN 88 16 24 67 67.5 0.12 280 40 109 

E22 Panno2005 NaN 90 25 26 89 110 0.05 300 400 97 

E23 Panno2005 NaN 46 257 2.3 27 88.9 0.07 110 20 84 

E24 Panno2005 NaN 255 33 24 66 312 NaN 290 100 92 

E25 Panno2005 NaN 88 23 26 107 30.8 0.07 340 80 26 

E26 Panno2005 NaN 399 12 25 112 618 0.36 240 60 12 

E27 Panno2005 NaN 124 281 7 34 123 0.05 150 50 82 

E28 Panno2005 NaN 70 8 21 142 105 0.09 260 100 8.4 

E29 Panno2005 NaN 393 6 7.5 17 324 0.05 NaN NaN 48 
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Table S7: Compiled chemistry data for animal waste 

 

Sample Name Source 
I 

ppm 
Na  

ppm 
K  

ppm 
Mg 

ppm 
Ca 

ppm 
Cl 

ppm 
Br  

ppm 
Sr 

ppb 
Ba 

ppb SO4 ppm 

A1 Panno2005 187.7 493 2760 70 343 900 0.544 820 40 797 

A2 Panno2005 328.4 348 2010 3.1 34 794 0.823 87 23 1.9 

A3 Panno2005 263.1 1190 4950 0.9 26 1980 1.413 73 31 47 

A4 Panno2005 182.4 110 1030 95 87 440 0.739 220 60 2.1 
Whitcomb_ 

Jul27_S1 Whitcomb2007 NaN 47.3 146.4 55.15 112.9 103.5 0.03 NaN NaN 195.2 
Whitcomb_ 

Jul31_S1 Whitcomb2007 NaN 60 180.1 59.66 91.5 54.6 0.2 NaN NaN 231.02 
Whitcomb 
_Aug1_S1 Whitcomb2007 NaN 141.1 506.6 30.49 40.06 137 5.702 NaN NaN 303.7 

Whitcomb 
_Aug2_S1 Whitcomb2007 NaN 73.01 208.7 64.2 132.5 85.3 0.4 NaN NaN 225 

Whitcomb 
_Aug3_S1 Whitcomb2007 NaN 183.1 804.6 24.98 20.92 233.88 12.8781 NaN NaN 395.5 

L1 Becker2002 NaN 250.05 1383.36 9.75 41.75 391 NaN 220 20 28 

L2 Becker2002 NaN 1473.46 2587.32 3.5 22.55 2460 NaN 133 20 0.5 

L3 Becker2002 NaN 168.21 453.29 28.83 55.88 200 NaN 317 21 10 

L4 Becker2002 NaN 165.63 777.3 12.47 49.67 251 NaN 359 22 0.4 

L5 Becker2002 NaN 175.8 861.91 11.74 42.86 301 NaN 317 24 85 

L6 Becker2002 NaN 154.51 711.56 16.28 49.16 270 NaN 357 24 9 

L7 Becker2002 NaN 481.43 1606.89 34.29 48.6 990 NaN 143 20 103 

L8 Becker2002 NaN 241.74 961.22 55.78 109.19 470 NaN 1567 33 22 

L9 Becker2002 NaN 304.71 673.86 4.68 50.23 443 NaN 640 58 8 

L10 Becker2002 NaN 481.16 1949.83 11.57 48.49 1020 NaN 288 20 16 

USGS_11 Becker2002 NaN 128.45 0.82 64.4 198.26 380 NaN 1086 228 126 

USGS_41 Becker2002 NaN 88.43 2.33 24.3 115 173 NaN 595 112 150 

USGS_42 Becker2002 NaN 30.03 1.5 22.59 176.32 163 NaN 599 814 47.4 

USGS_63 Becker2002 NaN 265.26 9.7 65.23 197.61 429 NaN 3396 196 37.6 

USGS_65 Becker2002 NaN 55.19 4.78 35.7 41.72 109 NaN 2059 139 27.1 

USGS_66 Becker2002 NaN 345.52 7.08 18.77 70.7 347 NaN 1032 88 67.7 

USGS_67 Becker2002 NaN 275.48 5.08 51.99 100.92 219 NaN 931 18 411 

USGS_69 Becker2002 NaN 132.83 2.31 31.66 72.17 105 NaN 753 49 178 

USGS_70 Becker2002 NaN 240.17 2.87 9.74 18.13 175 NaN 313 38 66.4 

USGS_73 Becker2002 NaN 152.63 2.53 31.64 72.4 112 NaN 810 54 210 

USGS_74 Becker2002 NaN 313.59 3.08 33.51 48.96 268 NaN 568 149 141 

USGS_75 Becker2002 NaN 73.58 1.66 40.55 82.18 103 NaN 1238 195 44.9 

USGS_76 Becker2002 NaN 206.25 2.14 24.46 51.39 137 NaN 961 105 58.7 
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Table S8: Compiled chemistry data for organic waste 

Sample 
Name Source 

I 
ppm 

Na  
ppm 

K  
ppm 

Mg  
ppm 

Ca 
ppm 

Cl 
ppm 

Br  
ppm 

Sr 
ppb 

Ba 
ppb 

SO4 
ppm 

E1 Panno2005 7 2740 26 300 495 5620 1.04 5650 380 19 

E2 Panno2005 13 184 9 53 84 308 0.18 770 40 38 

E3 Panno2005 38.6 416 11 19 84 504 0.28 220 100 52 

E4 Panno2005 34.2 224 12 10 33 91 0.2 70 30 38 

E5 Panno2005 7.3 262 22 23 64 253 0.11 140 30 73 

E6 Panno2005 11 80 345 6.5 59 92 0.71 140 40 59 

E7 Panno2005 NaN 46 17 41 60 35.5 0.09 660 130 22 

E8 Panno2005 NaN 191 15 6 49 49.3 0.09 2209 40 51 

E9 Panno2005 NaN 98 23 22 46 91.7 0.14 170 30 92 

E10 Panno2005 NaN 55 6 39 70 20.8 0.05 530 150 24 

E11 Panno2005 NaN 89 17 26 67 69.1 0.1 280 60 95 

E12 Panno2005 NaN 94 14 23 61 55.5 0.06 210 20 94 

E13 Panno2005 NaN 115 17 24 69 84.3 0.08 210 20 130 

E14 Panno2005 NaN 89 12 24 71 86.7 0.15 260 60 112 

E15 Panno2005 NaN 79 18 26 68 61.5 0.08 260 50 107 

E16 Panno2005 NaN 70 16 26 68 63.2 0.06 250 50 77 

E17 Panno2005 NaN 69 9 24 73 79 0.05 280 70 97 

E18 Panno2005 NaN 77 28 24 118 147 NaN 280 50 84 

E19 Panno2005 NaN 82 18 27 70 66.5 0.22 300 50 109 

E20 Panno2005 NaN 82 16 27 120 118 NaN 350 30 97 

E21 Panno2005 NaN 88 16 24 67 67.5 0.12 280 40 109 

E22 Panno2005 NaN 90 25 26 89 110 0.05 300 400 97 

E23 Panno2005 NaN 46 257 2.3 27 88.9 0.07 110 20 84 

E24 Panno2005 NaN 255 33 24 66 312 NaN 290 100 92 

E25 Panno2005 NaN 88 23 26 107 30.8 0.07 340 80 26 

E26 Panno2005 NaN 399 12 25 112 618 0.36 240 60 12 

E27 Panno2005 NaN 124 281 7 34 123 0.05 150 50 82 

E28 Panno2005 NaN 70 8 21 142 105 0.09 260 100 8.4 

E29 Panno2005 NaN 393 6 7.5 17 324 0.05 NaN NaN 48 

A1 Panno2005 187.7 493 2760 70 343 900 0.544 820 40 797 

A2 Panno2005 328.4 348 2010 3.1 34 794 0.823 87 23 1.9 

A3 Panno2005 263.1 1190 4950 0.9 26 1980 1.413 73 31 47 

A4 Panno2005 182.4 110 1030 95 87 440 0.739 220 60 2.1 

Whitcomb_ Whitcomb2007 NaN 47.3 146.4 55.15 112.9 103.5 0.03 NaN NaN 195.2 
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Jul27_S1 

