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Abstract

The linguistic theory of Richard Montague (variously referred to as Mon­
tague Grammar or Montague Semantics) provides a comprehensive formalized
account of natural language semantics. It appears to be particularly applica­
ble to the problem of natural language understanding by computer systems.
However the theory does not deal with meaning at the lexical level. With few
exceptions, lexical items are treated simply as unanalyzed basic expressions.
As a result, comparison of distinct lexical meanings or of semantic expressions
containing these lexical meanings falls outside the theory. In this paper, I at­
tempt to provide a compatible theory of lexical semantics which may serve as
an extension of Montague Semantics.

1 INTRODUCTION

Over the fifteen year period from 1955 to 1970, Richard Montague advanced a precise
and elegant theory of natural language semantics [10]. In my opinion, this theory
and the subsequent developments inspired by it offer the most promising approach
to the realization of computer understanding of natural language. However analysis
of meaning at the lexical level is outside the theory. Therefore relations between
expressions in the object language, such as entailment or contradiction, cannot be
determined directly from the theory. Examples given below will make this clear.
They are prefaced by a brief description of Montague Semantics.

According to Montague's theory, a sentence in the object language is analyzed by
first producing its structural description. A structural description is an expression

·School of Computer and Information Science, Syracuse University
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consisting of lexical items (i.e., basic expressions) and .structural operations which
successively combine subexpressions to generate the sentence. Then, beginning with
the meanings of the lexical items, semantic operations are invoked in one-to-one
correspondence with the structural operations. The semantic operations combine
meanings into successively larger structures, finally resulting in the meaning of the
sentence.

In keeping with the view of semantics as parallel to syntax, the syntactically primitive
lexical items are considered semantically primitive as well. Thus in PTQ (a fragment
of English formulated by Montague to demonstrate his theory) man translates to
man' in the Intensional Logic.1 Presumably the meaning of man' stands in certain
relations to other meanings, but this is outside the scope of the theory.2

The complex meanings constructed by Montague's theory are expressions (or terms)
in the algebra that models the object language. Therefore these meanings can be
further processed according to the laws of-the model (e.g., first-order logic).

For example, from the meanings of (1) "Mary dates an actor" and (2) "Every actor
is a male" Montague's theory can deduce the meaning of (3) "Mary dates a male".
Without (2) however, the deduction of (3) is not possible. Any English speaker could
deduce (3) directly from (1), since a part of the meaning of actor is male. But in
Montague's system, the translations actor' and male' are unanalyzed.

To make the point more strongly, an English speaker would also deduce "Mary ac­
companies an actor" from (1) since accompany is part of the meaning of date. To
permit this deduction in Montague's system one might add the sentences "Every per­
son who dates a person accompanies a person", "Mary is a person" and "Every actor
is a person". A more common method is to add a meaning postulate or fact to the
model such as "VxVy[date~(y)(x) -+ accompany~(y)(x)]."3 This is the beginning of
what can be called a knowledge base.

Thus to emulate the deduction capability of an English speaker, the meanings of
lexical items are specified implicitly by a number of postulates or facts residing in a
knowledge base in the model.

Although not always explicit, this is the conventional approach taken in systems

IThe Intensional Logic (IL) is a tensed modal language to which PTQ is translated. The in­
terpretation of IL provides an indirect interpretation of PTQ. Because it is similar in syntax and
semantics to familiar first-order and modal logics, IL provides a perspicuous means for interpreting
PTQ. Therefore, the translation of a PTQ expression to IL is used to describe the meaning of that
expression.

2Strictly speaking, nonlogical constants are treated in this manner. Logical constants, such as
every, he and be receive special treatment.

3IC 6 is a relation in IL that translates a transitive or intransitive verb, then 6. is the corresponding
(extensional) relation on individuals (see [4,10]).

2



that deal with the semantics of lexical items. The postulates may take the form
of logical expressions, graphs or other relational data structures. The large number
of postulates required and their ad hoc nature limit the value of this conventional
approach.

An alternative, to be developed in this paper, is to treat the meanings of lexical items
as decomposable. In this approach, each lexical item is given a semantic value whose
constituents convey its essential meaning. It is similar to Katz' sequences of semantic
markers [7] but differs in these important ways. First, the entities that play the role
of semantic markers are fixed and well defined for a given realization, being derived
from empirical data. Second, they are not burdened with any ideal properties such
as universality. Third, they are clustered into "orthogonal dimensions of meaning"
which can be processed independently of one another.

This leads to a representation of meaning that has the structure of a multidimensional
space with an orthogonal basis. This structure would appear to be easier to deal with
computationally than the complex relational network which is characteristic of the
cOI\.ventional approach.

An embedded system that provides meanings for lexical items in the manner indi­
cated will be called a lexicon. The role and the importance of the lexicon in the
process of deduction should be evident. Deduction involves comparing meanings to
determine equivalence (synonymy), inclusion (entailment), and exclusion (contradic­
tion and anomaly). The way in which the meanings of lexical items are represented
(encoded) by the lexicon can significantly facilitate or impede the process.

The lexicon does not eliminate the need for a knowledge base. Rather it makes the
knowledge base an independent embedded system with a different role. To define
each lexical item in its domain, the lexicon employs those distinguishing properties
that are sufficient to differentiate between nonsynonymous lexical items.4 For ex­
ample, porpoise is sufficiently defined as a totally aquatic, toothed, small (200-600
pound) mammal. That porpoises are playful, nonagressive and have been known to
rescue drowning humans is considered encyclopedic information, not appropriate for
a lexicon.5 Encyclopedic data resides in the knowledge base. This data is used in
extended deduction,6 not necessary for direct linguistic competence.

4This includes not only purely semantic data, but also syntactic category and feature data.
The latter are especially important for differentiating homographs, distinct lexical items that are
structurally identical. For example, "set" is a lexical structure that represents a number of distinct
lexical items that are differentiated by syntactic category and feature data.

5This general characterization of a lexicon should not be interpreted as taking a position with
regard to the "minimal description principle" [5], which holds that a lexicon should be restricted
to information necessary and sufficient to distinguish between lexical items contained therein. The
theory to be developed is completely neutral on this issue.

6For purposes of this discussion, a distinction is made between direct deduction and extended
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The objective of this paper is to develop a theory of lexical semantics that is consistent
with the principle of compositionality and that leads to a representation for meaning
that facilitates recognition of direct entailment.

Section 2 develops the underlying concept of a semantic domain and its basis. This
provides a framework for definition of a representation of meaning presented in Section
3. A lexicon is defined in terms of this representation. Section 4 illustrates how these
concepts can be applied to construct a lexicon from empirical linguistic data. Section
5 considers how lexical meaning relates to the higher level meaning constructs of
Montague Semantics.

Throughout these discussions, little or no consideration is given to practical algo­
rithms. Neither is any assessment made of computational complexity. These issues
will he dealt with in subsequent papers.

2 SEMANTIC DOMAIN

This section defines underlying concepts. The first is the semantic domain, a col­
lection of related meanings. Since meaning is susceptible in general to unlimited
refinement, the number of possible meanings in some semantic domains is infinite.
A finite approximation to a semantic domain, called a reduced semantic domain, is
constructed by partitioning the semantic domain into equivalence classes, using a
special partition called a basis. Distinguished elements of the reduced domain, called
elementary subsets, are then defined. They play an important role in the development
of a representation for meaning.

2.1 A semantic domain is a collection of subsets interpreted as references or exten­
sions. Consider the set H of all humans living at this moment. Certain subsets of H
provide extensions or meanings of English words and phrases: e.g., boy, Canadian,
blue collar worker.

Or, consider the set H x H of all pairs of humans. Subsets of H x H serve as meanings
of English words and phrases (understood as binary relations) such as father, sister,
friend, manager..

The subsets of a given set S thus provide extensions for all the properties of members
of S. The members of S are not restricted to concrete existent entities as in the
examples just given. Members of S may be nonexistent (e.g., fictitious or imaginary)

deductioDa Direct deduction is the immediate unmediated (usually unconscious) generation of in­
formation that characterizes real time linguistic performance. Extended deduction is generation
of information mediated by (usually conscious) thought. No claim is made that the two kinds of
deduction are disjointa The terms are used only to distinguish major regions of a continuum.
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or they may be abstractions. S may be infinite as well as finite.

Set inclusion in a semantic domain is viewed as meaning inclusion or entailment.
That is, x ~ y is interpreted as x entails y in the sense that membership in the subset
x implies membership in the subset y. For example, the meaning of father entails
the meaning of parent because the extension of father in H x H is contained in the
extension of parent.

This use of entailment is a generalization of its conventional use as a relation between
sentences.. The precise nature of this generalization will be described in Section 5.

The notion of a semantic domain is formalized in the following definition.

DEFINITION. Let S be a set and Btl, be the power set of S. A semantic domain
is defined to be the algebra of subsets, Su := (StI" U, n, 0, 1) where U, n, 0, 1 are
the operations set union, set intersection, null set and unit set, respectively.7 Set
inclusion, the partial order on Su, is denoted ~.

