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Abstract 

This paper assesses the role of intra-sectoral spillovers in total factor productivity across 

Chinese producers in the chemical industry. We use a rich panel data-set of 12,552 firms observed 

over the period 2004-2006 and model output by the firm as a function of skilled and unskilled 

labor, capital, materials, and total factor productivity, which is broadly defined. The latter is a 

composite of observable factors such as export market participation, foreign as well as public 

ownership, the extent of accumulated intangible assets, and unobservable total factor productivity. 

Despite the richness of our data-set, it suffers from the lack of time variation in the number of 

skilled workers as well as in the variable indicating public ownership. We introduce spatial 

spillovers in total factor productivity through contextual effects of observable variables as well as 

spatial dependence of the disturbances. We extend the Hausman and Taylor (1981) estimator to 

account for spatial correlation in the error term. This approach permits estimating the effect of 

time-invariant variables which are wiped out by the fixed effects estimator. While the original 

Hausman and Taylor (1981) estimator assumes homoskedastic error components, we provide 

spatial variants that allow for both homoskedasticity and heteroskedasticity. Monte Carlo results 

show, that our estimation procedure performs well in small samples. We find evidence of positive 

spillovers across chemical manufacturers and a large and significant detrimental effect of public 

ownership on total factor productivity. 

JEL No. C23, C31, D24, L65 

Keywords: Technology Spillovers, Spatial econometrics, Panel data econometrics, Firm-level 
productivity, Chinese firms 
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1 Introduction 

There is now broad firm-level evidence suggesting that total factor productivity (TFP) 
is contagious and prone to spillovers which are geographically bounded. Sources of such 
spillovers are technology gaps between firms, research and development, and access to 
knowledge through exporting and foreign ownership. Evidence from Europe includes 
Smarzynska Javorcik (2004) and Lööf (2007), to mention a few. Evidence from the 
United States includes Keller and Yeaple (2009) and Bloom, Schankerman, and van Reenen 
(2007), to mention a few. For China, see Hu et al. (2005), Chen and Swenson (2006), and 
Blonigen and Ma (2007), to mention a few examples. 

Important transmission channels of TFP spillovers are worker flows, cooperation in 
research and development across firms, and other (not directly measurable but geograph-
ically bounded) forms of dissemination of knowledge and productivity.1 

The goal of this paper is to assess the presence and relative strength of geographically 
bound TFP spillovers which originate in observable and unobservable determinants of 
TFP. The panel data utilized in this study are based on the universe of all firms in 
China’s chemical industry with a turnover exceeding about 700,000 US dollars over the 
period 2004–2006. The data-set covers 12,552 firms and 37,656 observations. Our focus 
on the period 2004–2006 is dictated by the quality of data in recent periods and the 
availability of data on skilled workers. The chemical sector is relatively important in 
many countries of transition such as China (UNEP Chemicals Branch, 2009; it accounts 
for about 8 percent of employment of all Chinese manufacturing firms). The average firm 
in that sector is relatively large (about 257 employees). Although the number of publicly-
owned firms account for a little more than 5 percent of all firms in that sector in China 
over 2004–2006, they employ on average 793 employees as compared to 166 employees for 
domestically-owned firms; see also Szamosszegi and Kyle (2011). 

One main goal of the study is to disentangle the direct role of production factors 
(skilled and unskilled labor, capital, and material inputs) on the one hand from observ-
able and unobservable determinants of TFP defined in a broad sense. We account for 
four observable shifters of TFP: export status, foreign ownership, the extent of intangible 
assets accumulated by a firm, and public ownership status. Export market contact has 
been found to affect TFP through competitive pressure as well as learning (see Baldwin 
and Gu, 2006; and Greenaway and Kneller, 2007). Foreign ownership of firms in devel-
oping countries and economies in transition offers access to better technologies of foreign 
subsidiaries and even of other firms in host countries. The beneficiaries include input 
suppliers (see Smarzynska Javorcik, 2004) and firms which receive worker flows from more 
productive, foreign-owned units (see Görg and Strobl, 2005). For the foreign subsidiaries 
themselves, foreign ownership may also lead to specialization on less-advanced production 
stages. Hence, foreign ownership may impede knowledge transfer, if foreign owners fear 
the loss of intellectual property through involuntary dissemination of knowledge to other 
firms (see Puttitanun, 2006), or if foreign entities do not have the absorptive capacity 
to utilize more advanced technologies available from the parent (see Keller, 2004). The 
corporate finance literature suggests that the degree of asset (in)tangibility is an impor-
tant factor in determining access to external credit, opportunities to finance investments 
with little collateral value such as research and development (R&D), in sustaining growth, 

1As pointed out by Smarzynska Javorcik (2004) and, in particular, by Bloom, Schankerman, and van 
Reenen (2007), what is dubbed technology spillovers in empirical work consists of two main components: 
technology transmission in a narrow sense and interdependence across firms by market structure. Empirical 
work seldomly disentangles these components and should therefore speak of spillovers in a broad sense. 
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especially, of young companies (Himmelberg and Petersen, 1994; Hall and Lerner, 2010), 
and in facilitating knowledge absorption. Finally, public ownership is commonly regarded 
as a stepping stone to technological advancement due to the lack of competitive pressure 
(see González-Páramo and Hernández Cos, 2005). 

Apart from these shifters, we allow TFP for a particular firm to depend spatially on 
other firms within a geographical neighborhood. In this paper, we refer to the latter 
broadly as TFP spillovers. More specifically, we consider immediate effects (also referred 
to as local spillovers or contextual effects) of neighboring firms’ observable TFP charac-
teristics on a given firm and, at the same time, immediate as well as indirect effects (also 
referred to as global spillovers) from neighboring firms’ unobservable TFP characteristics 
on a given firm. We model the extent of such spillovers to decline with distance. Ac-
cordingly, we refer to them as spatial spillovers. This is done by using information on a 
firm’s geographical location as available from the data (by way of a six-digit ZIP code). 
However, the presence of time-invariant variables – such as skilled labor input and public 
ownership – and their possible correlation with unobservable firm-specific effects require 
us to adopt a Hausman and Taylor (1981) estimation approach, hereafter denoted by HT. 
Unlike the fixed effects estimator, the HT estimator does not wipe out the time-invariant 
variables. Instead, it uses the between variation of the time-varying exogenous variables to 
instrument for endogenous time-invariant regressors. Our estimation methodology mod-
ifies the HT methodology to allow for spatial correlation in the error term. Moreover, 
we derive and propose homoskedastic as well as heteroskedasticity-robust variants of the 
spatial HT estimator (the original, non-spatial HT model assumes homoskedasticity). We 
provide evidence based on Monte Carlo simulations that both the homoskedastic and the 
heteroskedastic spatial HT estimators perform well in small samples. 

Our empirical findings can be summarized as follows. For China’s chemical industry, 
a high foreign ownership ratio and export-market participation are statistically significant 
and lead to a positive shift in TFP. Second, public ownership is associated with dramati-
cally lower TFP than private ownership. Clearly, publicly-owned firms are relatively large 
(in terms of assets and employees), they account for a significant share of the industry’s 
output, but their output is relatively small once controlling for their factor usage. We 
estimate that the average publicly-owned firm’s TFP is about 84 percent lower than the 
average privately-owned firm’s TFP. The data suggest that shocks in TFP are contagious 
within the industry. Hence, negative TFP shocks do not only affect firms that are hit by 
those shocks but also their geographic neighbors. Using inverse geographical distance to 
parameterize the spatial weights matrix across firms, we estimate the spatial dependence 
parameter at about 0.3 to 0.5. This parameter is statistically significant at 1 percent and 
is estimated on a spatial weights matrix which is full and of size 12, 552 × 12, 552. One 
of the merits of the generalized moments approach is that it can cope with spatial prob-
lems of this size. We find that restricting the scope of spillovers to firms within a smaller 
neighborhood – say, within a radius of 60, 100, or 200 miles – does not change the results 
much. 

The remainder of the paper is organized as follows. The next section introduces the 
econometric model and the spatial Hausman and Taylor (1981) approach (SHT), where 
we distinguish between homoskedastic and heteroskedastic errors. That section also puts 
the SHT estimator in context with its spatial random effects (SRE) and spatial fixed 
effects (SFE) counterparts. Section 3 provides some Monte Carlo experiments on the 
small sample performance of the estimator. Section 4 summarizes the empirical results 
for spatial (cum spillover) translog models. The last section concludes with a summary of 
the key findings. 
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2 Econometric model 

In this section, we specify an econometric error components model with spatially auto-
correlated disturbances and right-hand side variables that are correlated with the time-
invariant firm effects. We allow for two different error term structures. We start with 
a purely homoskedastic world as in Hausman and Taylor (1981). Since this assumption 
might be too restrictive in practice, we alternatively allow the idiosyncratic error compo-
nent to be heteroskedastic. The next subsection describes the econometric model and the 
notation. Then we outline general assumptions, and afterwards describe the estimation 
procedures for both scenarios. 

2.1 Model outline 

Consider a large cross section of N spatial units (firms), which are observed repeatedly 
across a small number of T time periods.2 We use the subscript i = 1, ..., N to refer to 
individual units, and t = 1, ..., T to refer to time periods. We specify a Cliff-Ord-type 
spatial model to describe the interaction between firms at period t as follows: 

yt = Xtβ + Zθ + ut = Atδ + ut, ut = ρWut + εt, εt = µ + νt (1) � �0
where At = [Xt, Z], and δ = β0 , θ0 . Here, yt = (y1t, ..., yNt)

0 is an N × 1 vector of 
observations on the dependent variable at time t, Xt is an N × K matrix of time-varying 
regressors for period t, Z is an N × R matrix of time-invariant regressors.3 Some of the 
regressors in At will be allowed to be correlated with µ. W is an N × N observed non-
stochastic weights matrix whose properties will be specified below. ut = (u1t, ..., uNt)

0 is 
the N × 1 vector of regression disturbances, and εt = (ε1t, ..., εNt)

0 is an N × 1 vector of 
innovations which consist of a time-invariant error component µ = (µ1, ..., µN )

0 and a time-
varying idiosyncratic error component νt = (ν1t, ..., νNt)

0 . The vector Wut represents a 
spatial lag of ut. The scalar ρ denotes the spatial autoregressive parameter, while β and 
θ are K × 1 and R × 1 vectors of regression parameters.4 

In matrix form, we sort the data first by time t (the slow running index) and then by 
firms i (the fast running index) as follows: 

y = Xβ + (ιT ⊗ Z)θ + u = Aδ + u, u = ρ(IT ⊗ W)u + ε, ε = Zµµ + ν, (2) 

where ιT denotes a T × 1 vector of ones and IT denotes a T × T identity matrix. Zµ = 
ιT ⊗IN is an NT ×N selector matrix of ones and zeroes. For subsequent use, we define the 
(between) projection matrix Q1 = JT ⊗ IN , where JT ≡ T −1JT . The matrix JT = ιT ι

0 
T 

is a T × T matrix with unitary elements. The sweeping (within transformation) matrix is 
given Q0 = ITN − Q1 (see Baltagi, 2008), where IN and ITN denote identity matrices of 
dimension N × N and TN × TN , respectively. 

2The data available in this study do not permit distinguishing between common factors and spatial 
correlation in a more narrow sense. The former are in the limelight of a recent literature in theoretical 
econometrics which focuses on data situations with a relatively large number of time periods (see Pesaran, 
2006; Pesaran and Tosetti, 2011; or Pesaran et al., 2013; for a few recent examples of such research). 

3In terms of the jargon adopted in the introduction, we will consider local TFP spillovers (or contextual 
effects) to be part of Atδ, while global TFP spillovers are reflected by the presence of ρWut in (1). 

4Kapoor et al. (2007) use the subscript N to indicate that the elements of all data vectors and matrices 
as well as of all parameters may depend on the cross section sample size N . We skip this subscript to 
avoid index cluttering. 
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2.2 General assumptions 

This subsection contains assumptions that will be maintained throughout the whole paper. 

Assumption 1 (Assumptions on W and ρ) 
(i) The matrix W is rowsum normalized. All diagonal elements of W are zero. (ii) The 
admissible parameter space for ρ is ρ ∈ (−1, 1). (iii) The matrix IN − ρW is nonsingular 
for ρ ∈ (−1, 1). (iv) The row and column sums of W, (IN − ρW) and (IN − ρW)−1 are 
bounded uniformly in absolute value. 

Assumption 1 is a standard normalization of W which ensures that the shocks in 
the interdependent system have finite consequences, and it allows the researcher to infer 
directly from the estimate of ρ whether this is the case. 

Assumption 2 (Covariates) 
(i) The covariates A have full column rank and their elements are bounded uniformly 
in absolute value. (ii) All columns of A are assumed to be uncorrelated with ν. (iii) 
limN→∞(NT )−1X0Q0X exists, is finite and nonsingular. 

Assumption 2 summarizes some basic assumptions on all covariates. 

Assumption 3 (Hausman and Taylor Assumptions) 
(i) The regressor matrices are decomposed into X = [XU , XC ] and Z = [ZU , ZC ], where 
Xf is NT × Kf and Zf is N × Rf for f = U, C. In Hausman and Taylor’s (1981) 
notation, [XC , ιT ⊗ ZC ] are correlated with µ, whereas HI = [XU , ιT ⊗ ZU ] are not. (ii) 
The Hausman and Taylor (1981) order condition for identification, i.e., RC ≤ KU holds 
throughout our analysis. 