Whitcomb_ 
Jul31_S1 Whitcomb2007 NaN 60 180.1 59.66 91.5 54.6 0.2 NaN NaN 231.02 

Whitcomb_ 
Aug1_S1 Whitcomb2007 NaN 141.1 506.6 30.49 40.06 137 5.702 NaN NaN 303.7 

Whitcomb_ 
Aug2_S1 Whitcomb2007 NaN 73.01 208.7 64.2 132.5 85.3 0.4 NaN NaN 225 

Whitcomb_ 
Aug3_S1 Whitcomb2007 NaN 183.1 804.6 24.98 20.92 233.88 12.8781 NaN NaN 395.5 

L1 Becker2002 NaN 250.05 1383.36 9.75 41.75 391 NaN 220 20 28 

L2 Becker2002 NaN 1473.46 2587.32 3.5 22.55 2460 NaN 133 20 0.5 

L3 Becker2002 NaN 168.21 453.29 28.83 55.88 200 NaN 317 21 10 

L4 Becker2002 NaN 165.63 777.3 12.47 49.67 251 NaN 359 22 0.4 

L5 Becker2002 NaN 175.8 861.91 11.74 42.86 301 NaN 317 24 85 

L6 Becker2002 NaN 154.51 711.56 16.28 49.16 270 NaN 357 24 9 

L7 Becker2002 NaN 481.43 1606.89 34.29 48.6 990 NaN 143 20 103 

L8 Becker2002 NaN 241.74 961.22 55.78 109.19 470 NaN 1567 33 22 

L9 Becker2002 NaN 304.71 673.86 4.68 50.23 443 NaN 640 58 8 

L10 Becker2002 NaN 481.16 1949.83 11.57 48.49 1020 NaN 288 20 16 

USGS_11 Becker2002 NaN 128.45 0.82 64.4 198.26 380 NaN 1086 228 126 

USGS_41 Becker2002 NaN 88.43 2.33 24.3 115 173 NaN 595 112 150 

USGS_42 Becker2002 NaN 30.03 1.5 22.59 176.32 163 NaN 599 814 47.4 

USGS_63 Becker2002 NaN 265.26 9.7 65.23 197.61 429 NaN 3396 196 37.6 

USGS_65 Becker2002 NaN 55.19 4.78 35.7 41.72 109 NaN 2059 139 27.1 

USGS_66 Becker2002 NaN 345.52 7.08 18.77 70.7 347 NaN 1032 88 67.7 

USGS_67 Becker2002 NaN 275.48 5.08 51.99 100.92 219 NaN 931 18 411 

USGS_69 Becker2002 NaN 132.83 2.31 31.66 72.17 105 NaN 753 49 178 

USGS_70 Becker2002 NaN 240.17 2.87 9.74 18.13 175 NaN 313 38 66.4 

USGS_73 Becker2002 NaN 152.63 2.53 31.64 72.4 112 NaN 810 54 210 

USGS_74 Becker2002 NaN 313.59 3.08 33.51 48.96 268 NaN 568 149 141 

USGS_75 Becker2002 NaN 73.58 1.66 40.55 82.18 103 NaN 1238 195 44.9 

USGS_76 Becker2002 NaN 206.25 2.14 24.46 51.39 137 NaN 961 105 58.7 
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Table S9: Pristine and Contaminated Groundwater Statistics 

Pristine 
Groundwater 

  Mean  Median 

95th 

Percentile 5th Percentile 

I_ppm 6.5 2.9 26.2 0.7 

Na_ppm 28.7 13.5 91.5 3.1 

K_ppm 3.7 3.5 8.1 1.0 

Mg_ppm 39.5 38.6 61.9 10.9 

Ca_ppm 86.4 88.1 131.7 17.0 

Cl_ppm 9.1 8.3 19.7 0.9 

Br_ppm 0.1 0.0 0.2 0.0 

Sr_ppb 572.4 420.0 2120.0 56.7 

Ba_ppb 202.8 48.5 857.5 19.9 

SO4_ppm 64.9 35.9 274.9 1.0 

Contaminated 
Groundwater 

  Mean  Median 
95th 

Percentile 5th Percentile 

I_ppm 23.3 7.8 89.1 1.5 

Na_ppm 90.5 66.0 224.0 14.3 

K_ppm 11.7 5.0 67.0 1.0 

Mg_ppm 51.6 48.0 84.0 25.0 

Ca_ppm 120.1 113.0 192.0 73.0 

Cl_ppm 146.2 116.0 392.0 33.0 

Br_ppm 0.2 0.1 0.6 0.0 

Sr_ppb 268.4 177.0 760.0 71.0 

Ba_ppb 120.0 80.0 417.0 25.0 

SO4_ppm 53.7 42.0 137.0 0.6 
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Table S10: Contaminant End-Member Statistics 

Basin Brine 

  Mean  Median 
95th 

Percentile 
5th 

Percentile 

I_ppm 6250 6250.0 8365.0 4135.0 

Na_ppm 34616.8 36500.0 49960.0 11760.0 

K_ppm 274.9274 245.0 603.2 47.6 

Mg_ppm 1550.216 1610.0 2538.0 275.2 

Ca_ppm 4245.2 4540.0 6624.0 479.0 

Cl_ppm 65605.68 73050.0 94202.0 20268.0 

Br_ppm 179.6694 186.0 273.9 46.1 

Sr_ppb 139549.1 91500.0 452550.0 145.0 

Ba_ppb 19258.82 1575.0 64160.0 324.5 

SO4_ppm 555.6803 340.5 1909.5 1.0 

Road Salt 

  Mean  Median 
95th 

Percentile 
5th 

Percentile 

I_ppm 30.81326 14.5 38.0 2.1 

Na_ppm 6577.529 4085.0 21187.5 238.3 

K_ppm 11.53719 12.0 19.7 3.9 

Mg_ppm 43.22004 34.0 97.4 4.7 

Ca_ppm 186.9769 200.0 387.0 26.7 

Cl_ppm 10172.18 7015.0 31445.0 458.0 

Br_ppm 1.206744 0.8 4.1 0.1 

Sr_ppb 1025 1025.0 1245.5 804.5 

Ba_ppb 7864 7400.0 15140.0 912.8 

SO4_ppm 129.2222 140.0 234.4 33.9 

Organic 

Waste 

  Mean  Median 

95th 

Percentile 

5th 

Percentile 

I_ppm 107.27 36.4 299.0 7.1 

Na_ppm 254.8298 141.1 493.0 47.3 

K_ppm 424.9315 18.0 2010.0 2.1 

Mg_ppm 32.46246 24.5 65.2 3.5 

Ca_ppm 84.29541 68.0 197.6 22.6 

Cl_ppm 392.1243 147.0 1020.0 49.3 

Br_ppm 0.779403 0.1 2.7 0.1 

Sr_ppb 638.0182 300.0 2104.0 103.1 

Ba_ppb 88.74545 50.0 273.6 20.0 

SO4_ppm 99.5823 73.0 303.7 2.1 
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Figure S1: Boxplot showing total nitrogen for the true basin brine-contaminated groundwater 

samples (n = 7) and the false positive formation water samples (n = 6). 
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1. Introduction 

In the western United States, snowpack acts as a large reservoir of water that controls the annual 

hydrograph when snow melts during the springtime. Projected rises in global mean surface 

temperatures affect the timing of runoff in montane watersheds, increasing runoff during the cool 

season and decreasing runoff in the warm season, with peak flows from snowmelt shifting to 

earlier in the water year (IPCC, 2014; Barnett et al., 2005; Gleick, 1987; Adam et al., 2009). 