As with any algebra, a suitable subset of a semantic domain can be regarded as a
semantic domain and semantic domains can be combined to form a semantic domain.

2.2 A partition of S is a set of nonempty pairwise disjoint elements of Su whose
union is equal to S. A partition will be written P = {pili E J} where J is a set
indexing P.

Let PI = {pili E J1 } and P2 = {p~lj E J2 } be partitions of S. The product of Pl and
P2 is defined PI ~ P2 := {pi n p;li E J t , k E J2 }. In general, PI ® · .. ® Pn - 1 ® Pn is
defined to be (PI ® · · · ® Pn - 1 ) ® Pn • It is obvious that the product is associative and
COnuIlutative. The product will also be written ®{Pill =5 i :5 n}.

2.2.1 EXAMPLE. Let S = No, the non-negative integers. Let PI = {{iii = 0, mod4} ,
{iii = 1,mod4}, {iIi = 2, mod4} , {iii = 3,mod4}} and P2 = {{ilis-prime(i)}, {il-,is­
prime(i)}}. Then PI ® P2 = {{iIi = 0,mod4/\ is-prime(i)}, {iii = 0,mod4" ...,is­
prime(i)}, ... , {iii = 3,mod4/\ -,is-prime(i)}}. Note that p~ np~ = 0; that is, the
conjunction i = 0, mod4 " is-prime(i) is logically impossible. Thus, while PI and P2
are partitions of S, Pt ® P2 is not.

2.2.2 EXAMPLE. Let S be the set of possible shoes. Let Pt = {men's, women's},
P2 = {large, medium, small}, and Pg = {white, black, red, green, blue} be partitions
of S. Then Pt ® P2 ® P3 = {men's-large-white-shoes, men's-large-black-shoes, ... ,
women's-small-blue-shoes}. While men's-large-green-shoes may be unusual, they
are logically possible, and so are all other combinations. Therefore, Pt ® P2 ® P3 is a

7The notation "X := Y" means that X is defined to be equal to Y; "X :<=> Y" means that X is
defined to be logically equivalent to Y; etc.
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partition of S.

It should be pointed out that white and other properties used in this example are
not words, but symbols naming subsets of S.

2.3 In the first example a block of Pt ~ P2 was found to be empty because it is
logically impossible for an element of S to occupy it. Therefore Pt ~ P2 is not a
partition of S. On the other hand, in the second example every block of Pl ® P2 ® P3
is occupied, and so Pt fig P2 ® P3 partitions S. IT Pt, P2 are partitions of S and PI rp) P2
is also, then PI and P2 are said to be independent. This concept is generalized as
follows.

DEFINITION. Let {Pili E I} be a set of partitions of S. Then {Pili E I} is an
independent set iff (if and only if) for any finite I' ~ I, ®{Pi Ii E I'} is also a partition
of S.

Obviously, ®{Pili E I'} is a partition of S iff whenever ji E Ji, nieII 111i =F 0. Thus in­
dependence ensures that residence in a block of one partition cannot restrict residence
in any block of any other partition.

An independent set of partitions of S will be called a basis of S.

2.4 DEFINITION. Let B = {Pili E I B } be a basis of S. An elementary subset of S
defined by B is a subset x of S that can be written in the form x = niEIB UjEJf P!
where Jf ~ Ji for all i E Is and Ji% = Ji for all but finitely many i E lB. This form
will be called the standard form for elementary subset x relative to basis B. The
conjunct UjEJf 111 will be called the ith component of x relative to basis B.

Obviously, given a nonempty elementary subset x, the standard form for x relative
to a basis B is unique. It will be convenient to define IB: i E IE :¢:> Jf =F Ji. Then
x = niElfJ UjEJf 111. Also x = 0 iff Jf = 0 for some i E lB.

LEMMA. Let x and y be elementary subsets of S defined by basis B with standard
forms niEIB UjEJf 111 and niEIBUjEJf p{, respectively. Then x n y is an elementary

subset with standard form niEIBUjE(Jfn.1f)P{.

proof: x ny= [(\EIB UjEJf pi] n [niEIB UjE.1f pi] = niEIB[(UjEJf 111) n (UiE.1f pi)] =

niEIB UitEJf.i2E.1f(pf n~) = niEIB UiE(Jfn.1f)111, since p{1 npf = 1111 if it = i2 and 0
otherwise. Therefore x n y is an elementary subset with the ith component indexed
by Jfny

= Jf n Jr.
2.5 DEFINITION. The algebra of elementary subsets, ESB := (EsB' n, 0, 1) where
n, 0, 1 are as defined for SUe

The binary operation of ESB acts componentwise on standard forms to yield standard
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forms. Set inclusion is a partial order on EsB • Moreover, x ~ y iff Jl: ~ Jf for all
i E lB. Equivalently, x S; y iff I~ S; IB" Jf S; Jl' for all i E I~.

2.6 Let SUB be the closure of ESB under set union. SUB is also closed under finite
intersection since EsB is.

DEFINITION. The subset algebra of S defined by basis B, SUB := (SuB,U,n,O,l)
where all operations are as defined for Su.

2.7 Observe that Su and SUB can be viewed as lattices with order :5 defined as set
inclusion. Similarly, ESB can be viewed as a meet semilattice, also with set inclusion
as the order. It will be convenient to take this view in much of the discussion to
follow. In particular, it will be said that y covers x, written x -< y, iff x < z :5 y
implies z = y; and x is an atom iff 0 -< x. An interval [x, y] is a sublattice containing
x and y in which every element z satisfies x < z < y. A chain is a sublattice for
which < is a total order. A chain between elements y and x :5 y is an interval [x,y]
of a chain.

No restrictions have heen placed on the cardinalities of Su, SUB, and EsB . However,
at this point a finiteness assumption will be adopted.

finite chain assumption (F): Any chain between any two elements of SUB is finite.

Since SUB is a sublattice of Su, it is distributive and bounded. The finite chain as­
sumption implies that SUB is finite. ESB must also be finite. Of course, no restriction
is placed on Su.

It is possible that a weaker assumption would he adequate for purposes of the following
discussions.8 However, adoption of F will avoid complications. Moreover, F seems
quite reasonable for a theory of natural language.

2.8 Let B be a basis of S, SUB be the subset algebra defined by B and A be the
set of atoms of SUB. Define 9B: S ~ A to be the map from an element of S
to the atom containing it. 9B can be extended to a map 81..1, ~ SUB by defining
9B(X) := UuezgB(U). Then 9B induces a partition on semantic domain Su. The
blocks of this partition correspond to the elements of SUB. SUB will be called the
reduced semantic domain defined by basis B.

SUB can be visualized as a space of dimension equal to the cardinality of lB. Each Pi E
B is regarded as a "dimension of meaning". The P1 E Pi are mutually antonymous
"primitive" meanings.. The p1 play a role analogous to orthogonal functions in that
if x is an elementary subset with standard form nels UjeJf pf and p; E Pq, Pq E B,

8 Another possible assumption is: (F') Any chain between any two elements of SUB - {I} is finite.
(See 2.10 for a definition of Su~.) F' would allow an infinite partition of 1. This would permit an
unbounded number of first level domains.
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then p; n x =F 0 iff r E J:. An elementary subset is analogous to a convex subspace
of SUB; it represents a conjunction of "primitive" meanings from various dimensions
of meaning.

A reduced semantic domain is thought of as a finite realization of a semantic domain.
The basis B determines the precision to which meanings in the semantic domain Su
can be expressed or differentiated in SUB. The following definitions relativize relations
between meanings to the reduced semantic domain. Let x, y E Bu. x entails y relative
to B :¢> 9B(X) S; 9B(Y). X is synonymous with y relative to B :¢:} gB(X) = 9B(Y). X
is anomalous or contradictory relative to B :¢> gB(X) = O.

On this view, synonymy and entailment are not absolute, but relative to a particular
realization. In a coarse realization (e.g., that of a child) large sets of meanings (i.e.,
elements of Su) may be synonymous. As the realization is refined (e.g., by learning),
previously synonymous meanings are differentiated. In the limit (as SUB approaches
Su) synonymy is equivalent to identity.

2.9 Let P = {pili E J} be a partition of Y S; S and let X S; Y. Define the
restriction of P to X: Pjx:= {pi n Xli E J}. Note that Pix is a partition of X iff
pi n X =F 0 for all j E J. Let B = {Pili E IB} be a basis of Y. Define the restriction
of B to X: BTx:= {Piix Ii E IB }. Bix is a basis of X iff PiTx is a partition of X
for all i E 1B and the set {Piix Ii E IB } is independent.

2.10 Let ESB be the algebra of elementary subsets defined by basis B and at, a2 be
atoms of ESB. Let B' =F B be a basis of X S; S such that B' i Cll is a basis of at but
B' i «12 is not a basis of a2. For example, it may be that X contains meanings (i.e.,
subsets of S) relating to animate entities while S - X contains meanings relating to
inanimate entities. H B' is defined by meanings relevant to animate entities, it will
not in general be a basis of S - X.