Assumption 3 is in line with the decomposition of the covariates in Hausman and Taylor 

(1981). We have E(X0Q0u) = 0, E(X0 U u) = 0, E((ιT ⊗ZU )
0u) = 0, but E((ιT ⊗ZC )

0u) 6= 
0 and E(X0Q1u) 6 0 due to E(X0 6 0.= C u) = Thus the Hausman and Taylor instrument 
set5 is given by 

HHT = [Q0X, Q1XU , ιT ⊗ ZU ] = [Q0XC , HI ] (3) 

where HI is the instrument set used for the initial estimator. The following assumptions 
hold for the instrument set HHT . 

Assumption 4 (Instrument set HHT ) 
(i) The instruments are uncorrelated with the error ε. (ii) The matrix HHT has full 
column rank. (iii) The elements of HHT are uniformly bounded in absolute value. (iv) 
limN→∞[(NT )−1H0 HI ] exists, is finite and nonsingular. (v) p limN→∞[(NT )−1H0 Z] ex-I I 
ists, is finite and has full column rank. 

Assumption 4 summarizes standard assumptions that need to hold in instrumental 
variable procedures. Parts (iv) and (v) are needed for the initial Hausman and Taylor 
estimator described in the next subsection. Furthermore we will make use of the following 
transformation of (3) H∗ = [IT ⊗ (IN − ρW)][Q0X, Q1XU , ZU ], and use the following SHT 
assumption, where we suppress the subindex SHT for the sake of brevity 

5Alternative sets of instruments to HHT can be formulated in the spirit of Amemiya and MaCurdy 
(1986) (HAM ) and Breusch et al. (1989) (HBM S ): H ∗ = [Q0X, X0 

UT , ιT ⊗ ZU ], HSBM S 
∗ = AM U1, ..., X

0 

[Q0X, Q0X
0 
U 1, ..., Q0XUT 

0 , Q0X
0 

CT , Q1XU , ιT Ut = XUt ⊗ ιT is a TN × KUC1, ..., Q0X
0 ⊗ ZU ], where X0 

matrix for all t = 1, ..., T . 
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Assumption 5 (Instrument set H∗) 
(i) H∗ has full column rank. (ii) The elements of H∗ are uniformly bounded in absolute 
value. 

Note that Assumption 5 can be viewed as a corrollary of Assumptions 1 and 4, and it 
is mentioned here merely for completeness. 

2.3 SHT estimation under homoskedasticity 

2.3.1 Assumptions 

We follow the standard assumptions given in Kapoor et al. (2007) for the random effects 
spatial panel model under homoskedasticity. 

Assumption 6 (Assumptions on the error components) 
(i) For the idiosnycratic error components we have νit ∼ i.i.d.(0, σν 

2), where 0 < σ2 < ∞ν 
and E|vit|4+η < ∞ for some η > 0. (ii) For the unit-specific error components we have 
µi ∼ i.i.d.(0, σ2 ), where 0 < σ2 < bµ < ∞, and E|µi|4+η < ∞ for some η > 0. (iii) µiµ µ 
and νit are independent of each other for all i and t. 

Assumption 6 implies the following covariance of εit and εjs: Cov(εitεjs) = σµ 
2 + σν 

2 

for i = j and t = s; Cov(εitεjs) = σ2 for i = j and t =6 s; and Cov(εitεjs) = 0 otherwise, µ 
see Baltagi (2008). 

2.3.2 Estimation procedure 

STEP 1 - Estimate β: From the assumptions of our model, one can estimate β con-
sistently using the fixed effects estimator βbFE = (X0Q0X)

−1X0Q0y. This provides a 
consistent estimate of the residuals d ≡ (ιT ⊗ Z)θ + u given by db ≡ y − XβbFE . 

STEP 2 - Estimate θ: Now one can retrieve a consistent estimate θ which was wiped 
out by the fixed effects estimator. First, we average the residuals in db over time by b bcomputing Q1d. Then, we run 2SLS of Q1d on Z using HI = [XU , ιT ⊗ ZU ] as our 
instruments. This is the two-step initial Hausman and Taylor estimator and it is given 
by θb2SLS = ((ιT ⊗ Z)0P(ιT ⊗ Z))−1(ιT ⊗ Z)0PQ1db, where P = HI (HI 

0 HI )
−1HI 

0 is the 
projection matrix on the matrix of instruments HI . This estimator is consistent (see 
Hausman and Taylor, 1981), but it is not efficient, since it ignores the error component 
structure of the data. However the initial estimator yields consistent estimates of u given 
by ub = y − XβbFE − (ιT ⊗ Z)θb2SLS , which will be used in the subsequent procedure to 
account for the error component structure of the data in order to improve the efficiency 
of the estimator. 

,STEP 3 - Estimate ρ, σν 
2, and σµ 

2 : Using these ub s we can directly apply the moment 
conditions in Kapoor et al. (2007) to obtain estimates of ρ and the variance components 

6σν 
2 and σ2 . This is true even though the columns in A are correlated with u (see Kelejian µ

and Prucha, 2004; Drukker et al., 2013; for a set of assumptions accommodating the 

6Note that this is different from the pooled OLS residuals used in Kapoor et al. (2007). In the Hausman 
and Taylor (1981) case, the OLS residuals would lead to inconsistent estimates of u due to the correlation 
of [XC , ιT ⊗ ZC ] with µ. 
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endogenous regressors in A). The six moment conditions are given by � � � � � � 
1 1 1 1 

E ε0Q0ε = σν 
2 , E ε0Q0ε = σ2 tr(W0W), E ε0Q0ε = 0,νN(T − 1) N(T − 1) N N(T − 1)� � � � � � 

1 1 1 1 
E ε0Q1ε = σ1

2 , E ε0Q1ε = σ2 tr(W0W), E ε0Q1ε = 0,1N N N N 

where ε ≡ (IT ⊗ W)ε and σ1
2 = Tσµ 

2 + σν 
2 . These can be rewritten in terms of u using 

the fact that ε = (IT ⊗ [IN − ρW])u = u − ρu whereby u ≡ (IT ⊗ W)u and ε ≡ 
(IT ⊗ W)(IT ⊗ [IN − ρW])u = u − ρu with u ≡ (IT ⊗ W)u. 

The resulting moment conditions are then stacked and solved as a solution to the 
system of six equations in three unknowns. More formally, γ − Γα = 0, where � �01 1 1 1 1 1 
γ = u 0Q0u, u 0Q0u, u 0Q0u, u 0Q1u, u 0Q1u, u 0Q1u ,

N(T − 1) N(T − 1) N(T − 1) N N N � �0 
α = ρ, ρ2, σν 

2, σ2 ,1⎛ ⎞ 
2 −1 u0

0Q0u u0
0Q0u 1 0N(T2−1) N(−T 1−1) 1⎜ u Q0u u Q0u trW0W 0 ⎟ ⎜ 1 N(T −1) N(−T 1−1) N ⎟(u0Q0u + u0Q0u) u0Q0u 0 0⎜ −1Γ = N(T −1) 2 N(T −1) ⎟ . (4)⎝ u00Q1u u00Q1u 0 1 ⎠N2 −N1 1 u Q1u u Q1u 0 trW0W1 N −N1 N(u0Q1u + u0Q1u) u0Q1u 0 0N N 

The matrix Γ can be partitioned into two parts, where Γ0 corresponds to the first three 
lines of and Γ1 to the last three lines of Γ. This partition will be used in the subsequent 
GM procedure. Furthermore, the next assumption is required for consistency of the GM 
estimator. 

Assumption 7 The smallest eigenvalues of Γ00Γ0 and Γ10Γ1 are bounded uniformly away 
from zero i.e., λmin(Γ

i0Γi) ≥ λ∗ > 0 for i = 0, 1 where λ∗ may depend on ρ, σν , and σ1. 

For estimation, u, u, and u are replaced by their corresponding consistent estimates 
û, û, and û, yielding γ̂ and Γ̂. As in Kapoor et al. (2007): �� �0 � �� 

α̂ = (ρ̂, σ̂ν , σ̂1) = arg min γ̂ − Γ̂α̂ Ĉ γ̂ − Γ̂α̂ , (5) 
σν 
2 ∈Sν ,σ2∈S1,ρ∈Sρ1 

where Sν , S1, and Sρ denote the respective admissible parameter spaces of σν 
2 , σ1

2, and ρ, 
and Ĉ denotes a suitable estimate of the true weighting matrix of the moment vector, C. 
In a data-set which is as large as ours and involves a matrix W of size 12, 552 × 12, 552, 
it is advisable to solve the moment conditions in two parts. First, solve the three moment 
conditions involving Q0 (using a moments weighting matrix I3) for ρ̃ and σ̃ν 

2, and subse-
quently the remaining moment conditions or just one of them for σ̃1

2 . These estimates are 
consistent according to Theorem 1 in Kapoor et al. (2007). With these estimates at hand, 
calculate the weighting matrix matrix  ̂� � 

ˆ 1 σ̃4 0  = T −1 ν ⊗ I3. (6)0 σ̃1
4 

ˆ ˆwhich has bounded elements by Assumption 6, as required. Replacing C with   and 
applying nonlinear least squares to (5) using all six moment conditions yields ρ̂, σ̂2 andν 
σ̂1
2, which are consistent according to Theorem 3 in Kapoor et al. (2007). 
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STEP 4 - The spatial Hausman-Taylor estimator: Let us denote the variance-
covariance matrices of u, µ, ν and ε, by Ωu, Ωµ, Ων and Ωε, respectively. By Assumption 
6 we have 

Ωµ = σµ
2 (JT ⊗ IN ), Ων = σν 

2ITN , Ωε = σµ
2 (JT ⊗ IN ) + σν 

2ITN , and (7) 

Ωu = [IT ⊗ (IN − ρW)]−1[σµ
2 (JT ⊗ IN ) + σν 

2ITN ][IT ⊗ (IN − ρW)]−1 , (8) 

The next transformations aim at filtering out these effects. Premultiplying the model 
by [IT ⊗ (IN − ρW)] leads to spatially Cochrane-Orcutt-transformed variables. These 
variables are denoted by one star as a superscript, e.g. 

∗ y = [IT ⊗ (IN − ρW)]y, A ∗ = [IT ⊗ (IN − ρW)]A. (9) 

−1/2
Next, we apply the Fuller and Battese transformation which uses the fact that Ωε = 
σ−1Q0 + σ−1Q1. We denote such variables by two stars as a superscript e.g. ν 1 

A ∗∗ = Ω−1/2A ∗ ∗∗ = Ω−1/2 ∗ = A ∗∗ δ + u ∗∗ , y y . (10)ε ε 

⊗ Z∗∗ in A∗∗ ∗∗Since ιT and X∗∗ are still correlated with µ in u , we still need an in-C C 
strumental variable procedure to estimate the double-starred transformed model in (10), 
where the instruments are transformed in the same way as the other variables. Thus the 
Hausman and Taylor (1981) transformed set of instruments and its projection matrix are 
given by: 

H ∗∗ = Ω−1/2H ∗ = Ω−1/2 P ∗∗ = H ∗∗ [IT ⊗(IN −ρW)]HHT , SHT (H
∗∗0 

SHT )
−1H∗∗0 SHT ε SHT ε SHT SHT H ∗∗ 

SHT . 
(11) 

with HHT defined in (3). 

We maintain the following assumptions on the instrument set H∗ to derive theSHT 
asymptotic properties of our estimator. However we do not index H∗ by SHT to avoid 
index cluttering. 

Assumption 8 (Additional assumptions on the instrument set H∗ under homoskedastic-
ity) 
(i) The matrices M0 = limN→∞[(NT )−1H∗0Q0H

∗], M1 = limN→∞[(NT )−1H∗0Q1H
∗]H∗H∗ H∗H∗ 

exist, are finite and nonsingular. (ii) The matrices M0 = p limN→∞[(NT )−1A∗0Q0H
∗],A∗H∗ 

M1 
A∗H∗ = p limN→∞[(NT )−1A∗0Q1H

∗] exist, are finite and have full column rank. (iii) 
M0 M1 M0 M1 M00 The smallest eigenvalue of (σν 

−2 
A∗H∗ +σ1 

−2 
A∗H∗ )(σν 

−2 
H∗H∗ +σ1 

−2 
H∗H∗ )−1(σν 

−2 
A∗H∗ + 

σ−2M10 
A∗H∗ ) is uniformly bounded away from zero. 1 

The spatial Hausman-Taylor estimator (SHT) is then defined as a 2SLS estimator 
∗∗of y on A∗∗ with the matrix of instruments H∗∗ This estimator removes the error SHT . 

component structure as well as the spatial autocorrelation from the process in (2). The 
true GLS estimator of δ is b P ∗∗ P ∗∗ ∗∗ δSHT = (A ∗∗

0 
SHT A ∗∗ )−1A ∗∗

0 
SHT y . (12) 

The corresponding feasible GLS estimator, which uses the estimators ρ̂, σ̂2 and σ̂2 fromν 1 
Step 3 for transforming the model in (10) as well as the instrument set and the projection 
matrix in (11), is defined as 

e A ∗∗
0 
Pe∗∗ Ae ∗∗ )−1Ae ∗∗0 P̃∗∗ ∗∗b

= ( e y . (13)δSHT SHT SHT e
Transformations based on the estimated error components are denoted bye. The distribu-
tion of the this estimator is given in the following theorem. 
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Theorem 1 Given that Assumptions 1 – 8 hold. Then b de(NT )1/2(δSHT − δ) → N(0, Ψ) as N →∞ 

with 

Ψ = F(σ−2MH
0 
∗H∗ + σ−2MH

1 
∗H∗ )F0 ν 1 

F = {(σ−2M0 + σ−2M1 
A∗H∗ )(σ−2M0 + σ−2M1 

H∗H∗ )−1(σ−2MA
00
∗H∗ + σ−2MA

10
∗H∗ )}−1 

ν A∗H∗ 1 ν H∗H∗ 1 ν 1 

(σ−2M0 + σ−2M1 M0 + σ−2M1 
ν A∗H∗ 1 A∗H∗ )(σν 

−2 
H∗H∗ 1 H∗H∗ )−1 

(ii) And 
peΨ − Ψ → 0 as N →∞ 

with e e H∗0 e e F0Ψ = F((NT )−1 e Ω−1H ∗ )eε 
−1 −1 −1 −1 e A∗0 e e H∗0 e e H∗0 e e A∗0 e eH ∗ F = {(NT )−1 e Ω H ∗ ((NT )−1 e Ω H ∗ )−1(NT )−1 e Ω A ∗ }−1(NT )−1 e Ωε ε ε ε 

H∗0 e−1 e((NT )−1 e Ω H ∗ )−1 
ε 

êThe first part of the theorem shows that the feasible GLS estimator δSHT is consistent 
with the asymptotic distribution stated in part (i). Part (ii) shows that the variance-ecovariance matrix can be estimated consistently by Ψ. The proof the theorem will be 
given in the Appendix. 