With many arid regions relying on snowmelt runoff for their water-use, populations are growing 

increasingly concerned about sustaining predictable, year-round water supplies (Barnett et al., 

2005). With these ongoing and future changes to the hydrology of montane watersheds, creative 

and sustainable land management practices that can maintain annual baseflow are needed now 

more than ever (Lawler 2009, Rosemond and Anderson 2003).  

Historically, beaver dams have played a significant ecosystem role as landscape 

engineers (Naiman et al. 1988). Beaver dams were once found within almost all temperate, 

northern-latitude, low-elevation streams from Northern Mexico to the edge of the Canadian 

arctic (Pollock et al., 2003; Pollock et al., 2017). Dam’s control stream-systems by creating 

diverse hydraulic structures that lower stream power and promote wetlands with dense emergent 

vegetation (Gurnell, 1998; Burchsted and Daniels, 2014; Collen and Gibson, 2001). Evidence for 

the impact of beavers on the landscape can be found in the substantial changes to 

geomorphology and riparian vegetation after their removal from the vast majority of North 

American streams in the 19th century (Rea, 1983; Naiman et al., 1988). Currently beaver 

populations are rebounding after an aggressive re-introduction campaign in the 20th century 

(Naiman et al., 1988).  
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While beaver dams enact clear surficial changes to the land and water surface, they also 

have distinct effects on riparian hydrology. Foremost among these is the increased water 

retention afforded by the impoundment of water behind dams. These impoundments control the 

residence time of water in the watershed, attenuating the hydrograph and in many cases 

increasing annual baseflow (Nyssen et al., 2011; Puttock et al., 2017). Beaver dams have turned 

previously ephemeral streams into perennial streams and losing streams into gaining streams 

(Pollock et al., 2003; Majerova et al., 2015). Such changes result from increases in water surface 

elevation within the stream that yield increases in the near-stream water table. Further, the extra 

stores of water held behind dams have proven effective buffers against depletion of stored water 

from glaciers and snowpack, a concern for management of streams fed primarily by snowmelt 

(Beechie et al., 2013). Beaver dams also tend to increase the complexity of stream morphology, 

creating pool-riffle sequences that can reduce peak flow significantly; examples of this include a 

5% reduction in peak flow from a single full beaver pond (Pollock et al., 2003; Beedle, 1991). 

Furthermore, these pool-riffle sequences create a diverse slow water / moving water habitat that 

can not only support diverse species but also increase the resilience of the system to disturbances 

like flooding (Collen and Gibson, 2001; Naiman et al., 1988).  

 More specifically to the groundwater system, beaver dams tend to increase groundwater 

recharge. Overbank flooding, a mechanism for replenishing groundwater in riparian areas, is 

promoted from water impounded behind dams (Westbrook et al., 2006). Additionally, hydraulic 

head created by beaver dams has been shown to increase hyporheic exchange around beaver dam 

complexes; by elevating near-stream head gradients, dams can increase the flux of stream water 

into the subsurface (Lautz and Siegel, 2006; Janzen and Westbrook, 2011). The hydrologic 

effects listed above combined with various water quality improvements (e.g. sediment retention, 
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expansion of habitat area, nutrient cycling, temperature moderation) have made beaver re-

introduction a heavily endorsed stream management strategy (Lawler, 2009; Rosemond and 

Anderson, 2003; Pollock et al., 2017).  

 While beaver dams have been shown to achieve many stream restoration goals, beaver 

activities can conflict with human interests (Bhat et al., 1993; Jensen et al., 2001). In cases like 

these, restoration projects have turned toward beaver dam analogues (BDAs) to achieve 

restoration goals without the beavers themselves (Pollock et al., 2014; Pollock et al., 2017, 

Pilliod et al., 2017). BDAs mimic the natural dam quite closely. They are semi-porous allowing 

water, sediment, aquatic organisms, and other debris through. They are temporary structures that 

biodegrade when not maintained. But their primary benefit over natural dams is that they can be 

managed and controlled by land managers to optimize the achievement of restoration goals.  

A typical BDA is made by pounding wood posts into a stream bed across a transect of the 

stream width (see Fig. 28 in Pollock et al., 2017). A thick assemblage of willow branches is 

weaved between and around the posts with soil, small rocks, and organic material packed into 

the sides. The structures typically remain somewhat porous to prevent the complete obstruction 

of water flow. BDAs have been used in a variety of research and restoration settings; however, 

there are few studies of their ability to replicate the hydrologic benefits listed above with most 

prior studies focusing on habitat restoration (Pilliod et al., 2017; Pollock et al., 2017). A 

potentially fruitful area of research lies in examining how BDAs replicate their natural 

counterparts and in quantification of the effects of small controlled dam installation on local 

landscape resilience to extreme climate events. 

A methodology for testing the effectiveness of BDAs has yet to be proposed. Preliminary 

efforts rely heavily on long-term observational studies (Pollock et al., 2017; Pilliod et al., 2017). 
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An alternative approach is to model a previously well-studied site to forecast the future 

hydrologic effects of BDA installation. In general, hydrologic modeling is used to quantify flow 

within and out of a watershed based on a data-driven, conceptual model of the study domain. A 

modeling approach is suited for this project because of the ability to quantify the changes in 

hydrologic flow pathways caused by BDA installation, relative to baseline conditions.  

 While a modeling approach might be the most useful way to characterize watershed-scale 

hydrologic change to BDA installation, other approaches are needed to derive appropriate data 

and measure how BDAs cause reach-scale changes to water surface profiles, sediment 

aggradation, and vegetation density. Recent technological advances in small Unmanned Aircraft 

Systems (sUAS) have opened the door for high resolution measurement of topography and 

vegetation indices (Pai et al., 2017). These data products are a potential boon for those interested 

in understanding small scale effects of BDAs on a managed stream system.   

This report explores the possibility of using both an aerial imagery and hydrologic 

modeling to characterize reach-scale hydrogeomorphic changes caused by BDAs. At the 

beginning of 2017, The Nature Conservancy reached out to Dr. Laura Lautz to collaborate on a 

stream restoration study. Their managed watershed in Red Canyon (Fig. 1), had experienced 

intense fluvial incision along many of its stream reaches. While recent drought from 2012 to 

2015 followed by intense flooding in subsequent years had been posited as one cause of the 

incision, another potential cause was transient beaver activity. Some stream reaches in the 

watershed had robust beaver populations, while others had no recent beaver activity. Beaver 

have long been known to control near-stream morphology and hydrology (Naiman et al. 1988; 

Pollock et al., 2017), so their recent absence from the stream reaches was raised as a potential 

cause of recent fluvial incision. With this hypothesis and the growing use of BDAs in the stream 
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restoration community (Pilliod et al., 2017), The Nature Conservancy decided to install BDAs at 

Red Canyon and enlist hydrologists to study their effects. 