Let B' t (11 = Bt · B 1 determines an algebra of elementary subsets, ESB
I

= (EsB1 , n, 0,
1) where 1 has the value al. It is natural to define a combined algebra ES8 := (Es B U
EsB1 , n, 0, 1) where ESB is embedded in the interval [0,1] and ESB

I
is embedded in

the interval [0, al] such that the covering relation is preserved for all nonzero elements.

SUB is defined to be the subset algebra with universe equal to the closure of EssUEsBl

under set union.

EXAMPLE. Let B = {PI, P2}, PI = {NT, T}, P2 = {NP, Pl. Suppose that B' =
{Qt,Q2}, where QI = {SL,PH} and Q2 = {NTT,TT}, and that B'ta3 and B'la.
are bases of a3 and a4, respectively. Suppose further that B' t al and B' i 42 are not
bases. The resulting partitions of S are diagrammed in Figure 1. The semilattice
ESB is shown in Figure 2.
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This situation is generalized as follows. Let T be a tree indexing defined in the usual
way: (i) T C N* where N denotes the positive integers; (ii) a, f3 E N* and a..f3 E T
implies Q E T; (iii) Q E N*, bEN and a.b E T implies \Ie E N: e < b~ a.c E T.

Let B.= {Balo: E T} be a system of bases such that B = B f is a basis of S (f denotes
the empty string) and B Q •b is a basis of a Q .6, an atom of ESBo • B will be called an ex­
tended basis of S. The algebra of elementary subsets is defined: ES8 := (Es B, n, 0, 1)
with ESB = UQET EsBo where ESBo is embedded in [0, a Q ] such that the covering
relation is preserved for all nonzero elements. a f = a is taken to be 1; thus ESB is
embedded in [0,1]. The operation n is defined as follows. Let a., {3 E T, x = niEIB

a

UJ"EJ% "p~ i and y = r1iEIB UjEJ"It.~ i· Thena,' , fJ fJ,1 p,

xny:=

niEIB.. UjeJ:.in~.i~,i
X

y
o

if a. = 13
if a = (j.b., and y n ap.b = ap.b

if f3 = o..b·1 and x n aa.b = aa.b

otherwise

Thus n is identical to set intersection.

2.11 Each interval [0, aa.b] S; EsB, where aQ.b is an atom of ESBa and B a E B,
will be called an elementary domain. An element x E ESB will be said to belong
to elementary domain [0, aa] iff x E [0, aQ ) and for any elementary domain [0, a,e],
x E [0, ap) implies aa < ap. That is, x belongs to [0, ao ] iff [0, a Q ] is the smallest
elementary domain properly containing x.

2.12 Let SUB be the closure of ESB under set union. Then SUB is defined to be the
subset algebra (Sus, u, n, 0, 1) where U, n, 0, 1 are defined as for SUe The set A of
atoms of SUB consists of atoms defined by bases in B and not further decomposed.
That is, an atom aa.b defined by basis B a E B is an atom of Sus just in case a.b
is maximal in T (\Ie EN: a.b.c ¢ T). The map 98 is defined similarly to 9B, and
allows definition of entailment, synonymy and contradiction or anomaly relative to
the extended basis B.

3 NORMAL FORM

In this section a unique representation, or normal form, for elements of the reduced
semantic domain, SU8, is defined. Then an algebra of normal forms is developed.
The definition of a lexicon is based upon this algebra.

3.1 The elementary subsets of SUB have several important properties. First, the
standard form provides a qnique representation. Second, the set of elementary sub­
sets is closed under set intersection. The intersection of standard forms is the com-
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ponentwise intersection and is again a standard form. Third, every element of SUB is
a union of elementary subsets.

It is natural to ask if the standard form could be generalized to a representation or
code for all meanings. In simplest form, does an arbitrary element y of SUB have
a unique representation SUp{XIc E Esslk E KY}? Unfortunately, no. An arbitrary
element of SUB may have a number of representations as a union of elementary subsets.

EXAMPLE. Let 8 = B = {Pl,P2}, PI = {p~,p~} and P2 = {p~,p~}. The following
all represent the same subset (each expression in brackets is a standard form):
(i) (p~ n (p~ u p~)] u (p~ np~];

(ii) [P} n p~] u [CPt u p~) n P~J;

(iii) (p~ n (p~ u p~)] u [(p~ u p~) n p~];

(iv) [p~ n p~] u [p~ n p~] u [p~ n p~].

But one of the alternatives might be selected as a normal form. Possibilities include
the following. (a) The union of maximal elementary subsets. It will be shown that
this form is unique for any subset of Sus. In the example it is (iii). (b) The union
of maximal disjoint elementary subsets. This form is not unique. Both (i) and (ii) in
the example satisfy this description. (c) The union of minimal (atomic) elementary
subsets. This form is unique. In the example it is (iv). Of these possibilities, the
union of maximal elementary subsets offers uniqueness and structural simplicity and
will therefore be adopted.

A normal form for elements of SUB will permit testing for entailment, synonymy,
and anomaly or contradiction to be performed by simply checking whether certain
meanings are identical or not.

3.2 It follows from the definition of SUB that there exists an embedding <PI of ESB
as a meet semilattice into SUB. Therefore, element x E ESB can be identified with its
image <Pl(X) E SUB. X will be said to be a maximal elementary subset of y E SUB iff
x < y and for any elementary subset z, x :5 z :5 y implies z = x. The properties of
maximal elementary subsets will be developed in a lattice (the ideal lattice) in which
the elementary subsets are distinguished elements.

3.3 Let X ~ Es8 • The order ideal generated by X, I(X) := {y E ESB - {O}ly < x
for some x E X}. If X = {x} then I(X) is principal and is written I(x).

Since unions and intersections of order ideals are again order ideals, the set of all
order ideals ordered by set inclusion is a lattice. This lattice, I, is called the ideal
lattice of Ess. It contains the zero element 0 and unit element ESB - {Ole

Obviously, 4>2: ESB --+ I defined <P2(X) := [(x) is an embedding of ESB as a meet
semilattice into I. x E ESB will be identified with its image 4>2(X) E I.

12



It follows from its definition (and assumption F) that I is a finite distributive lattice.

3.4 The following results from lattice theory [1,6] will be used. Let L be a lattice.
An element x E L is (join) irreducible iff 'Vy, z E L: x = y U z implies either x = y
or x = z. An expression x = Xl U ... U X m , where Xl, ••• ,Xm are irreducible, is a
decomposition of x. IT no Xk can be eliminated, the decomposition is irredundant.

If L is a finite distributive lattice then every element has a unique irredundant de­
composition. Moreover, if x is irreducible and x < Xl U· · · U X m , where Xl, ••• ,Xm are
arbitrary elements, then x < Xk for some k, 1 :5 k < m.

3.5 All the results of 3.4 hold for I and SUB since both are finite distributive lattices.

The irreducible elements of I are precisely the principal ideals, i.e., the images of
elementary subsets. Consider nonzero ideal I(X) E I where X ~ ESB. Then z -<
I(X) iff z = I(X) - {x} for x E X. Therefore I(X) is irreducible iff X = {x}, i.e.,
iff I (X) is principal.

Define the set of atoms of SU8, A := {a E SUBIO -< a}. That these are the only
nonzero irreducible elements of SUB can be seen as follows. Every element of SUB is
either an elementary subset or a join of elementary subsets. The irreducible elements
must therefore be elementary subsets. Let x be a nonzero elementary subset belonging
to [0, aQ ]. Then x = niEP UjEJz. P!. i = UUo)En. r. niElz p~ i. Obviously, x is

Ba a,I' I 'ElBa a,1 Ba '

irreducible only if IniEI;'.. J:,il = 1 only if Vi E liJ.. [IJ:,il = 1] only if x is an atom
of ESBo • Finally, x is irreducible iff x is an atom of ESBa and x is not further
decomposed; i.e., iff x is an atom of SUB.

Therefore every nonzero element of SUB has a unique decomposition into atoms. For
x E SUB, define A(x) := {a E Ala < x}; for X ~ SUB, A(X) := Uzex A(x).

Because ESB is embedded in Sus as a meet semilattice, and atoms are elementary
subsets, it follows that every element of ESB is also uniquely determined by the
atoms it dominates. Since no confusion can result, the function A will be applied to
elements of Ess as well as elements of Sus. It follows that for x, y E EsB , X = Y iff
A(x) = A(y) and x < y iff A(x) ~ A(y).

The atoms of I are elementary subsets and so the definition A(x) := {a E IIO -< a <
x} is also useful. Because not all irreducible elements of I are atoms, an arbitrary
element is not uniquely determined by the atoms it dominates. However x < y only
if A(x) ~ A(y) holds for arbitrary x, y E I.

When A is used in the following its domain will be clear from the context.

3.6 DEFINITION. 0': I --+ I is defined u(x) := x:= sup{y E IIA(y) = A(x)}.
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It is seen that (j is a closure operation on I. Some properties of this closure operator
follow.