Our procedure can be contrasted with a spatial fixed effects (SFE) estimator (see Mutl 
and Pfaffermayr, 2011) defined as 

∗ βbSF E = (X
∗0Q0X ∗ )−1X∗0Q0y . (14) 

This corresponds to a fixed effects estimator, which is applied to the spatially Cochrane-
Orcutt-transformed model. This has an advantage over the standard fixed effects estimator 
in that it takes into account the spatial correlation. However, it shares the same disad-
vantage of the standard fixed effects estimator in that it does not deliver an estimate of θ. 
Such estimates could have been obtained with a spatial random effects estimator (SRE) 
of the form b ∗∗ δSRE = (A

∗∗0A ∗∗ )−1A∗∗0 y , (15) 

but they would be inconsistent under correlation of some of the covariates with µ. One 
way of checking whether A is correlated with µ, is to apply the spatial Hausman test 
proposed by Mutl and Pfaffermayr (2011), 

m̂SH = (βbSRE − βbSF E )
0[V ar(βbSF E ) − V ar(βbSRE )]

−(βbSRE − βbSF E ), (16) 

where superscript “ − ” in (16) refers to the generalized inverse. m̂SH is distributed as 
χ2(rank[V ar(βbSF E ) − V ar(βbSRE )]

−) under the null hypothesis of no correlation between 
A and µ. If the null is rejected, then δbSRE is not consistent. 
In this case, one can check the choice of [XU , ιT ⊗ ZU ], i.e., the choice of regressors 
uncorrelated with µ, by applying the Hausman test based on the contrast between βbSHT 
and βbSF E . This is given by 

m̂SHT = (βbSHT − βbSF E )
0[V ar(βbSF E ) − V ar(βbSHT )]

−(βbSHT − βbSF E ) (17) 

and is distributed as χ2(KU − RC ) where KU − RC is the degree of over-identification. 
Either test is calculated by using the feasible versions of SRE and SFE. 
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2.4 SHT estimation under heteroskedasticity 

2.4.1 Assumptions 

In the following, we allow for heteroskedasticity in the idiosyncratic error component as 
in Badinger and Egger (2014). We keep Assumptions 1 – 5 but now make a different 
assumption on the error components. 

Assumption 9 (Assumptions on the error components): 
(i) For the idiosnycratic error components we have that νit are mutually independently 
distributed with E(νit) = 0, E(ν2 = ν,it where 0 < σ2 < ∞ forσ2 

it) ν,it < ∞ and E|vit,N |4+η 

some η > 0. Hence, the idiosyncratic disturbances exhibit heteroskedasticity of unknown 
form. (ii) For the unit-specific error components we have µi ∼ i.i.d.(0, σ2 ), where 0 <µ

σ2 < bµ < ∞, and E|µi,N |4+η < ∞ for some η > 0. (iii) µi and νit are independent of µ 
each other for all i and t. 

Assumption 9 implies the following covariance of εit and εjs: Cov(εitεjs) = σ2 + σ2 
µ ν,it 

for i = j and t = s; Cov(εitεjs) = σ2 for i = j and t =6 s; and Cov(εitεjs) = 0 otherwise. µ 

2.4.2 Estimation procedure 

Step 1 and 2 are the same as above, since the initial Hausman and Taylor estimator is 
consistent. However, in Step 3 we apply a different GM procedure due to the different 
error term structure. 

,STEP 3 - Estimate ρ and σ2 : Using the ub s we can apply the moment conditions in µ 

Badinger and Egger (2014) to obtain estimates of ρ and σ2 . The four moment conditions µ

are given by � � � � 
1 1 1 

E ε0Q0ε = tr[diagNT )Q0(IT ⊗ W0W)], E ε0Q0ε = 0 n=1E(νn
2 

N(T − 1) N(T − 1) N(T − 1)� � � � 
1 T 1 1 

E ε0Q1ε = σ2 tr(W0W) + tr[diagNT )Q1(IT ⊗ W0W)], E ε0Q1ε = 0,µ n=1E(νn
2 

N N N N 

where ε ≡ (IT ⊗ W)ε. These can be rewritten in terms of u using the fact that ε = (IT ⊗ 
[IN −ρW])u = u−ρu whereby u ≡ (IT ⊗W)u and ε ≡ (IT ⊗W)(IT ⊗[IN −ρW])u = u−ρu 
with u ≡ (IT ⊗ W)u. The resulting moment conditions are then stacked and solved as a 
solution to the system of four equations in two unknowns. More formally, γ − Γα = 0, 
where ⎛ ⎞ ⎛ ⎞! 

γ1 Γ1,1 Γ1,2 Γ1,3 
γ = ⎝ γ2 ⎠ , α = ρ

ρ2 , Γ = ⎝ Γ2,1 Γ2,2 0 ⎠ . (18)γ3 σ2 Γ3,1 Γ3,2 Γ3,3
γ4 µ Γ4,1 Γ4,2 0 

with 

1 1 
γ1 = E{u 0Q0u − tr[Q0diag

NT )(IT ⊗ W0W)]}, γ2 = E{u 0Q0u}n=1(un
2 

N(T − 1) N(T − 1) 
1 1 

γ3 = E{u 0Q1u − tr[Q1diag
NT )(IT ⊗ W0W)]}, γ4 = E{u 0Q1u}n=1(un

2 

N N 
2 

E{¯ n=1(¯Γ1,1 = u 0Q0u − tr[Q0diag
NT unun)(IT ⊗ W0W)]}

N(T − 1) 
1 0 2 1 

Γ1,2 = − E{u n=1(¯ )(IT ⊗ W0W)]}, = −Q0u − tr[Q0diag
NT u Γ1,3 tr(W0W)nN(T − 1) N 

9 



1 0 1 0
Γ2,1 = E{u Q0 u + ū0Q0ū}, Γ2,2 = − E(u Q0ū), Γ2,3 = 0 

N(T − 1) N(T − 1) 
2 
E{¯ n=1(¯Γ3,1 = u 0Q1u − tr[Q1diag

NT unun)(IT ⊗ W0W)]}
N 
1 0 2 T − 1 

Γ3,2 = − E{u n=1(¯ )(IT ⊗ W0W)]}, =Q1u − tr[Q1diag
NT u Γ3,3 tr(W0W)nN N 

1 0 1 0
Γ4,1 = E{u Q1u + ū0Q1ū}, Γ4,2 = − E{u Q1ū}, Γ4,3 = 0 

N N 

To get consistent estimates on ρ and σ2 , the following assumption is required µ

Assumption 10 The smallest eigenvalues of Γ0Γ are bounded uniformly away from zero, 
i.e., λmin(Γ

0Γ) ≥ λ∗ > 0. 

For estimation, u, u, and u are replaced by their corresponding consistent estimates 
û, û, and û. As in Badinger and Egger (2014): �� �0 � �� 

ˆα̂ = (ρ̂, σ̂µ) = arg min γ̂ − Γ̂α̂ C γ̂ − Γ̂α̂ , (19) 
σ2 ∈Sµ,ρ∈Sρµ

where Sµ and Sρ denote the respective admissible parameter spaces of σ2 and ρ, and Ĉ is a µ 
4×4 weighting matrix. With less than four time periods, using all moment conditions and 
an associated weighting to achieve efficiency gains is infeasible with heteroskedasticity as 
considered here. For this reason, we use only the second moment condition which obtains 
an estimate of ρ and the third one, which delivers an estimate of σ2 . The estimates ρ̂ andµ

σ̂µ are consistent by Theorem 1 in Badinger and Egger (2014). 

STEP 4 - The spatial Hausman-Taylor estimator: The variance-covariance ma-
trices of u, ε, and ν are denoted by Ωu, Ωε, and Σ, respectively. By Assumption 9 these 
are as follows 

= σ2 (JT ⊗ IN ) + Σ, Σ = E(νν 0) = diagNT ) = diagNT ) − σ2 andΩε µ n=1E(νn
2 

n=1E(εn
2 

µITN , 

Ωu = [IT ⊗ (IN − ρW)]−1[σµ
2 (JT ⊗ IN ) + Σ][IT ⊗ (IN − ρW)]−1 . 

As before, premultiplying the model by [IT ⊗ (IN − ρW)] leads to spatially Cochrane-
Orcutt-transformed variables, e.g. 

∗ y = [IT ⊗ (IN − ρW)]y, A ∗ = [IT ⊗ (IN − ρW)]A (20) 

Notice, that now under the given error term structure no further transformations are 
possible due to the heteroskedasticity in ν. Thus the estimation will be based on spa-
tially Cochrane-Orcutt transformed variables, where we will calculate a heteroskedasticity-
robust variance covariance matrix. Thus we are estimating the following transformed 
model 

∗ ∗ y = A ∗ δ + u (21) 

Since ιT ⊗ Z∗ and X∗ in A∗ are still correlated with µ in u ∗, we need an instrumental C C 
variable procedure. The spatially transformed set of instruments and its projection matrix 
are given by: 

H ∗ = [IT ⊗ (IN − ρW)]HHT , P ∗ = H ∗ (22)SHT SHT SHT H ∗ 
SHT .SHT (H

∗0 
SHT )

−1H∗0 

Due to the different error term structure, we maintain the following assumptions to derive 
the asymptotic properties of the estimator. 
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Assumption 11 (Additional assumptions on the instrument set H∗ under heteroskedas-
ticity) 
(i) The matrix MJ = limN→∞[(NT )−1H∗0(ιT ι

0 ⊗ IN )H
∗] exists, is finite and nonsin-H∗H∗ T 

gular. (ii) The matrix MH∗H∗ = limN→∞[(NT )−1H∗0H∗] exists, is finite and nonsingular. 
(iii) The matrix MA∗H∗ = p limN→∞[(NT )−1A∗0H∗] exists, is finite and has full column 
rank. (iv) The matrix MH∗ΣH∗ = p limN →∞[H

∗0ΣH∗] is finite and nonsingular. (v) The 
smallest eigenvalue of (MA∗H∗ M−1 

A∗H∗ ) is uniformly bounded away from zero. H∗H∗ M0 

∗The spatial Hausman-Taylor estimator (SHT) is a 2SLS estimator of y on A∗ with 
the matrix of instruments H∗ 

SHT . This estimator removes the spatial autocorrelation from 
the process in (2). The true GLS estimator of δ is b P ∗ P ∗ ∗ δSHT = (A ∗

0 
SHT A ∗ )−1A ∗

0 
SHT y . (23) 

The corresponding feasible GLS estimator, which uses the estimator ρ̂ from Step 3 for 
transforming the model in (21) as well as the instrument set and the projection matrix in 
(22), is defined as e A ∗

0 
Pe∗ Ae ∗ )−1Ae ∗0 P̃∗ ∗b

= ( e y . (24)δSHT SHT SHT e
where we again denote transformations based on the estimated error components by e. 
The next theorem describes the distribution of the feasible spatial Hausman and Taylor 
estimator under heteroskedasticity. 

Theorem 2 Given that Assumptions 1 – 5 and 9 – 11 hold. (i) Then as N →∞ 

b de(NT )1/2(δSHT − δ) → N(0, Ψ) 

with 

Ψ = D(σ2 MJ 
µ H∗H∗ + MH∗ΣH∗ )D0 

D = (MA∗H∗ M−1 
H∗H∗ M

0 
A∗H∗ )−1MA∗H∗ M−1 

H∗H∗ 

(ii) And 
peΨ − Ψ → 0 as N → ∞ 

where 
HR 

σ2 H∗0(JT ⊗ IN ) e H∗0 e D0(NT )−1( e H ∗ ) + (NT )−1 e H ∗ ) ee e eΨ = D(ˆµ Σ 

A∗0 e H∗0 e H∗0 e A∗0 e H∗0 eDe = {(NT )−1 e H ∗ ((NT )−1 e H ∗ )−1(NT )−1 e A ∗ }−1(NT )−1 e H ∗ ((NT )−1 e H ∗ )−1 

êThe first part of the theorem shows that the feasible GLS estimator δSHT is consistent 
with the asymptotic distribution stated in part (i). Part (ii) shows that the variance-ecovariance matrix can be estimated consistently by Ψ. The proof the theorem will be 
given in the Appendix. 