 

 
Figure 1. Topography of the Red Canyon Creek watershed. Inset map shows location relative to 

nearby states. Black boxes delineate the study reaches, see Fig. 2. 
 

 

Initial funding for a summer intern was procured with the task of beginning data 

collection at Red Canyon Creek (RCC) prior to BDA installation. I traveled to RCC in August of 

2017 and began that data collection, which continued into the research contained within this 

report. To date, pre-installation data has been collected and different modeling approaches have 

been explored. The report provides detailed background, methods, and future work that can be 

completed with either aerial imagery and/or a hydrologic modeling. 

 

2. Aerial Imagery 

A series of drone flights on August 14th and 15th were used to collect aerial imagery of three 

separate reaches in Red Canyon (Fig. 2). These reaches were chosen for their different histories 
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of recent damming; upstream and downstream RCC had very little beaver activity, while Cherry 

Creek had the most active beaver population. The flight details can be found in Table 1. 

SonyA5100 camera photos were used to calculate Digital Elevation Models (DEMs) of the study 

reaches. The MicaSense Rededge was used to derive Normalized Difference Vegetation Index 

(NDVI) values. This is one of many indices for estimating vegetation characteristics like leaf 

chlorophyll content, plant vigor, and depth to water (Nichols, 2000; Carroll et al., 2015). The 

following sections will detail the derivation of these data products and their various uses in earth 

systems modeling. 

 
Figure 2. Approximate outline of the study reaches for the August 14-15th drone surveys. BDA is 
the reach where BDAs are planned to be installed; it also contains a well field. B is the 
downstream segment of Cherry Creek with the upstream portion containing active beaver 

populations. D is a degraded reach where heavy stream incision has occurred with no beaver 
activity present. 
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2.1 Digital Elevation Models using Photogrammetry 

Photogrammetry is the process of making accurate spatial measurements with 

photography. From an Earth systems perspective, photogrammetry using aerial photography can 

yield DEMs and bathymetric models (Jensen, 2007). The traditional photogrammetry approach is 

to reconstruct a surface from overlapping images taken from multiple vantage points. In order to 

do this, a network of targets with known 3-dimensional positions must be defined beforehand. In 

contrast, Structure-from-Motion (SfM) photogrammetry calculates the geometry of the surface 

using a moving sensor that automatically determines camera position and orientation with 

respect to the target (Westoby et al., 2012; Micheletti et al., 2015). For this project, an SfM 

approach was taken to calculate DEMs for the three study reaches in RCC. 

Imagery used to execute SfM photogrammetry came from the August drone flights. 

AirCTEMPS, a research group out of Oregon State University and The University of Nevada, 

coordinated the flight details along with Dr. Christa Kelleher (Table 1). Approximately 15 

Ground Control Points (GCPs) were established at each site and surveyed relative to a local 

benchmark using a total station. These GCPs aid in georeferencing the SfM imagery. We used 

12-in diameter bucket lids marked with black electrical tape to make an easily identifiable cross-

hair at the lids center. Future work should use larger diameter lids or a pattern with greater 

contrast (e.g. orange lid with black cross-hair); the small, mostly white lids were easily confused 

with rocks during SfM georeferencing. It is also advisable to carefully map out the location of 

the GCPs on a to-scale map of each reach, such that they are more easily found in the visual 

images during data processing. Lastly, additional GCPs may aid in DEM accuracy (Woodget et 

al., 2015). 
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Table 1. Flight information and camera details for the different study reaches. DRCC is the 
Downstream Red Canyon Creek site, CC is the Cherry Creek site and URCC is the Upstream 

Red Canyon Creek site. 

 

A variety of SfM algorithms and workflows exist for deriving DEMs from aerial 

photographs, typically based on specific software packages. Our implementation relied on 

Agisoft Photoscan and a workflow developed by the AirCTEMPs team; a brief overview of that 

workflow will be outlined here but for more in-depth discussion see the Agisoft Photoscan 

Documentation and accessory AirCTEMPs documentation (Agisoft, 2018). Two major steps 

need to be completed before generation of a DEM: camera alignment and generation of a dense 

point cloud. Initial camera alignment matches key points on different photographs and uses them 

first to refine camera calibration parameters and then to define camera position for each 

photograph. It is almost entirely automatic, requiring little user input. 

Between camera alignment and dense point cloud generation are a series of intermediary 

steps that require user intervention. The most important is georeferencing images to GCPs. These 

GCPs are used for setting up a coordinate system, optimizing photo alignment, and measuring 

distances within the photo-collage. As such, the locations of these GCPs cannot act as an 

independent check on the accuracy of the DEM. After this step, dense point cloud generation can 

begin. This initial data extraction step requires a few input parameters such as choosing Dense 

Cloud ‘Quality’. For this work, the recommendations for appropriate parameters values from the 

AirCTEMPs documentation were followed; however, it is possible to create higher quality 

Camera Sony A5100 MicaSense Rededge 

Reach DRCC CC URCC DRCC CC URCC 

Altitude (m) 100 90 

Speed (m/s) 8 7 

Photo Overlap (%) 80 75 

Photos 145 350 175 180 450 230 

Flight Time (min) 9 22 11 8 19 11 

Ground Control Points 13 12 12 - 
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products using other parameter sets (with increased computation time). Depending on the 

parameters chosen, this step takes anywhere from less than a day to a few weeks. Afterwards, 

generation of the DEM is a straightforward process that can be completed in Agisoft itself or in a 

GIS. 

While the overall process of DEM extraction is almost entirely automated using Agisoft 

Photoscan, three additional notes of advice for future use will be included here. First, GCP 

identification in Agisoft can be quite difficult. Without prior aerial imagery of GCP locations, the 

best way to find GCPs is quickly scrolling through all the flight paths in a separate photo 

software to acquaint oneself with the flight path taken by the drone and the location of the GCPs 

during various flight lines. Second, incorrect identification of a GCP can degrade the quality of 

the final DEM and even prevent dense point cloud generation. To prevent this, users should keep 

track of which photos have georeferenced images and verify that they are correctly 

georeferenced multiple times. Lastly, processing runs especially for dense point cloud generation 

take a long time. Plan accordingly by double-checking user input to avoid errors and associated 

reruns and by understanding what each step should generate (i.e. verifying that part of the 

workflow is necessary for the project aims). With these in mind, it should be noted that Agisoft 

Photoscan is generally very user-friendly. 

Currently, there is no standard method to independently validate the accuracy of the SfM-

produced DEMs, and this should be a goal of future work. One method used by Woodget et al. 

(2015) was to independently survey over 500 validation points within their study reach and 

compare the surveyed values to the DEM produced values. Their mean error in areas without 

vegetation or other obstructions ranged from 0.004 to 0.111 meters. Their work simultaneously 

shows the potential for sub-meter scale DEM accuracy and persistent SfM-related systematic 
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error. One example of SfM system error is surface doming, where image accuracy deteriorates 

away from the DEM center (James and Robson, 2014; Pai, 2017; Woodget et al., 2015). Ongoing 

research is being conducted into minimizing this systematic error and should be an area of 

interest for future users of SfM-derived DEMs. 