LEMMA. (i) All irreducible elements of I are closed.
(ii) Let x, y E I. Then x < y iff A(x) S; A(Y).
(iii) Let x E I. Viewed as an order ideal of ESB, x = {z E ESB - {OJI A(1(z)) S;
A(x)}. Or, identifying ESB with its embedding in I, x = {z E ES8 - {O}I A(z) S;
A(x)}.
(iv) The meet of the closures of two elements of I is closed and equal to the closure
of their meet; i.e., x n y = x n y.
(v) The closure operation induces a congruence on I: x ~ y :¢:> x = y. The factor
lattice II ~ is isomorphic to 2A (equivalently, Sus).
proof: (i) Let x E I be irreducible. Let x = Xl U · · · U X m be the decomposition of
x. Since x is irreducible, x < x implies x < x k ~ x for some k, 1 < k < m. Thus
A(x) S; A(XA;) S; A(x) = A(x), i.e., A(Xk) = A(x).Since Xk and x are irreducible,
this implies Xlc = x. For all 1, 1 < 1 < m, A(x,) ~ A(%") = A(x). Since the Xl are
irredundant, Xl = x. Thus x = z.
(ii) That x < y implies A(x) S; A(y) is obvious. Suppose A(x) S; A(Y). Then
A(xu supA(y) = A(Y). Therefore xU 8upA(y) < y by definition ofy. Hence x <y.
(iii) Let x = Xl U · · · U X m be the decomposition of x. Let z E ESB - {OJ and
z' = 1(z). Then Z E x iff z' < Xle < x for some k, 1 :5 k ~ m. By (i) and (ii), z' < Xk

iff A(z') S; A(xle). Since A(xre) S; A(x) = A(x), z E x iff A(I(z» S; A(x).
(iv) xn y = {z E ESB - {OJIA(z) S; A(x)} n{z E ESB - {O}IA(z) S; A(y)}
= {z E ESB - {O}IA(z) S; A(x) AA(z) S; A(y)}
={z E ES B - {O}IA(z) S; A(x n y)}
=xny.
(v) Define 'Ij; : I ~ 2A : 1/1(x) := A(x). Obviously 1/J is a lattice homomorphism.
Therefore ~ (the kernel of "p) is a congruence on I and I / ~ ~ 2A • Since a finite
distributive lattice is determined by its irreducible elements, 2A ~ SUB.

3.7 DEFINITION. Let x E I and x = xlU·· ·Uxm be the (unique) decomposition ofx
into irreducible elements. Then the normal form of xis defined: N(x) = {Xl, ... , X m }.

The elements of N(x) are the maximal elementary subsets of x. That is, if y E ES B

such that y < x then it follows from 3.4 that y < Xk for some Xk E N(x).

Since I / ~ ~ 2A , it can be concluded that every subset of A has a unique represen­
tation as the union of maximal elementary subsets.

3.8 An obvious but useful result of 3.6 and 3.7 is the following.

LEMMA. Let x,y E I with normal forms N(x) = {Xl' ,xm } and N(y) = {YI, ... ,

Yn}. Then x n y has the normal form N(x ny) = {Zt, , Zr} satisfying (i) Vq 3k, I
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such that Zq = Xk n y, and (ii) Vk, I 3q such that Xk n Yl :::; Zq, where 1 ~ q ~ r,
1 ~ k :5 m, and 1 < I :5 n.
proof: x n y = Ul<k<m l<l<n(Xk n Yl). Since the decomposition of x n y is unique,
Ul$k$m,19$n{Xk n YI) is identical to Ul$q$r Zq up to redundancy. The lemma follows.

EXAMPLE. Let B = {Pili = 1, 2}, Pi = {pili = 1,2, 3}, x = (p~n(p~up~)]U[(p~upi)n
p~]u(p~n(p~Up~)], y = (p~]u(p~n(p~up~)]. Then xny = (Pinp~]u[(p~up~)np~]u(p~np~].

Eliminating redundant elementary subsets, x n Y = (p~ U p~) n p~.

This result is useful because it shows that the normal form of the meet of two closed
elements is the set of pairwise meets of the elements of their normal forms, with
redundant elements removed. Removal of a redundant element involves recognition
that the redundant element entails some other element in the normal form. Accord­
ing to 2.5, this requires only a componentwise comparison. The following definition
incorporates this result.

DEFINITION. Let x,y E I with normal forms N(x) = {Xl, ... ,xm } and N(y) =
{Yt,. · · , Yn}. Then N(x)tvV(y) := {Xk n Ylil < k, k' :5 m, 1 < I, I' < n and Xk n Yl :5
x k' n Yl' implies k = k' and 1= I'}.

Thus N(x)tvV(y) =N(xn V). Let C be the set of normal forms of closed elements
of I. Then (C,~) is a meet semilattice.

3.9 Let x E I. The pseudocomplement of x is that element x* E I such that
Vy E I : Y n x = 0 iff y ~ x*. Thus, if it exists, x* := sup{y E Ilx n Y = OJ.
Every element of I has a pseudocomplement (i.e., I is a pseudocomplemented lattice)
because I is a finite distributive lattice [6].

Because of the structure of I, the pseudocomplement relative to an interval is also of
interest.

DEFINITION. Let B be a system of bases with domain T. Let Q = f3.b E T, a Q be an
atom relative to basis B(J and x E [0, aa]. Then the pseudocomplement of x in [0, aCt]
is defined x: := sup{y E [0, acr]lx n Y = OJ.
It follows from the definition that xp = (aQ)~Ux:. More generally, if a= b1.b2• • • • .bm

then x* = Uk:1(ab" .....hle )b
1

•••••hle-
1

U x~. (Note that bo is interpreted as the empty string,
f.)

3.10 Observe that A(x) and A(x*) partition A. In fact, znx = 0 iff A(z) ~ A-A(x)
iff z ~ Z < sup(A - A(x)) by 3.6(ii). Therefore x* = sup(A - A(x)).

The following useful identities therefore hold in I. (i) x* = X*; (ii) x** = X;
(iii) x U x· = 1; (iv) (x U y)* = x* n y*; (v) (x n y)* = x* U y*.
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It follows that the set of pseudocomplements of I is identical to the set of closed
elements of I.

3.11 Irreducible elements of I have the simplest pseudocomplements. Consider first
the easy case of a single basis, i.e., B = B. Let x be the principal ideal generated by
Z = niEIs UjEJf pi E ESB. Let Zi = UjEJi-Jf P1 E ESB. Then by 2.4, Z n Zi = 0 for
all i E 1B- Moreover, if y E ESB such that z n y = 0 then y ~ Zi for some i E lB.
Since ESB is embedded in I as a meet semilattice, x n I(zi) = 0 for all i E Is also.
By distributivity of I, x n [UiEIB I(zi)] = o. The I(zi) for i E IE are nonzero, princi­
pal, irredundant and no other irredundant principal ideals can he joined. Therefore,
UiElz I(zi) is the irredundant decomposition of the pseudocomplement of x.

B

The general case is similar. Let x be the principal ideal generated by niEIs.. UjEJ: i ~.i
E Ess , where a = bl.~'··· .bm • Then by 3.9, x· = Uk=l(abJ. .....bl,)~ .....b._l U ~: =

Uk=l[UiEIB....... " I (UJ.EJ... L ._J.GIIJ······".~ .....b._l.i)) U [UiElb I(UjEJ..,i-J: i P1x.i))'
-1° • i-1 -I·····ui-l t' "1 ....."'-1 " Q t

The ideals are all principal and irredundant. Therefore the expression is the decom­
position of x· for x an irreducible element.

3.12 Now consider an arbitrary x E I. Let x = Xl U · · · U X m be the decomposition
of its closure. x· = X* = xi n · · · n x~ by 3.10
= (XII U _.. U Xl ft1 ) n··· n (X m l U··· U x mnm ) by 3.11
= (XII n ··· n Xml) U · .. U (Xln1 n ... n X mnm ) by distributivity
= ZI U··· U Zq

where Zr = (Xlr(l) n ... n Xmr(m» is irreducible for 1 :5 r < q, and q = n~l nk. In
general, ZI U • _. U Zq will not be irredundant (see example below). Therefore, the
irredundant decomposition of x· is the join with redundant Zk removed.

EXAMPLE. Let B = {B, B1, B2 }, BOt = {Po,l' PQ ,2} for Q E {f, 1, 2}, Pa,i = {P~,i,P~,i}

for i E {1,2} and x = pf np~ n P~,l Up~ np~ n P~,1 (see Figure 3).
Then X· = [PI n p~ n P~,l U p~ U p~] n [P~ n p~ n P~,l U P~ U p~]

= [P} np~ n P~,l] U [PD u [P~ np~] u [P~ np~ n P~,l] U [P~ n p~].

DEFINITION. Let x E I. The complement of N(x) is defined:
(i) if z is principal, generated by nEls.. UjEJ:,i P~.i E Ess, where a = ht.~.··· .bm ,

so that N(x) = {x} then
rv N(z) := U~l[UiEIs. ...• I(UJoE.l

b
L ._JGI>J........~ .....bk-l.i)] U

l' . i-I 1·····uk-ll· "l ... ·.bi-l'l

[UiEI;'.. I(UjEJ..,i-J:.i ~.i))i
(ii) if x is not principal and N (x) = {Xl, ... , x m } then
"J N(x) := "J N(Xl)l:i· ..~ "J N(xm ).