As in the homoskedastic case, one can estimate heteroskedastic versions of the spatial 
fixed effects and the spatial random effects estimator by using spatially Cochrane trans-
formed variables based on the ρ from the GM procedure under heteroskedasticity and 
calculating a heteroskedasticity variance-covariance matrix. The spatial fixed effects esti-
mator under heteroskedasticity is retrieved by (14). However, the spatial random effects 
estimator is now given by 

∗ δbSRE = (A
∗0A ∗ )−1A∗0 y . (25) 
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With these estimates at hand, one can apply Wald test variants of the spatial Hausman 
test (see Badinger and Egger, 2014) and the spatial Hausman and Taylor test, to check 
the validity of the assumptions. For the spatial Hausman test the discrepancy vector is 

0 0 
given by qSH = (βb βbSF E )

0 and the variance term VSH is given by SRE , � � 
= V ar(βbSRE ) Cov(βbSRE β

b
SF E ) (26)VSH bCov(βbSRE βSF E )

0 V ar(βbSF E ) 

Furthermore, we define B = (IK , −IK ), where K denotes the number of time-varying 
variables. The test statistic of the spatial Hausman test is given by 

m̂SH = (BqSH )
0(BVSH B

0)−(BqSH ), (27) 

where m̂SH is distributed as χ2(K) under the null hypothesis of no correlation between 
A and µ. If the null is rejected, then bδSRE is not consistent and one can check the choice 
of regressors uncorrelated with µ, by applying the Hausman-Taylor test based on 

m̂SHT = (BqSHT )
0(BVSHT B

0)−(BqSHT ), (28) 

which is distributed as χ2(KU − RC ) where KU − RC is the degree of over-identification 
0 0 

and qSHT = (βbSHT , βbSF E )
0 and � � b= V ar(βbSHT ) Cov(βbSHT βSF E ) . (29)VSHT bCov(βbSHT βSF E )

0 V ar(βbSF E ) 

3 Monte Carlo simulations 

To illustrate the small sample performance of the estimators and tests presented above, 
we perform some Monte Carlo experiments.7 The proposed model is as follows 

yt = XU 1,tβ11 + XU2,tβ12 + XC,tβ2 + ZU θ1 + ZC θ2 + ut, ut = ρWut + εt, εt = µ + νt. 
(30) 

The covariates are specified as follows: XU1t = 0.7XU1,t−1 + ϑ + ζt with the initial 
value XU1,1 = ζ1/(1 − 0.72)1/2 + ϑ/(1 − 0.7); XU2t = 0.7XU2,t−1 + η + κt with the 
initial value XU2,1 = κ1/(1 − 0.72)1/2 + η/(1 − 0.7); XCt = 0.7XC,t−1 + µ + λt with 
the initial value XC,1 = λ1/(1 − 0.72)1/2 + µ/(1 − 0.7); ZU = ι; ZC = ϑ + η + µ + ξ, 
where all elements of ϑ, η, ξ, ζt, κt, λt are U [−2, 2]. The true regression coefficients are 
set to β11 = β12 = β2 = θ1 = θ2 = 1. W is a rowsum normalized weights matrix. 
It is based on an unnormalized W0, which has a five-before-five-behind neighborhood 
structure. We distinguish between two worlds: homoskedastic and heteroskedastic errors 
. In the homoskedastic world we have µt ∼ N(0, It) and νt ∼ N(0, It), whereby εt ∼ 
N(0, 2It). In modeling heteroskedastic innovations we follow Li and Stengos (1994) and 
let νt ∼ N(0, ωt) and ωt = α2(ιt + `ζt)

2 . Thus for each value of `, α is adapted in order 
to keep the total variance σ2 = σ2 + E(νit

2 ) fixed. We set σε 
2 = 2 and consider a value of ε,it µ 

` = 4. Note, that ` = 0 corresponds to homoskedastic idiosyncratic errors. 

In our experiments, we consider two sample sizes N = {100, 400} each for T = 3. We 
vary the degree of spatial correlation along the true values ρ0 = {0, ±0.2, ±0.4, ±0.6, ±0.8}. 
We report bias and RMSE for the estimates of ρ, β11, β12, β2, θ1, and θ2. For the 

7The design is similar to the one in Baltagi et al. (2012), who considered the case of homoskedastic 
disturbances only. 
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estimates of the regression coefficients we also present the size of the test for H0 : β11 = 1, 
H0 : β12 = 1, H0 : β2 = 1, and H0 : θ2 = 1 for a nominal size of 5%. Furthermore, 
we report the power of the spatial Hausman test (abbreviated as HT in the tables) and 
the size of the spatial Hausman and Taylor test (abbreviated as HTT in the tables). The 
results are summarized in Table 1 for homoskedastic time-variant disturbances and in 
Table 2 for heteroskedastic time-variant disturbances. 

– Tables 1–2 about here – 

The tables provide the following insights. First, the values of the biases and RMSEs 
for the parameters are relatively small, even when N = 100. Both the biases and the 
RMSEs tend to be smaller at N = 400 as expected. Hence, the multi-step GM estimation 
procedure works well even in small samples. The same pattern emerges for the test sizes for 
both parameters, HTT, as well as the power of HT. The power of the HT is remarkable 
at N = 400, and the size of the HTT varies between 4.9 and 6.1 for N = 400. These 
results suggest that the proposed procedure is well suited for an analysis in moderately-
sized samples and definitely in samples as large as the one considered in the subsequent 
application. 

4 Empirical analysis 

4.1 Data and descriptive statistics 

We use panel data on output, factor usage, ownership characteristics, and export market 
participation for 12,552 Chinese firms in the chemical industry as compiled by the National 
Bureau of Statistics of China (NBS) over the period 2004-2006. The data-set covers all 
Chinese firms with an annual turnover exceeding five million Yuan (about 700,000 US 
dollars). In particular, we use data on log of sales for firm i at year t (yit) as the outcome 
variable of interest and model it as a function of the following three sets of regressors. 
First, we employ the following set of variables as primary production factors entering the 
technology specification: log of employment (lit); the share of high-skilled workers (hi), 
which is defined as the fraction of workers with a university or comparable education (it is 
only available for 2004 and treated as time-invariant as indicated by the single subscript); 
log of capital used in production (kit); and log of material inputs (mit). Second, we use 
a set of own technology shifters which only enter as main effects: a binary export status 
indicator which takes the value one if the firm is an exporter, and zero otherwise (eit); 
foreign ownership which is measured by the share of capital provided by foreign investors 
(fit); an indicator variable for the intensive use of intangible relative to total assets (iit); 
and a binary public ownership status indicator which takes the value one if the firm is 
publicly-owned (or state-owned) and zero otherwise (pi). The latter is time-invariant 
for the Chinese chemical industry and the time-period covered by our data. Third, we 
employ two alternative sets of what we call spillover technology shifters. These are spatially 
weighted covariates which capture contextual effects/spillovers in observed characteristics. 
We distinguish two sets of contextual effects. Set a consists of eit, f it, iit, and hit (i.e., 
local spillovers from other firms’ exporting, being members of a multinational network, or 
being research intensive, and human capital intensive), which are important channels for 
spillovers according to the literature. For more flexibility, we use a second Set b, which 
encompasses Set a plus all other spatially weighted primary production factors of other 
firms. In general we refer to variables capturing contextual effects by bars. 
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We are interested in estimating all of the parameters on these variables and, in particu-
lar, the one on public ownership, while simultaneously allowing for global spillover effects 
(i.e., direct plus indirect spillovers) in unspecified (remainder) total factor productivity 
across firms. 

– Table 3 about here – 

Table 3 summarizes the descriptive statistics for our data in three panels. The left 
panel reports the mean and standard deviation for all variables, firms, and years covered. 
The middle and the right panel reports the mean and standard deviation for state-owned as 
compared to privately-owned enterprises. Note that 5 percent of the firms in the data are 
state-owned, and they have on average more employees than privately-owned firms (about 
793 versus 166 employees on average). Second, about 24 percent of all firms considered 
participate in the export market. Also, export market participation is higher for state-
owned firms as compared to privately-owned enterprises (29 versus 23 percent). Third, 
many firms in that sector use intangible assets relatively intensively – which is consistent 
with the innovative pressure and the relative patent intensity in the manufacturing of 
chemicals. The relative intangible asset intensity is relatively higher for state-owned units 
as compared to privately-owned ones (59 compared to 42 percent). Fourth, about 19 
percent of all firms are at least partly foreign owned. The ratio of foreign capital to total 
capital is 0.14 for all firms on average. It is lower for state-owned than for privately-owned 
ones (0.06 versus 0.14). 

This firm level data-set contains information about the postcodes of firms which iden-
tify the geographical location of all entities uniquely in terms of the longitude and latitude 
of a firm’s residence. The latter enables calculating great circle distances between all units, 
using the so-called haversine formula.8 

– Figures 1a and 1b about here – 

We define counties as regional aggregates using the first four digits of the postcode. 
This yields 2, 425 regional aggregates/counties all over China. Figure 1a colors counties 
according to the number of firms in the chemical industry, while Figure 1b colors counties 
according to total employment in that industry. According to Figures 1a and 1b, 1, 610 
of the 2, 425 counties in China do not host any chemical producer. Most of all inhabited 
regions host less than 10 firms. As expected, coastal regions have a higher density of 
firms. This pattern also holds for the number of employees in the chemical sector. In 
general, Figure 1b looks quite similar to Figure 1a. However, careful inspection of the 
data shows that Wujin in the coastal province of Jiangsu is the region with the largest 
number of chemical producers (175, of which all are privately-owned), while Shijiazhuang 
in the province of Hebei is the biggest regional employer in the chemical industry (34 firms 
in total, of which 6 are state-owned). 

8The haversine formula is particularly suited for calculating great circle distances between two points i 
and j on the globe, if these two points are very close to each other. Denote the haversine function of an 
argument ` by h(`) = 0.5(1 − cos(`)), and use φi, φj , and Δλij to refer to the latitude of i, the latitude of 
j, and the difference in longitudes between i and j which are all measured in radians. Then, the haversine 

1/2
distance between i and j is defined as dij = D · arcsin(Hij ), where D is the diameter of the globe (e.g., 
measured in miles) and Hij = h(φi − φj ) + cos(φi) cos(φj )h(Δλij ). 
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4.2 Specification 

For estimation, we use a flexible translog primary production technology, which nests 
a more restrictive Cobb Douglas technology. The vectors of inputs k, l, ιT ⊗ h, and 
m, represent primary production factors; while the vectors e, f , i, ιT ⊗ p, and spatially 
weighted characteristics of neighbors along with the disturbance term u, reflect measurable 
and unmeasurable aspects of total factor productivity. The right-hand-side regressors for 
the primal translog production function are as follows:9 

2[X, ιT ⊗ Z] = [k, l, ιT ⊗ h, m, k2 , l2 , m , (ιT ⊗ h)2 , k ◦ l, k ◦ m, 

l ◦ m, (ιT ⊗ h) ◦ k, (ιT ⊗ h) ◦ l, (ιT ⊗ h) ◦ m, e, f , i, ιT ⊗ p, S], (31) 

where ◦ denotes element-wise products.10 The matrix S contains the spatially lagged 
covariates from Set a (representing 4 contextual effects) and b (representing 17 contextual 
effects). With W = (wij ) denoting an N ×N spatial weights matrix, which will be defined 
below, the `th element of S is defined as (IT ⊗ W)s`, where s` is one vector about which 
we calculate a contextual counterpart. Hence, S reflects the presence of contextual effects 
(or local spillovers). 

In general, we do not enforce linear homogeneity of the technology by restricting the 
parameters on the quadratic and interactive terms to sum up to unity (see Greene, 2008). 
Linear homogeneity of the production technology is refuted by the data at hand. 

In the next subsection, we consider the case where W0 is full, so that any distance 
matters and spillovers may occur between all firms in the chemical industry. We consider 
three alternative cases for the elements of W0 in a sensitivity analysis. 

4.3 Estimation results 

We report spatial model parameter estimates of the translog production functions in pri-
mary form in Tables 4 and 5 for two different specifications of the local spillover variables 
in S. Table 4 is based on the smaller Set a with 4 contextual effects and Table 5 on 
the larger Set b with 17 contextual effects. We account for heteroskedasticity and spatial 
correlation in the error term (global unspecified spillovers) by applying the procedure de-
scribed in Section 2. These tables contain parameters and test statistics for spatial fixed 
effects (SFE), spatial random effects (SRE) and spatial Hausman and Taylor (SHT) type 
models. The two tables report parameter estimates and test statistics for specifications 
assuming that there are global spillovers in u, allowing for ρ 6= 0.11 

– Tables 4 and 5 about here – 
9The Cobb Douglas counterpart to this model would use [X, ιT ⊗ Z] = [k, l, ιT ⊗ h, m, e, f , i, ιT ⊗ p, S], 

which restricts the quadratic and interactive terms to be zero. Since the Cobb Douglas model is generally 
rejected for the data at hand, we will only report parameter estimates for the more flexible translog model. 

10Notice that we do not interact vectors e, f , i, ιT ⊗ p. There is no principal argument against allowing 
for even more flexibility in interacting these vectors with each other and with the primary production 
factors. However, e, i, ιT ⊗ p represent vectors of binary variables so that using an even more flexible form 
drastically increases the degree of multicollinearity among the regressors. Therefore, we choose the form 
in (31) (see Burkett and Škegro, 1989, for an earlier example in that vein). 