 While the SfM technique is not free of all systematic error, there are still important 

applications of high-resolution DEMs that deserve attention. Geomorphologists interested in 

characterizing specific landform shapes likely comprise the most active users (Javernick et al., 

2014; Westoby et al., 2012; Woodget et al., 2015). For instance, Westoby et al. (2012) in an 

attempt to demonstrate the utility of the SfM approach for small-scale glacial landform 

reconstruction, used the approach to develop DEMs of a moraine complex in Nepal and a 

glacially sculpted bedrock ridge in Wales. More relevant to hydrologists, SfM-derived DEMs 

have been used to reconstruct reach-scale bathymetry with questionable success (Woodget et al., 

2015). Pai et al. (2017), in collaboration with the AirCTEMPS team used similar methods to our 

own to estimate water surface elevations. Their work paired both aerial and land-based data 

collection methods to estimate groundwater shortcutting near meander bends.  

For this work, DEMs have been created for the three study reaches (Fig. 3). These DEMs 

include Digital Terrain Models (DTMs) and Digital Surface Models (DSM). In theory, the 

former defines the bare land surface excluding surface objects like vegetation, while the latter 

includes objects like vegetation. Many of the research articles referenced previously do not 

clearly delineate between which model they are using. While Agisoft Photoscan allows one to 

export both surface and terrain models, the process the software uses for determining the 

difference is not clearly outlined in the manual. The process roughly described in the manual has 

the user define a cell size and the point within that cell with the lowest estimated elevations 
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becomes the estimate of that cell’s height, potentially a biased average. Default parameter values 

were chosen for this workflow such that cell size was defined with respect to the largest area 

within the model domain that does not contain any ground points. After performing this process 

to create a DSM and DTM for the upper RCC reach, a difference raster (DTM elevation 

subtracted from DSM elevation) was created to visualize the differences (Fig. 4). Qualitatively 

the process seems to work quite well; the difference raster in Fig. 4c shows a clear outline of the 

buildings and an outline of the dense near-stream vegetation. However, concerns still exist about 

the accuracy of these DEMs which will be discussed further. 

To analyze the accuracy of the DEMs, elevations for the downstream RCC DEMs were 

compared with elevations of the GCPs. Since these GCPs were used to construct the DEM, this 

is not an independent check on model accuracy. Theoretically these values should be the same; 

however, they were not (Table 2). The mean absolute error of the DSM was 0.21-m and 0.51-m 

for the DTM. The DSM performed poorly when GCPs were located near dense vegetation (TP3 

and P4) or on hillslopes (CP3 and CP4). The DTM performed poorly near dense vegetation 

(TP4, P15, P4, and TP3); however, in these areas, residuals were negative. One explanation for 

deteriorating DEM quality near dense vegetation is that cameras taken at different angles will 

estimate different elevation values depending on whether vegetation is within the camera 

viewpoint. Contradictory estimates will lead to deteriorating measurement quality. In general, the 

poor DTM quality relative to the DSM is likely due to point selection. Less points are being used 

to create the DTM and when multiple points are available, the DTM automatically picks the 

lowest point for a given area. This will favor outliers and potential measurement errors over a 

more weighted average approach. More work is needed to understand the optimal locations for 

GCPs.  
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Figure 3. DEMs for the three study reaches, derived from SfM image processing. (A) 

Downstream RCC DSM, (B) downstream RCC DTM, (C) Cherry Creek DSM, (D) Cherry creek 
DTM, (E) Upstream RCC DSM, and (F) upstream RCC DTM. 
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Figure 4. Upper Red Canyon Creek DEMs. a) Digital Surface Model (DSM) depicting land 
surface with buildings and vegetation. b) Digital Terrain Model (DTM) depicting bare land 

surface. c) Difference raster of DSM elevation minus DTM elevation. Negative values are 
related to DEMs not overlapping near raster edges. 

 
 

 
Table 2. Residuals between ground control points and Structure from Motion-derived DEMs.  

 

CP_ID Survey_elev(m) DSM_elev(m) DTM_elev(m) DSM_error(m) DTM_error(m) DSM_erSQR DTM_erSQR DSM_Abs(m) DTM_Abs(m)

TP4 1694.10 1694.11 1692.47 0.01 -1.63 0.00 2.66 0.01 1.63

P16 1694.71 1694.73 1694.61 0.02 -0.10 0.00 0.01 0.02 0.10

CP1 1698.44 1698.35 1698.34 -0.09 -0.10 0.01 0.01 0.09 0.10

P15 1694.53 1694.73 1692.76 0.20 -1.77 0.04 3.12 0.20 1.77

CP3 1700.93 1701.28 1701.29 0.35 0.36 0.12 0.13 0.35 0.36

P14 1695.04 1695.03 1695.02 -0.01 -0.02 0.00 0.00 0.01 0.02

P13 1694.87 1694.99 1694.98 0.12 0.11 0.01 0.01 0.12 0.11

CP4 1698.35 1698.69 1698.68 0.34 0.33 0.11 0.11 0.34 0.33

P5 1694.96 1695.07 1695.07 0.11 0.11 0.01 0.01 0.11 0.11

P4 1695.09 1695.64 1694.57 0.55 -0.52 0.31 0.27 0.55 0.52

CP2 1698.41 1698.53 1698.52 0.12 0.11 0.01 0.01 0.12 0.11

TP1 1695.56 1695.67 1695.67 0.11 0.11 0.01 0.01 0.11 0.11

TP3 1695.59 1696.25 1694.16 0.66 -1.43 0.43 2.05 0.66 1.43

0.19 -0.34 0.29 0.80 0.21 0.51

RMSEAVG Mean Abs Error
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Figure 5. Comparison of 2005 survey elevations with the DSM (left) and DTM (right). 
 
 

 
Figure 6. Residuals between the 2005 survey and the SfM DEMs interpolated using inverse-
distance-weighting method. Left panels show the terrain model and right panels show the surface 

model. Inset maps show the oxbow without survey points. 

 

To further interrogate DEM accuracy, residuals were calculated between the downstream 

RCC DEMs and a survey done in 2005 (Fig. 5). These survey points were taken mostly along the 

stream bed and near the stream. Since this survey occurred over a decade prior to the drone 
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flight, there is expected to be significant error related to erosion and deposition; however, this 

analysis is still valuable in comparing differences between the two DEMs. The DTM and DSM 

tended to align better at points of higher elevation, likely due to the paucity of vegetation in those 

areas. There was slightly more variation in DSM residuals than in DTM residuals (standard 

deviation of 0.857-m and 0.664-m, respectively). To visualize the spatial distribution of these 

residuals, the points were interpolated, through an inverse distance weighting method, over the 

model domain (Fig. 6). While there is bias in the interpolation, since survey points cluster in the 

stream, the highlighted oxbow area has a relatively even distribution of points. For both models, 

residuals tended to be higher in areas of dense vegetation. Both models fluctuate in accuracy 

along the stream reach (which will be discussed later). These residual maps in combination with 

the errors relative to the GCPs, highlight the imperfect nature of interpreting DTM as bare land 

surface and DSM as vegetation height. 

In addition to the DEMs, water surface elevation was derived for the downstream RCC 

reach. These profiles are valuable for beaver dam related studies because, if SfM imagery is 

collected with high enough frequency through time, they provide a way of directly relating how 

the areal extent of surface water changes with the construction and destruction of beaver dams. 

Hafen (2017) attempted to estimate these changes with 10-m resolution DEMs. The alternative 

approach of measuring changes directly with high-resolution SfM-derived DEMs may improve 

estimates of ponded water volume. 