Thus "J N(x) = N(X*). Hence C is closed under "J.
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Figure 3: Partitions of S. x is the shaded area.

17



3.13 DEFINITION. Let x, y E I. Then N(z) YJV(y) := '" (I'J N(x)~ '" N(y)).

Thus N(x)YJV(y) = "J (N(x*)tJV(Y*) = "J N(X* nY*) = N«X* ny*).). Hence C
is closed under Y...

THEOREM. c:= (C,':1., 11, f'J, 0, 1) is a Boolean algebra, the algebra of normal forms.
proof: I is a pseudocomplemented lattice. Let K := {x·'x E I}. Then K :=
(K,u.,n,*,O,I), where xUy = (x*ny*)*, is a Boolean algebra (see [6], Theorem
1.6.4.). Obviously, C '" K.

3.14 Having defined a normal form for elements of the reduced semantic domain
and an algebra of normal forms, the discussion can turn to the definition of a lexicon.

DEFINITION. A vocabulary, V, is a set of lexical items. A lexicon for V relative to
basis 8 is a map VB: V -+ c.

The definition of the map VB is addressed in the next section.

Let and, or and not denote operations on elements of V, intended as logical conjunc­
tion, disjunction and negation, respectively. Then VB can be extended to expressions
over V generated by these operations by defining:
VB(el and e2) := V8(el)/\vs(e2)
VB(el or e2) := vs( el).~.vB( e2)
VB(not et) :=I'V vs(et)
where el and e2 are expressions over V. The images under this extension are the
meanings that intuition dictates.

This suggests that an inverse lexicon, VB I
, mapping meanings in C to sets of expres­

sions over V might be defined. The inverse function is significant for translation and
language generation. However, it presents some problems since VB1 is in general only
a partial function. The inverse lexicon will be addressed a subsequent paper.

3.15 Finally, entailment, synonymy and contradiction or anomaly relative to the
lexicon can be defined for lexical items. (Cf 2.8.) Let el, e2 be Boolean expressions
over V. el entails e2:{::} v8(el and e2) == u8(et). el and e2 are synonymous:<:;o v8(el) =
vs(e2). el contradicts e2 or el is anomalous in conjuction with e2 :{:> vs(el and e2) = o.

Observe that consistency with common usage requires the definition: el contradicts e2

iff VB(el and e2) = O. Therefore anomaly must be a kind of contradiction. The distinc­
tion between anomalous contradiction and nonanomalous contradiction is addressed
in Section 4.
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4 LEXICON CONSTRUCTION

Construction of a lexicon has two parts: (i) computation of an extended basis B, and
(ii) computation of the map VB: V -+ c.

4.1 The computation of an extended basis assumes a set of distinguishing semantic
properties, D, adequate to distinguish between meanings to the desired degree of pre­
cision. These properties are provided by empirical linguistic analysis. The analysis
may relate to a single language, to a group of languages or to all languages. The
analysis may be fixed once for all or it may evolve. The lexicon construction is indif­
ferent to these matters. The construction produces an unambiguous representation
for meaning based on the input provided.

Computation of the map Vs assumes a definition or classification of the lexical items
of V in terms of the distinguishing properties. Since VB is a map from lexical items
to normal forms of meaning, this computation must determine the normal forms.

A suitable linguistic analysis is the "componential analysis of meaning" described by
Eugene Nida [9]. According to Nida, componential analysis consists of the following
four linguistic procedures.
(i) Naming. A referent is designated for the lexical item. The referent may be an
object, an event, or a condition, including the effect on an audience.
(ii) Paraphrasing. The lexical item is explicated in terms of already known meanings.
(iii) Defining. Using the results of naming and paraphrasing, those properties are
extracted that relate a meaning to and differentiate it from other meanings. These
properties, which Nida calls "diagnostic components of meaning", are the elements
of D.
(iv) Classifying. The lexical items are placed in classes determined by the diagnostic
components.

The results of the third and fourth procedur~constitute the input to the computation
of the extended basis B and the map Vs, respectively.

It seems that these four procedures also describe the process by which a child ac­
quires semantic knowledge. In the child the process is incremental. The linguist on
the other hand carries out the procedures on large classes of related meanings, i.e.,
semantic domains. When considering machine acquisition of semantic knowledge,
both possibilities should he kept in mind.

To prevent misunderstanding about the set D, it should be emphasized that the
elements of D are semantic constructs. They are denoted by English words and
phrases. Nonetheless, they are not to be identified with those words and phrases.
The words and phrases are simply convenient mnemonics for codes. Of course, it
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may happen that a word w is in both D and V, and that the meaning of W E V is
wED (more precisely, the code denoted by wED). This should cause no confusion
if the nature of D is properly understood.

The computation of basis B requires specification of D sufficient to form a poset as
follows. The elements of the poset are the terms in elements of D and the operator
n. For d1 , d2 E D, d1 n d2 denotes the intersection of the extensions of d1 and d2 ;

d1 = d2 is the assertion that the extensions of dl and d2 are identical. One can also
view n as logical conjunction and = as logical equivalence of properties. The partial
order < is defined x < y :<=> x n y = x. The zero element 0 denotes the empty set
and may be viewed as logical impossibility. The specification of D by the empirical
data must be sufficient to identify equal terms: e.g., x n y = x or x n y = o.

The set A of atoms of the poset is defined to contain those terms a such that 0 -< a.
For any term x, the set of atoms dominated by x is defined A(x) := {a E Ala ~ x}.
The rank of x is defined r(x) := IA(x)(.

As a practical matter, the specification of D should be given in a form that is simple
and compatable with the algorithm used to compute 8. The design of an optimal in­
put data representation and an efficient algorithm will not be addressed here. Rather
an arbitrary presentation of the data (convenient for manual processing) will be used.
The computation of B will only be illustrated. Two examples will be used.

D will be specified by a tree H in which a path represents logical conjunction of the
nodes on that path. Each path from the root to a leaf represents an atom. Logically
equivalent terms are represented by the structurally simplest equivalent term.

4.2 The first example is taken from Nida [9], where it is used as an illustration of
componential analysis. The vocabulary V is a set of names for rigid fasteners; for
convenience, however, numerical codes will be used in place of the longer names. The
names and their numerical codes are listed in Table 1. The set D of distinguishing
properties is given' in Table 2 along with abbreviations. The tree H for this example is
shown in Figure 4. The atoms are in one-to-one correspondence with the leaves of H.
An atom is given by the conjunction of labels of the nodes on a path from the root to a
leaf. For example, the leftmost leaf is associated with atom TnTTnSLnpnRDnSM.
This tree asserts that each atom is a logically possible conjunction of distinguishing
properties and that the atoms span the universe S of meanings relating to rigid
fasteners. There are a total of 40 atoms.

The first step in the construction of the basis identifies all partitions of the unit
element, RF. An element x is partitioned by the set {Xl' ... ' X m } ~ D if r(x 'n Xl) +
... + r(x n X m ) = r(x), r(x n Xk) # 0 and r(x n Xk n Xl) = 0 for 1 < k,l < m and
k # 1.9 Therefore, partitions of RF are: {T,NT}, {P,NP}, {RD,SQ}, {SM,LG},

9More precisely, % is partitioned by the restriction of {Zl' ... ,zm} to Z (see 2.9). No confusion
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1 common nail
2 finishing nail
3 slot head wood screw, partial threads
4 slot head wood screw, full threads
5 phillips head wood screw, full threads
6 phillips head wood screw, partial threads
7 machine bolt, square head, full threads
8 machine bolt, square head, partial threads
9 carriage bolt, full threads

10 carriage bolt, partial threads
11 rivet

Table 1: Rigid fastners and their abbreviations.

T threaded
NT not threaded

P pointed
N P not pointed
TT threads to top

NTT threads not to top
RD round head
SQ square head

S M small head
LG large head
SL slot drive

PH phillips drive

Table 2: Distinguishing properties for rigid fasteners and their abbreviations.
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Figure 4: Relations between distinguishing properties for rigid fastners

22



8M

p

LG 8M

NP

LG

T

NT

RD

8Q

RD

SQ

4 4 4 4

4 4 4 4

1 1 1 1

1 1 1 1

Figure 5: First-level basis for RF with ranks of atoms shown.

{TT,NTT,NT}, {SL,PH,NT}.

When these partitions are examined further for independence, it is found that {T, NT}
®{P, N P} ~ {RD, SQ} ® {8M, LG} is a partition of RF and hence these four par­
titions are independent. Therefore, they comprise the first-level basis. This is dia­
grammed in Figure 5. This figure represents a four-dimensional cube drawn in two
dimensions.