11In Tables 4, 6, and 8 the elements of XU are [f , f ]; the elements of ZU are [h, h, h ◦ h]; the elements of 
XC are [l, l ◦ l, l ◦ k, l ◦ m, l ◦ h, k, k ◦ k, k ◦ h, k ◦ m, m, m ◦ m, m ◦ h, e, e, i, i] and the element of ZC is p. 
In Table 5 and 7 the elements of XU are [f , f ]; the elements of ZU are [h, h, h ◦ h, h ◦ h]; the elements of 
XC are [l, l, l ◦ l, l ◦ l, l ◦ k, l ◦ k, l ◦ m, l ◦ m, l ◦ h, l ◦ h, k, k, k ◦ k, k ◦ k, k ◦ h, k ◦ h, k ◦ m, k ◦ m, m, m, m ◦ 
m, m ◦ m, m ◦ h, m ◦ h, e, e, i, i]; and the element of ZC is p. 
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The results in Tables 4 and 5 can be summarized as follows. First, the null hypothesis of 
homoskedasticity of the remainder (within) error terms is rejected.12 Accordingly, we only 
present results of models accounting for heteroskedasticity. Second, the heteroskedasticity-
robust Hausman tests reject the absence of correlation of the regressors and the time-
invariant error term. Hence, there is evidence of misspecification in the SRE results, 
and the corresponding parameter estimates are inconsistent and subject to misleading 
inference. For the SHT instrument set, we find a high joint degree of relevance in the 
first-stage regression (with triple-digit F-statistics) and the sets of instruments pass the 
tests in Tables 4 and 5. Third, the estimates of the spatial autocorrelation parameter 
on Wub, ρb, are 0.433 and 0.358 for the SRE estimators and 0.512 and 0.302 for the SHT 
estimators in Tables 4 and 5, respectively. All estimates of ρ are statistically significant. 
In general, the inconsistency of the SRE estimator also feeds into estimates of ρ. Using a 
larger set of variables capturing contagious effects in Table 5 relative to Table 4 reduces 
the spatial autocorrelation of the disturbances, capturing global spillovers associated with 
unobservable TFP shifters. 

Fourth, a comparison of the decomposition of the variance in outcome (σ2) at the y

bottom of the Tables 4 and 5 suggests the following. First, as expected, the primary 
production factors contribute the lion’s share (σ2 ). Among the other components, the P 
own specified TFP shifters (through e, f , i, ιT ⊗p) contribute the biggest share in the SHT 
models (σ2 ). Specified local TFP spillovers from neighbors through effects flowing from T 
their TFP shifters (σ2 ) or their primary production factors (σ2 ) have minor contribution 

T P 
to explaining the overall variance (σ2). Relative to the just-mentioned specified local y 
spillover terms, global spillovers from time-invariant (σ2 ) and average heteroskedastic µ

time-variant unspecified components (σν 
2) are more important. 

Fifth, export market participation (eit), foreign ownership (fit), and state ownership 
(pit) are found to be statistically significant. In fact, export market participation and 
foreign ownership raise TFP, while state ownership reduces it. The comparison among the 
SRE and SHT models suggests that state ownership is endogenous and its effect can not 
be estimated consistently by way of an SRE model. 

Sixth, contextual effects associated with S matter jointly. However, their joint contri-
bution to the variance of outcome is much smaller than that of the between component, 
σ2 , or the average within component, σν 

2, of unspecified TFP, according to the results at µ

the bottom of Tables 4 and 5. 

The two SHT models in Tables 4 and 5 suggest that publicly-owned companies’ TFP 
is about 100 · (exp(−1.819) − 1) and 100 · (exp(−1.861) − 1), or about 84 percent lower 
than that for privately-owned companies in China’s chemical industry. Hence, significant 
efficiency gains could be had with privatization in that industry. Shocks in TFP display 
significant spillover effects across firms, and they are geographically bound. Providing a 
more detailed assessment of the geographical reach of such spillovers is the goal of the 
next subsection. 

4.4 Sensitivity checks and quantification of spillovers 

First of all, we present results based on even more general models than the ones in Tables 
4 and 5, where we permit global spillovers (measured by the estimates of ρ) to differ 
for relationships among privately-owned firms (ρr), among publicly-owned firms (ρp), and 

12For testing against homoskedasticity based on a Breusch-Pagan test, we used the Cochrane-Orcutt-
transformed residuals of the spatial FE estimator. 
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between privately- and publicly-owned firms (ρo). This process may be viewed as a third-
order SHT model. The associated results in Tables 6 and 7 suggest that global spillovers 
mainly happen among privately-owned firms rather than among other types of firms, 
irrespective of whether we specify the model otherwise as in Table 4 or 5. 

– Tables 6 – 8 about here – 

Moreover, we explore the sensitivity of our estimates to alternative weights matrices 
differing by the specification of the spatial decay function.13 We report the sensitivity 
checks in Table 8 for the otherwise same specification as in Table 4, focusing on the 
SHT estimator. The three columns of Table 8 involve weights matrices that are based on 
positive cell entries wij if firms i and j are closer than 60 miles (W60), 100 miles (W100), 
or 200 miles (W200), respectively. Hence, the results based on W60 correspond to the 
sparsest weights matrix considered, and in turn, all weights matrices W60, W100, and 
W200 are sparser than the original W matrix. With row normalization, it will generally PN PN PN PN0 0 0 0be the case that ≤ ≤ ≤ Therefore, the j=1 w60,ij j=1 w100,ij j=1 w200,ij j=1 wij . 
positive individual cells of the respective matrices have the property 0 < wij ≤ w200,ij ≤ 
w100,ij ≤ w60,ij ≤ 1. The associated results suggest that spillovers are stronger among 
closeby entities. Other than that, our findings from Tables 4 and 5 are qualitatively 
unaffected by the choice of the weighting scheme considered. 

How strong are spillovers in China’s chemical industry? There are numerous ways of 
assessing this question. One of them is to consider the impact of a common shock on 
total factor productivity of all firms in the sample. Suppose, we considered a shock of 
one percent in observable and unobservable determinants of TFP. The specification of W 
– in particular, its row normalization – suggests that such a uniform shock will trigger 
total effects inclusive of local and global spillovers together on output across all firms � � 
of exp (δ̂e + δ̂f + δ̂i + δ̂p) + ( 

P 
δ̂ ) + 1 − 1 percent, where we use [δ̂e, δ̂f , δ̂i, δ̂p] to ` S,` 1−ρ̂

denote the parameters on [e, f , i, ιT ⊗ p] and δ̂ to denote the parameters on the local S,` 

spillover terms in S. Using the SHT model in Table 4, we would conclude that the 
response to such spillovers is positive and relatively strong.14 In the absence of spillovers, 
TFP would be predicted to decline by about 0.5 percent in response to this shock. The 
spillover terms together lead to a positive overall shock of about 0.8 percent. Hence, 
local spillovers from observable TFP shifters and global spillovers from unobservable TFP 
shifters together mitigate the detrimental effects due to state ownership. 

5 Conclusions 

This paper derives a Hausman and Taylor (1981) type estimator which allows for spatial 
dependence in the disturbances in the presence of homoskedastic or heteroskedastic distur-
bances. We discuss the large-sample properties of the estimator and show its small-sample 
performance by way of Monte Carlo simulations. We then apply the spatial Hausman-
Taylor model to the estimation of a primal translog production function for the Chinese 
chemical industry. The data-set utilized in this study consists of a large cross section of 
12,552 firms observed annually over the short period of 2004–2006. The proposed esti-
mator allows some of the regressors to be time-invariant and perhaps correlated with the 

13However, there is limited scope for sensitivity checks, since estimating spatial models in a data-set as 
large as ours and with a weighting matrix of size 12, 552 × 12, 552 that is not sparse in the sense of Bickel 
and Levina (2008) or Fan, Liao, and Mincheva (2013) is very computer intensive. 

14Notice that the direction of the spillovers is partly driven by the design of the assumed weights matrix. 
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unobservable firm effects. This estimator has some advantages over the spatial fixed effects 
or random effects estimators. In fact, the spatial fixed effects estimator does not provide 
estimates of the time-invariant variables since they are wiped out by the within transfor-
mation. Also, the random effects estimates suffer from bias and inconsistency when the 
regressors are correlated with the firm effects. 

The firms in the data are concentrated in the coastal area of China. We estimate 
a translog production function in primal form and find that the Cobb Douglas produc-
tion function restrictions are rejected by the data, and so is the assumption of linear 
homogeneity of the technology. The estimated size of the spatial autocorrelation param-
eter suggests that there are moderately important local spillover effects emerging from 
observable characteristics and more important global spillover effects emerging from un-
observable determinants of total factor productivity across firms. The results point to 
significant detrimental effects of public ownership on total factor productivity. Due to the 
time-invariant nature of public ownership, this effect could not have been estimated in a 
spatial fixed effects model. 
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A. Appendix 

A.1 SHT estimator under homoskedasticity 

Proof of Theorem 1 
The proof utilizes the insights from the proof of Theorem 4 in Kapoor, Kelejian, and 
Prucha (2007) and the proofs in Badinger and Egger (2014). 

Part (i). 
The feasible spatial Hausman and Taylor estimator under homoskedasticity is given by 

b
A ∗∗

0 
P ∗∗ A ∗∗ )−1Ae ∗∗0 P̃∗∗ ∗∗e e e= ( e y . (32)δSHT SHT SHT e

To avoid index cluttering, we will suppress the subindex SHT . Plugging in (10)-(11) and 
using the transformations based on the estimators from Step 3 yields 

b −1 −1 −1 e A ∗
0 e e H∗0 e e H∗0 e Ae ∗ }−1(NT )1/2(δ − δ) = {(NT )−1 e Ω H ∗ ((NT )−1 e Ω H ∗ )−1(NT )−1 e Ωε ε ε 
−1 −1 

A ∗
0 e e H∗0 e H ∗ )−1e(NT )−1 e Ω H ∗ ((NT )−1 e Ωε ε 

H∗0 e−1 ∗ (NT )−1/2 e Ω ue . (33)ε 

The terms of the first two lines will be analyzed first. For the first term, we write 

−1 
H ∗ (NT )−1Ae ∗0 Ωe e = (NT )−1[A ∗ − (ρ̂ − ρ)(IT ⊗ W)A]0 ε � 

(σ−2Q0 + σ−2Q1) + (σ̂−2 − σ−2)Q0 + (σ̂−2 − σ−2)Q1 
� 

ν 1 ν ν 1 1 
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[H ∗ − (ρ̂ − ρ)(IT ⊗ W)H]. (34) 

σ−2 σ−2For N →∞, using consistency of ρ̂, ˆν , and ˆ1 , and using Assumptions 1, 2, 5, 6, and 
8 yields 

−1 
(NT )−1Ae ∗0 Ωe He ∗ = σ−2M0 

A∗H∗ + σ−2MA
1 
∗H∗ + op(1). (35)ε ν 1 

Similarly, we get 

−1 
H∗0 e e σ−2M00 M10 (NT )−1 e Ωε A ∗ = ν A∗H∗ + σ1 

−2 
A∗H∗ + op(1) (36) 

and 

−1 
H ∗

0 e H ∗ M0 + σ−2M1(NT )−1 e Ω e = σ−2 + op(1), (37)ε ν H∗H∗ 1 H∗H∗ 

H∗0 e−1 
((NT )−1 e Ω He ∗ )−1 = (σ−2MH

0 
∗H∗ + σ−2MH

1 
∗H∗ )−1 + op(1). (38)ε ν 1 

Combining yields 

M00 M10 (σ−2M0 M1 M0 + σ−2M1 + σ−2 
A∗H∗ ) = O(1)(39) + σ−2 

A∗H∗ )(σ−2 
H∗H∗ )−1(σ−2 

ν A∗H∗ 1 ν H∗H∗ 1 ν A∗H∗ 1 

and also 

{(σ−2M0 + σ−2M1 
A∗H∗ )(σ−2M0 + σ−2M1 

H∗H∗ )−1(σ−2M00 + σ−2M1
A

0
∗H∗ )}−1 = O(1).(40)ν A∗H∗ 1 ν H∗H∗ 1 ν A∗H∗ 1 

Thus we have that 

−1 −1 −1 
A∗0 e e H∗0 e e H∗0 e Ae ∗ }−1{(NT )−1 e Ω H ∗ ((NT )−1 e Ω H ∗ )−1(NT )−1 e Ωε ε ε 

= {(σ−2M0 + σ−2M1 
A∗H∗ )(σ−2M0 + σ−2M1 

H∗H∗ )−1(σ−2M00 + σ−2M1
A

0
∗H∗ )}−1 

ν A∗H∗ 1 ν H∗H∗ 1 ν A∗H∗ 1 

+ op(1) (41) 

Hence, for the first two lines of (33) together we get 

−1 −1 −1 −1 
A∗0 e e H∗0 e e H∗0 e e A∗0 e e{(NT )−1 e Ω H ∗ ((NT )−1 e Ω H ∗ )−1(NT )−1 e Ω A ∗ }−1(NT )−1 e Ω H ∗ 

ε ε ε ε 

H∗0 e−1 e((NT )−1 e Ω H ∗ )−1 
ε 

= {(σ−2M0 + σ−2MA
1 
∗H∗ )(σ−2M0 + σ−2MH

1 
∗H∗ )−1(σ−2M00 + σ−2MA

10
∗H∗ )}−1 

ν A∗H∗ 1 ν H∗H∗ 1 ν A∗H∗ 1 

(σ−2M0 + σ−2M1 
A∗H∗ )(σ−2M0 + σ−2M1 + op(1) = F + op(1). (42)H∗H∗ )−1 

ν A∗H∗ 1 ν H∗H∗ 1 

Rewriting the expression in the last line of (33), we obtain 

H∗0 e−1 ∗ (NT )−1/2 e Ω ue = (NT )−1/2[H ∗ − (ρ̂ − ρ)(IT ⊗ W)H]0[(σ−2Q0 + σ−2Q1)ε ν 1 