Two methods were explored to determine best practices for extracting water surfaces 

with SfM-derived DEMs. One method followed the methodology of Pai et al. (2017); i.e. the 

thalweg was manually delineated in a GIS and the DEM was sampled along that transect at 0.5-

m intervals (Fig. 7). Results show significant amounts of noise, likely related to the difficulty of 
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consistently determining whether a given surface is the channel bed or water surface. The close 

coupling of DTM and DSM estimates, except at seemingly random locations, underscore this 

point. An alternative method was undertaken to filter out some of the noise from these DEMs 

(Fig. 8). These water surface elevation values were calculated by sampling a water surface-only 

version of the DEM (again, manually delineated) at 4-meter intervals with a circular 2-meter 

buffer at each point, some points with significant deviation in mean-values from adjacent points 

were removed. Noise still exists but the buffering method gives a more gradual and realistic 

decline in stream elevation.  

 

 
Figure 7. Water surface elevation profiles for the DEM and DTM of the downstream Red 

Canyon Creek stream reach for the thalweg of the creek (no data excluded).  
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Figure 8. Water surface elevation profile of the downstream Red Canyon Creek stream reach 
using the buffer method discussed in the text. 

 

It is unclear if SfM can differentiate between subsurface bedforms and water surface 

elevation, especially with visible water surface glare and/or vegetation casting shadows on to the 

water surface (Woodget et al., 2015; Pai et al., 2017). Woodget et al. (2015) used SfM to derive 

bedforms underneath the water surface; they found decreasing accuracy of elevation 

measurements with increasing water depth. In a similar vein, Pai et al. (2017) used SfM to derive 

water surface elevations but found significant noise along the reach profile. It is not clear 

whether these researchers used different methods to measure these different surfaces; however, it 

is clear that both their measurements had noise related to the feature they were not measuring. 

Those interested in sub 0.1-m-scale resolution water surface profiles should be cautious when 

interpreting SfM derived DEMs, especially at water depths above 0.5-m.  

 Ultimately, DEMs produced from SfM can be used to track landscape changes through 

time. Validation points like well casings and other immovable landscape features could provide 

an independent check on DEM accuracy. Beyond that, work done so far on water surface profiles 
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and streambed bathymetry is preliminary and should be interpreted as such in this author’s 

opinion. At the very least, these DEMs provide a model of what the near-stream land surface 

looks like.  

 

2.2 Normalized Difference Vegetation Index 

Multispectral aerial imagery can be used to calculate vegetation indices. These indices 

are useful in comparing how vegetation varies spatially or temporally. The most commonly used 

index is NDVI, which can be calculated from multispectral camera photos, like those obtained 

from a MicaSense Rededge camera. NDVI is a measure of the reflectance of red and near-

infrared wavelengths of the electromagnetic spectrum and can be used to compare the relative 

density and vigor of vegetation in an image (Tucker, 1979). Values close to 1.0 indicate high 

plant vigor and lower values close to or lower than 0.0 indicate the opposite. For the three study 

reaches, NDVI values for the August drone flight can be seen in Fig. 9. Other indices like NDRE 

exist but provide similar assessments as NDVI and so will not be discussed in this section.  

 NDVI has been used in hydrologic modeling studies typically to get at evapotranspiration 

rates and also to more generally track vegetation changes (Nichols, 2000; Carroll et al., 2015; 

Devitt et al., 2011; Huntington et al., 2017; Carroll et al., 2017). The index cannot provide a 

direct estimate of ET, instead it provides one of many inputs into an ET calculation. For instance, 

Nichols (2000) used the Modified Soil-Adjusted Vegetation Index (an index that includes NDVI 

as a term) to estimate plant cover. From there, an ET rate was calculated based on percent plant 

cover. Other uses include estimates of groundwater dependent ecosystems (Huntington et al., 

2016) and as an independent evaluation of depth to water estimates in groundwater flow models 

(Carroll et al., 2015; Carroll et al., 2016). The widespread availability of NDVI from Landsat 
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imagery make it useful for assessing regional vegetation differences and the ease of calculating it 

from sUAS-derived multispectral imagery make it useful for reach-scale assessment.  

 NDVI and similar vegetation indices are of particular use for BDA studies because of the 

importance land managers place in restoring near-stream vegetation. Theoretically, any small 

dam that lifts the near-stream water surface will help promote denser vegetation growth by 

increasing the availability of subsurface water. Additionally, more vegetation could help 

reintroduce beavers so that they either build more dams or manage existing BDAs. The land 

manager at Red Canyon planted willow trees, a source of food and dam building material for 

beaver, for those purposes. 

One downside in using NDVI is that it is a relative measure of plant vigor (Jensen, 2000). 

It is sensitive to factors such as cloud cover, plant shading, and image resolution (Jensen, 2000; 

Pai et al., 2017). Linking NDVI estimates to a more objective measure, like canopy height, could 

help in overcoming this downside. For instance, linking a difference raster (that is effectively 

estimating canopy height) with an overlapping map of NDVI (Fig. 10). Both maps highlight the 

dense near-stream vegetation (reeds and willows). However, where NDVI shows higher values 

in the floodplain due to grasses, the difference raster does not record the presence of the sparse 

grasses. Future work should move towards finding empirical relationships between these 

variables.  

High-resolution multispectral imagery has the potential to analyze the effects that 

changes in small surface water impoundments have on vegetation. The methods outlined above 

that combine vegetation indices derived from multispectral imagery with DEMs is one way to 

make use of both data products. There do seem to be nearly endless ways for estimating 
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important hydrologic variables like evapotranspiration with these indices, so careful validation of 

any empirical relationships is an important future step. 

 

 

 
Figure 9. Normalized Difference Vegetation Index (NDVI) maps for the three stream reaches. 
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Figure 10. Downstream RCC (A) NDVI and (B) a normalized difference raster. The difference 
between DSM and DTM models was normalized by the maximum elevation. Both maps have the 

same scale.  

 

 

3. Hydrologic Modeling 

3.1 Introduction 

How do beaver dam analogues regulate hydrologic processes along a stream reach? On 

the surface, this question is easily answered by looking at previous work studying hydrologic 

changes caused by natural beaver dams (e.g. Nyssen et al., 2011; Puttock et al., 2017; Majerova 

et al., 2015; Westbrook et al., 2006). However, while these studies provide a suite of hypotheses 

for how hydrologic processes will change with increased small damming, they do not get at the 
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management side of BDA stream restoration. That is, land managers can choose where to install 

BDAs and thus which areas get flooded. The more relevant question is then, does this added 

control actually matter for those concerned about volumetric water losses out of a managed 

watershed? Hydrologic research into BDAs can help answer that more pertinent question.  

 After initial data collection and processing, a hydrologic modeling approach was chosen 

to determine how specific BDA management strategies alter hydrologic processes in Red 

Canyon. Construction of a simplified conceptual hydrologic model was thought to be an initial 

step that could inform future data collection. Multiple different modeling approaches were 

explored. These included a groundwater flow-only approach with MODFLOW, a coupled 

surface water-groundwater approach with GSFLOW, and a separate coupled approach using 

HEC-RAS to calculate floodplain inundation. The next few sections will review what was 

learned from exploring these different approaches and provide guidance for future work. 