Next, each atom of the first-level basis is considered, in turn, as the unit element.
Partitions of some these atoms are identified. For example, the atom TnpnRDnSM
is partitioned by {TT,NTT} and {SL,PH}. Since {TT,NTT} ® {SL,PH} is a
partition of T n P n RD n 8M, these two partitions are independent and therefore

will result, however, from this more convenient though less precise la.nguage.
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Figure 6: Second-level basis for atoms of rank 4 (each atom has rank 1).

form a basis for Tn P n RD n 8M, shown in Figure 6. A similar result is obtained
for the remaining first level atoms of rank 4. This completes the system of bases and
gives a definition of B.

Finally, the definitions of members of V in terms of the distinguishing properties
are given in tabular form in Table 3. These definitions are sufficient to immediately
define VB. The lexicon representation for 4 (slot head wood screw with full threads)
is vB(4) = [[T n P n RD n SM] n [TT n SL]]U [[T n P n RD n LG] n [TT n SL]].

Now suppose it were desired to define a new vocabulary element, "wood screw",
meaning any of the types 3, 4, 5 or 6. Then wood screw would be represented in the
lexicon as [T nP n RD]. It follows immediately from the lexicon representations that
4 entails wood screw since v8(4) C vB(wood screw).

4.3 In the example above, the partitions {{P, N P}, {RD, SQ}, {8M, LG}, {SL, PH,
NT}} could as well have been chosen as the first-level basis. In general, given a par­
ticular universe, a basis is not uniquely determined. Various criteria might be used to
select a basis. For example, certain distinguishing properties might be recognized as
related in a "meaningful" way and preferred as elements in the same partition. This
criterion was used implicitly in selecting {T,NT} rather that {SL,PH,NT}.

A quantitative criterion is the extent to which a particular basis subdivides the uni­
verse (in a sense, the "information content" of the basis). A basis that achieves a
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1 2 3 4 5 6 7 8 9 10 11
T No No Yes Yes Yes Yes Yes Yes Yes Yes No
P Yes Yes Yes Yes Yes Yes No No No No No

TT No Yes Yes No Yes No Yes No
RD/SQ RD RD RD RD RD RD SQ SQ RD RD RD
SM/LG LG 8M E E E E E E E E E
SL/PH SL SL PH PH E E E E

Table 3: Definitions of rigid fasteners. Note: "-" means the property is not appli-
cable; "E" means both values of the property are applicable.

greater subdivision would be preferred.. A precise definition of this notion is developed
below.

Consider a universe of N entities. With no basis (i.e., subdivision) at all, to find
an entity satisfying a particular description, it might be necessary to examine N - 1
entities.. The extent to which a particular basis improves upon this worst case will
be taken as a figure of merit for that basis. Specifically, if the maximum number of
steps required to find the entity with the basis is n, then n/(N - 1) will be taken
as the figure of merit for the basis. The smaller the figure of merit, the better the
basis .. For example, suppose the universe is subdivided into two (equal for simplicity)
blocks determined by the presence or absence of some property. To find the entity
requires that one block be checked for appropriateness and then the If - 1 entities of
the appropriate block be examined. Thus 1 + r: - 1 steps are required, resulting in a
figure of merit #i5. Similarly, a partition of four equal blocks results in a figure of

merit ~(3+~ -1) = lit-8
l); two independent partitions, each of two equal blocks,

yields a figure of merit N:l (2 + ~ -1) = .r:l:o.~r

Obviously, one of the worst bases is the unit basis consisting only of the unit partition:
a single block of N entities. The figure of merit for the unit basis is 1. Just as bad is
the zero basis consisting only of the zero partition: N blocks of one entity each. For
the zero basis also the figure of merit is 1. One of the best is the basis of flog2N)
binary partitions, with a figure of merit equal to [l:f:!f'.

In general the figure of merit is defined: M := N:l [EiEIB(\Jil-1) +EatomaEB r~)(r(a)

-1)] where rt) is taken to be the relative frequency with which atom a is accessed,
assuming all entities in the universe are accessed with equal frequency. It appears
that logaN < M < 1.

N-l - -
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Returning to the example, bases for RF are found to be
B = {{T,NT}, {P,NP}, {RD, 8Q}, {8M,LG}}
B' = {{TT, NTT, NT}, {P, N P}, {RD, SQ}, {8M, LG}}
B" ={{SL, PH, NT}, {P, N P}, {RD, SQ}, {8M, LG}}
Their figures of merit are M(B) = 0.164, M(B') = 0.149, and M(B") = 0.149 while
Mmin = (I092N)/(N - 1) = 0.136. Thus, by the second criterion B' or B" would be
selected as the first-level basis. The first criterion would lead to selection of B' over
B".

4.4 A second somewhat larger example, also taken from Nida [9], deals with English
verbs of motion. The distinguishing properties are listed in Table 4. The index of a
property in this list will be used as an abbreviation for that property. For example,
"continuous contact with the surface by one then another limb or set of limbs" will
be abbreviated "E3a".

As in the first example, additional information about the distinguishing properties is
presented in the form of a. tree. See Figure 7. Because of the large size, some subtrees
are indicated by a triangle containing a label. The details of the subtree are shown
in the tree whose root carries that label. Identical subtrees are only detailed once.
The rank of a node is given in a small circle adjacent to the node.

Partitions of the unit element are easily found to be {Ala, Alb, Ale, A2, A3}, {Bl, B2,
B3} and {Gl, G2, G3}. The bases that can be formed from these are
B = {{Ala, Alb, Ale, A2, A3}} and
B' = {{Bl, B2, B3}, {GI, G2, G3}}.
The figures of merit for these bases are 0.862 and 0.135, respectively. Therefore, B'
is chosen as the first-level basis.

Continuing in this manner, the extended basis shown in Figure 8 is computed.

The vocabulary and definitions of vocabulary elements in terms of the distinguishing
properties are shown in Table 5. Minor deviations from Nida's data are indicated.
These data immediately determine VB. For example,
v8(climb) = [BI n G3] n [Ala] n [C2 n Dl n E3a] n [Fl] and
v8(fall) = [B3 n G2] n [Ale] n [D2 n El].

4.5 Figure 7 is based on certain assumptions about the relations between the distin­
guishing properties. (Nida does not give any relations between distinguishing prop­
erties.) These particular assumptions may not be as good as some others. The effect
of the assumptions on the distinguishing properties will affect the "quality"· of the
lexicon. However, the approach to lexicon construction described here is independent
of the definition of any particular set of distinguishing properties. Neither claims nor
assumptions are made regarding the universality, the quality or even the validity of
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A. Environment
1. Surfaces

&. Supporting
b.. Nonsupporting
c. Between surfaces on different levels

2. Air
3. Water

B. Source of energy
1. Animate being
2. Animate being and gravity
3. Gravity

C. Use of limbs for propulsion
1. All four limbs
2. All limbs normally in contact with supporting surface

(with optional addition of forelimbs for bipeds in climbing)
3. Forelimbs

D. Points of contact with the surface
1. Extremities of the limbs
2. Any parts
3. Continuous series of points

E. Nature of contact with the surface
1. No contact during movement
2.. Intermittent contact
3. Continuous contact

&. By one and then another limb or set of limbs
b. By the same or contiguous portion

F. Order of repeated contact between limbs and surface
1.. Alternating
2. Variable but rhythmic
3. 1-1-1-1 or 2-2-2-2 or continuous series of short jumps
4. 1-1-2-2-1-1-2-2

G. Directional orientation
1.. Indeterminant
2. Down
3. Up

Table 4: Distinguishing properties for verbs of motion..
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climb crawl dance fly fall hop jump roll run sink skip slide swim walk
Ala x x x x x x x x x x
Alb x
Ale x
A2 x
A3 x
Bl x x x x x x x x x x
B2 x x
B3 x x
C1 x * x
C2 x • x x • x x x
C3 x *Dl x x x x x x x x
D2 x x
D3 x
El x x
E2 x x x x
E3a * x x x
E3b x x
Fl x x x x
F2 x
F3 x
F4 x
Gl x x x x x x x x x x x
G2 x x
G3 x

Table 5: Definition of verbs of motion. ("x" indicates Nida's data; "*" indicates
deviations from Nida.)
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the distinguishing properties. It might be expected that invalid data will occasion­
ally be used in the construction of a lexicon. The resulting errors in the lexicon will
require eventual correction. The means by which this can be accomplished will be
considered in a later paper.

It should be appreciated that definition of a "good" set of distinguishing properties
for a given semantic domain is a significant task. Much of Nida's book is devoted to
describing this task. The difficulty can be illustrated by attempting to add "bounce"
to the lexicon of the second example.

Having a person on a trampoline in mind, one might define bounce as B2 n G3 n
Ala n C2 n DI n El. However, if one thinks of a ball bouncing on the floor, the
definition might be B3 n G3 n Ala n D2 n EI. But the inclusion of G3 fails to permit
use of the word to describe a ball bouncing off a wall or ceiling!