σ−2 σ−2+ (ˆν − σν 
−2)Q0 + (ˆ − σ−2)Q1][ITN − (ρ̂ − ρ)(IT ⊗ W)1 1 

(IT ⊗ (IN − ρW))−1]ε. (43) 

σ−2 σ−2For N →∞, using consistency of ρ̂, ˆ , and ˆ , and using Assumptions 1, 5, and 6 this ν 1 
expression reduces to 

H∗0 e−1 ∗ (NT )−1/2 e Ω ue = (NT )−1/2H∗0(σ−2Q0 + σ−2Q1)ε + op(1). (44)ε ν 1 

Plugging in ε = (ιT ⊗ IN )µ + ν and using Q1(ιT ⊗ IN ) = (ιT ⊗ IN ) yields 

H∗0 e−1 ∗ (NT )−1/2 e Ω ue = (NT )−1/2σ−2H∗0(ιT ⊗IN )µ+(NT )−1/2H∗0(σ−2Q0+σ
−2Q1)ν+op(1).ε 1 ν 1 

(45) 

21 



For the first term of (45), we have that σ−2H∗0(ιT ⊗ IN ) is uniformly bounded in absolute 1 
value by Assumptions 5 and 6, and that for N →∞ 

(NT )−1(σ−2H∗0(ιT ⊗ IN ))(σ
−2H∗0(ιT ⊗ IN ))

0 = σ−4T M1 + op(1), (46)H∗H∗1 1 1 

Now we can apply the theorem in Pötscher and Prucha (2001) and get 

H∗0(ιT ⊗ IN )µ 
d

M1(NT )−1/2σ1 
−2 → N(0, σµ

2 Tσ1 
−4 

H∗H∗ ). (47) 

We proceed in the same way for the second term of (45). We have that (NT )−1/2H∗0(σν 
−2Q0+ 

σ−2 
1 Q1) is uniformly bounded in absolute value by Assumptions 5 and 6. Using obvious 
reformulations, we obtain 

(NT )−1H∗0(σ−2Q0 + σ−2Q1)(H
∗0(σ−2Q0 + σ−2 = σ−4M0 + σ−4M1Q1))

0 
H∗H∗ H∗H∗ + op(1)ν 1 ν 1 ν 1 

(48) 
and, by the theorem in Pötscher and Prucha (2001), we get 

d
(NT )−1/2H∗0(σ−2 M0 + σ−4M1 

ν Q0 + σ1 
−2Q1)ν → N(0, σν 

2[σν 
−4 

H∗H∗ 1 H∗H∗ ]). (49) 

Using Assumption 6 and σ1
2 = σν 

2 + Tσµ
2 , combining (47) and (49) yields 

d
H∗0 e−1 ∗ (NT )−1/2 e Ω ue → N(0, σ−2M0 + σ−2M1 (50)ε ν H∗H∗ 1 H∗H∗ ). 

Combining (42) and (50) proves the claim. 

Part (ii). This follows from (37) and (42) in Part (i). 

A.2 SHT estimator under heteroskedasticity 

Proof of Theorem 2 
The proof utilizes the insights from the proof of Lemma 2 in Badinger and Egger (2014). 
Part (i). 
The feasible SHT estimator under heteroskedasticity is given by 

e A ∗
0 
Pe∗ Ae ∗ )−1Ae ∗0 Pe∗ ∗ δ

ˆ
SHT = ( e y . (51)SHT SHT e

To avoid index cluttering, we will suppress the subindex SHT as above. Plugging in (21) 
and reformulating yields 

ê A ∗
0 e H∗0 e H∗0Ae ∗ }−1(NT )1/2(δ − δ) = {(NT )−1 e H ∗ ((NT )−1 e H ∗ )−1(NT )−1 e

A ∗
0 e H ∗ )−1H∗0 e(NT )−1 e H ∗ ((NT )−1 e
H∗0 ∗ (NT )−1/2 e ue . (52) 

When considering obvious modifications, including assumptions, but otherwise analogous 
arguments as in the case of homoskedasticity, we obtain for the first two lines of (52) that 

A∗0 e H∗0 e H∗0 e A∗0 e H ∗ )−1H∗0 e{(NT )−1 e H ∗ ((NT )−1 e H ∗ )−1(NT )−1 e A ∗ }−1(NT )−1 e H ∗ ((NT )−1 e
{(MA∗H∗ M−1 

A∗H∗ }−1MA∗H∗ M−1 = H∗H∗ M
0 

H∗H∗ + op(1) = D + op(1) (53) 

where the last line is O(1). For the expression in the last line of (52), upon reformulation, 
we obtain 

H∗0 ∗ (NT )−1/2 e ue = (NT )−1/2[H ∗ − (ρ̂ − ρ)(IT ⊗ W)H]0[ITN − (ρ̂ − ρ)(IT ⊗ W) 
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(IT ⊗ (IN − ρW))−1]ε. (54) 

For N → ∞ using consistency of ρ̂ and Assumptions 1, 5, and 9 this expression reduces 
to 

H∗0 ∗ (NT )−1/2 e ue = (NT )−1/2H∗0ε + op(1). (55) 

Plugging in ε = (ιT ⊗ IN )µ + ν yields 

H∗0 ∗ (NT )−1/2 e ue = (NT )−1/2H∗0(ιT ⊗ IN )µ + (NT )−1/2H∗0ν + op(1) (56) 

For the first term of (56) have that H∗0(ιT ⊗ IN ) is uniformly bounded in absolute value 
by Assumption 5 and 9 and that for N →∞ 

H∗0(ιT ι
0 
T ⊗ IN )H ∗ = MJ 

H∗H∗ + op(1) (57) 

using Assumption 11. By the theorem in Pötscher and Prucha (2001) we get 

d
(NT )−1/2H∗0(ιT ⊗ IN )µ → N(0, σ2 MH

J 
∗H∗ ). (58)µ

In analyzing the second expression in (56), we apply the CLT for heteroskedastic innova-
tions in Kelejian and Prucha (2010) and get 

d
(NT )−1/2H∗0ν → N(0, MH∗ΣH∗ ) (59) 

since H∗0 is uniformly bounded in absolute value by Assumption 5 and for N → ∞ we 
have H∗0ΣH∗ = MH∗ΣH∗ + op(1) by Assumption 11. Combining (58) and (59) using 
Assumption 9 yields 

d
(NT )−1/2H∗0((ιT ⊗ IN )µ + ν) MJ→ N(0, σµ

2 
H∗H∗ + MH∗ΣH∗ ) (60) 

Combing (53) and (60) proves the claim. 

Part (ii). 
The variance covariance matrix Ψ consists of two parts: one is related to the homoskedastic 
µ and the other to the heteroskedastic ν. We know that µ ∼ N(0, σ2 ), where σ2 can be µ µ 
estimated consistently by the GM procedure in (19). Regarding the heteroskedastic part, 
we have that ν ∼ N(0, Σ) where Σ = diagNT ). However, note that while Σ is based n=1(νn

2 

on idiosyncratic errors in levels, estimates of idiosyncratic errors can only be retrieved in 
demeaned form. A similar problem is addressed in Stock and Watson (2008), who estimate 
a heteroskedasticity-robust variance covariance matrix in a non-spatial fixed effects panel 
data model by using a bias correction of the variance covariance matrix. Badinger and 
Egger (2014) adapt the procedure to spatial fixed effects and random effects models, 
which contain an endogenous spatial lag as well as spatial correlation in the error and 
heteroskedasticity in the idiosyncratic error component. They suggest using the following 
heteroskedasticity-robust estimate of Σ, 

HR e νHR νHR )2 T ν2 1 PT ν2Σ = diagNT )2] with (e = eit=1[(eit it T −2 it − (T −1)(T −2) r=1 eir 

which are based on within transformed residuals 

êνe = (νeit) = Q0[IT ⊗ (IN − ρ̂W)]û with û = y − AδSHT . (61) 
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Badinger and Egger (2014) show that 

1 HR 1 
H∗0 ee e H∗0ΣH ∗ Σ H ∗ − = op(1) (62)

NT NT 

(see their Lemmas C.2 and C.3). We will use this result in our proof. 
From (53) we already know that 

A∗0 e H∗0 e H∗0 e A∗0 e H∗0 e{(NT )−1 e H ∗ ((NT )−1 e H ∗ )−1(NT )−1 e A ∗ }−1(NT )−1 e H ∗ ((NT )−1 e H ∗ )−1 

= {(MA∗H∗ M−1 
A∗H∗ }−1MA∗H∗ M−1 + op(1). (63)H∗H∗ M
0 

H∗H∗ 

eFor the term in the middle of Ψ, we get for N →∞ 

HR 
σ2 H∗0(ιT ι

0 H∗0 e e MJ{ˆµ(NT )−1( e H ∗ ) + (NT )−1 e Σ H ∗ } = σµ
2 

H∗H∗ + MH∗ΣH∗ + op(1)T ⊗ IN ) e
(64) 

using Assumptions 1, 5, 9, and 11 together with consistency of ρ̂ and (62). Combining 
(63) and (64) finally yields the desired result. 
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Table 3: Descriptive statistics 

Variable 
All firms 

Mean Std.dev. 
State-owned firms 
Mean Std.dev. 

Non sta
Mean 

te-owned firms 
Std.dev. 

Total sales (in logs) 10.341 1.275 10.889 1.931 10.311 1.221 
Labor (in logs) 4.525 1.094 5.625 1.482 4.464 1.034 
Skilled labor ratio (fraction) 0.175 0.188 0.226 0.184 0.172 0.187 
Capital (in logs) 8.823 1.686 10.315 2.124 8.740 1.619 
Material (in logs) 9.828 1.349 10.203 2.089 9.807 1.293 
State-owned (binary indicator) 0.053 0.224 1 0 0 0 
Foreign-owned-to-total-capital ratio (fraction) 0.140 0.320 0.064 0.186 0.144 0.326 
Exporter (binary indicator) 0.236 0.425 0.292 0.455 0.233 0.423 
Intangible asset intensity (binary indicator) 0.431 0.495 0.590 0.492 0.422 0.494 
Number of firms 12,552 662 11,890 
Number of observations 37,656 1,986 35,670 

Table 4: Results Set a (4 contextual effects) – heteroskedasticity robust estimators 

Acronym SFE SRE SHT 

Dependent variable: log sales 

Primary production factors 

Capital 

Labor 

kit 

lit 

0.087∗∗ 

(0.032) 

0.632∗∗∗ 

0.170∗∗∗ 

(0.022) 

0.430∗∗∗ 

0.087∗∗ 

(0.032) 

0.632∗∗∗ 

Skilled labor ratio hi 

(0.053) (0.030) 

0.766∗∗∗ 
(0.053) 

2.733∗∗∗ 

Material mit −0.164∗∗ 
(0.124) 

0.182∗∗∗ 
(0.459) 

−0.164∗∗ 

Capital × capital 

Capital × skilled labor ratio 

Capital × material 

Labor × capital 

Labor × material 

kitkit 

kithi 

kitmit 

litkit 

litmit 

(0.064) 

0.004∗ 

(0.002) 

−0.025 
(0.029) 

−0.022∗∗∗ 

(0.005) 

0.021∗∗∗ 

(0.005) 

−0.094∗∗∗ 

(0.036) 

0.012∗∗∗ 

(0.002) 

0.061∗∗∗ 

(0.014) 

−0.040∗∗∗ 

(0.003) 

0.012∗∗∗ 

(0.004) 

−0.074∗∗∗ 

(0.064) 

0.004∗ 

(0.002) 

−0.025 
(0.029) 

−0.022∗∗∗ 

(0.005) 

0.021∗∗∗ 

(0.005) 

−0.094∗∗∗ 

Labor × labor litlit 

(0.007) 

0.022∗∗∗ 
(0.005) 

0.032∗∗∗ 
(0.007) 

0.022∗∗∗ 

Labor × skilled labor ratio lithi 

(0.005) 

0.173∗∗∗ 
(0.004) 

0.217∗∗∗ 
(0.005) 

0.173∗∗∗ 

Material × material mitmit 

(0.048) 

0.077∗∗∗ 
(0.022) 

0.068∗∗∗ 
(0.048) 

0.077∗∗∗ 

Material × skilled labor ratio mithi 

(0.004) 

−0.244∗∗∗ 
(0.003) 

−0.205∗∗∗ 
(0.004) 

−0.244∗∗∗ 

Skilled labor ratio × skilled labor ratio hihi 

(0.041) (0.016) 

0.062 
(0.041) 

−0.618∗∗∗ 

(0.062) (0.156) 

Own specified TFP shifters 

Foreign–owned capital ratio 

Exporter 

fit 

eit 

0.043∗ 

(0.021) 

0.027∗∗∗ 

(0.008) 

0.066∗∗∗ 

(0.011) 

0.016∗ 

(0.007) 

0.044∗ 

(0.021) 

0.027∗∗∗ 

(0.008) 

Intangible asset intensity 

Publicly owned/state–owned 

iit 

pi 

0.009 
(0.006) 

−0.000 
(0.006) 

−0.088∗∗∗ 

(0.014) 

0.009 
(0.006) 

−1.819∗∗∗ 

(0.506) 

Specified TFP spillovers from neighbors’ TFP shifters 

Neighbors’ Foreign–owned capital ratio 

Neighboring exporters 

Neighbors’ intangible asset intensity 

f it 

eit 

iit 

0.027 
(0.175) 

−0.129 
(0.072) 

−0.227∗∗∗ 

(0.060) 