 

3.2 Reach Scale Modeling 

One of the main research questions related to BDA hydrologic changes is whether these 

structures promote groundwater storage during spring snowmelt and increase stream discharge 

during low flow periods, similar to natural beaver dams (Puttock et al., 2017; Majerova et al., 

2015). This concept can be framed as a groundwater question: how do seasonally induced 

surface water head changes alter annual groundwater storage? By using a groundwater flow 

model like the USGS’s Modular Groundwater Flow Model (MODFLOW) and altering boundary 

conditions, one could analyze the groundwater system response to surface water head changes. 

Initial exploration of this approach led to several conclusions regarding the applicability of a 
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groundwater flow modeling approach to simulating system response to BDA installation and 

subsequent stream changes. 

 Preliminary groundwater flow modeling was done for two steady state cases, representing 

the BDA and non-BDA cases (Fig. 11). A 2x2 meter grid with two model layers delineated from 

soil borings was chosen for cell discretization. The east/west bounding hillslopes were no-flow 

boundary conditions with specified flux in and out of the domain controlled by the hydraulic 

gradient across the central floodplain, similar to Lautz et al. (2006). For the stream boundary, 

constant head cell values were assigned to cells that intersected the location of the river. For the 

non-BDA case, constant head cell values were taken from a water surface profile derived from 

the SfM DEM. For the BDA case, the same downstream head value was chosen with 0.35-meter 

elevation jumps at each proposed BDA location.  

 

 
Figure 11. Preliminary groundwater flow domain at the RCC reach where BDAs installation is 
planned. Results show the water table without dam analogues (left) and with dam analogues 
(right). 
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 The above conceptualization was a highly simplified representation of the system, built to 

do exploratory modeling with MODFLOW, and determine model limitations for determining the 

effects of BDAs on local hydrology. Results from this model unsurprisingly showed increased 

water storage in the elevated water surface (BDA) domain (Fig. 11). The main assumption that 

this model run made was in designation of the stream channel boundary condition. Interactions 

between landscape morphology and dam height were largely being ignored; i.e., some aspects of 

the ponded water behind dams, a potential source of groundwater recharge (Westbrook et al., 

2006), were being ignored. The effect of that ignored water volume would be largely dependent 

on the areal extent of the surface water and the intersection of the new water surface elevation 

with the adjacent land surface; such that, the water table near an area like the ox-bow (see inset 

in Fig. 6) would be dramatically altered by the presence of a dam. This assumption was partly 

pragmatic, higher-resolution cell discretization (<1 m) was causing the MODFLOW Graphical 

User Interface (GUI) software to crash. But it was also due to potential software-incompatibility 

to the problem at hand. There is no straightforward method to integrate high resolution surface 

topography with the MODFLOW models using the MODFLOW GUI. 

 A likely reason for this software deficiency is the unlikelihood of having high-resolution 

(sub tens-of-cm scale) subsurface information to pair with surface information. The subsurface is 

largely unconstrained, except at discrete boreholes; there is an asymmetry between what we 

know at the surface and in the subsurface. However, it still should be possible to incorporate the 

best available surface water knowledge to aid in making subsurface predictions. A few related 

MODFLOW packages do this by simulating more complex surface water groundwater 

interactions. The most basic of these is the Streamflow Routing Package (Prudic et al., 2004). 

For this method, every cell that is intersected by the stream is assigned a reach ID (see Fig. 3 in 
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Prudic et al., 2004). The average depth of the reach is calculated at the reach midpoint using the 

streambed geometry and one of five separate depth equations. This depth is used along with the 

Darcy equation to calculate water loss between the stream and the aquifer. Of all the built-in 

head-dependent flux boundary packages, the streamflow routing package may be the best 

MODFLOW package for simulating complex streamflow and groundwater interactions like 

those caused by BDAs.  

The main limitation in using the streamflow routing package is that it still does not take 

into account complex stream geometries. For instance, it is not meant to be used for wide 

channel streams where grid cell resolution is smaller than stream width (Prudic et al., 2004; Ou 

et al., 2013). Again, the complex geometry, derived from SfM and needed to understand BDA 

ponding, would be ignored using this built-in MODFLOW boundary condition. An approach that 

considers both changing streamflow conditions and reach morphology is needed. 

To do this, multiple alternative modeling platforms were investigated. MODFLOW based 

platforms like DAFLOW and MODBRANCH (Jobson and Harbaugh, 1999; Swain and Wexler, 

1996), while more useful for complex groundwater-surface water studies than the Streamflow 

Routing Package (SFR), ultimately run into similar problems with representing high-resolution 

stream geometry. The most complete MODFLOW-based package found was one developed by 

Ou et al. (2013) that improves on the streamflow routing package. The package was developed to 

account for streambed heterogeneity and channels wider than grid cell-size, current limitations of 

the SFR package. Going forward this looks like a well-suited package for effectively and 

efficiently coupling MODFLOW groundwater simulations with a surface water body. Although 

this package has strong potential for this application, it is not publicly available and those 

interested in using it need to reach out to the developer listed in the paper. 
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An alternative approach to simulate a transient surface water flow system in three 

dimensions is HEC-RAS, the U.S. Army Corp of Engineers River Analysis System (U.S. Army 

Corps of Engineers, 2016). It is a software package that allows users to perform one-dimensional 

steady flow as well as one and two-dimensional unsteady flow and sediment transport 

simulations. The outputs of a 1-D steady flow model, 1-dimensional river profiles and 2-

dimensional cross section profiles, could theoretically be used to interpolate a changing 3-

dimensional surface water body. HEC-RAS has been used previously to simulate hyporheic 

exchange from in-stream geomorphic structures in conjunction with MODFLOW (Hester and 

Doyle, 2008; Endreny et al., 2011). In those studies, output from 1-dimensional steady state flow 

simulations were input as constant head values into a vertical 2-dimensional MODFLOW profile 

model. These studies provide a starting point for simulating BDA-induced flooding but are 

significantly simpler than simulations of 3-dimensional transient flow, the goal of this project. 

HEC-RAS is a particularly appealing modeling platform for this project because of its 

use of geometric data. With the ArcGIS add-in ‘HEC-geoRAS’ (U.S. Army Corps of Engineers, 

2011), one can use the sUAS derived DEMs to efficiently delineate cross-sections and stream 

channel profiles and import them into the main program (Fig. 12). Having been designed for 

simulating both natural and engineered flow systems (like culverts) it has built- in methods for 

adding BDA-like structures to stream profiles. The thorough documentation, plentiful on-line 

resources, and ubiquity in the civil engineering discipline ensure a rich support system.   

 One consideration to make when choosing to use HEC-RAS is whether to simulate 

steady state or transient flow. For scenario testing with the BDA and non-BDA groundwater 

flow models, a transient simulation would be preferred. However, in HEC-RAS, transient 

simulations tend to be more unstable and require additional parameters that may be poorly 
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defined for this system. When a test-run of a transient simulation was performed for this project, 

it crashed due to accumulated error on May 5th (the hydrograph had been gradually increasing 

due to spring snowmelt). It appears that incorrect delineation of the flood plain was causing 

water to pond up at the edges of each cross-section (Fig. 13). With a record of daily average 

flows, a steady state simulation for each day might be an alternative way to integrate HEC-RAS 

with groundwater flow models. That way, flow from the previous day could be used as the initial 

boundaries of upstream and downstream head, with a new daily flow increasing/decreasing the 

stream profile accordingly.  

 

 
Figure 12. Example screenshot of using the Geometric Data Editor in HEC-RAS for the 

downstream Red Canyon Creek reach. Inset shows the pink-highlighted downstream cross-
section from the left to the right bank, near the ox-bow. 
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Figure 13. Example of a poorly delineated HEC-RAS cross-section. In an unsteady flow run, 
water could not dissipate into the floodplain and unrealistically accumulated along the banks, 

causing model instability and subsequent abortion of the model run.  