A solution might be to define bouncet, bounce2 and bounce3 to represent these differ­
ent senses. But it would be better to admit that the set of distinguishing properties is
too limited to accomodate this new lexical item and should be revised. At a minimum,
it appears that heading B should be revised:

B. Source of energy
1. animate source
2. combination of animate and inanimate sources
3. inanimate source

B'. Form of energy
1. potential energy

&. gravity
b. elastic
c. chemical
d. electrical

2. kinetic energy
3. exchange of potential and kinetic energy

In terms of these revised distinguishing properties, the essence of bounce might be
rendered as Ala n B'3 n D2 n (El U E2). Further consideration might reveal this set
to be inadequate as well.

4.6 The input data in the examples are very simple. In particular, the vocabulary
elements are almost all defined simply as conjunctions of distinguishing properties.
Any such conjunction is already a normal form.

In the general case, vocabulary elements may be defined by complex Boolean expres­
sions in the elements of D. Computation of the map Vs then requires that the normal
form of each such expression be computed.
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This can be accomplished for w E V as follows. Let x be the Boolean expression in
elements of D defining w. If any symbol in x does not denote a block of B (i.e., a block
of some partition in B), that symbol will be equivalent to some expression in the blocks
of B. Substitute for all such terms in x to get an equivalent expression x' containing
only blocks of 8. Let y be the disjunction of conjunctions of blocks of 8 equivalent to
x'. Then y is a disjunction of elementary subsets, say Y= Yl U· · · UYn. It follows that
N(Yl) = {y,} for 1 :5 I < n, and by 3.13 that N(y) =N ('" N(Yl)a· .. a '" N(Yn)).

4.7 At this point it is possible to address the distinction between anomalous contra­
diction and nonanomalous contradiction. Consider atoms aa.b, alJ.c defined by bases
B a , B{J respectively. Bases Ba.b and B/3.c will be said to be similar iff (i) Q = f3. and
there exists a basis B' constructed from elements of D such that B' laaob= Ba.b and
B'i4aoC:= BOl•C ; or (ii) BOt is similar to Bp and there exists a basis B' constructed from
elements of D such that B't (Jao"= Ba .b and B'i (J~oc= B(J~c. Intuitively, bases Bo.b and
B{J.c are similar if they are defined by the same distinguishing properties. Examples
of similar bases are found in Figure 8.

If x, Y E ESB and x n y = 0 then meanings x and yare contradictory. Suppose
that x and y belong to elementary domains [0, aa] and [0, ap] respectively, where
a = bl .··· .b" and f3 = Ct.··· .Cl, k < I. If B bt .••..b• is similar to B c1 .....c", then x in
conjunction with y is not anomalous; otherwise, x in conjunction with y is anomalous.

Nowletx,y E SUBwithnormalformsN(x) = {Xl' ... 'Xm } andN(y) = {Yl, ... ,Yn}.
Then x and yare contradictory iff x n y = 0 and x is anomalous in conjunction with
y iff elementary subset Xk is anomalous in conjunction with elementary subset Yl for
all k, I such that 1 < k < m, 1 < I < n.

Thus crawl and skip, relative to the basis of the second example defining verbs of
motion, is contradictory but not anomalous because the elementary domain to which
V8(crawl) belongs has a basis similar to that of the elementary domain to which
v8(skip) belongs. But sink and skip is both contradictory and anomalous since the
elementary domains do not have similar bases. A more intuitively obvious anomaly
is green idea, in the sense of green entity and idea. Relative to an extended basis
defining the meanings of both words, green idea is contradictory and anomalous. This
follows from the circumstance that vB(green entity) would belong to some elementary
domain dominated by an atom representing concrete physical entities while vs(idea)
would belong to some elementary domain dominated by an atom representing abstract
entities.

Anomaly, like the related concepts entailment, synonymy and contradiction, is relative
to a basis. Unlike these related concepts, anomaly has a further dependence on the set
of distinguishing properties chosen to define meaning. While entailment, synonymy
and contradiction can be defined in purely mathematical terms, anomaly cannot.
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4.8 Finally consider briefly the length of the code for meanings in the semantic
domain constructed for verbs of motion. In the extended basis, a path requiring the
maximum length code is 1.1.2, containing subcodes for atoms aI, aI.I, and al.l.2 and
for subsets of 41 ..1.2 .. Bases B, B1 and B l .t define 9, 3 and 36 atoms respectively and
basis B1.1.2 contains a single partition of 4 blocks. Therefore any subset of al.l.2 can
be coded by rlo9291 + rlo9231 + rZo92361 + 4 = 4 + 2 + 6 +4 = 16 bits.

Since the extended basis defines 410 atoms, a lower bound for code length is rZo924101
= 9 bits.

For example, v8(climb) = [Bl n G3] n [Ala] n [C2 n DI n E3a] n [Fl] = a3 n a3.1 n
a3.1.1S n FI which could be coded 0011.01.001111.0001 or in decimal 3.1 .. 15.1.

5 HIGHER LEVEL MEANING

The theory of lexical semantics developed in previous sections deals with entailment,
synonymy, contradiction and anomaly relations on lexical meanings. It remains to
be considered how these relations on lexical meanings can be used to determine sim­
ilar relations on complex meanings. Complex meanings are constructed from simpler
meanings (the simplest being lexical meanings) by the semantic functors of Mon­
tague's theory. Determination of entailment, synonymy, contradiction and anomaly
on complex meanings constitute the direct deduction that was claimed in Section 1
to be part of linguistic competence.

The following discussion is couched in terms of the PTQ fragment as presented by
Dowty [4].

5.1 It is necessary to define a partial ordering :51 on complex meanings that will
agree with an intuitive notion of entailment. Each translation into the Intentional
Logic is interpreted as a set of some kind (set of individuals, set of propositions,
set of properties, function or relation). It is natural therefore to define <1 to hold
between IL expressions of the same type just when set inclusion holds between their
denotations .. In all other instances <1 is undefined.

Obviously the definition of :51 must be consistent with the definition of :5, the partial
order on lexical meanings. It is therefore a requirement on the empirical linguis­
tic data, from which both definitions must ultimately derive, to ensure that this is
the case. It is sufficient that the linguistic data satisfy the following. Let x, y be
expressions in PTQ with translations x', y' respectively..

(i) IT x, y are basic common nouns (BeN) or basic intransitive verbs (BIV )10 then it

10Bo is the set of basic expressions of syntactic category a. Po is the set of phrases of syntactic
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is necessary that V8(X) < vs(y) iff x' ::51 y'.

(ii) If x, y are lexical items that translate to functors of type (a, b), then it is necessary
that V8(X) < VB(Y) iff x' :51 Y' :{:> Vz E MEa[x'(z) :51 Y'(Z)].11

Since it will be assumed that these requirements are satisfied, ::51 will be written <
in subsequent discussion.

5.2 The following definition relates entailment between complex expressions to en­
tailment between their constituents.

DEFINITION. Let x E ME(a.,b). Then x is isotone :¢> VYl,Y2 E MEa.[Yl :5 Y2 ~
X(Yl) < X(Y2)] and x is antitone :¢> VYl' Y2 E M Ea.[Yl < Y2 => X(Y2) < X(Yl)].

Now suppose that Xl' X2 E M E(a.,b) such that Xl < %2 and Xl is isotone. Suppose
further that Yl, Y2 E MEa. such that Yl :5 Y2. Then it follows from the definition
that Xl(Yl) < Xl(Y2) < X2(Y2). Thus from Xl entails ~2 and Yl entails Y2 the isotone
property of Xl permits Xl(Yl) entails X2(Y2) to be inferred.

This result can be illustrated with expressions of PTQ.

5.3 First consider the determiners of PTQ, viz., every, a (or an) and the, in the
light of the above definition. Their translations into IL are (::}T is the translates-to
relation):12
every =?T AP,XQVX(P{x} -+ Q{x}] =every'
a =>TAP'\Q3x[P{x}AQ{x}] =a'
the =}T APAQ3x['ly[P{y} +-+ x = y]" Q{x}] =the'
Therefore every man =>T AQVx[man'(x) -+ Q{x}]. Similarly every human =>T
AQVx[human'(x) --+ Q{x}]. Each of these expressions in IL denotes a set of properties
of individuals. Obviously the first contains the second since any property possessed
by every human is certainly possessed by every man. Therefore, [man] ~ [human]13
as lexical meanings while [every human] :5 [every man]. Since the same argument
is valid for all x, y E PeN such that (x) :5 [y), it follows that the functor every' is
antitone.

Similarly, a man =>T 'xQ3x[man'{x) 1\ Q{x}] and a human =>T .,\Q3x[human'(x) A
Q{x } ] . Now a property possessed by some man is certainly possessed by some human.
Therefore [a man] < (a human]. Since this argument is valid generally, it is concluded

category o. Of course, Ba ~ Pa.
11 A functor of type (0, b) is one whose argument is of type 0 and whose result is of type b. The

set of expressions in IL of type 0 is denoted M Ed (meaningful expressions of type a). Therefore, a
functor of type (a, II) is a member of M E(a,b) •

12See Dowty [4] for details of translation of PTQ into IL.
13[z] will denote the meaning of z whether in the sense of lexical meaning or in the sense of the

interpretation of z' as an expression of IL. Further, (z] ~ (y] :~ (z] ~ [y].
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that a/ is isotone.