0.008 
(0.046) 

−0.002 
(0.042) 

−0.173∗∗∗ 

(0.033) 

−0.106 
(0.082) 

−0.141∗ 

(0.070) 

−0.229∗∗∗ 

(0.060) 

Specified TFP spillovers from neighbors’ primary production factors 

Neighbors’ skilled labor ratio hi 0.216∗∗ 0.735∗∗∗ 

Continued on next page 



Table 4 continued 

Acronym SFE SRE SHT 
(0.077) (0.204) 

Spatial autocorrelation parameter ρ 0.512∗∗∗ 0.433∗∗∗ 0.512∗∗∗ 

(0.017) (0.016) (0.017) 

Variance components 
Dependent variable σ2 

y 1.626 1.626 1.626 

Primary production factors σ2 
P 1.188 1.517 1.172 

Own specified TFP shifters σ2 
T 0.001 0.001 0.166 

Specified TFP spillovers from neighbors’ TFP shifters σ2 
T 

0.001 0.000 0.002 

Specified TFP spillovers from neighbors’ primary production factors σ2 
P 

0.000 0.002 

Between component of unspecified TFP σ2 
µ 0.084 0.134 

Within component of unspecified TFP (average) σ2 
ν 0.034 0.036 0.034 

Hausman test/Hausman and Taylor test 
Test statistic 312.977 0.256 
Degrees of freedom 18 1 
p value 0.000 0.613 

First stage 
Wald test statistic 212.882 
Degrees of freedom 2 
p value 0.000 

∗ ∗∗ Notes: , , and ∗∗∗ refer to significant parameters at 5%, 1% and 0.1%, respectively. SFE, SRE, and SHT refer to spatial fixed effects, 

spatial random effects, and spatial Hausman and Taylor, respectively. The element sets are: XU = [f , f ]; XC = [l, l ◦ l, l ◦ k, l ◦ m, l ◦ h, 

k, k ◦ k, k ◦ h, k ◦ m, m, m ◦ m, m ◦ h, e, e, i, i]; ZU = [h, h ◦ h, h]; and ZC = p. There are 12,552 firms and 37,656 observations. 

Table 5: Results Set b (15 contextual effects)– heteroskedasticity robust estimators 

Acronym SFE SRE SHT 

Dependent variable: log sales 

Primary production factors 

Capital kit 0.085∗∗ 0.168∗∗∗ 0.085∗∗ 

(0.032) (0.023) (0.032) 

Labor lit 0.617∗∗∗ 0.426∗∗∗ 0.618∗∗∗ 

(0.053) (0.031) (0.053) 

Skilled labor ratio hi 0.748∗∗∗ 2.616∗∗∗ 

(0.128) (0.466) 

Material mit −0.151∗ 0.183∗∗∗ −0.152∗ 

(0.064) (0.036) (0.064) 

Capital × capital kitkit 0.003 0.012∗∗∗ 0.003 
(0.002) (0.002) (0.002) 

Capital × skilled labor ratio kithi −0.019 0.060∗∗∗ −0.018 
(0.029) (0.015) (0.029) 

Capital × material kitmit −0.020∗∗∗ −0.040∗∗∗ −0.020∗∗∗ 

(0.005) (0.003) (0.005) 

Labor × capital litkit 0.022∗∗∗ 0.013∗∗∗ 0.022∗∗∗ 

(0.004) (0.004) (0.004) 

Labor × material litmit −0.093∗∗∗ −0.074∗∗∗ −0.093∗∗∗ 

(0.007) (0.005) (0.007) 

Labor × labor litlit 0.021∗∗∗ 0.032∗∗∗ 0.021∗∗∗ 

(0.005) (0.004) (0.005) 

Labor × skilled labor ratio lithi 0.165∗∗∗ 0.215∗∗∗ 0.166∗∗∗ 

(0.049) (0.022) (0.049) 

Material × material mitmit 0.075∗∗∗ 0.068∗∗∗ 0.075∗∗∗ 

(0.004) (0.003) (0.004) 

Material × skilled labor ratio mithi −0.229∗∗∗ −0.202∗∗∗ −0.229∗∗∗ 

(0.041) (0.016) (0.041) 

Skilled labor ratio × skilled labor ratio hihi 0.061 −0.657∗∗∗ 

(0.063) (0.198) 

Own specified TFP shifters 

Foreign–owned capital ratio fit 0.042∗ 0.066∗∗∗ 0.048∗ 

(0.021) (0.011) (0.021) 

Exporter eit 0.034∗∗∗ 0.016∗ 0.034∗∗∗ 

(0.007) (0.007) (0.007) 

Intangible asset intensity iit 0.013∗ 0.001 0.013∗ 

Continued on next page 



Table 5 continued 

Acronym SFE SRE SHT 
(0.006) (0.006) (0.006) 

Publicly owned/state–owned (binary indicator) pi −0.088∗∗∗ −1.861∗∗ 

(0.015) (0.593) 

Specified TFP spillovers from neighbors’ TFP shifters 

Neighbors’ Foreign–owned capital ratio f it −0.048 −0.055 −0.321∗∗ 

(0.151) (0.049) (0.107) 

Neighboring exporters eit 0.123∗ −0.028 0.099 
(0.061) (0.045) (0.060) 

Neighbors’ intangible asset intensity iit −0.132∗∗ −0.163∗∗∗ −0.136∗∗ 

(0.050) (0.038) (0.050) 

Specified TFP spillovers from neighbors’ primary production factors 

Neighbors’ labor lit −0.890∗∗ 0.028 −0.934∗∗∗ 

(0.273) (0.173) (0.270) 

Neighbors’ capital kit 0.643∗∗∗ 0.082 0.669∗∗∗ 

(0.172) (0.139) (0.172) 

Neighbors’ skilled labor ratio hi −0.877 0.751 
(0.883) (1.522) 

Neighbors’ material mit 0.106 0.034 0.099 
(0.179) (0.157) (0.179) 

Neighbors’ (capital × capital) kitkit −0.014 0.030∗∗ −0.015 
(0.011) (0.010) (0.011) 

Neighbors’ (capital × skilled labor ratio) kithi −0.409∗ 0.091 −0.415∗ 

(0.187) (0.099) (0.188) 

Neighbors’ (capital × material) kitmit −0.065∗∗∗ −0.057∗∗∗ −0.068∗∗∗ 

(0.017) (0.016) (0.017) 

Neighbors’ (labor × capital) litkit 0.079∗ −0.013 0.083∗ 

(0.033) (0.022) (0.033) 

Neighbors’ (labor × material) litmit 0.071∗∗ 0.030 0.072∗∗ 

(0.025) (0.023) (0.025) 

Neighbors’ (labor × labor) litlit −0.073∗ −0.016 −0.073∗ 

(0.034) (0.024) (0.034) 

Neighbors’ (labor × skilled labor ratio) lithi 0.449 −0.402∗∗ 0.472 
(0.242) (0.154) (0.242) 

Neighbors’ (material × material) mitmit 0.019 0.018 0.020∗ 

(0.010) (0.011) (0.010) 

Neighbors’ (material × skilled labor ratio) mithi 0.010 0.194 0.001 
(0.137) (0.101) (0.137) 

Neighbors’ (skilled labor ratio × skilled labor ratio) hihi 0.145 2.436∗∗ 

(0.432) (0.862) 

Spatial autocorrelation parameter ρ 0.302∗∗∗ 0.358∗∗∗ 0.302∗∗∗ 

(0.014) (0.029) (0.014) 

Variance components 
Dependent variable σ2 

y 1.626 1.626 1.626 

Primary production factors σ2 
P 1.119 1.513 1.117 

Own specified TFP shifters σ2 
T 0.001 0.001 0.174 

Specified TFP spillovers from neighbors’ TFP shifters σ2 
T 

0.026 0.001 0.019 

Specified TFP spillovers from neighbors’ primary production factors σ2 
P 

0.000 0.001 0.002 

Between component of unspecified TFP σ2 
µ 0.092 0.414 

Within component of unspecified TFP (average) σ2 
ν 0.033 0.036 0.033 

Hausman test/Hausman and Taylor test 
Test statistic 517.797 0.014 
Degrees of freedom 30 1 
p value 0.000 0.905 

First stage 
Wald test statistic 261.636 
Degrees of freedom 2 
p value 0.000 

∗ ∗∗ Notes: , , and ∗∗∗ refer to significant parameters at 5%, 1% and 0.1%, respectively. SFE, SRE, and SHT refer to spatial fixed effects, 

spatial random effects, and spatial Hausman and Taylor, respectively. The element sets are: XU = [f , f ]; XC = [l, l, l ◦ l, l ◦ l, l ◦ k, l ◦ k, 

l ◦ m, l ◦ m, l ◦ h, l ◦ h, k, k, k ◦ k, k ◦ k, k ◦ h, k ◦ h, k ◦ m, k ◦ m, m, m, m ◦ m, m ◦ m, m ◦ h, m ◦ h, e, e, i, i]; ZU = [h, h, h ◦ h, h ◦ h]; 

and ZC = p. There are 12,552 firms and 37,656 observations. 



Table 6: Results Set a (4 contextual effects) with multiple ρ – heteroskedasticity robust estimators 

Acronym SFE SRE SHT 

Dependent variable: log sales 

Primary production factors 

Capital kit 0.083∗ 0.170∗∗∗ 0.083∗ 

(0.033) (0.022) (0.033) 

Labor lit 0.629∗∗∗ 0.430∗∗∗ 0.630∗∗∗ 

(0.053) (0.030) (0.053) 

Skilled labor ratio hi 0.766∗∗∗ 2.657∗∗∗ 

(0.124) (0.455) 

Material mit −0.174∗∗ 0.179∗∗∗ −0.175∗∗ 

(0.064) (0.036) (0.064) 

Capital × capital kitkit 0.004∗ 0.013∗∗∗ 0.004∗ 

(0.002) (0.002) (0.002) 

Capital × skilled labor ratio kithi −0.025 0.059∗∗∗ −0.023 
(0.029) (0.014) (0.029) 

Capital × material kitmit −0.021∗∗∗ −0.041∗∗∗ −0.021∗∗∗ 

(0.005) (0.003) (0.005) 

Labor × capital litkit 0.020∗∗∗ 0.012∗∗∗ 0.020∗∗∗ 

(0.004) (0.004) (0.005) 

Labor × material litmit −0.093∗∗∗ −0.074∗∗∗ −0.093∗∗∗ 

(0.007) (0.005) (0.007) 

Labor × labor litlit 0.022∗∗∗ 0.032∗∗∗ 0.022∗∗∗ 

(0.005) (0.004) (0.005) 

Labor × skilled labor ratio lithi 0.174∗∗∗ 0.219∗∗∗ 0.174∗∗∗ 

(0.048) (0.022) (0.048) 

Material × material mitmit 0.077∗∗∗ 0.068∗∗∗ 0.077∗∗∗ 

(0.004) (0.003) (0.004) 

Material × skilled labor ratio mithi −0.243∗∗∗ −0.205∗∗∗ −0.242∗∗∗ 

(0.041) (0.016) (0.041) 

Skilled labor ratio × skilled labor ratio hihi 0.056 −0.557∗∗∗ 

(0.061) (0.145) 

Own specified TFP shifters 

Foreign–owned capital ratio fit 0.044∗ 0.066∗∗∗ 0.056∗∗ 

(0.021) (0.011) (0.020) 

Exporter eit 0.026∗∗∗ 0.015∗ 0.027∗∗∗ 

(0.008) (0.007) (0.008) 

Intangible asset intensity iit 0.010 −0.000 0.010 
(0.006) (0.006) (0.006) 

Publicly owned/state–owned pi −0.089∗∗∗ −1.835∗∗∗ 

(0.015) (0.541) 

Specified TFP spillovers from neighbors’ TFP shifters 

Neighbors’ Foreign–owned capital ratio f it 0.080 0.023 −0.219 
(0.169) (0.043) (0.115) 

Neighboring exporters eit −0.152∗ −0.001 −0.178∗ 

(0.071) (0.040) (0.070) 

Neighbors’ intangible asset intensity iit −0.205∗∗∗ −0.173∗∗∗ −0.208∗∗∗ 

(0.059) (0.031) (0.059) 

Specified TFP spillovers from neighbors’ primary production factors 

Spatially lagged skilled labor ratio hi 0.180∗ 1.245∗∗ 

(0.071) (0.380) 

Spatial autocorrelation parameters for relationships 

among public/state–owned firms ρp 0.000 0.000 0.000 
(0.102) (0.096) (0.102) 

among private firms ρr 0.546∗∗∗ 0.388∗∗∗ 0.546∗∗∗ 

(0.018) (0.018) (0.018) 

between publicly/state–owned and private firms ρo 0.000 0.000 0.000 
(0.038) (0.036) (0.031) 

Variance components 
Dependent variable σ2 

y 1.626 1.626 1.626 

Primary production factors σ2 
P 1.182 1.518 1.169 

Own specified TFP shifters σ2 
T 0.001 0.001 0.169 

Specified TFP spillovers from neighbors’ TFP shifters σ2 
T 

0.000 0.007 

Specified TFP spillovers from neighbors’ primary production factors σ2 
P 

0.001 0.001 0.003 

Between component of unspecified TFP σ2 
µ 0.085 0.134 

Continued on next page 



Table 6 continued 

Acronym SFE SRE SHT 

Within component of unspecified TFP (average) σ2 
ν 0.034 0.036 0.034 

Hausman test/Hausman and Taylor test 
Test statistic 323.269 2.679 
Degrees of freedom 
p value 

18 
0 

1 
0.102 

First stage 
Wald test statistic 296.093 
Degrees of freedom 
p value 

2 
0 

∗ ∗∗ Notes: , , and ∗∗∗ refer to significant parameters at 5%, 1% and 0.1%, respectively. SFE, SRE, and SHT refer to spatial fixed effects, 

spatial random effects, and spatial Hausman and Taylor, respectively. The element sets are: XU = [f , f ]; XC = [l, l ◦ l, l ◦ k, l ◦ m, l ◦ h, 

k, k ◦ k, k ◦ h, k ◦ m, m, m ◦ m, m ◦ h, e, e, i, i]; ZU = [h, h ◦ h, h]; and ZC = p. There are 12,552 firms and 37,656 observations. 