 

After reviewing the literature on simulating surface water-groundwater interactions, an 

approach similar to Ou et al. (2013) may be the best way to incorporate surface water bodies into 

a MODFLOW model of BDAs. While HEC-RAS also seems to have a lot of potential, the dearth 

of literature using it for 3-dimensional groundwater flow models and the loose coupling between 

HEC-RAS and MODFLOW mean it may present significant challenges in application. Still 

either of these approaches have one additional, potentially important simplification; they ignore 

the unsaturated zone. Other modeling systems that incorporate additional flow processes, like 

unsaturated zone flow or quick flow may be of interest. Some of these modeling systems focus 

on the watershed scale and examine how land-use change (which BDA-installation effectively is) 

will alter hydrology on that scale, as demonstrated in the next section. 

 

3.3 Watershed Scale Modeling with GSFLOW 

GSFLOW is a coupled surface water and groundwater flow model that integrates the 

USGS Modular Groundwater Flow Model (MODFLOW) and the USGS Precipitation-Runoff 

Modeling System (PRMS) (Markstrom et al., 2008). GSFLOW was designed to incorporate land 
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surface and subsurface saturated and unsaturated zone flow. Primarily used to evaluate land-use 

and climate change, GSFLOW is potentially a powerful tool for understanding the interrelated 

watershed dynamics that result from beaver dams and BDAs. It utilizes numerically efficient 

algorithms that operate on a daily time step and has been used on models ranging from a few 

square kilometers to several thousand square kilometers. An example of GSFLOW input and a 

project framework for GSFLOW modeling of BDAs is shown in Fig. 14. 

 

 
Figure 14. Proposed model design workflow. Data types and sources are placed in the top 
bulleted lists. Model calibration and scenario testing is presented at the bottom. 
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Past studies using GSFLOW share many objectives with those of BDA stream restoration 

studies, either through their focus on ecohydrology or their focus on climate driven hydrologic 

change. Within the former category, Essaid and Hill (2014) studied how water transmission in 

montane meadows is altered after stream channel incision. Their use of GSFLOW allowed for a 

direct comparison of how different hydraulic pathways (e.g. streamflow, evapotranspiration, 

saturated storage, etc.) responded under different incision scenarios (see Fig. 10 in Essaid and 

Hill, 2014). Their modeling efforts revealed that stream incision’s effect on the subsurface 

system and its flow processes is analogous to groundwater withdrawal. Addressing both 

ecohydrology and hydrologic change, Carroll et al. (2016) evaluated the effect of both changing 

Pinyon-Juniper tree cover and projected mid-21st-century temperature changes on the Porter 

Canyon Experimental Watershed in central Nevada. They compared the differences between four 

different vegetation-climate simulations. Results indicated that small-scale (<0.5 km2) removal 

of Pinyon-Juniper tree cover led to “undetectable changes in watershed-scale annual [water] 

yield estimates.” This information is invaluable for land-managers interested in the hydrologic 

effect of specific management strategies. Lastly, Hunt et al. (2016) used GSFLOW paired with a 

stream temperature model to evaluate how a Wisconsin watershed would respond to future 

climate change scenarios. These three studies focused on land-use change and/or climate and 

used the GSFLOW modeling framework to forecast hydrologic changes. All three studies 

highlight the value of modeling all components of the hydrologic cycle and the potential of 

coupled surface water-groundwater models to evaluate the impacts of BDAs.  

GSFLOW is well-suited for using remote sensing to aid with the development and 

calibration of hydrologic models. Many of the data products required to develop a conceptual 

model of a watershed in GSFLOW can be derived from remote sensing. For example, the DEMs 
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and landcover data required to delineate hydrologic response units (smallest spatial unit of a 

GSFLOW model with shared physical characteristics) can be derived from remotely sensed data. 

The U.S. governments LANDFIRE dataset is one such data repository for this type of 

information. In addition, previous GSFLOW studies have used remotely sensed data products as 

independent checks on model accuracy. Carroll et al. (2016) used average monthly NDVI values 

from Landsat imagery as an independent check on modeled estimates of depth to water (see Fig. 

8 in Carroll et al., 2016) and found statistically significant correlation between these values. 

While this application is not wholly satisfying as a quantitative assessment of model 

performance, it does provide an additional metric for model validation. Tian et al. (2015) took a 

more nuanced approach, using an ET model based on remotely sensed MODIS and Landsat TM 

data products to cross-check their model results. The rapid development of remotely sensed data 

acquisition technologies in recent years is expected to lead to greater use of these data products 

in the future (Tian et al., 2015). 

While GSFLOW provides a potentially novel way to estimate how land-use changes will 

affect watershed-scale hydrology, there are still a number of complicating factors with 

incorporating BDAs into this modeling system. Primary among these is the scale of potential 

BDA effects. Preliminary efforts made by Hafen (2017) implementing BDAs in a watershed 

scale groundwater flow model showed that even with a watershed at 100% dam capacity 

(defined as the density of dams that any given stream reach can support, based on available 

vegetation, geomorphic characteristics, and hydrology), damming would only be able to account 

for 3% of the water lost from snowpack in a warming climate. BDAs and natural beaver dams 

cannot be expected to be vast stores of water relative to the entire watershed, but tend to have 

greater impact on riparian ecosystems (Hafen, 2017; Majerova et al., 2015; Nyssen et al., 2011; 
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Puttock et al., 2017). With all the potential uncertainty involved in a watershed scale model, the 

small-scale effects of BDAs may be masked with such a complex modeling system like 

GSFLOW. Additional difficulties are added with representing high-resolution sUAS-derived 

imagery in a regional watershed scale model. However, as shown by other studies looking at 

smaller-scale land-use changes, if scale problems can be resolved and the appropriate data 

products procured, a GSFLOW model would add significantly to the literature on BDA stream 

restoration.  

 

3.4 Concluding Remarks 

A number of complicating factors exist in modeling BDA-induced groundwater storage 

using groundwater flow modeling. Possibly the most important is accurate linkage of surface 

water body shape to subsurface finite difference cells in a groundwater model. Once this problem 

is overcome, either by using HEC-RAS or some other surface water boundary condition 

package, subsurface groundwater storage could hypothetically be calculated on an annual 

timescale. From there, other interesting hydrologic process interactions could be studied. 

  

 

4. Project Synthesis 

While the goal of creating a well-calibrated, fully-functioning groundwater flow model to study 

beaver dam analogues along Red Canyon Creek with high-resolution aerial photography was not 

accomplished, much was learned from initial investigation of the utility and practicality of a 

number of approaches. The findings and recommendations presented in this report lay the 

foundation for continuation of BDA hydrologic modeling. In particular, the guidance presented 
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here should facilitate incorporation of Structure-from-Motion photogrammetry data products into 

hydrologic models.  

In conclusion, while high-resolution aerial photography is a novel data acquisition 

technique with lots of potential, caution should be taking in unnecessarily relying on its use when 

other parts of a model are not well-constrained. And while modeling BDAs has many 

difficulties, as outlined above (though not insurmountable), one of the unexamined ones in this 

report is the lack of field data for how flow changes through a BDA. With those cautions in 

mind, a modeling framework that provides input on how best to install BDAs for achieving 

hydrologic goals, would be a valuable research goal of future work. 
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