Finally, the man =>T '\Q3x('ty[man'(y) +-+ x = y] 1\ Q{x}] and the human =>T
,xQ3x['v'y[human/(y) +-+ x = y] A Q{x}]. In a model containing a single man but
many .humans, [the man] # 0 while [the human] = 0. On the other hand, in a
model containing a single human but no man, [the man] = 0 while [the human] #
0. Therefore, the' can be neither isotone nor antitone in general. However, if [the
man] # 0 # [the human], then [the man] = [the human]. This argument holds
generally for all common nouns. Therefore, when it occurs in nonvacuous phrases,
the' is both isotone and antitone; when vacuous phrases are admitted, it is neither.

Quantitative determiners (which are not part of PTQ) can also be defined as logical
constants (e.g., see [8]). Using reasoning similar to the above they are classified as
follows. For natural numbers nand m: at least n, more than n, infinitely many, less
than one-nth and no more than one-nth translate to isotone functors; no, at most n,
less than n, (only) finitely many, at least one-nth and more than one-nth translate to
antitone functors; the n, the n or more and the n or less translate to functors having
the same character as the'; (exactly) n, all but n, between nand m and (exactly)
one-nth translate to functors that are neither isotone nor antitone.

Possessive determiners such as John's occuring in the sentence "John's car is red"
can also be classified. Note that "John's car is red" is equivalent to "The car of
John is red" [8]. Therefore it follows that possessive determiners behave like the and
translate to functors that are both isotone and antitone when the phrases involved
are nonvacuous and neither isotone nor antitone otherwise.

5.4 The term phrases of PTQ are formed from determiners combined with common
nouns, from term phrases conjoined by "or", or are basic terms such as John, heo
and ninety. Each term phrase is interpreted as a set of properties of individuals,
where a property of individuals is a function from indices (or "possible worlds") into
sets of individuals. At a fixed index such a set of properties is called a sublimation.
Three kinds of sublimations are distinguished [4]: (i) a sublimation that interprets
an IL expression of the form ,xQ[Q{j}] is called an individual sublimation; (ii) one
that interprets an IL expression of the form AQ3x[man'(x) 1\ Q{x}] is called an
existential sublimation; and (iii) one that interprets an IL expression of the form
AQ'v'x[man'(x) -+ Q{x}] is called a universal sublimation. These three kinds interpret
all the term phrases of PTQ.

Suppose that Q1 and Q2 are properties of individuals such that Q1 ~ Q2 (i.e., Ql(i) ~
Q2(i) for each index i). Then if ('xQ[Q{j}])(Qt) is interpreted as true (i.e.., (j] E
[Qt]), it follows that (AQ[Q{j}])(Q2) must also be interpreted as true (i.e., (j] E
[Q2] also). Thus IL expressions which are interpreted by individual sublimations are
isotone functors.
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Similar arguments show that IL expressions which. are interpreted by existential and
universal sublimations are isotone functors. It is concluded that all term phrases of
PTQ translate to isotone functors.

5.5 This is enough to illustrate how 5.2 mediates determination of entailment be­
tween complex meanings. Consider first the example of Section 1. Assume that the
lexicon contains the following data: (date] :5 ( accompany], (actor] :5 [male], date'
is isotone, and a' is isotone. Applying the above results to these data it is immedi­
ately deduced that [date an actor) ::::; (accompany a. malel. In a similar fashion, from
the datum every' is antitone, it follows that [date every male) < [accompany every
actor).

Since M ary' is an isotone functor, [Mary dates an actor) < [Mary accompanies a
male] and [Mary dates every male] < [Mary accompanies every actor]. Thus the
entailments recognized by English speakers are obtained from the theory.

5.6 It is well known that the sentence "Every woman dates a man" permits two
distinct readings, depending on the order of quantification. The first, called the de
dicto reading, can be unambiguously rendered "Every woman dates some man or other
but not necessarily the same man". The second, known as the de re reading, can also
be rendered "Every woman dates a man, the very same one for every woman". The
sentence on the de re reading entails the sentence on the de dicta reading. This is
true generally; the converse is not.

From 5.2-5.4 it follows that for a fixed reading (either de dicto or de re), it can be
derived that "Every woman dates a man" entails "Every debutante accompanies a
male". Therefore, "Every woman da.tes a man" (de re) entails "Every debutante
accompanies a male" (de re) which entails "Every debutante accompanies a male"
(de dicto). In fact, introduction of the de re - de dicto entaihnent at any point in
this derivation is valid. This is a general condition and therefore it can be concluded
that the entailment following from 5.2-5.4 and the de re - de dicto entailment act
independently.

5.7 It is reasonable to generalize definition 5.2.

DEFINITION. Let x E ME(OOt(41,...,(elfl_l,b)...). Then
x is isotone in argument k :<=} YYk, Yk E M E alc [Yk < ~ => ['lUi E MEa! ••• 'VYn-l E
M Ean_1 [X(YO)··· (Yk-l)(Yk)(Yk+l) · · · (Yn-t) ::::; X(YO)··· (Yk-l)(Yk)(Yk+l) · · · (Yn-I)]]]
and
x is antitone in argument k :<:> VYIe, Yk E M E 41r [Yk < Yk ~ [VYI E M Eel! ••• 'VYn-l E
M Ef1-n_l [x(Yo)··· (Yk-l)(Y~)(Yk+l) · · · (Yn-I) :5 x(Yo)··· (Yk-t){Yk)(Yk+l) · .. (Yn-l)]]].

The implication of this definition is a generalization of that given in 5.2. Let Xl' X2 E

ME(ao,(al, ...,(an _l,b) ...), Yk,Y" E MEa" and Yl E MEa1 ,···,Yk-l E MEulc_1 ,Yk+l E
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MEOIc+1 ' • •• ,Yn-l E MEan_I. IT Xl :5 X2, Xl is isotone (respectively antitone) in argu­
ment k and Yk < y~ (respectively Yk < Yk) then XI(YO)· · · (Yk-I)(Yk)(Yk+l) •.. (Yn-I) ~
X2(YO) · · · (YA:-l)(Yk) (Yk+l) ... (Yn-l).

5.8 A further generalization to partial isotone (antitone) property is possible.

DEFINITION. x is partially isotone in argument k on M ~ M E~k :<:> V'(Yk, Yk) E
M[Yk < y~ => [VYI E M Ea1 ••• VYn-IE MEan_1 [x(Yo)··· (Yk-I)(Yk)(Ylc+I)··· (Yn-l) <
x(Yo) · · · (YA:-l)(Y~) (YA:+I) •. • (Yn-l)]]] and
x is partially antitone in argument k on M ~ M E~1c :{:} V(Yk) y~) E M[Yk < Yk =}

[VYI E M Eot •• • 'VYn-lE M E"_1 [x(Yo)·· · (Yk-I)(Yk)(Yk+l) · .. (Yn-t) :5 x(Yo)·· · (Yk-l)
(Yk) (Yk+l) · .• (Yn-l)]]].

Again let Xt,X2 E ME(ao.(41 .....(an_l.b) ...), Yk,Y~ E MEalc and Yl E MEo1 , ... ,Yk-l E
M EtJlc_ 1 , Yk+l E M E4Jc+1 , • • • ,Yn-l E ME4n_ 1 • H Xl :5 X2, Xl is partially isotone (re­
spectively partially antitone) in argument k on M and (Yk, y~) E M such that Yk < y~

(respectively Yk < Yk) then Xt(Yo) · · · (Yk-l)(Yk)(Yk+l) · · · (Yn-l) < X2(YO) ••• (Yk-l)(Yk)
(Yk+l) .. · (Yn-l).

It is an interesting question whether partially isotone (antitone) functors occur in
natural languages.

A more complete treatment of entailment (and hence synonymy, contradiction and
anomaly) at the level of complex meaning is reserved for a subsequent paper.

6 CONCLUSION

The theory of lexical semantics described in this paper represents lexical meanings
as subspaces of a multidimensional semantic space. The space is coordinatized, with
each coordinate regarded as an independent "dimension of meaning." Each subspace
has a unique representation, called its normal form. A lexicon is defined as a map
from a vocabulary to a Boolean algebra of normal forms.

A lexicon can be constructed using data from empirical linguistic analysis. No as­
sumption of universal or ideal semantic categories is made. Data from Nida's compo­
nential analysis [9] are used to illustrate the construction. It is an interesting question
whether this construction could also support incremental or evolutionary acquisition
of semantic knowledge.

This theory of lexical semantics complements Montague semantics. It appears that
the theory also complements lexical extensions of Montague semantics such as de­
scribed by Dowty [2,3]. Entailment at the level of lexical meaning can be determined
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directly from the normal forms. At higher levels of meaning, entailment can be deter­
mined using entailment at lower levels and knowledge of isotone/antitone properties
of functors that combine lower level meanings. This is demonstrated in connection
with the PTQ fragment [4].
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