Table 7: Results Set b (15 contextual effects) with multiple ρ – heteroskedasticity robust estimators 

Acronym SFE SRE SHT 

Dependent variable: log sales 

Primary production factors 

Capital kit 0.085∗∗ 0.167∗∗∗ 0.085∗∗ 

(0.032) (0.023) (0.032) 

Labor lit 0.620∗∗∗ 0.427∗∗∗ 0.621∗∗∗ 

(0.053) (0.031) (0.053) 

Skilled labor ratio hi 0.750∗∗∗ 2.572∗∗∗ 

(0.128) (0.462) 

Material mit −0.154∗ 0.179∗∗∗ −0.156∗ 

(0.064) (0.036) (0.064) 

Capital × capital kitkit 0.003 0.013∗∗∗ 0.003 
(0.002) (0.002) (0.002) 

Capital × skilled labor ratio kithi −0.020 0.059∗∗∗ −0.018 
(0.029) (0.015) (0.029) 

Capital × material kitmit −0.020∗∗∗ −0.040∗∗∗ −0.020∗∗∗ 

(0.005) (0.003) (0.005) 

Labor × capital litkit 0.022∗∗∗ 0.013∗∗∗ 0.022∗∗∗ 

(0.004) (0.004) (0.004) 

Labor × material litmit −0.093∗∗∗ −0.074∗∗∗ −0.093∗∗∗ 

(0.007) (0.005) (0.007) 

Labor × labor litlit 0.021∗∗∗ 0.032∗∗∗ 0.022∗∗∗ 

(0.005) (0.004) (0.005) 

Labor × skilled labor ratio lithi 0.166∗∗∗ 0.218∗∗∗ 0.167∗∗∗ 

(0.049) (0.022) (0.049) 

Material × material mitmit 0.075∗∗∗ 0.068∗∗∗ 0.075∗∗∗ 

(0.004) (0.003) (0.004) 

Material × skilled labor ratio mithi −0.230∗∗∗ −0.202∗∗∗ −0.230∗∗∗ 

(0.041) (0.016) (0.041) 

Skilled labor ratio × skilled labor ratio hihi 0.055 −0.602∗∗ 

(0.064) (0.187) 

Own specified TFP shifters 

Foreign–owned capital ratio fit 0.042∗ 0.066∗∗∗ 0.058∗∗ 

(0.021) (0.011) (0.020) 

Exporter eit 0.033∗∗∗ 0.016∗ 0.034∗∗∗ 

(0.007) (0.007) (0.007) 

Intangible asset intensity (binary indicator) iit 0.013∗ 0.001 0.013∗ 

(0.006) (0.006) (0.006) 

Publicly owned/state–owned (binary indicator) pi −0.089∗∗∗ −1.725∗∗ 

(0.015) (0.577) 

Specified TFP spillovers from neighbors’ TFP shifters 

Neighbors’ Foreign–owned capital ratio f it −0.026 −0.047 −0.386∗∗ 

(0.149) (0.049) (0.125) 

Neighboring exporters eit 0.110 −0.025 0.078 
(0.061) (0.044) (0.061) 

Neighbors’ intangible asset intensity iit −0.125∗ −0.163∗∗∗ −0.130∗∗ 

(0.050) (0.037) (0.050) 

Continued on next page 



Table 7 continued 

Acronym SFE SRE SHT 
Specified TFP spillovers from neighbors’ primary production factors 

Neighbors’ capital kit 0.640∗∗∗ 0.047 0.674∗∗∗ 

(0.172) (0.138) (0.172) 

Neighbors’ labor lit −0.843∗∗ 0.077 −0.902∗∗∗ 

(0.271) (0.171) (0.269) 

Neighbors’ skilled labor ratio hi −0.883 1.560 
(0.861) (1.544) 

Neighbors’ material mit 0.085 0.090 0.078 
(0.178) (0.155) (0.178) 

Neighbors’ (capital × capital) kitkit −0.013 0.035∗∗∗ −0.015 
(0.011) (0.010) (0.011) 

Neighbors’ (capital × skilled labor ratio) kithi −0.393∗ 0.060 −0.400∗ 

(0.183) (0.097) (0.183) 

Neighbors’ (capital × material) kitmit −0.063∗∗∗ −0.058∗∗∗ −0.066∗∗∗ 

(0.017) (0.016) (0.017) 

Neighbors’ (labor × capital) litkit 0.072∗ −0.022 0.077∗ 

(0.033) (0.022) (0.032) 

Neighbors’ (labor × material) litmit 0.071∗∗ 0.030 0.073∗∗ 

(0.025) (0.023) (0.025) 

Neighbors’ (labor × labor) litlit −0.072∗ −0.014 −0.072∗ 

(0.033) (0.024) (0.033) 

Neighbors’ (labor × skilled labor ratio) lithi 0.446 −0.335∗ 0.475∗ 

(0.236) (0.150) (0.236) 

Neighbors’ (material × material) mitmit 0.019 0.015 0.020∗ 

(0.010) (0.010) (0.010) 

Neighbors’ (material × skilled labor ratio) mithi −0.019 0.192 −0.029 
(0.134) (0.099) (0.134) 

Neighbors’ (skilled labor ratio × skilled labor ratio) hihi 0.111 1.788∗ 

(0.423) (0.867) 

Spatial autocorrelation parameters for relationships 

among public/state–owned firms ρp 0.000 0.000 0.000 
(0.110) (0.111) (0.110) 

among private firms ρr 0.323∗∗∗ 0.376∗∗∗ 0.323∗∗∗ 

(0.016) (0.032) (0.016) 

between publicly/state–owned and private firms ρo 0.000 0.000 0.000 
(0.053) (0.049) (0.052) 

Variance components 
Dependent variable σ2 

y 1.626 1.626 1.626 

Primary production factors σ2 
P 1.118 1.512 1.116 

Own specified TFP shifters σ2 
T 0.001 0.001 0.150 

Specified TFP spillovers from neighbors’ TFP shifters σ2 
T 

0.027 0.001 0.021 

Specified TFP spillovers from neighbors’ primary production factors σ2 
P 

0.000 0.001 0.002 

Between component of unspecified TFP σ2 
µ 0.092 0.415 

Within component of unspecified TFP (average) σ2 
ν 0.033 0.036 0.033 

Hausman test/Hausman and Taylor test 
Test statistic 510.630 0.404 
Degrees of freedom 30 1 
p value 0.000 0.525 

First stage 
Wald test statistic 383.230 
Degrees of freedom 2 
p value 0.000 

∗ ∗∗ Notes: , , and ∗∗∗ refer to significant parameters at 5%, 1% and 0.1%, respectively. SFE, SRE, and SHT refer to spatial fixed effects, 

spatial random effects, and spatial Hausman and Taylor, respectively. The element sets are: XU = [f , f ]; XC = [l, l, l ◦ l, l ◦ l, l ◦ k, l ◦ k, 

l ◦ m, l ◦ m, l ◦ h, l ◦ h, k, k, k ◦ k, k ◦ k, k ◦ h, k ◦ h, k ◦ m, k ◦ m, m, m, m ◦ m, m ◦ m, m ◦ h, m ◦ h, e, e, i, i]; ZU = [h, h, h ◦ h, h ◦ h]; 

and ZC = p. There are 12,552 firms and 37,656 observations. 



Table 8: Results Robustness Set a (4 contextual effects) – heteroskedasticity robust estimators 

Acronym SHT SHT SHT 

W200 W100 W60 

Dependent variable: log sales 

Primary production factors 

Capital kit 0.098∗∗ 0.102∗∗ 0.104∗∗ 

(0.033) (0.033) (0.033) 

Labor lit 0.638∗∗∗ 0.637∗∗∗ 0.636∗∗∗ 

(0.053) (0.053) (0.052) 

Skilled labor ratio hi 2.695∗∗∗ 2.644∗∗∗ 2.613∗∗∗ 

(0.457) (0.456) (0.456) 

Material mit −0.176∗∗ −0.178∗∗ −0.179∗∗ 

(0.064) (0.064) (0.064) 

Capital × capital kitkit 0.005∗∗ 0.006∗∗ 0.006∗∗ 

(0.002) (0.002) (0.002) 

Capital × skilled labor ratio kithi −0.034 −0.036 −0.038 
(0.029) (0.030) (0.030) 

Capital × material kitmit −0.023∗∗∗ −0.024∗∗∗ −0.024∗∗∗ 

(0.005) (0.005) (0.005) 

Labor × capital litkit 0.020∗∗∗ 0.020∗∗∗ 0.019∗∗∗ 

(0.005) (0.005) (0.005) 

Labor × material litmit −0.093∗∗∗ −0.093∗∗∗ −0.093∗∗∗ 

(0.007) (0.007) (0.007) 

Labor × labor litlit 0.021∗∗∗ 0.021∗∗∗ 0.020∗∗∗ 

(0.005) (0.005) (0.005) 

Labor × skilled labor ratio lithi 0.193∗∗∗ 0.197∗∗∗ 0.201∗∗∗ 

(0.049) (0.049) (0.049) 

Material × material mitmit 0.079∗∗∗ 0.080∗∗∗ 0.080∗∗∗ 

(0.004) (0.004) (0.004) 

Material × skilled labor ratio mithi −0.249∗∗∗ −0.249∗∗∗ −0.250∗∗∗ 

(0.041) (0.041) (0.041) 

Skilled labor ratio × skilled labor ratio hihi −0.518∗∗∗ −0.457∗∗ −0.418∗∗ 

(0.155) (0.154) (0.153) 

Own specified TFP shifters 

Foreign–owned capital ratio fit 0.046∗ 0.048∗ 0.050∗ 

(0.020) (0.020) (0.020) 

Exporter eit 0.024∗∗ 0.024∗∗ 0.023∗∗ 

(0.008) (0.008) (0.008) 

Intangible asset intensity iit 0.007 0.007 0.006 
(0.006) (0.006) (0.006) 

Publicly owned/state–owned pi −1.676∗∗∗ −1.504∗∗ −1.400∗∗ 

(0.501) (0.489) (0.480) 

Specified TFP spillovers from neighbors’ TFP shifters 

Neighbors’ Foreign–owned capital ratio f it −0.095 −0.084 −0.072 
(0.059) (0.053) (0.048) 

Neighboring exporters eit −0.103∗ −0.076∗ −0.066 
(0.045) (0.038) (0.034) 

Neighbors’ intangible asset intensity iit −0.114∗∗ −0.089∗∗ −0.087∗∗ 

(0.040) (0.032) (0.031) 

Specified TFP spillovers from neighbors’ primary production factors 

Neighbors’ skilled labor ratio hi 0.489∗∗ 0.406∗∗ 0.356∗∗ 

(0.152) (0.133) (0.119) 

Spatial autocorrelation parameter ρ 0.310∗∗∗ 0.265∗∗∗ 0.233∗∗∗ 

(0.014) (0.012) (0.012) 

Variance components 
Dependent variable σ2 

y 1.626 1.626 1.626 

Primary production factors σ2 
P 1.224 1.237 1.245 

Own specified TFP shifters σ2 
T 0.141 0.114 0.099 

Specified TFP spillovers from neighbors’ TFP shifters σ2 
T 

0.002 0.001 0.001 

Specified TFP spillovers from neighbors’ primary production factors σ2 
P 

0.001 0.001 0.001 

Between component of unspecified TFP σ2 
µ 0.140 0.139 0.136 

Within component of unspecified TFP (average) σ2 
ν 0.034 0.035 0.035 

Hausman test 
Test statistic 267.753 257.172 251.066 

Continued on next page 



Table 8 continued 

Acronym SHT SHT SHT 

W200 W100 W60 

Degrees of freedom 18 18 18 
p value 0.000 0.000 0.000 

Hausman and Taylor test 
Test statistic 0.220 0.941 1.643 
Degrees of freedom 1 1 1 
p value 0.639 0.332 0.200 

First stage 
Wald test statistic 234.779 242.544 246.990 
Degrees of freedom 2 2 2 
p value 0.000 0.000 0.000 

∗ ∗∗ Notes: , , and ∗∗∗ refer to significant parameters at 5%, 1% and 0.1%, respectively. SHT refers to spatial Hausman and Taylor. 

W200, W100, and W60 refer to weights matrices whose elements are zero if distance > 200 miles, distance > 100 miles, and 

distance > 60 miles, respectively. The element sets are: XU = [f , f ]; XC = [l, l ◦ l, l ◦ k, l ◦ m, l ◦ h, k, k ◦ k, k ◦ h, k ◦ m, m, m ◦ m, 

m ◦ h, e, e, i, i]; ZU = [h, h ◦ h, h]; and ZC = p. There are 12,552 firms and 37,656 observations. 



Figure 1a: Firms per region in China’s chemical industry (Map basis: GfK GeoMarketing) 

Figure 1b: Total employment per region in China’s chemical industry (Map basis: GfK GeoMarketing) 
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